
Sequence Modelling for E-Commerce

Tong Chen

B.E.

A thesis submitted for the degree of Doctor of Philosophy at

The University of Queensland in 2020

School of Information Technology and Electrical Engineering

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/328927322?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Abstract

With the proliferation of electronic commerce (e-commerce), the data generated by both customers and

service providers can accumulate at a fast rate. As such, analyzing the rich but subtle patterns within

the e-commerce data offers a prominent opportunity of refining user experience and increasing business

revenue. Due to the high velocity of e-commerce data, sequence modelling plays a pivotal role in

delivering timely predictive analytics and recommendations. Based on the granularity of data, sequence

modelling for e-commerce is mainly conducted at two levels, namely macro-level modelling and

micro-level modelling. When researching on e-commerce data, macro-level sequence modelling aims

to understand the evolution of high-level business trends in order to set the foundation for enterprise

strategic planning, e.g., sales prediction for inventory management. Meanwhile, micro-level sequence

modelling focuses on learning fine-grained and dynamic user preferences from behavioral data to

deliver personalized user experience, e.g., recommendation systems deployed by all major e-commerce

platforms. In our research, we aim to effectively tackle sequence modelling in e-commerce scenarios

at different levels, and then propose a unified model that allows for both macro- and micro-level

sequence modelling, thus supporting a wide range of e-commerce applications. In summary, our

research consists of the following three parts.

Firstly, for macro-level sequence modelling, we solve the problem of sales prediction, which is a

critical means to achieve a healthy balance between supply and demand in e-commerce. The sales

prediction task is formulated as a time series prediction problem which aims to predict the future sales

volume for different products with observed influential factors (e.g., brand, season, discount, etc.) and

corresponding historical sales records. However, with the development of contemporary commercial

markets, the dynamic interactions between influential factors with different semantic meanings become

more subtle, causing challenges in fully capturing dependencies among these variables. Besides,

though seeking similar trends from the history benefits the accuracy for the prediction, existing

methods hardly suit sales prediction tasks because the trends in sales data are more irregular and

complex. Hence, we gain insights from the encoder-decoder recurrent neural network (RNN) structure,

and propose a novel framework named TADA to carry out trend alignment with dual-attention, multi-

task RNNs for sales prediction. In TADA, we innovatively divide the influential factors into internal

feature and external feature, which are jointly modelled by a multi-task RNN encoder. In the decoding

stage, TADA utilizes two attention mechanisms to compensate for the unknown states of influential

factors in the future and adaptively align the upcoming trend with relevant historical trends to ensure

precise sales prediction.

Secondly, for micro-level sequence modelling, we investigate sequential top-k recommendation,

which infers users’ preferences from their sequential behaviors and predicts their next interested items.

Though it is important to capture the sequential patterns from the user-item interaction data, existing

methods only focus on modelling the sparse item-wise sequential effect in user preference and only

consider the homogeneous user interaction behaviors (i.e., a single type of user behavior). As a result,

the data sparsity issue inevitably arises and makes the learned sequential patterns fragile and unreliable,



impeding the sequential recommendation performance of existing methods. Hence, in this task, we

propose AIR, namely attentional intention-aware recommender systems to predict category-wise future

user intention and collectively exploit the rich heterogeneous user interaction behaviors (i.e., multiple

types of user behaviors). In AIR, we propose to represent user intention as an action-category tuple to

discover category-wise sequential patterns and to capture varied effect of different types of actions

for recommendation. A novel attentional recurrent neural network (ARNN) is proposed to model the

intention migration effect and infer users’ future intention. Besides, an intention-aware factorization

machine (ITFM) is developed to perform intention-aware sequential recommendation.

Lastly, we develop a machine learning model that is generalizable to both macro- and micro-level

sequence modelling tasks in e-commerce. Specifically, we extend a versatile predictive model, namely

factorization machines (FMs) to the sequential setting. In e-commerce, models based on FMs are

capable of modelling high-order interactions among features for effective predictive analytics, e.g.,

targeted advertising and recommendation. However, existing FM-based models assume no temporal

orders in the data, and are unable to capture the sequential dependencies or patterns within the dynamic

features, impeding the performance and adaptivity of these methods. Hence, we propose a novel

sequence-aware factorization machine (SeqFM) for sequential predictive analytics, which models

feature interactions by fully investigating the effect of sequential dependencies. As static features

(e.g., user gender) and dynamic features (e.g., users’ interacted items) express different semantics,

we innovatively devise a multi-view self-attention scheme that separately models the effect of static

features, dynamic features and the mutual interactions between static and dynamic features in three

different views. In SeqFM, we further map the learned representations of feature interactions to the

desired output with a shared residual network.
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Chapter 1

Introduction

1.1 Background

We are now living in a world where data is constantly and rapidly collected, processed, and analyzed.

In the recent two decades, with the proliferation of big data, we have witnessed the growth and

prosperity of a revolutionary business form – electronic commerce (e-commerce). E-commerce

companies like Amazon, eBay, and Alibaba provide online trading platforms for products and services,

bringing immense convenience to customers’ daily lives. As e-commerce enables online business

transactions, generating large-scale and real-time data has never been easier. Consequently, leveraging

machine learning techniques to discover the behavioral patterns from online users’ transaction data

opens up opportunities to understand user preferences, offer personalized experiences, and eventually

maximize customer values. In e-commerce, as data is usually gathered in a chronological manner, the

immense availability of sequential data has attracted substantial research attention. Generally, there

are three main characteristics of sequential data in e-commerce. (1) High velocity: the data generated

by both customers and service providers can accumulate at a fast rate. (2) High diversity: in e-

commerce, sequential data usually contains multiple variables that are dynamically changing. (3) Rich

patterns: sequential dependencies and transition patterns are the key to success for many e-commerce

applications. On one hand, for companies and business owners, mining the latent patterns within

the e-commerce sequence paves the way for performing timely predictive analytics and increasing

business revenue. On the other hand, for individual customers, the outcomes of sequence mining on

e-commerce data are essential for delivering accurate personalized recommendations and refining user

experience.

Given the multifaceted advantages of sequence modelling for e-commerce, this thesis aims to

systematically investigate the pathways towards effective and efficient utilization of the sequential
e-commerce data for driving various business benefits. Specifically, in the context of e-commerce,

we divide the applications of sequence modelling into two major categories – macro-level sequence
modelling and micro-level sequence modelling. Macro-level sequence modelling is commonly re-

lated to quantitative analysis on the dynamic patterns of e-commerce data, and representative tasks
1
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Problem	Studied:	Sales	Prediction

Macro-Level	Sequence	Modelling

Problem	Studied:	Sequential	Recommendation

Micro-Level	Sequence	Modelling

Problem	Studied:	General	Temporal	Predictive	Analytics

Uniting	Macro-Level	and	Micro-Level	Sequence	Modelling

Figure 1.1: Relationships among the three tasks studied in this thesis.

are commonly prediction-related, e.g., sales prediction, stock price forecasting, click-through rate

prediction, etc. As a beneficial tool for decision-makers of e-commerce businesses, it is useful for

understanding high-level trends and phenomenons, and is indispensable for setting the foundation

for strategic planning. In contrast, micro-level sequence modelling concentrates more on learning

the subtle and dynamic information. While having a stronger focus on deriving fine-grained business

insights, it is usually adopted to advance users’ experience, e.g., learning user preferences for per-

sonalized recommendation, which eventually yields higher customer satisfaction as well as increased

business revenue in return. In light of this, in this thesis, we will firstly focus on two research tasks,

namely sales prediction and sequential recommendation, which correspond to sequence modelling at

the macro-level and micro-level, respectively. Then, we will thoroughly study the general problem of

temporal predictive analytics (including ranking, classification, and regression tasks) by combining the

capability of performing both macro- and micro-level sequence modelling with a unified and versatile

machine learning model. The inherent relationships among the three proposed tasks are illustrated via

Figure 1.1. In what follows, we provide an overview for each individual task, and set the task-specific

research goal we would like to achieve in this thesis.

1.2 Sales Prediction

In this thesis, we first solve the problem of sales prediction, which is a typical macro-level sequence

modelling task in e-commerce. Keeping a balance between supply and demand is crucial to retailers,

and the accurate prediction of sales volume is becoming indispensable for commercial success [16].

Overestimated sales can result in excessive inventory, unhealthy cash flow and even bankruptcy, while

the underestimated sales may lead to unfulfilled orders, decreased business reputation and profit [17].

In practice, sales prediction is formulated as a time series forecasting problem, which aims to predict

future sales volume based on the observed multivariate time series data which consists of historical

sales volume and influential factors including brand, season, discount, etc. Thus, reasonable modelling

of the influential factors and historical sales information should be performed to successfully predict

sales volume. The research goal in this task is to: (1) review, test, and analyze state-of-the-art time

series prediction models in terms of their efficacy in sales prediction; and (2) propose a new model to

advance the performance in real-life sales prediction applications.
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1.3 Sequential Recommendation

Recommender systems have already demonstrated their strong benefits to both online service platforms

and common users as they grant users easier access to preferred resources and help service providers

understand their customers better. In the context of top-k recommendation where the goal is to

recommend k items that a user is likely to interact with in the near future, approaches like matrix

factorization [18,19] and factorization machines [20,21] achieve great success in top-k recommendation

with the assumption that user preference is static. However, while the numbers of both users and items

are now growing exponentially over time, it is more practical to investigate the problem of sequential

top-k recommendation nowadays as the dynamics of the data play a pivotal role in recommender

systems. Unlike conventional top-k recommendation, the sequential top-k recommendation approaches

model the user behavior as a sequence of items instead of a set of items [22]. The research goal in

this task is to: (1) review, test, and analyze the effectiveness of the latest sequential recommendation

approaches; and (2) propose a novel sequential recommendation model that achieves state-of-the-art

performance under the sequential top-k recommendation setting.

1.4 Temporal Predictive Analytics

Lastly, we make an attempt to unite both macro- and micro-level sequence modelling with a versatile

machine learning model, thus enabling effective solutions to a broader range of e-commerce appli-

cations. In e-commerce scenarios, as an important supervised learning scheme, temporal predictive

analytics play a pivotal role in various tasks, ranging from ranking (e.g., recommender systems [23,24])

to regression (financial analysis [25, 26]) and classification (online advertising [27, 28]). While clas-

sic methods like logistic regression and support vector machines tend to fail with the commonly

high-dimensional but sparse categorical features in predictive analytics, the factorization machine

(FM) [20] is a well-established model for handling sparse features via feature interactions. In recent

years, a large body of FM variants are proposed to better capture the effect of feature interactions,

and are successfully applied to temporal predictive analytics. Hence, the research goal in this task is

to: (1) review, test, and analyze existing FM-based models’ adaptivity and effectiveness on temporal

predictive analytics; and (2) propose a new, versatile, and high-performance FM-based model that can

be generalized to various temporal ranking, classification, and regression tasks.

1.5 Thesis Organization

In the rest part of the thesis, we will present our detailed pathways towards the completion of each

research task. Specifically, Chapters 2, 3 and 4 respectively focus on the tasks of sales prediction,

sequential recommendation, and temporal predictive analytics. In each of the three chapters, we will

thoroughly review the existing literatures in related areas to identify their technical characteristics and

shortcomings. We will then introduce our proposed solution to each research task in detail, followed
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by extensive experimental studies on large-scale real datasets to verify the efficacy of our technical

innovations. It is worth mentioning that, due to the breadth and diversity of research domains relevant

to the thesis, we carry out a comprehensive literature review for every single research task to make it

easier to follow and keep the thesis organized. At last, we will conclude all the findings and research

merits achieved by this thesis in Chapter 5, and discuss possible directions of future research on

sequence modelling for e-commerce.
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Chapter 2

Macro-Level Sequence Modelling

In this chapter, we investigate a representative macro-level sequence modelling problem in e-commerce

– sales prediction. We will start with the research background in relation to the core techniques behind

it, which are time series prediction models. Afterwards, we will formally present our proposed model

for the sales prediction task named Trend Alignment with Dual-Attention Recurrent Neural Networks

(TADA), whose superiority in this task is further proved by experiments on real-life commercial data.

2.1 Literature Review: Background and Motivation

2.1.1 Evolution of Time Series Prediction Models

Sales prediction is essentially a time series forecasting problem, which aims to predict future sales

volume based on the observed multivariate time series data which consists of historical sales volume

and influential factors (e.g., brand, season, discount, etc.). In this regard, the techniques can be divided

into linear models and non-linear models. While linear models like autoregressive integrated moving

average (ARIMA) [29], support vector machine (SVM) [30] and robust regression [31] mostly aim

at finding parameterized functions from statistics, non-linear models like Gaussian process [32, 33]

and gradient boosting machines [34, 35] can better model complicated dependencies by leveraging

machine learning techniques. However, due to the high computational cost and unsatisfying scalability

in real applications [36, 37], these approaches are not ideal for sales time series which usually carries

high dimensionality and long time range. In addition, these methods mainly rely on carefully designed

mapping functions, so sufficient domain knowledge of the data is a prerequisite. To address this issue,

recurrent neural network (RNN) [38], along with its two popular variants, namely long short-term

memory (LSTM) [39] and gated recurrent unit (GRU) [40] have been proposed to dynamically capture

long-range dependencies among the sequential data via a flexible non-linear mapping from the inputs

to the outputs.

