1,055 research outputs found

    Practical Aggregation in the Edge

    Get PDF
    Due to the increasing amounts of data produced by applications and devices, cloud infrastructures are becoming unable to timely process and provide answers back to users. This has led to the emergence of the edge computing paradigm that aims at moving computations closer to end user devices. Edge computing can be defined as performing computations outside the boundaries of cloud data centres. This however, can be materialised across very different scenarios considering the broad spectrum of devices that can be leveraged to perform computations in the edge. In this thesis, we focus on a concrete scenario of edge computing, that of multiple devices with wireless capabilities that collectively form a wireless ad hoc network to perform distributed computations. We aim at devising practical solutions for these scenarios however, there is a lack of tools to help us in achieving such goal. To address this first limitation we propose a novel framework, called Yggdrasil, that is specifically tailored to develop and execute distributed protocols over wireless ad hoc networks on commodity devices. As to enable distributed computations in such networks, we focus on the particular case of distributed data aggregation. In particular, we address a harder variant of this problem, that we dub distributed continuous aggregation, where input values used for the computation of the aggregation function may change over time, and propose a novel distributed continuous aggregation protocol, called MiRAge. We have implemented and validated both Yggdrasil and MiRAge through an extensive experimental evaluation using a test-bed composed of 24 Raspberry Pi’s. Our results show that Yggdrasil provides adequate abstractions and tools to implement and execute distributed protocols in wireless ad hoc settings. Our evaluation is also composed of a practical comparative study on distributed continuous aggregation protocols, that shows that MiRAge is more robust and achieves more precise aggregation results than competing state-of-the-art alternatives

    Ofshore Wind Park Control Assessment Methodologies to Assure Robustness

    Get PDF

    Distributed Maximum Matching Verification in CONGEST

    Get PDF
    We study the maximum cardinality matching problem in a standard distributed setting, where the nodes V of a given n-node network graph G = (V,E) communicate over the edges E in synchronous rounds. More specifically, we consider the distributed CONGEST model, where in each round, each node of G can send an O(log n)-bit message to each of its neighbors. We show that for every graph G and a matching M of G, there is a randomized CONGEST algorithm to verify M being a maximum matching of G in time O(|M|) and disprove it in time O(D + ?), where D is the diameter of G and ? is the length of a shortest augmenting path. We hope that our algorithm constitutes a significant step towards developing a CONGEST algorithm to compute a maximum matching in time O?(s^*), where s^* is the size of a maximum matching

    Sequence modelling for e-commerce

    Get PDF

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    Technologisch herausfordernde Transformationsprozesse wie die Energiewende können durch passende Anreizsysteme entscheidend beschleunigt werden. Ziel solcher Anreize ist es hierbei, ein Umfeld idealerweise so zu schaffen, dass das Zusammenspiel aller aus Sicht der beteiligten Wettbewerber individuell optimalen Einzelhandlungen auch global optimal im Sinne eines übergeordneten Großziels ist. Die vorliegende Dissertation schafft einen regelungstechnischen Zugang zur Frage optimaler Anreizsysteme für heutige und zukünftige Stromnetze im Zieldreieck aus Systemstabilität, ökonomischer Effizienz und Netzdienlichkeit. Entscheidende Neuheit des entwickelten Ansatzes ist die Einführung zeitlich wie örtlich differenzierter Echtzeit-Preissignale, die sich aus der Lösung statischer und dynamischer Optimierungsprobleme ergeben. Der Miteinbezug lokal verfügbarer Messinformationen, die konsequente Mitmodellierung des unterlagerten physikalischen Netzes inklusive resistiver Verluste und die durchgängig zeitkontinuierliche Formulierung aller Teilsysteme ebnen den Weg von einer reinen Anreiz-Steuerung hin zu einer echten Anreiz-Regelung. Besonderes Augenmerk der Arbeit liegt in einer durch das allgemeine Unbundling-Gebot bedingten rigorosen Trennung zwischen Markt- und Netzakteuren. Nach umfangreicher Analyse des hierbei entstehenden geschlossenen Regelkreises erfolgt die beispielhafte Anwendung der Regelungsarchitektur für den Aufbau eines neuartigen Echtzeit-Engpassmanagementsystems. Weitere praktische Vorteile des entwickelten Ansatzes im Vergleich zu bestehenden Konzepten werden anhand zweier Fallstudien deutlich. Die port-basierte Systemmodellierung, der Verzicht auf zentralisierte Regeleingriffe und nicht zuletzt die Möglichkeit zur automatischen, dezentralen Selbstregulation aller Preise über das Gesamtnetz hinweg stellen schließlich die problemlose Erweiterbarkeit um zusätzliche optionale Anreizkomponenten sicher

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    This work presents a real-time dynamic pricing framework for future electricity markets. Deduced by first-principles analysis of physical, economic, and communication constraints within the power system, the proposed feedback control mechanism ensures both closed-loop system stability and economic efficiency at any given time. The resulting price signals are able to incentivize competitive market participants to eliminate spatio-temporal shortages in power supply quickly and purposively

    Model Predictive Control for Smart Energy Systems

    Get PDF

    Dynamic Incentives for Optimal Control of Competitive Power Systems

    Get PDF
    This work presents a real-time dynamic pricing framework for future electricity markets. Deduced by first-principles analysis of physical, economic, and communication constraints within the power system, the proposed feedback control mechanism ensures both closed-loop system stability and economic efficiency at any given time. The resulting price signals are able to incentivize competitive market participants to eliminate spatio-temporal shortages in power supply quickly and purposively

    A review of technical factors to consider when designing neural networks for semantic segmentation of Earth Observation imagery

    Full text link
    Semantic segmentation (classification) of Earth Observation imagery is a crucial task in remote sensing. This paper presents a comprehensive review of technical factors to consider when designing neural networks for this purpose. The review focuses on Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Generative Adversarial Networks (GANs), and transformer models, discussing prominent design patterns for these ANN families and their implications for semantic segmentation. Common pre-processing techniques for ensuring optimal data preparation are also covered. These include methods for image normalization and chipping, as well as strategies for addressing data imbalance in training samples, and techniques for overcoming limited data, including augmentation techniques, transfer learning, and domain adaptation. By encompassing both the technical aspects of neural network design and the data-related considerations, this review provides researchers and practitioners with a comprehensive and up-to-date understanding of the factors involved in designing effective neural networks for semantic segmentation of Earth Observation imagery.Comment: 145 pages with 32 figure
    corecore