Attempts on time series modelling using RNNs have demonstrated the efficacy of RNNs in

various time series prediction tasks, such as dynamic location prediction [41, 42] and user satisfaction
7
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prediction [43]. In the aforementioned applications, a single RNN is leveraged to learn discriminative

hidden states from the raw sequential inputs, and the last hidden state in a sequence is used to generate

desired output. As real-life tasks get more complex, the one-step prediction result generated from

the last hidden state of a single RNN no longer suit the demand. Consequently, the encoder-decoder

network is first proposed in neural machine translation scenarios [40, 44], which further inspires

relevant researches on multi-step ahead time series prediction [45–47].

2.1.2 Trend Alignment for Sales Prediction

In recent years, time series prediction algorithms are widely adopted in many areas such as stock price

prediction [48, 49] and medical data processing [50, 51]. Among these applications, the discovery

of trending events or repeating patterns based on the clues from historical observations has inspired

some interesting applications like traffic modelling [37], solar intensity prediction [52] and argument

discovery [53]. Undoubtedly, the discovery of recurring trends will greatly benefit the forecast

of sales by aligning relative contextual information learned from the influential factors, and this

insight is referred to as trend alignment in this thesis. However, both traditional autoregressive-based

methods [29, 54, 55] and recent trend mining models [37, 56] are ineffective for trend alignment in

sales prediction. This is because these methods assume the trend in time series data recurs periodically

(i.e., distributes with a fixed time period), thus requiring domain knowledge for every application area

and carefully chosen parameters based on the data. Hence, existing techniques are unable to align

similar trends in sales time series where the sales patterns are much more subtle and irregular due to

the effect from complicated real-world situations, and the difficulty increases when there are a large

number of different products.

The formation of a trend in sales time series has specific contexts which can be modelled from

the interaction among various influential factors. In regards to contextual information learning from

raw time series, recurrent neural network (RNN) models have been intensively studied and applied

to learn vector representations from sequential inputs [37, 57]. Compared with previous efforts on

time series prediction like kernel methods and Gaussian process [32, 58] which are limited by their

predefined non-linear form, RNNs show their advantages in flexible yet discriminative non-linear

relationship modelling. Moreover, two variants of RNN, namely long short-term memory (LSTM) [39]

and gated recurrent unit (GRU) [40] further advance the performance in tasks related to neural machine

translation [59] and image captioning [60]. Among these applications, the encoder-decoder RNN

architecture leverages two independent RNNs to encode sequential inputs into latent contextual
vectors and decode these contexts into desired interpretations [44,59,60]. After showing its superiority

in recent time series modelling tasks [49, 51], it is natural to consider encoder-decoder RNNs for

sales prediction by leveraging its capability to fully capture the non-linear relationship between the

influential factors and the sales volume.
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Figure 2.1: Illustration of the proposed framework TADA.

2.1.3 Motivation and Our Solution

However, even with the state-of-the-art encoder-decoder RNN models, sales prediction is still a

challenging research problem because when multiple influential factors interact with each other, they

have different influences on different products. For instance, temperature has more impact on the sales

of down jackets than shirts because shirts are intrinsically cheaper and can be worn all year round.

Furthermore, the influential factors are dynamic and unpredictable in many cases, so it is impractical

to assume their future availability. For example, though environmental policy significantly affects

electrical car sales, and fashion trend dominates the clothing industry, we have very limited prevision

on these influential factors. To make things worse, when performing trend alignment using contexts

learned from the past, the decoder cannot generate rich contexts with the unknown states of influential

factors. Hence, the main challenges in sales prediction are summarized as follows. The first is how to

fully capture the dynamic dependencies among multiple influential factors. Secondly, without any

prior knowledge of mutative variables in the future, how can we possibly glean wisdoms from the past
to compensate for the unpredictability of influential factors. Third, as different sales trends recur

irregularly due to complex real-world situations, it is necessary to align the upcoming trend with
historical sales trends, thus selectively gather relative contextual information for accurate prediction

of sales volume.

In light of these challenges, we propose a novel sales prediction framework, namely Trend

Alignment with Dual-Attention Multi-Task Recurrent Neural Network for Sales Prediction (TADA).

TADA consists of two major components: the multi-task LSTM encoder and the dual-attention LSTM

decoder, which are illustrated in Figure 4.1. In order to solve the first challenge, we make our own

observation on the characteristics of sales time series based on previous discussions. The semantics of

influential factors in sales prediction are diverse, which however has been ignored by the conventional

time series prediction methods. Specifically, for each product, its influential factors come with its

intrinsic properties which are directly related to customers’ subjective preference, e.g., brand, category,

price, etc. Meanwhile, there are also many factors that objectively affects the sales, e.g., weather,
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holiday, promotion, etc. In this work, we categorize the intrinsic properties of a product as its internal
feature and the other influential factors as the external feature. While internal features and external

features express different semantic meanings, they both contribute to the fluctuations of the product

sales volume at the same time. Hence, compared with predictive models that treat all kinds of features

in a unified way [37, 49, 61], we propose a multi-task LSTM encoder to learn contextual vector

representations of historical sales time series. As shown in Figure 4.1, to solve the first challenge, we

novelly model the internal feature and external feature in parallel via two individual LSTM layers.

Then, we use a synergic LSTM layer to simultaneously join these two learned latent representations

at each time step. The insight of a multi-task encoder structure is to comprehensively leverage all

available resources by modelling internal and external features separately first, and then pose a dynamic

interaction between different features to generate contextual representations of historical sales time

series.

To address the challenges of trend alignment and unknown influential factors, we propose an

innovative dual-attention LSTM decoder to tackle the difficulties. Grasping intuitions from existing

attention mechanisms [59,62] which aim to select relevant parts of hidden states learned by the encoder

to attend, we develop our simple yet effective attention mechanisms which perfectly blend into the

neural network for accurate sales prediction. As illustrated in Figure 4.1, in the decoding stage, the

first attention models the effect of unknown influential factors using relevant contextual vectors from

the encoder. After new sales contexts are generated within the look-ahead time interval, the second

attention gathers contextual information of this upcoming trend, and then actively aligns the new trend

with historical ones. Eventually, we combine the representation from the aligned trends to produce a

sequence of estimated sales volume in the future.

2.2 The Proposed Model: TADA

In this section, we first mathematically formulate the definition of sales prediction and then we

present the technical details of our proposed model TADA. Finally, we introduce the loss function and

optimization strategy.

2.2.1 Problem Formulation

The objective of sales prediction is to predict future sales volume according to multivariate observations

(e.g., previous sales, weather, price, promotion, etc.) from the past. The formulation of sales

prediction is similar to, but different from multivariate time series forecasting and autoregressive

models (AR). Formally, for an arbitrary product, the input is defined as its fully observed feature

vector set {xt}T
t=1 = {x1,x2, ...,xT} and the corresponding sales volume {yt}T

t=1 = {y1,y2, ...,yT} at

time step t. Here, xt ∈ Rn, yt ∈ R and n is variable according to the feature dimension, while T is the

amount of total time steps. The output of sales prediction is the estimated sales volume of following ∆

time steps after T , denoted as {ŷt}T+∆

t=T+1 = {ŷT+1, ŷT+2, ..., ŷT+∆}, where ∆ is adjustable according to
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Figure 2.2: The unfolded structure of our proposed multi-task LSTM encoder. Two sub-tasks consist
of internal feature learning and external feature learning LSTMs, denoted by LST Mint and LST Mext

respectively. After latent representations of both internal and external features are generated, they
are combined with the real sales number {yt}T

t=1 to compute the contextual vectors {hcon
t }T

t=1 via the
synergic task LSTM (LST Msyn).

the business goal. In this work, we assume ∆� T to ensure the prediction accuracy because {xt}T+∆

t=T+1

is non-available in the prediction stage.

Importantly, compared with multivariate time series forecasting and AR, sales prediction models

behave differently. This is because our target is to acquire the one-dimensional scalar representing

the sales volume without prior knowledge of the features in the future. Meanwhile, in multivariate

time series forecasting, the output is specifically {xt}T+∆

t=T+1, which has the same form and contextual

meaning of its input [37]. Also, the AR assumes {xt}T+∆

t=T+1 is available when predicting {ŷt}T+∆

t=T+1 [49]

because it is designed to model a mapping function between conditions and consequences.

Hence, we formulate sales prediction as a non-linear mapping from time series features {xt}T
t=1

and real sales {yt}T
t=1 in the history to the estimation of sales volume {ŷt}T+∆

t=T+1 with ∆ time steps

ahead:

{ŷt}T+∆

t=T+1 = F
(
{xt}T

t=1,{yt}T
t=1

)
, (2.1)

where F(·) is the non-linear mapping function to learn.

2.2.2 Multi-Task Encoder Structure

Taking a time series {xt}T
t=1 as input, recurrent neural network (RNN) encodes {xt}T

t=1 into hidden

states {ht}T
t=1 via ht = f (xt ,ht−1), where f (·) is a non-linear mapping function. To capture the

long-range dependency, we leverage RNNs with long short-term memory architecture (LSTM) via the
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following formulation [39]:

it = σ(Wixt +Uiht−1 +bi),

ft = σ(W f xt +U f ht−1 +b f ),

ot = σ(Woxt +Uoht−1 +bo),

ct = ftct−1 + it� tanh(Wcxt +Ucht−1 +bc),

ht = ot� tanh(ct),

(2.2)

where � denotes element-wise multiplication and the recurrent activation σ is the Logistic Sigmoid

function. i, f, o and c are respectively the input gate, forget gate, output gate, and cell state vectors.

When updating each of them, there are corresponding trainable input-to-hidden and hidden-to-hidden

weights W and U along with the bias vectors b.

For sales prediction, internal feature and external feature are two kinds of features with different

semantic meanings in sales time series. We use {xint
t }T

t=1 and {xext
t }T

t=1 to denote the feature vectors of

internal and external information in sales time series respectively. As we discussed in previous sections,

internal features carry information of intrinsic attributes directly linked with the product like store

location and item category, while the external features store information of extrinsic attributes viewed

as external influential factors like weather condition and holiday. As a result, a single LSTM structure

may suffer from loss of contextual information as it maps all raw features into one unified space, as we

will reveal in Section 2.3. Hence, we use two LSTMs in parallel to effectively capture the different

semantics by treating internal and external feature modelling as two sub-tasks. Correspondingly, we

extend the problem formulation in Eq.(2.1) as:

{ŷt}T+∆

t=T+1 = F
(
{xint

t }T
t=1,{xext

t }T
t=1,{yt}T

t=1

)
. (2.3)

Figure 2.2 demonstrates our proposed encoder architecture. We use {hint
t }T

t=1 and {hext
t }T

t=1 to

denote the latent representations learned from {xint
t }T

t=1 and {xext
t }T

t=1. After the hidden states are

learned from both sub-tasks, we simultaneously feed those hidden states into a synergic LSTM layer

to learn a joint representation, namely contextual vectors denoted by {hcon
t }T

t=1 at all T time steps in

the sales time series. Furthermore, to enhance the expressive ability of the encoder, instead of adopting

{yt}T
t=1 to calculate the prediction loss, we fuse {yt}T

t=1 with hidden states from both internal and

external encoding LSTMs to calculate the input {xsyn
t }T

t=1 for the synergic layer:

xsyn
t = Wsyn[hint

t ;hext
t ;yt ]+bsyn, (2.4)

where [hint
t ;hext

t ;yt ] represents the concatenation of hint
t , hext

t and yt while Wcon and bcon are weights

and biases to be learned. For notation convenience, we format the multi-task encoder structure into the

following equations:

hint
t = LST Mint(xint

t ,hint
t−1),

hext
t = LST Mext(xext

t ,hext
t−1),

hcon
t = LST Msyn(xsyn

t ,hcon
t−1),

(2.5)
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Figure 2.3: Demonstration of proposed attention mechanism for weighted input mapping. The details of
LST Msyn are omitted for a clearer view. With the calculated attention weights α int

tt ′ and αext
tt ′ , the latent

representations generated by LST Mint and LST Mext are mapped into the input vectors {xdec
t }T+∆

t=T+1 for
the decoder LST Mdec.

where LST Mint(·), LST Mext(·) and LST Msyn(·) denote internal, external and synergic LSTM encoders

respectively. Note that the trainable weights are not shared across different LSTM layers in our

multi-task encoder structure.

2.2.3 Dual-Attention Decoder Structure

After encoding the entire historical sales time series with the multi-task encoder, we have the contextual
vectors {hcon

t }T
t=1 where each hcon

t carries contextual information of the sales time series at time step t.

The latent representations, {hint
t }T

t=1 and {hext
t }T

t=1 for internal and external features are also learned.

To predict the desired sales volume {ŷt}T+∆

t=T+1, we adopt a LSTM decoder to mimic the contextual
vectors in the following ∆ time steps. Similar to Eq.(2.5), when T < t ≤ T +∆, we have:

dcon
t = LST Mdec(xdec

t ,dcon
t−1), (2.6)

where dcon
t ∈ {dcon

t }T+∆

t=T+1 is the contextual vector to learn in the decoding stage at time step t,

LST Mdec(·) is the decoder with the same formulation as Eq.(2.2), xdec
t is the attention-weighted input

for the decoder and dcon
t−1 is the previous decoder hidden state.

2.2.3.1 Attention for Weighted Decoder Input Mapping

According to the problem formulation, we assume that both {xint
t }T+∆

t=T+1 and {xext
t }T+∆

t=T+1 are non-

available in the decoding stage because both of them contain attributes unknown to the future, such as

price as an internal feature and weather as an external feature. Thus, to formulate the decoder input at

time t > T , we propose an attention mechanism to dynamically select and combine relevant contextual

vectors from {hint
t }T

t=1 and {hext
t }T

t=1 with:

xdec
t = Wdec

[
T

∑
t ′=1

α
int
tt ′ hint

t ′ ;
T

∑
t ′=1

α
ext
tt ′ hext

t ′

]
+bdec, (2.7)
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where α int
tt ′ and αext

tt ′ denote the attention weights mapped to t ′-th hidden states of internal and external

feature encoder, respectively. We use Fig.2.3 to illustrate the attention for weighted decoder input

mapping process. We enforce ∑
T
t ′=1 α int

tt ′ = ∑
T
t ′=1 αext

tt ′ = 1, so that [·] in Eq.(2.7) can be viewed as the

concatenation of two probability expectations from {hint
t }T

t=1 and {hext
t }T

t=1. The rationale is that we

simulate xdec
t by summarizing varied influences from all 2T historical hidden states of both internal

and external feature. The influences are computed through quantifying the relevance between dcon
t−1 and

each hint
t ′ , hext

t ′ :

eint
tt ′ = v>int tanh(Mintdcon

t−1 +Hinthint
t ′ ),

eext
tt ′ = v>ext tanh(Mintdcon

t−1 +Hexthext
t ′ ),

(2.8)

where eint
tt ′ and eext

tt ′ are the relevance scores mapped to t ′-th hidden states in {hint
t }T

t=1 and {hext
t }T

t=1

for the decoder input at time t, while vint , vext , Mint , vext , Hint and Hext are parameters to learn. In

particular, Eq.(2.8) compares two hidden states with different semantic meanings. Intuitively, this is a

scoring scheme that shows how well two vectors are correlated by projecting them into a common

space. Afterwards, we apply So f tMax on both attention weights:

α
int
tt ′ =

exp(eint
tt ′ )

∑
T
s=1 exp(eint

ts )
,

α
ext
tt ′ =

exp(eext
tt ′ )

∑
T
s=1 exp(eext

ts )
,

(2.9)

which enforces ∑
T
t ′=1 α int

tt ′ = ∑
T
t ′=1 αext

tt ′ = 1.

2.2.3.2 Attention for Trend Alignment

Ideally, at time t, each acquired contextual vector in {hcon
t }T

t=1 and {dcon
t }T+∆

t=T+1 carries contextual

information of both time t and previous time steps. However, as discussed in [40, 49], the performance

of the encoder-decoder networks decrease significantly when the length of time series grows. To

alleviate the problem, traditional attention mechanisms have been designed to align the current output

with the targeted input by comparing the current hidden state with the ones generated at previous

time steps. Meanwhile, these methods are not applicable as we aim to match similar trends for the

prediction period ∆, and we propose a novel attention mechanism for trend alignment. Mathematically,

we represent a ∆-step trend in sales time series as the concatenation of ∆ successive contextual vectors

in {hcon
t }T

t=1:

pi = [hcon
i ;hcon

i+1; ...;hcon
i+∆−1], 1≤ i≤ T −∆+1 (2.10)

where pi denotes the i-th trend in T with a timespan of ∆. Similarly, we represent the upcoming trend

p̃ in the [T +1,T +∆] time interval via the concatenation of all contextual vectors in {dcon
t }T+∆

t=T+1:

p̃ = [dcon
T+1;dcon

T+2; ...;dcon
T+∆]. (2.11)

We explain the workflow of attention for trend alignment in Fig.2.4. As demonstrated in Fig.2.4,

when the trend index i increases from 1 to T −∆+ 1, pi can be viewed as a sliding window that
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Figure 2.4: Demonstration of proposed attention mechanism for trend alignment. The process for
generating output label is included as well. We omit LST Mint and LST Mext to be succinct. Note that
we assume ∆ = 3 in this figure for better readability. The essence is to find a best match denoted by pi′

for the current trend p̃. Afterwards, we sequentially join the aligned contextual vector pairs within
two trends to produce the final contextual vectors {d̃con

t }T+∆

t=T+1 and then predict the upcoming sales
{ŷt}T+∆

T+1 .

dynamically captures temporary contextual information learned from existing sales time series with

respective step and window size as 1 and ∆. Hence, we compute the relevance score between p̃ and

each pi ∈ {pi}T−∆+1
i=1 , with:

etrd
i = p>i p̃, (2.12)

and then find out the best match of p̃:

i′ = argmax(etrd
i ,etrd

i+1, ...,e
trd
T+∆−1), (2.13)

where etrd
i denotes the relevance between p̃ and pi, while i′ indicates the i′-th trend in {pi}T−∆+1

i=1 is the

most relevant to p̃. Because p̃ and pi express similar contextual semantics with the same dimensionality,

we don’t use the scoring scheme in Eq.(2.8) but adopt the dot product to be computational efficient.

Intuitively, the closer p̃ and pi are, a larger etrd
i will be generated and vice versa (etrd

i = 0 when

orthogonal), so we can align the upcoming trend p̃ with its best match pi′ = [hcon
i′ ;hcon

i′+1; ...;hcon
i′+∆−1].

More importantly, now the contextual vectors within both trends, i.e., {dcon
t }T+∆

t=T+1 and {hcon
t }i′+∆−1

t=i′

are also aligned as trend components instead of individual hidden states. With the upcoming sales

trend p̃ aligned with the i′-th historical trend, we merge each pair of contextual vector in {dcon
t }T+∆

t=T+1

and {hcon
t }i′+∆−1

t=i′ into the aligned representation of contextual vectors:

d̃
con
t = Wali[dcon

j ;hcon
k ]+bali,

T +1≤ j ≤ T, i′ ≤ k ≤ i′+∆−1,
(2.14)

where d̃
con
t is the aligned contextual vectors at time t, Wali and bali are parameters to learn, [dcon

j ;hcon
k ]

is the concatenation of aligned contextual vector pair. We use the following algorithm to acquire the

full set of aligned contextual vectors for sales prediction:
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Algorithm 1 Generate Aligned Contextual Vectors
1: Input: prediction time steps ∆; aligned trend index i′; encoded time length T ; sales contextual

vectors {dcon
t }T+∆

t=T+1 and {hcon
t }i′+∆−1

t=i′

2: Output: aligned representations of contextual vectors {d̃con
t }T+∆

t=T+1
3: initialize with j = T +1, k = i′;
4: while j ≤ T +∆ and k ≤ i′+∆−1 do
5: update d̃

con
t via Eq.(2.14);

6: j++;
7: k++;
8: end

Here, {d̃con
t }T+∆

t=T+1 = {d̃
con
T+1, d̃

con
T+2, ..., d̃

con
T+∆} contains the final latent representation at each up-

coming time step in the simulated sales context.

2.2.4 Sales Prediction and Model Learning

With the aligned contextual vectors {d̃con
t }T+∆

t=T+1 generated, we approximate the future sales with

regression:

ŷt = v>y d̃
con
t +by, (2.15)

where ŷt ∈ {ŷt}T+∆

t=T+1 denotes the predicted sales at time t, v>y and by are parameters to learn.

For model learning, we apply the simple yet effective mean squared error coupled with L2

regularization (to prevent overfitting) on model parameters:

LF =
1
N

(
N

∑
n=1

T+∆

∑
t=T+1

(ŷnt− ynt)
2

)
+λ

L

∑
l

θ
2
l , (2.16)

where n≤ N is the number of training samples, l ≤ L is the index of model parameters, ynt is the actual

label of sales at t-th time step, θl is the model parameter, and λ is the weight decay coefficient that

needs to be tuned.

In the training procedure, we leverage mini-batch Stochastic Gradient Decent (SGD) algorithm,

namely Adam [63] optimizer. Specifically, we set the batch size as 128 according to device capacity

and the start learning rate as 0.001 which is reduced by 10% after each 10,000 iterations. We iterate

the whole training process until the loss converges.

2.2.5 Time Complexity of TADA

Because the proposed multi-task, dual-attention RNN model is heavily associated with multiple

parameters, here we discuss its time complexity in detail. We prove that like a standard LSTM system,

with the model parameters fixed, the asymptotic time complexity of TADA is linear to the size of data.

For a basic LSTM cell in Eq.(2.2), we denote the number of hidden dimensions as q (i.e., h∈Rq×1).

According to [39,64], ignoring the biases, a single-task LSTM with T time steps has the complexity of

O(q2T ). Similarly, we formulate the time complexity for our encoder-decoder structure. Assuming

all LSTMs in TADA have q hidden dimensions, and the multi-task encoder structure with LST Mint ,
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Table 2.1: Statistics of datasets in use.

Dataset Time Series Granularity Time Range Variables
Favorita 11,536 1 day 365 days 13

OSW 1,585 1 week 106 weeks 11

LST Mext and LST Msyn are deployed in parallel, the time complexity is O
(
q2(T + ∆)

)
, which is

identical to a basic encoder-decoder LSTM structure.

Then, we focus on the dual-attention mechanism. Since Eq.(2.8) can be viewed as two parallel

feed-forward networks, the complexity is O(q2) for each time step. Coupled with Eq.(2.7), the

time complexity of attention mechanism in Section 2.2.3.1 is O(q2T ∆+ q2∆) = O
(
q2(T + 1)∆

)
'

O(q2T ∆). According to [62], dot product-based attention mechanism Eq.(2.12) has the complexity of

O
(
q∆(T −∆+1)

)
' O(qT ∆−q∆2). Combining with Eq.(2.14), the overall complexity of attention

mechanism in Section 2.2.3.2 is O(q2∆+qT ∆−q∆2).

With the complexity of encoder-decoder and dual-attention mechanism sorted, we aggregate the

complexity for generating the aligned contextual vectors {d̃con
t }T+∆

t=T+1. Note that the complexity of

Eq.(2.4) throughout time T is O(q2T ), and the complexity of Eq.(2.15) throughout time ∆ is q∆2.

Finally, the overall complexity of TADA comes to O
(
2q2(T +∆)+qT (q+∆)

)
. In practice, we have

∆� T and ∆� q, so T and q are dominating in dimensionality. Therefore, we simplify the final time

complexity as O(3q2T )→ O(q2T ). For a dataset with N samples (time series), it takes O(Nq2T ) to

go through the entire dataset once. In summary, when the hidden dimension q and total time step T is

fixed, the time complexity of TADA is linearly associated with the scale of the data.

2.3 Experiments

In this section, we conduct experiments on real commercial datasets to showcase the advantage of

TADA in the task of sales prediction. In particular, we aim to answer the following research questions

via the experiments:

RQ1 How effectively and accurately TADA can predict continuous sales volume with observed sales

time series from the past?

RQ2 How can TADA benefit from each component of the proposed structure for sales prediction?

RQ3 How efficiently can TADA be trained when handling training data with different sizes?

2.3.1 Datasets and Features

To validate the performance of TADA, we use two real-life commercial datasets shown in Table 2.1,

namely Favorita and OSW. Here we briefly introduce the properties of these two datasets below:
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• Favorita: It contains the daily features and sales volume of all products in 54 Ecuadorian-based

grocery stores. Note that the original Favorita dataset covers the time range from 1 January 2013

to 15 August 2017, but we only use the portion from 15 August 2016 to 15 August 2017 (365

days) due to two reasons: (1) a magnitude 7.8 earthquake struck Ecuador on 16 April 2016,

which exerted abnormal sales patterns in the following few weeks1; (2) shorter time series suits

the real-life conditions better as it is faster for the model to learn.

• OSW: One Stop Warehouse2 is one of the largest solar energy appliance suppliers in Australia.

The dataset covers 12 warehouses’ weekly sales volume of various products (e.g., solar panels,

batteries, etc.) from 22 February 2016 to 4 March 2017 (106 weeks). Empirically, sales

prediction on OSW dataset is more challenging from two perspectives: (1) the sales volume

of solar energy appliances is more dependent on external causes (e.g., policy, electricity price,

promotion, etc.), which are unavailable in this dataset; (2) the sales volume in OSW dataset

fluctuates more significantly than Favorita.

The features we used from the datasets are listed in Table 2.2. Features consist of binary (repre-

sented as 1 or 0), categorical (represented via one-hot vectors) and numerical data, which are marked by

superscripts of b, c and n respectively. To accelerate the training process, we process all the numerical

features by performing log10 transfer (a small bias of 0.001 was added to all numerics to avoid the case

of 0). In addition, we leverage embedding to reduce the original dimensionality of categorical data,

and combine all these features together as the model input. As suggested by the Tensorflow research

team from Google3, we set the embedding dimension of each categorical feature by taking the 4th root

of the total amount of categories. In Table 2.2, numbers with ‘∗’ mean the dimension of embedding

for categorical features.

In both datasets, each time series is actually a log file for a specific product. Hence, we don’t split

different products up for training and test because it means many products are totally new to the model

during test, which is not realistic in real business. So, we first randomly take 3,000 and 400 time series

out of Favorita and OSW dataset for validation. Then, given time series with the total time steps of M

(365 for Favorita and 106 for OSW) and ∆ steps to predict, we apply the ‘walk-forward’ split strategy

on the remaining data. For training, we encode the information with t ∈ [1,M−2∆] and predict sales

with t ∈ [M−2∆+1,M−∆]. For evaluation, we encode the information with t ∈ [∆+1,M−∆] and

predict sales with t ∈ [M−∆+1,M] to test the accuracy. This test strategy has more practical meaning

in the real world, where most businesses tend to predict future sales volume according to previous

records.

1https://www.kaggle.com/c/favorita-grocery-sales-forecasting/data
2https://www.onestopwarehouse.com.au
3https://developers.googleblog.com/2017/11/introducing-tensorflow-feature-columns.html
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Table 2.2: Features extracted from datasets.

Dataset Type Feature Dimension

Favorita

internal feature

city of storec 3∗

17

state of storec 2∗

store typec 2∗

store groupc 2∗

item familyc 3∗

item classc 5∗

external feature

promotion stateb 1

11

datec 5∗

store transactionn 1
oil pricen 1

local holidayb 1
national holidayb 1

pay dayb 1

OSW

internal feature

item indexc 5∗

16
city of storec 2∗

item categoryc 5∗

battery typec 3∗

item pricen 1

external feature

week numberc 4∗

9

discontinued stateb 1
solar exposuren 1

temperaturen 1
week(s) after last holidayn 1
week(s) to next holidayn 1

2.3.2 Parameters and Experimental Settings

In TADA, we apply the same size to the hidden states of all LSTM systems to maintain the consistency

of contextual feature dimension. That is to say, there are only two hyperparameters in TADA to

be determined, namely the size of hidden states and the weight decay penalty λ . We conduct grid

search for the number of hidden states and λ over {32,64,128,256,512} and {0.001,0.01,0.1,1,10}
respectively. The settings with the best performance on the validation set (λ = 0.01 on Favorita,

λ = 0.1 on OSW, and 128 hidden states for both datasets) are used in the test.

We conduct experiments against the following state-of-the-art predictive methods:

• Random Forest (RF): We implement a widely-used, predictive decision tree-based model,

random forest to predict sales from the observed features.

• XGBoost: It stands for extreme gradient boosting, proposed by Chen et al. [35]. It is a state-

of-the-art, gradient boosted regression tree approach based on the gradient boosting machine

(GBM) [34].

• SAE-LSTM: From the cutting edge of economics research, we adpot the stacked autoencoder

with LSTM (SAE-LSTM) [45] which is a neural network-based model proposed for financial

time series prediction.
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Table 2.3: Sales prediction results under the offline setting. Numbers in boldface are the best results
within each column.

Dataset Method
∆ = 2 ∆ = 4 ∆ = 8

MAE SMAPE(%) MAE SMAPE(%) MAE SMAPE(%)

Favorita

RF 32.483 200(max) 35.507 200(max) 41.329 200(max)
XGBoost [35] 16.705 87.433 19.833 91.230 22.547 158.461

SAE-LSTM [45] 7.364 39.447 8.033 44.384 8.116 46.932
A-RNN [59] 11.610 60.781 12.226 62.397 13.005 65.812

DA-RNN [49] 7.816 43.859 8.234 44.704 8.566 46.281
LSTNet [37] 7.419 43.523 7.982 45.662 8.729 48.469
TADA-SE 9.995 58.715 11.076 60.332 10.955 60.257

TADA-SA1 8.152 46.732 8.273 43.951 8.968 49.079
TADA-SA2 7.635 42.883 8.247 44.942 8.626 48.609

TADA 6.955 38.770 7.323 40.588 7.422 43.675

OSW

RF 29.147 89.482 35.576 137.892 43.096 200(max)
XGBoost [35] 21.496 49.556 24.916 53.243 30.322 82.633

SAE-LSTM [45] 17.828 44.241 19.805 46.887 20.823 49.873
A-RNN [59] 17.391 44.635 18.823 44.603 22.129 49.180

DA-RNN [49] 17.634 44.215 19.578 47.139 20.693 48.365
LSTNet [37] 16.625 42.317 18.989 45.782 21.246 49.191
TADA-SE 19.635 53.017 20.884 49.370 21.687 51.685

TADA-SA1 16.585 42.620 18.624 44.331 21.699 51.195
TADA-SA2 17.087 42.199 18.643 45.219 21.190 49.825

TADA 15.418 41.354 17.572 43.265 19.618 47.782

• A-RNN: Attention RNN (A-RNN) was originally designed by Bahdanau et al. for machine

translation tasks [59], with the output of a probability distribution over the word dictionary. We

modify the output layer by mapping the learned hidden states into scalar values and use the loss

function in Eq.(2.16) for sales prediction task.

• DA-RNN: This is a non-linear autoregressor (AR) with attentions in both encoder and decoder

RNNs [49]. Compared with A-RNN, the proposed encoder attention in DA-RNN assumes the

inputs must be correlated along the time, which is not always true in sales time series.

• LSTNet: It is a deep learning framework (long- and short-term time series network) designed for

multivariate time series prediction [37]. This method combines a convolutional neural network

with a recurrent-skip network to capture both short-term and long-term trending patterns of the

time series.

Furthermore, to fully study the performance gain from each component of our proposed model, we

implement three degraded versions of TADA:

• TADA-SE: We replace the multi-task based encoder with a single-task, 1-layer LSTM encoder.

The internal and external feature vectors are concatenated as its input.
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• TADA-SA1: We remove the attention mechanism for decoder input mapping to build a single-

attention variant.

• TADA-SA2: We remove the attention mechanism for trend alignment to build another single-

attention variant.

To measure the effectiveness of all the methods in sales prediction, we adopt two evaluation

metrics, namely mean absolute error (MAE) and symmetric mean absolute percentage error (SMAPE).

Mathematically, they are defined as follows:

MAE =
1

N×∆

N

∑
n=1

T+∆

∑
t=T+1

|yt − ŷt |,

SMAPE =
100%
N×∆

N

∑
n=1

T+∆

∑
t=T+1

(
0, i f yt = ŷt = 0
|yt−ŷt |

(|yt |+|ŷt |)/2 ,otherwise

)
,

(2.17)

where yt and ŷt denote real and predicted sales volume respectively. We choose them because MAE

is scale-dependent while SMAPE is not, so MAE is suitable for comparison of different methods on

the same dataset and SMAPE suits comparison across different datasets. We test all methods on two

datasets with ∆ ∈ {2,4,8} to showcase their robustness in multiple sales prediction scenarios.

2.3.3 Discussion on Effectiveness (RQ1)

We report the results of all tested methods on all ∆ settings in Table 2.3, where the best performance is

highlighted with bold face. MAE measures the error with the deviation between predicted and real

sales volume, and SMAPE quantifies such error with a proportional perspective.

It is as expected that all neural network-based predictive models outperform decision tree-based

models (RF and XGBoost) by a significant margin in both datasets. Hence, we can empirically suggest

that deep neural networks better suit the task of sales prediction in the real-world scenario. Apparently,

the performance of all methods starts to drop when we gradually increase the time range for sales

prediction with ∆ ∈ {2,4,8}. However, among this observation, TADA demonstrates the least negative

impact from the increasing ∆ and presents the dominating prediction performance against all state-of-

the-art baselines. In other words, the trend alignment scheme from TADA can practically meet the

requirement of sales prediction when merchants are trying to look ahead at more upcoming time steps.

When comparing with other deep neural network-based approaches (SAE-LSTM, A-RNN, DA-RNN

and LSTNet) the results also support the superiority of TADA. This is because: (1) the multi-task

encoder in TADA is better at capturing the interactive effect from both internal and external features to

the real sales than modelling all influential factors in the unified way; (2) the dual attention architecture

in TADA successfully captures latent trends from the past which are similar to the upcoming one,

especially when comparing with existing attention mechanisms (A-RNN and DA-RNN) and periodic

trend modelling method (LSTNet). The effectiveness of each proposed component in TADA is initially

revealed in Table 2.3 by its degraded versions, which we will further discuss in the following section.



22 CHAPTER 2. MACRO-LEVEL SEQUENCE MODELLING

(a)

(b)

(c)

(d)

Figure 2.5: Demonstration of proposed trend alignment scheme in TADA with attention mechanism.
Among these four visualizations, (a) and (b) are selected from Favorita, while (c) and (d) are selected
from OSW. The sales axis is rescaled via log10 transfer on each dataset for better readability. Apparently,
there are no obvious recurring trends in all these sales records, but TADA successfully selects the most
relevant one to assist the prediction. The figures illustrate that aligned trends in sales time series not
only share similar contexts, but also have close sales volume.

2.3.4 Importance of Key Components (RQ2)

We implement three variants of our proposed model TADA, namely TADA-SE, TADA-SA1 and

TADA-SA2, by removing one of the key components each time. With the degraded versions of TADA,

we carry out the ablation study on the performance gain from every proposed component within TADA.

As shown in Table 2.3, the evaluation results on two real datasets indicate that these variants suffer

from noticeable drops in the prediction performance. Specifically, TADA-SE shows more obvious
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infection. This provides evidence for our assertion that by dividing the influential factors in sales time

series into semantically different internal and external features, the multi-task encoder structure can

extract more latent contextual information related to the real sales volume. In TADA-SE, the dynamic

interaction of internal and external features are no longer modelled, causing insufficient performance

accuracy.

According to Table 2.3, when we remove each one of the two proposed attention mechanisms in

TADA-SA1 and TADA-SA2, the prediction performance both drops. Combining their performance on

both datasets, the performance reduction is similar when either part of the dual attention mechanism is

blocked. So, we draw the observation that both attentions contribute positively and almost equally, and

they are indispensable to each other for precise sales prediction. Thus, after the contextual vectors are

learned from the encoder, it is crucial to leverage the dual-attention decoder to mimic the contextual

information in the future as well as aligning the upcoming trend with historical ones to enhance the

prediction of sales. Furthermore, as the attention mechanism provides TADA (full version) with a better

interpretability, we visualize the intermediate results of aligned trends in the predicting (decoding)

stage, along with the predicted sales. Fig.(2.5) visualizes the results of trend alignment from samples

selected from both Favorita and OSW datasets by highlighting the sales trend with the highest attention

weight. As a result, we find that similar sales contexts lead to similar sales volume, which confirms the

rationale of performing trend alignment for sales prediction and the effectiveness of all components in

TADA.

2.3.5 Training Efficiency and Scalability (RQ3)

Due to the importance of practicality in real-life applications, we validate the scalability of TADA. As

we proved in Section 2.2.5, when all the parameters in the network are fixed (in our case, the dimension

for all hidden states is 128, and T is determined according to ∆), the training time for TADA is only

associated with the number of training samples. Ideally, the training time for TADA should increase

linearly as we enlarge the scale of the training data. Note that we set ∆ = 8 (T = 349 correspondingly)

for this validation.

We test the training efficiency and scalability of TADA by using different proportions of the whole

training set from Favorita, and then report the corresponding training time (excluding I/O). The growth

of training time along with the data size is shown in Fig.2.6. When the ratio of training data gradually

extends from 0.2 to 1.0, the training time for TADA increases from 3.54×103 seconds to 22.15×103

seconds. It shows that the link between training time and the data scale is approximately linear. Hence,

we conclude that since its linear time complexity can ensure high scalability, TADA can be efficiently

trained with large-scale datasets.
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Figure 2.6: The training time of TADA with varied proportions of training data.

2.4 Summary

Sales prediction is a significant yet unsolved problem due to the subtle influential patterns among

different factors and the irregular sales trends triggered by complex real-life situations. In this chapter,

we propose TADA, a novel model that performs trend alignment with dual-attention, multi-task

recurrent neural networks to predict sales volume in real-life commercial scenarios. With TADA, we

first model the internal and external features within the influential factors in the sales time series in

a multi-task fashion, thus maintaining their unique semantic meanings when timely modelling their

mutual influences to the sales. Besides, we propose a dual-attention decoder to simulate the sales

contextual information in the future, and then align the generated representation of the upcoming trend

with the most relevant one from the past. By this means, TADA conquers existing challenges in the

sales prediction task and outperforms the state-of-the-art baselines in two real datasets. We summarize

the specific contributions of this work as follows:

• We are the first to categorize the influential factors in sales time series into internal features and

external features, and innovatively model these two aspects with multi-task LSTM encoder. We

also adopt a synergic LSTM layer to model the dynamic interaction between different types of

influential factors.

• We propose TADA, a dual-attention multi-task recurrent neural network to tackle the aforemen-

tioned challenges in sales prediction. The novel approach allows the encoder-decoder structure

to comprehensively model variables with different semantic meanings. Also, the embedded dual-

attention increases both the interpretability and accuracy of the model by simulating unknown

states of future contexts and aligning the upcoming sales trend with the most relevant one from

the past.

• We conduct extensive experiments on two real-life commercial datasets. The results showcase

the superiority of our approach in sales prediction by outperforming a group of state-of-the-art

predictive models. We validate the vigorous contribution of each component in TADA via
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ablation tests and visualizations. Additional experiments on training efficiency further show

promising scalability of TADA.





Chapter 3

Micro-Level Sequence Modelling

As an important means to maximize customer values in e-commerce, recommender systems have

already demonstrated their strong benefits to both online service platforms and common users as they

grant users easier access to preferred resources and help service providers understand their customers

better. In this chapter, we will study the problem of micro-level sequence modelling in e-commerce

from the view of sequential recommendation.

3.1 Literature Review: Background and Motivation

3.1.1 General Top-k Recommendation

General top-k recommendation tasks aim to recommend k items that a user is likely to interact with

in the near future. In this context, early works mainly adopt collaborative filtering (CF) methods

e.g., matrix factorization to utilize historical interactions to infer the links between users and items

[18,19,65,66]. Approaches like matrix factorization [18,19] and factorization machines [20,21] achieve

great success in top-k recommendation with the assumption that user preference is static. Usually,

the predominant problem is matrix completion where we are given a user-item interaction matrix for

and the goal is to predict the missing values [67]. Such methods seek to uncover latent dimensions to

represent user preference and item properties, and predict interactions by ranking the inner product

of the user and item embeddings [18]. Another widely adopted method is factorization machines

(FM) [20] which effectively mimics the effect of CF by modelling the high-order feature interactions

and allowing the use of side information. Because FMs show promising results in regression problems

and can serve as pairwise scoring functions in top-k recommendation tasks [68, 69], recent variants of

FMs further leverage deep neural networks to enhance the performance [69–71] with a compromise in

model complexity. However, compared with our prosed ITFM, existing FMs lack the consideration of

sequential dependencies when predicting the intensity of user-item interactions.
27
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3.1.2 Sequential Recommender Systems

While the numbers of both users and items are now growing exponentially over time, it is more

practical to investigate the problem of sequential top-k recommendation nowadays as the dynamics of

the data play a pivotal role in recommender systems.

Unlike conventional top-k recommendation, the sequential top-k recommendation approaches

model the user behavior as a sequence of items instead of a set of items [22]. In order to capture the

sequential dependency of user-item interactions, recommendation techniques based on Markov Chain

(MC) and Recurrent Neural Networks (RNNs) have been developed. MC-based approaches [72–74]

model sequential user interactions by learning a transition graph over items that is used to predict

the users’ next interested items. Although they are reported to achieve good performance, these

methods tend to fail to capture the intricate dynamics of complex scenarios [23], and lack sufficient

representation capability for user and item modelling. Recently, with the success of RNNs in a wide

range of sequence modelling tasks like machine translation [59] and sales prediction [1], RNN-based

models have attracted the attention from many sequential recommendation researchers [75–78]. For

instance, being capable of learning deep representations from the sequence, RNNs have been proved

applicable for sequential session-based recommendation tasks [75]. Furthermore, [76] points out the

characteristics of both users and items vary over time, and a twin RNN scheme is designed to capture

the dynamics of both users and items in parallel for movie recommendations.

Another line of deep neural network-based sequential recommender systems is recurrent neural

networks (RNNs) which are effective in modelling sequential user actions [75, 79, 80]. For instance,

the recurrent recommender networks developed by [80] captures user preference drifts via two parallel

RNNs over time. Meanwhile, as a rising technique, the applications of attention mechanisms coupled

with neural recommender systems [71, 81–83] do contribute to the performance improvement. In

summary, the main disadvantage of existing sequential recommender systems is that they only model

item-wise user preference instead of category-wise user preference, and they neglect the heterogeneity

of different user actions, resulting in severe data sparsity. In what follows, we will elaborate on the

practical issues caused by the shortcomings of existing sequential recommenders, and present our

solution accordingly.

3.1.3 Motivation and Our Solution

However, to ensure the model expressiveness, the state-of-the-art deep neural networks require large-

scale and dense training data [23], rendering it difficult to fully generalize when the observable user

preference information is highly sparse. One main cause of the sparsity is that the user preference
studied in existing methods is item-wise rather than category-wise (i.e., they directly model user-

item pairs). In our evaluation dataset Tmall (see Section 3.3.1), there are over 100 million possible

user-item interactions, of which only 0.1% are observed and can be used to infer such item-wise user

preference. The learned item-to-item sequential patterns are inevitably unreliable and unstable due to

the large amount of items and extreme data sparsity. To address the data sparsity issue, a promising
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idea is to focus on category-level user interaction data and learn category-wise sequential patterns,

which can significantly narrow down the prediction space and allow RNN-based models to give full

play to their advantages with denser data. For instance, under a sequential setting, a user may consider

buying a phone case after purchasing a new cellphone. While the migration from a specific cellphone

to a specific phone case (e.g., from iPhone X Space Grey to Louis Vuitton Case for iPhone X) tend

to be subtle and unstable, the general category-to-category migration (e.g., from cellphone to phone

case) presents a more reliable and stable sequential pattern for the recommender system. As a result,

neglecting the category-wise interaction sets an obstacle to learning useful patterns from the sequence

and capturing user dynamics for sequential top-k recommendation.

In addition, most existing approaches on sequential recommendation focus on only the homoge-

neous user interaction behaviors. However, user interaction data on a single type of user behavior/action

(e.g., purchase) is extremely rare and sparse, therefore it is essential to collectively exploit the rich
heterogeneous behavior data to enhance the sequential recommendation. For example, there are at

least four types of user actions in the typical e-commerce platforms (e.g., Amazon or Tmall): click,

add-to-cart, add-to-favorite and purchase. To predict what product a user would purchase next, it

may be helpful to pay attention to not only what the user has purchased previously, but also what this

user has added to favorite list in the past. Furthermore, different types of user actions imply different

semantics and have different contributions to the final recommendation. For instance, add-to-cart

actions provide stronger signals for user purchase behavior prediction than click actions. It is arguably

the most challenging to exploit the sequential correlations among various user behavior/action types

and capture their varied effect on the users’ decision-making process.

In light of the aforementioned challenges in sequential top-k recommendation, we propose to

model a sequence of category-wise user intention instead of item-wise user preference in this thesis.

Specifically, we formulate user intention as a tuple of action type (e.g., click, purchase, etc.) and product

category tag, i.e., (action,category). Intuitively, user intention carries two aspects of information:

the category of products that a user tends to interact with; and the way the user wants to perform the

interaction, which indicates the strength of willingness. Furthermore, in contrast to modelling the

dynamics of user preference drift on items (i.e., the item-level sequential effect), we investigate user
intention migration which focuses on category-wise user demand dynamics for sequential dependency

learning. To this end, we develop AIR, namely Attentional Intention-Aware Recommender Systems
as a solution to sequential top-k recommendation. The workflow of AIR consists of two main stages.

First, we design an Attentional Recurrent Neural Network (ARNN) to predict future user intention

based on the history; then, a novel Intention-Aware Temporal Factorization Machine (ITFM) is

presented as the pairwise scoring function for top-k item recommendation based on the awareness of

user intention. By deriving a sequence of user intention from the user transaction data, we propose

to firstly predict what type of item is in demand, then accordingly recommend the exact item to

each user. The distinct advantages of our approach against existing methods are: (1) while users’

timely preference on exact items has much randomness because of complicated real-world situations

(e.g., promotions), their category-wise intention reflects the intrinsic demand of users and tend to
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Table 3.1: Description of major notations used in this chapter.

Notation Description
am a user action indexed by m
A a set of all actions
cn an item category indexed by n
C a set of all categories
ui a user account indexed by i
U a set of all users
v j an item indexed by j
V a set of items

π
m,n
s a user intention in the form of (am,cn), indexed by s
Π a set of user intention candidates
γγγ an intention vector
| · | the size of an arbitrary set
θ s

s′ the probability that the s-th intention will migrate to the s′-th intention
Θ the intention migration effect matrix

show stronger sequential dependencies; (2) when recommending exact items for users, the correctly

predicted user intention effectively lays more emphasis on preferable item categories, thus improving

the recommendation performance.

3.2 The Proposed Model: AIR

3.2.1 Preliminaries and Problem Formulations

We first introduce the key notations and definitions used throughout the chapter. The major notations

are listed in Table 3.1, and the essential concepts are defined as follows.

Definition 1: User Transaction. For an arbitrary e-commerce dataset, assuming item vi only be-

longs to one category cn, we record each user’s T actions as a user transaction sequence {(am(t),cn(t),vi(t))}T
t=1 =

{(am1(1),cn1(1),vi1(1)), ...,(amT (T ),cnT (T ),viT (T ))}, where am(t) ∈ A, cn(t) ∈C and vi(t) ∈ I imply one user con-

ducted action am on item vi from category cn at time step t.

As stated in previous discussions, compared with item-wise user preference, the prediction space

of category-wise user intention is significantly shrunken, making it possible for the model to learn

substantial dynamic patterns. Definition 2 - 5 mathematically describe the concept of user intention,

intention candidate set, intention sequence, and intention migration.

Definition 2: User Intention. Given a dataset having a set of actions A and a set of item categories

C , the user intention is defined as an arbitrary pair of action and category: πm,n = (am,cn), where

am ∈A and cn ∈ C .

Definition 3: Intention Candidate Set. Following Definition 2, with the action set A and category

set C , the intention candidate set is defined as their Cartesian product: Π = A ×C = {πm,n
s |am ∈

A ,cn ∈ C }, where s≤ |Π| is the index of intention candidates in set Π.

Definition 4: Intention Sequence. Following Definition 1-3, from the observed user transaction
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{(am(t),cn(t),vi(t))}T
t=1= {(π

m,n
s(t) ,vi(t))}T

t=1, the intention sequence {πm,n
s(t)}

T
t=1 = {π

m1,n1
s1(1) , ...,πmT ,nT

sT (T ) } can

be derived, representing a user has conducted intention π
m,n
s ∈Π at time step t. The subscription of

(t) carries the temporal property of user intention.

Definition 5: Intention Migration. In an intention sequence, conditioned on the current user

intention π
m,n
s(t) , there is a chance that π

m,n
s(t) will migrate to π

m′,n′

s′(t ′) where t ′ > t. Such effect is called

intention migration, and θ s
s′ is the probability that the s-th intention will migrate to s′-th intention.

For an arbitrary user, based on the intention sequence {πm,n
s(t)}

T
t=1 observed from T time steps, we

aim to predict the likelihood of conducting each intention π
m,n
s ∈ Π in the future. Such prediction

outcome is represented via an intention vector defined below.

Definition 6: Intention Vector. The future user intention is represented using a |Π|-dimensional

intention vector γγγ = [γ1, ...,γ|Π|] with each element γs = P(πm,n
s ) denoting the independent probability

of the s-th intention candidate. Specifically, we force ∑
S
s=1 γs = 1, i.e., γγγ is a probability distribution

over all |Π| intention candidates.

Intuitively, the probability distribution in the user intention vector γγγ reflects how each item category

is of interest to a user. In recommendation tasks, a larger γs ∈ γγγ represents a stronger user intention, so

γγγ carries each user’s varied preference on different categories and can be further used to generate a

ranked item list. Hence, with the concept of user intention defined, we respectively formulate the task

of user intention prediction and intention-aware recommendation as follows.

Problem 1: User Intention Prediction. For an arbitrary user, given an observed intention

sequence {πm,n
s(t)}

T
t=1 conducted in the past T time steps, the user intention prediction task pre-

dicts the probability distribution of this user’s future intention, represented by an intention vector

γγγ = {γ1,γ2, ...,γ|Π|} where γs = P(πm,n
s ) ∈ γγγ and ∑

S
s=1 γs = 1.

Problem 2: Sequential Top-k Recommendation. For a user ui ∈ U , given the item set V , the

user transaction sequence {(πm,n
s(t) ,vi(t))}T

t=1 and intention vector γγγ , the target of sequential top-k

recommendation is to predict top k items that ui will interact with.

3.2.2 User Intention Prediction

Now, we solve the problem of user intention prediction by proposing our attentional recurrent neural

network (ARNN).

3.2.3 Network Structure

Taking a vector sequence {xt}T
t=1 as input, the recurrent neural network (RNN) encodes {xt}T

t=1 into

hidden states {ht}T
t=1 via ht = f (xt ,ht−1), where f (·) is a non-linear mapping function. To capture

the long-range dependency, we leverage RNNs with long short-term memory architecture (LSTM) via
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the following formulation [39]:

it = σ(Wixt +Uiht−1 +bi),

ft = σ(W f xt +U f ht−1 +b f ),

ot = σ(Woxt +Uoht−1 +bo),

ct = ftct−1 + it� tanh(Wcxt +Ucht−1 +bc),

ht = ot� tanh(ct),

(3.1)

where � denotes element-wise multiplication and the recurrent activation σ is the Logistic Sigmoid

function. i, f, o and c are respectively the input gate, forget gate, output gate, and cell state vectors.

When updating each of them, there are corresponding trainable input-to-hidden and hidden-to-hidden

weights W and U along with the bias vectors b. For notation convenience, we simplify the LSTM

system in Eq.(3.1) with the following function:

ht = LST M(xt ,ht−1). (3.2)

In the intention sequence {πm,n
s(t)}

T
t=1 for each user, we represent the t-th intention π

m,n
s(t) ∈Π using

a |Π|-dimensional one-hot vector πππ
m,n
s(t) = [0, ...,1, ...,0] with 1 at the s-th element. Then, we convert

each πππ
m,n
s(t) into a dense input vector xπs

t for Eq.(3.2) with an embedding layer:

xπs
t = W>b πππ

m,n
s(t), (3.3)

where Wb is the trainable look-up matrix in the embedding layer. With Eq.(3.3), each ht in Eq.(3.2) is

actually a latent representation in correspondence with the input intention π
m,n
s(t) . Therefore, we fuse the

embedding layer with our LSTM framework and reformulate Eq.(3.2) into:

hπs
t = LST M(πππm,n

s(t),h
πs′
t−1), (3.4)

where we use hπs
t to denote the t-th hidden state learned from the corresponding intention input πππ

m,n
s(t).

3.2.4 Modelling Intention Migration via Attention Mechanism

Because of the sequential characteristics of user intention, it is necessary to model the migrations

between different user intention in order to fully capture the dynamics of user transaction sequences. To

start with, for all the intention candidates in set Π, we formulate the non-negative intention migration

matrix Θ as follows:

Θ =


θθθ 1

θθθ 2
...

θθθ |Π|

=


θ 1

1 θ 1
2 . . . θ 1

|Π|

θ 2
1 θ 2

2 . . . θ 2
|Π|

...
... . . . ...

θ
|Π|
1 θ

|Π|
2 . . . θ

|Π|
|Π|

= ReLU(WΘ) (3.5)

where WΘ ∈R|Π|×|Π| is the learnable weight matrix to generate Θ via an element-wise Rectified Linear

Unit. Each entry θ s
s′ ∈Θ denotes the independent probability that intention π

m,n
s will migrate to π

m′,n′
s′ .
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Noticeably, matrix Θ is asymmetric, i.e., when s 6= s′, θ s
s′ and θ s′

s can be unequal, thus enabling the

migration probability between different intention candidates to be directional. For example, when a

user purchases a new printer, some additional accessories are needed. It is highly possible for this user

to purchase a pack of printing paper shortly after because the printer does not come with paper. In

contrast, the purchase of printing paper can hardly encourage a quick purchase of a new printer because

the user is very likely to have a printer in use already. As a result, modelling intention migration with

directions better simulates the influence from previous intention to the current one due to the sequential

characteristics of user intention. After the representation hπs
t is learned at time step t, to capture its

migration effect on all intention candidates, the one-hot vector πππ
m,n
s(t) for the s-th intention is used to

select the s-th row of Θ, denoted by a vector θθθ s = [θ s
1, ...,θ

s
|Π|]:

θθθ s = Θ
>

πππ
m,n
s(t). (3.6)

Therefore, θθθ s can be viewed as a set of weights indicating the likelihood of having the current intention

π
am,cn
s(t) migrated to each intention candidate in Π. Afterwards, we leverage an outer product of θθθ s and

hst
t to instantiate the migration effect from the current state hπs

t to each intention candidate in Π:

Ht = θθθ shst
t
>
=


θ s

1 hπs
t

θ s
2 hπs

t
...

θ s
|Π|h

πs
t

 , (3.7)

where matrix Ht collects totally |Π| weighted representations of hπs
t for all intention candidates as its

row elements.

As shown in Figure 3.1, once we compute Ht for all T time steps, we can produce the final feature

matrix H̃ = [h̃1, ..., h̃|Π|] with each row h̃s ∈ H̃ stacking the final representation for the s-th intention

candidate. Specifically, H̃ is calculated by performing element-wise aggregation for the weighted

features in Ht for all t ≤ T :

H̃ =
T

∑
t=1

Ht =


h̃1

h̃2
...

h̃|Π|

=


∑

T
t=1θ s

1 hπs
t

∑
T
t=1θ s

2 hπs
t

...

∑
T
t=1θ s

|Π|h
πs
t

 , (3.8)

where each representation h̃s ∈ H̃ for intention s can be viewed as the compression of two factors: (1)

all the hidden states {hπs
t }T

t=1 learned from the user intention sequence {πm,n
s }T

t=1; (2) the migration

effect from each hidden state to the s-th intention candidate.

3.2.5 User Intention Prediction and Model Learning

With H̃ calculated, we can now predict the probability distribution of all |Π| user intention candidates.

We first project each h̃s ∈ H̃ onto a 1-dimensional space:

e = H̃we, (3.9)
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Figure 3.1: Demonstration of proposed attention mechanism for intention migration modelling. We
omit the LSTM embedding layer to be succinct. In this example, we set the total number of intention
candidates as 4 (i.e., Θ has the size of 4×4) and assume s = 2, 1, 3 at time step 1, t, T respectively for
illustration purpose. At each time step t, the one-hot vector πππ

m,n
s(t) selects a row θθθ sss from Θ, and then an

outer product of θθθ sss and hπs
t is performed to compute the feature stack Ht . Afterwards, all Ht from T

time steps are aggregated to produce the final feature matrix H̃.

where we is the projection weights to learn, and each es ∈ e is a compressed scalar representation of

the s-th intention candidate. Afterwards, to obtain the predicted intention vector γ̂γγ , we apply So f tMax

to each es ∈ e to generate a probability distribution over |Π| intention candidates:

γ̂γγ = [γ̂1, ..., γ̂|Π|],

γ̂s =
exp(es)

∑
|Π|
s′=1 exp(es′)

, s≤ |Π|.
(3.10)

Hence, the predicted user intention vector γ̂γγ is produced, which indicates the possibility of conducting

each intention π
m,n
s ∈Π for a particular user in the future. When training our model for an accurate

prediction of γ̂γγ , we need to obtain the real probability distribution over all intention candidates in

the future ∆ time steps after T . Consequently, we represent the real distribution (i.e., ground truth)

with γγγ = [γ1, ...,γ|Π|] where each γs ∈ γγγ denotes the frequency of intention s observed from ∆ time

steps after T . For model training, we apply cross-entropy to the predicted intention γ̂γγ . Apart from

this, confronting the attention mechanism for intention migration modelling, we pose an additional

constraint on the intention migration matrix Θ, so that ∑
|Π|
s′=1 θ s

s′ ≈ 1 for every s≤ |S| and each row of

Θ implies a probability distribution:

LARNN =−
1
D

D

∑
d=1

|Π|

∑
s=1

(γd,s log γ̂d,s)+λ1

|Π|

∑
s=1

(1−
|Π|

∑
s′=1

θ
s
s′)

2, (3.11)

where D is the number of training samples, γs ∈ γγγ and γ̂s ∈ γ̂γγ are respectively the predicted and real

probability distributions for the s-th intention candidate, while λ1 is the weight decay coefficient to be

tuned.



3.2. THE PROPOSED MODEL: AIR 35

3.2.6 Intention-Aware Sequential Recommendation

In this section, we introduce the proposed intention-aware temporal factorization machine (ITFM) in

detail.

3.2.7 Category-wise Aggregation of User Intention

If user ui ∈U has intention on several item categories in the same time period, it yields difficulties in

recommending the most suitable items because ui may dynamically interact with items in different

categories. Since it is common for items to significantly outnumber their total categories, e.g.,

|V | � |C |, instead of directly scoring all the items for each user using factorization models or

embeddings, we propose an intention-aware recommendation approach to tackle this problem. First,

assuming each item v j ∈ V belongs to only one category cn ∈ C , we aggregate a user’s intention of

performing all |A | actions on each category cn ∈ C to summarize the intensity of user intention in

each category. Then, when developing the pairwise scoring function for user-item pairs, we extensively

leverage the category information within γ̂γγ = [P(πm1,n1
1 ), ...,P(πm|Π|,n|Π|

|Π| )] to selectively assign larger

weights to items in certain categories. In the first step, the category-wise intention aggregation for a user

is denoted by a |C |-dimensional vector γ̃γγ = [γ̃1, ..., γ̃|C |]. Each γ̃n ∈ γ̃γγ is the quantified user intention

on category cn ∈ C . Algorithm 2 accomplishes the category-wise aggregation of user intention.

Algorithm 2 Category-wise Aggregation of User Intention
1: Input: the intention vector γ̂γγ for an arbitrary user; the corresponding user intention sequence
{πm,n

s(t)}
T
t=1;

2: Output: aggregated |C |-dimensional intention representation γ̃γγ

3: initialize with γ̃n = 0 for each γ̃n ∈ γ̃γγ and n = 1;
4: while n≤ |C | do
5: set m = 1;
6: while m≤ |A | do
7: compute the times of occurrence of intention π

m,n
s

in sequence {πm,n
s(t)}

T
t=1, denoted by #π

m,n
s ;

8: m++;
9: update γ̃n ∈ γ̃γγ with

γ̃n = ∑
|A |
m′=1

∑
|A |
m′=1

#π
m′,n
s′

#π
m,n
s

P(πm,n
s )

where m,m′ ≤ |A |, n≤ |C | and P(πm,n
s ) = γ̂s ∈ γ̂γγ;

10: n++;
11: end

3.2.8 ITFM: Intention-Aware Temporal Factorization Machines

We start with the basic form of Factorization Machines (FM) [20] which are originally proposed for

collaborative recommendation. Specifically, given a P-dimensional, real valued feature vector r, FMs

are linear regression models that estimate the desired output by modelling all interactions between
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each pair of features within the vector r:

ŷFM(r) = b0 +
P

∑
p=1

wprp +
P

∑
p=1

P

∑
p′=p+1

z>p zp′ · rprp′, (3.12)

where b0 is the global bias, wp is the weight assigned to p-th feature. rp, rp′ ∈ Rz are corresponding

embedding vectors for the p-th and p′-th feature, while z is the embedding dimension (i.e., dimen-

sionality of the factorization [20]). Thus, the first two terms in Eq.(3.12) can be viewed as a linear

regression scheme, while the third term Eq.(3.12) models the effect of pair-wise feature interaction [71].

In previous studies related to FM-based recommender systems [20, 21, 68, 84], the input vector r is

commonly formulated as the concatenation of feature vectors representing the exact user ui, all inter-

acted items in the past T time steps and the targeted item v j ∈ V . Then, for user ui ∈U , FMs are used

to produce a ranking score for each item in V . That is to say, though ui may interact with a different

item at each time step t ≤ T , all the historical interactions are gathered together without any temporal

order, and this severely restricts the model’s capability of performing sequential recommendation.

As a result, we propose a novel variant of FM, namely ITFM (Intention-Aware Temporal Factoriza-

tion Machine) to thoroughly capture the temporal characteristics of user-item interactions by utilising

the aggregated user intention γ̃γγ , the learned intention migration matrix Θ and the category information

of the interacted items from the user transaction {(πm,n
s(t) ,v j(t))}T

t=1. Specifically, for user ui, a ranking

score for v j in category cn can be produced via:

ŷIT FM(Ωi jn) = b0 +bi +
1
T

T

∑
t ′=1

w j′(t ′)γ̃n′(t ′)+w jγ̃n +v>j uiγ̃n +
1
T

T

∑
t ′=1

v>j′(t ′)uiγ̃n′(t ′)

+
1

T |A |

T

∑
t ′=1

∑
s∈S

v>j′(t ′)v jθ
s′
s +

1

∑
T−1
η=1 η

T

∑
t ′=1

T

∑
t∗=t ′+1

v>j′(t ′)v j∗(t∗)θ
s′
s∗ , (3.13)

where Ωi jn =
{
{(πm,n

s(t) ,v j(t))}T
t=1, γ̃γγ,Θ

}
is the input set of ITFM containing the transaction and inten-

tion γ̃γγ for each specific user ui along with the learned intention migration matrix Θ, while the index

set S is constructed as follows:

∀s ∈S ,πm,n
s ∈ {πm′,n

s | m′ = 1, ..., |A |}. (3.14)

Note that we keep the superscripts for indexes j,n,s consistent with t to indicate a user’s interaction

details at the same time step, e.g., j′,n′,s′ are all observed from the t ′-th time step. As for the trainable

parameters in ITFM, b0 is the global bias, bi is the local bias for user ui, w j is the weight assigned

to item v j, ui and v j are latent feature vectors for ui and v j respectively. ITFM can be viewed as

a fine-grained version of FM that infers the ranking score ŷIT FM(Ωi jn) for any user-item pair (ui,v j)

with corresponding input set Ωi jn. Intuitively, ITFM factorizes the pairwise user-item and item-item

interactions with: (1) awareness of user’s future intention, represented by the intention strength γ̃n ∈ γ̃γγ

on item category cn; (2) sequential dependencies represented by the intention migration effect θ s
s′ ∈Θ

on temporal interactions.
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3.2.9 ITFM Generalizes FM

Compared with ITFM, FM is a static and shallow model because it can be viewed as a special case

of ITFM by ignoring both the variations in user intention and the sequential dependencies in user-

item interactions. To prove this, we start with a re-formulation of FM. According to [20], in FMs,

assuming user ui has interacted with T items in the past, the input feature vector r is constructed by a

vector concatenation. Specifically, r = [rui,rv j ,rtrans,rside], where rui and rv j are respectively one-hot

vectors for targeted user ui and item v j, rtrans = [0, ..., 1
T , ...,

1
T , ...,0] with 1

T (i.e., averaged weight)

at all interacted item indexes in the user transaction, and rside is the feature vector for additional

side information. Here, ignoring the side information, if we split rui , rv j , rtrans from r and then use

Eq.(3.12) to factorize the element-wise interaction among these three inputs, the elements with value 0

will be skipped. Consequently, the FM scheme in Eq.(3.12) becomes:

ŷFM(rui,rv j ,rtrans) = b0 +wi +
1
T

T

∑
g=1

wg +w j + z>v j
zui +

1
T

T

∑
g=1

z>vg
zui

+
1
T

T

∑
g=1

z>vg
zv j +

1

∑
T−1
η=1 η

T

∑
g=1

T

∑
g′=g+1

z>vg
zvg′+1

, (3.15)

where g≤ T is the index of each interacted item in the user’s transaction, wi is the weight for ui and

can be considered as a user bias term in this case, while zv and zu are respectively latent vectors. In

ITFM, to discard both user intention and sequential dependencies, we can treat each γ̃c ∈ γ̃γγ and θ s
s′ ∈Θ

equally by setting all the elements in γ̃γγ and Θ as 1. By doing so, we can recover Eq.(3.15) from

Eq.(3.13) with interchangeable representations between the parameters wi, zu ,zv in FM and bi, ui ,v j

in ITFM. Apparently, this validates that ITFM has generalized FM in a fine-grained and temporal way.

3.2.10 Loss Function for ITFM

In various recommendation tasks, user’s explicit actions (e.g., ratings) on different items can offer

important information for model learning. Hence, we score these actions according to the interaction

intensity reflected by these actions, and then use the scores as the ground truth to learn ITFM as

a pairwise ranking scheme. For example, in movie rating datasets, the exact ratings can be used

as ground truth [85]; and there are widely-applied examples to rate user actions for model training,

e.g., click, add-to-cart and purchase represent three ascending interaction intensities, and thus can be

scored as 1, 2 and 3 respectively. We use yi jn to denote the real quantified interaction that user ui has

performed on item v j from category cn. After computing the ranking score ŷIT FM(Ωi jn), we use the

mean squared error to quantify the loss of ITFM:

LIT FM =
1
D

D

∑
d=1

(
yi jn− ŷIT FM(Ωi jn)

)2
, (3.16)

where D is the total number of training samples.
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3.2.11 Model Optimization

Following Section 3.2.2 and Section 3.2.6, with the major components of AIR formally introduced,

here we discuss our optimization strategy to train the parameters in AIR. The entire workflow of

AIR can be divided into two subtasks: (1) user intention prediction with ARNN; (2) intention-aware

recommendation with ITFM. With the loss for user intention prediction defined in Section 3.2.2, we

can easily leverage Stochastic Gradient Decent (SGD) algorithm to optimize the proposed ARNN.

At the same time, in Section 3.2.6, we have demonstrated that our ITFM is a generalized version of

the traditional factorization machines. Consequently, similar to previous work based on factorization

machines [20, 21] and their variants [69, 71, 84], SGD can also be utilized to effectively learn the

parameters in ITFM. Hence, we propose to learn all parameters AIR in a unified way instead of training

these two components separately. We quantify the model loss of AIR by combining the loss functions

for its components:

L = LARNN +LIT FM +LReg, (3.17)

where LReg represents the L2 regularization term posed on all the parameters within AIR to prevent

overfitting:

LReg = λ2

L

∑
l=1

φ
2
l , (3.18)

where λ2 is the weight decay coefficient on LReg, φl represents each parameter, and L is the number of

model parameters. It is worth mentioning that λ1 for the attention constraint in LARNN and λ2 are both

hyperparameters to be tuned.

Though the ultimate goal of AIR is the accurate item recommendations from ITFM, the rationale

of incorporating the loss functions for both ARNN and ITFM is that we expect the whole model to be

optimized for both tasks in AIR (i.e., LARNN for user intention prediction and LIT FM for recommendation),

thus maximizing the performance gain from our proposed intention-aware recommendation scheme.

Also, because ARNN and ITFM share a series of parameters and intermediate results, the joint loss

greatly helps with the training efficiency, especially when being compared with 2-stage training

paradigms.

In the training procedure, we leverage a mini-batch SGD algorithm, namely Adam [63] optimizer.

Specifically, we set the batch size as 256 according to device capacity and the learning rate as 0.001.

We iterate the whole training process until the loss converges.

3.3 Experiments

In this section, we conduct experiments on real-life datasets to showcase the advantage of AIR in the

task of recommendation. At the same time, we also investigate the effectiveness of different proposed

components of AIR. In particular, we aim to answer the following research questions (RQs) via the

experiments:

RQ1 How effectively and accurately does AIR recommend desired items to each user?
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RQ2 How AIR benefits from each component (i.e., ARNN and ITFM) in the proposed structure for

intention-aware sequential top-k recommendation?

RQ3 How are the hyperparameters in AIR tuned to optimize both model effectiveness and training

efficiency?

RQ4 How is the scalability of AIR when handling large-scale datasets in real-life recommendation

scenarios?

3.3.1 Datasets

To validate the performance of AIR, we use two real-life datasets shown in Table 3.2, namely Movie-
Lens and Tmall. The notation of # in Table 3.2 represents the number of entities. We briefly introduce

the properties of these two datasets below:

• MovieLens: MovieLens1 is a widely used dataset for recommender systems. The dataset which

we conduct experiments on contains more than 1 million movie rating interactions. There are 18

movie category tags for different items and we treat explicit ratings (1, 2, 3, 4, 5) as the actions

performed by users. For movies with multiple genre tags, we only use the most frequent one in

the dataset. According to the average sequence length (165.60 time steps per user), we limit the

length of input sequences to 200 time steps due to hardware capacity.

• Tmall: Tmall is a publicly available e-commerce dataset provided by Alibaba2. The original

dataset contains approximately 12 million user transactions generated by 10,000 users. It

contains four types of user behaviors: click, like, add-to-cart and purchase which are already

assigned the interaction score of 1, 2, 3 and 4 by the annotators. In the preprocessing stage,

similar to the construction strategy of MovieLens [86], we filter out both items and users having

less than 20 interaction records. The statistics of the final Tmall dataset are listed in Table 3.2.

Note that due to the large number of items in Tmall dataset, the sparsity is significant, making it

increasingly difficult to generate accurate recommendations.

Given a collection of transactions Di for each user ui, we first sort all interactions according to

their timestamps. Then, following [22, 61], for each transaction sequence, we use the 80% ratio as the

cut-off point so that the records before this time point will be used for training while the rest are for

evaluation. We denote these two subsets as D train
i and D test

i respectively. In the training phase of AIR,

we use the first 70% of D train
i as model input and the following 25% as labels, while the remaining

5% will be used for validation. In the evaluation phase, we use D train
i as the input of AIR and test the

accuracy on D test
i .

1http://grouplens.org/datasets/movielens/1m/
2https://tianchi.aliyun.com
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Table 3.2: Statistics of datasets in use.

Dataset #Interaction #User #Item #Category #Action Sparsity
MovieLens 1,000,209 6,040 3,592 18 5 95.39%

Tmall 116,780 2,567 42,135 10 4 99.89%

3.3.2 Evaluation Criteria

To evaluate all recommendation models, we adopt the widely applied Hits Ratio at Rank k (Hits@k)

which is commonly used in recommender system research [61, 85, 87]. Specifically, for each item

v j ∈D test
i , we first randomly choose J items on which user ui has never performed action and form J

negative samples. Following [82, 88], J is set as 100 and 1,000 for MovieLens and Tmall respectively

based on the scale of item variety. Secondly, we compute a score for v j as well as the J negative

samples via AIR. Thirdly, We form a ranked list by sorting these J + 1 samples according to their

scores in a descending order, where we use rank(v j) to denote the position of item v j in the ranking list.

Finally, we form a top-k item list by picking the k top-ranked items from the list, and if rank(v j)≤ k,

we have a hit; otherwise, we have a miss. The computation of Hits@k proceeds as follows. For a

single test case v j ∈D test
i , its hit@k is either 1 (for a hit) or 0 (for a miss). To avoid biases from users

having a very large D test
i , the overall Hits@k is calculated by firstly computing the hit ratio on all the

test cases for each user ui and then computing the mean for all users:

Hits@k =
1
|U |

|U |

∑
i=1

#hiti@k
|D test

i |
, (3.19)

where #hiti@k is the number of hits in the test set for each user. In our experiments, we use the popular

setting of k = 5,10,20 for validation [61, 87].

3.3.3 Baseline Methods

We conduct experiments against the following state-of-the-art recommendation frameworks:

• BPR: It is the widely-adopted Bayesian Personalized Ranking [19] matrix factorization model.

• SPTF: Scalable Probabilistic Tensor Factorization [61] was originally proposed to predict user

behaviors and it also suits item recommendation scenarios well.

• NFM: This is the state-of-the-art, Neural Network-based Factorization Machine [69]. We

first train it with the squared loss and then use it as the pairwise scoring function for top-k

recommendation.

• RRN: Recurrent Recommender Networks [76] use LSTM as an autoregressive model to predict

future behavioral trajectories of users by capturing temporal properties of user interests.

• NARM: It represents the Neural Attentive Recommendation Machine [89]. NARM performs

session-based item recommendation using two parallel gated recurrent units (GRUs) with
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attention mechanism for the joint modelling of sequential user behaviors and current user

purposes.

• Caser: The Convolutional Sequence Embedding Recommendation Model [22] leverages convo-

lutional neural networks to capture both users’ general preferences and sequential patterns for

sequential top-k recommendation.

• SASRec: The Self-Attententive Sequential Recommendation Model [23] leverages self-attention

mechanisms to adaptively learn the context from both long-term and recent activities.

• GES: Graph Embedding with Side Information [90] is the state-of-the-art sequential recom-

mendation approach based on graph embedding. It is worth mentioning that we only use the

base version of GES because the category is the only product side information available but the

enhanced GES requires multiple side information.

Furthermore, to fully study the performance gain from each component of our proposed model, we

implement three variants of AIR as follows:

• AIR-IW: We replace the category-wise user intention with item-wise user preference by treating

every user action equally (i.e., |A |= 1) and assuming each item belongs to a unique category

(i.e., |C |= |V |).

• AIR-NA: We remove the attention unit for intention migration modelling to build a non-

attentional variant.

• AIR-FM: We replace the ITFM in AIR with a traditional factorization machine as Eq.(3.12).

The aggregated intention vector λ̃λλ is directly concatenated with the feature vector r as input.

3.3.4 Parameter Settings

In AIR, we adopt a 3-layer LSTM structure with the dimension of hidden states h set to 128. For

consistency, we also apply the same hidden dimension for the intention embedding x, the user

feature vector u and the item feature vector v. The number of LSTM layers and dimension size are

respectively tuned via the grid search over {1,2,3,4,5} and {32,64,128,256,512}. We will further

discuss the process of obtaining a trade-off between model performance and efficiency in Section 3.3.7.

Besides, to determine the weight decay penalties, namely λ1 and λ2, we also conduct grid search over

{0.0001,0.001,0.01,0.1,1}. The settings with the best performance on the validation set (λ1 = 0.01

and λ2 = 0.001 on MovieLens, λ1 = λ2 = 0.001 on Tmall) are used in the test.

3.3.5 Overall Recommendation Effectiveness (RQ1)

3.3.5.1 Comparisons with Baselines

We report the Hits@k results generated by all the tested methods with k = 5,10,20 in Figure 3.2.(a)

and 3.2.(c). Clearly, on both datasets, our proposed AIR constantly outperforms all competitors



42 CHAPTER 3. MICRO-LEVEL SEQUENCE MODELLING

5 10 20

k

0

0.1

0.2

0.3

0.4

0.5

0.6

H
it
s
@

k

AIR

AIR-IW

AIR-NA

AIR-FM

NARM

RRN

Caser

SASRec

GES

NFM

SPTF

BPR

5 10 20

k

0

0.1

0.2

0.3

0.4

0.5

0.6

H
it
s
@

k

subset 1

subset 2

subset 3

(a) MovieLens (b) MovieLens

5 10 20

k

0

0.1

0.2

0.3

0.4

0.5

H
it
s
@

k

AIR

AIR-IW

AIR-NA

AIR-FM

NARM

RRN

Caser

SASRec

GES

NFM

SPTF

BPR

5 10 20

k

0

0.1

0.2

0.3

0.4

0.5

H
it
s
@

k

subset 1

subset 2

subset 3

(c) Tmall (d) Tmall

Figure 3.2: Recommendation results w.r.t. Hits@k on two datasets. (a) and (c) are the comparisons
with baselines, (b) and (d) are the sequential simulation results.

with statistically significant margins (p < 0.01). Specifically, AIR scores 0.276, 0.415 and 0.588 for

Hits@5, Hits@10, Hits@20 on MovieLens, while the corresponding results are 0.196, 0.282 and

0.455 on Tmall. Additionally, we have made several observations based on the effectiveness results.

First, apart from AIR and its variants, it is as expected that all deep neural network-based models

(i.e., NARM, RRN, Caser, SASRec and NFM) yield better effectiveness in recommendation tasks

than factorization models (i.e., BPR, SPTF, NFM) and network embedding models (i.e., GES). This is

because deep neural network-based models are capable of modelling complex non-linear relationships

between different factors extracted from the data, which are effective when tackling sparse data and

limited side information. Second, we find that sequential recommender systems tend to have more

accurate top-k recommendation results compared with static recommender systems (i.e., SPTF and

BPR) on both datasets. That is to say, when large amounts of sequential user transactions are available,

if we can successfully capture the dynamics within the data, there is expected to be a considerable

improvement on the recommendation performance. Third, as shown in Figure 3.2.(a) and 3.2.(c),

the most significant improvement is observed when k is relatively small, especially for k = 10 on

MovieLens dataset and k = 5 on Tmall. This indicates the joint effect of ARNN for user prediction

and ITFM for intention-aware recommendation greatly enhances the modelling of both users and items

in a unified way.
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Figure 3.3: The relationship between LARNN , LIT FM and Hits@20. Both losses are linearly rescaled
to [0,1] for better readability.

3.3.5.2 Sequential Recommendation Simulation

To demonstrate the practicality of AIR for timely recommendation, we further test AIR by evenly

dividing the test set D test
i for each user ui by time into three consecutive subsets: 1D test

i , 2D test
i and

3D test
i . We test the performance of AIR on these three consecutive subsets in a sequential manner

without retraining. To be specific, when testing on 1D test
i , 2D test

i and 3D test
i , the inputs of AIR are

respectively D train
i , D train

i ∪ 1D test
i and D train

i ∪ 1D test
i ∪ 2D test

i , and this mimics the real-life scenario

of sequential recommendation. The results on each subset are reported in Figure 3.2.(b) and 3.2.(d).

Generally, without retraining on new input data, some minor performance drop can be observed from

the second and the third subset, but AIR maintains its recommendation performance within a stable

range. This implies the dynamic patterns learned by AIR are robust and stable because AIR can

effectively leverage the category and behavior information within sequential user transactions to model

timely user intention for accurate recommendation.

3.3.6 Importance of Each Model Component (RQ2)

In this section, we thoroughly examine the performance gain from the two main components (i.e.,

ARNN and ITFM) in AIR via a series of ablation tests and intuitive visualizations.

3.3.6.1 Overview

We start with our observation during the training process of AIR. According to our loss function in

Eq.(3.17), if we ignore the regularization term, we can actually split the total loss into two individual

parts, i.e., LARNN and LIT FM. To seize a systematic understanding of the joint contribution of ARNN

and ITFM to AIR, we propose to keep a track of both individual losses during the training process

as well as the model performance after each training epoch (i.e., a whole iteration through all the

training data). By this means, we visualize the converge process of LARNN and LIT FM as well as the

fluctuations in recommendation performance with Figure 3.3. The loss values are recorded every 10

batch training steps, and we evaluate the recommendation performance of AIR in terms of Hits@20
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Figure 3.4: Relationship between the predicted and aggregated user intention γ̃γγ (left) and top 5
recommendation results (right) on MovieLens. (a)-(b) and (c)-(d) are respectively sampled from two
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(i.e., movie genres in this case) while the vertical axis represents the corresponding aggregated user
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the personalized ranking score (linearly rescaled to [0,1]) for different items and the vertical axis
represents the rank of each item.
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Figure 3.5: The intention migration matrix Θ learned via the proposed attention mechanism in AIR.
Each grid represents a θ s

s′ ∈ Θ. The intensity of colour in grid θ s
s′ reflects the strength of migration

effect from the s-th intention candidate to the s′-th intention candidate. Zoom in for a better view.

right after each epoch finishes. We illustrate this process via Figure 3.3. On these two datasets, while

both losses are decreasing during training, the recommendation performance of AIR gradually rises as

well. So, it can be concluded that these components are naturally combined by the loss function of

AIR to simultaneously optimize the final performance.
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3.3.6.2 The Impact of Category-wise User Intention

As an important component of our method, we validate the impact of category-wise user intention

via AIR-IW which only models the item-wise user preference and treats all kinds of user actions

homogeneously. Correspondingly, AIR-IW can only model the item-wise preference drift. The

significant accuracy drop shown in Figure 3.2.(a) and 3.2.(c) verifies that our proposed user intention

scheme contributes positively to the performance gain. Besides, among three of the degraded versions

of AIR, AIR-IW experiences the most performance decrease compared with AIR-NA and AIR-FM.

This is because AIR-IW tries to learn dynamic patterns from the sparse item-wise user performance

and ignores the heterogeneity of different user action types, making the model fail to capture sufficient

sequential dependencies and varied behavioral semantics. In summary, it proves that our hypothesis

of collectively modelling category-wise user intention and heterogeneous user interaction behaviors

instead of directly learning user preference can substantially benefit sequential top-k recommendation.

3.3.6.3 ARNN for User Intention Prediction

In Section 3.3.3, we implement AIR-NA by blocking the attention mechanism for intention migration

modelling. As demonstrated in Figure 3.2, AIR-NA suffers from a noticeable drop on recommendation

accuracy. In Figure 3.5, we have further visualized the intention migration matrix Θ learned by the full

version of AIR model. The MovieLens dataset is used because it offers original tags of movie genre

(e.g., action, comedy, etc.). From the visualization, we can directly obtain some insights by decoding

the indexes of θ s
s′ ∈ Θ into actual action-category pairs. For example, the intention θ 12

88 ∈ Θ is high,

and it represents the intention migration effect from “rating a musical movie as 1/5” (corresponds to

index 12) to “rating a thriller movie as 5/5” (corresponds to index 88). This indicates that if a user

dislikes musical movies, there is a high chance that this user will prefer thriller movies. Also, θ 89
65 ∈Θ

is a strong intention migration factor, and it represents the intention migration effect from “rating a

war movie as 5/5” (corresponds to index 89) to “rating a horror movie as 4/5” (corresponds to index

65). This further reflects that if a user likes war movies, it is highly possible for this user to have great

interest in horror movies. Hence, the ARNN discovers the subtle yet reasonable intention migration

patterns for intention prediction, thus presenting an accurate and explainable recommender system.

3.3.6.4 ITFM for Intention-Aware Recommendation

Similar to AIR-NA, in AIR-FM which replaces the ITFM unit with a traditional factorization machine

(FM) [20], we also notice an obvious performance decrease on both datasets. This is due to the fact that

AIR-FM simply uses the user intention vector as a kind of ad-hoc input feature instead of modelling

the sequential dependencies for user-item interactions in a fine-grained manner. Besides, we also use

Figure 3.4 to visualize the relationship between the predicted user intention (here the aggregated user

intention γ̃γγ is used) and the top 5 recommendation results (ŷi jn is used). Because the categories and

items are anonymized in Tmall dataset, we randomly sampled two successful recommendation cases

from MovieLens only. Note that γ̃γγ is no longer a probability distribution after the category-wise
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Figure 3.6: Parameter sensitivity analysis on the number of LSTM layers and the size of hidden
dimension.

intention aggregation, hence ∑
N
c=1 γ̃c does not necessarily equal to 1. We also omit values less than

1.0×10−5 in the visualization for better readability. In the first case, i.e., Figure 3.4.(a)-(b), this user’s

intention on movie genre “Drama” is dominant, so the ITFM component naturally ranks the ground

truth (marked in red) as the first item to recommend. In the second case, i.e., Figure 3.4.(c)-(d), though

a relatively wide distribution of category-wise intention yields challenges for recommending the most

suitable item to the user, ITFM still manages to gather information from the sequential interactions

of this user, thus keeping the right item within the top selections (rank 3). Furthermore, the results

of item recommendation are highly consistent with the learned user intention in terms of preferred

item categories, which indicates that the proposed ITFM greatly benefits the model performance in

sequential top-k recommendation.

3.3.7 Analysis on Hyperparameters (RQ3)

It is crucial for recommendation models to achieve optimal performance while preserving reasonable

training efficiency. AIR contains four hyperparameters to be tuned, namely the number of LSTM

layers, the size of hidden dimension and two penalty weights λ1, λ2. Because the impact of λ1 and λ2

on model training time is ignorable, they are simply determined via the grid search as mentioned in

Section 3.3.4. From the perspective of performance as well as training time, we extensively investigate

how sensitive AIR is to the number of LSTM layers and hidden dimension size. When training AIR on

these two datasets, we study the changes in Hits@5 and training time simultaneously via two settings:
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(1) with the hidden dimension fixed to 128, we study the parameter sensitivity to the number of

LSTM layers in {1,2,3,4,5}; (2) with the number of LSTM layers fixed to 3, we study the parameter

sensitivity to the size of hidden dimension in {32,64,128,256,512}. Figure 3.6.(a)-(b) and Figure

3.6.(c)-(d) reports the results under the first and second setting respectively. Note that the test with

512 hidden dimension size on Tmall dataset is non-applicable as the graphic card memory overflows.

As can be inferred from the figure, on both datasets, almost all the best Hits@5 results are achieved

by a 3-layer LSTM structure with 128 as the hidden dimension size, and the training time remains

in a reasonable range. However, it is worth mentioning that according to Figure 3.6.(a), though the

performance produced by 4-layer LSTM is slightly better than 3-layer LSTM on MovieLens, it takes

considerably more time for training (21.45% increase). Thus, we choose 3 for the number of LSTM

layers and 128 for hidden dimension size as a trade-off between recommendation accuracy and model

training efficiency.

3.3.8 Model Scalability (RQ4)

Due to the importance of practicality in real-life applications of recommender systems, we validate

the scalability of AIR in this section. When all the parameters in the network are fixed, the training

time for AIR is only associated with the number of training samples. Ideally, the training time for

AIR should increase linearly as we enlarge the scale of the training data. Note that we apply the same

parameter settings in Section 3.3.4 and training strategies in Section 3.2.11 for this validation.

We test the training efficiency and scalability of AIR by varying the proportions of the whole

training set from MovieLens, and then report the corresponding training time for the loss function

of AIR to converge (excluding I/O). The growth of training time along with the data size is shown

in Fig.3.7. When the ratio of training data gradually extends from 0.2 to 1.0, the training time

for AIR increases from 1.84× 103 seconds to 10.87× 103 seconds. It shows that the link between

training time and the data scale is approximately linear. Hence, we conclude that since its linear time

complexity can ensure high scalability, AIR can be efficiently trained with large-scale datasets for

real-life recommendation tasks.
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3.4 Summary

In this chapter, to tackle the sequential top-k recommendation, we present a novel attentional intention-

aware recommender system (AIR) that recognizes dynamic user intention and performs accurate item

recommendation. In AIR, the attentional recurrent neural network precisely captures user intention by

modelling the intention migration effect, while the intention-aware temporal factorization machine

effectively leverages the sequential dependencies in user transactions to perform intention-aware item

recommendation. We also conduct extensive experiments to validate the effectiveness and practicality

of AIR in terms of item recommendation. Thus, the specific contributions of this work are as follows:

• We point out that modelling category-wise user intention and collectively exploiting rich hetero-

geneous user interaction behaviors are more effective ways to address the data sparsity issue in

sequential top-k recommendation.

• We propose AIR, a flexible yet effective model to predict user intention and conduct intention-

aware recommendation on sequential data in a unified way. In AIR, we develop ARNN for user

intention prediction, where our novel attention mechanism is designed for intention migration

modelling. When scoring each user-item pair for top-k recommendation, we propose ITFM to

capture the dynamic user intention patterns learned via ARNN.

• We conduct extensive experiments on two real-life datasets. The results showcase the superiority

of our approach in the comparison with state-of-the-art baselines. We validate the contribution

of each component in AIR via ablation tests and visualizations. Further experiments show

promising practicality and scalability of AIR.



3.4. SUMMARY 49





Chapter 4

Uniting Macro- and Micro-Level Sequence
Modelling

The research goal in this chapter is to devise a generalizable temporal predictive analytic model that

can be effectively applied to both macro- and micro-level sequence modelling in e-commerce. In this

chapter, we will firstly review relevant works, then propose our model based on the identified defects

of existing methods.

4.1 Literature Review: Background and Motivation

4.1.1 Predictive Analytics under Sparsity

As an important supervised learning scheme, predictive analytics play a pivotal role in various

applications, ranging from recommender systems [76,91] to financial analysis [1] and online advertising

[27, 92]. In a nutshell, the ultimate goal of predictive analytics is to learn an effective predictor that

accurately estimates the output according to the input features, where classic predictive methods

like support vector machines (SVMs) [93] and logistic regression (LR) [94] have gained extensive

popularity.

When dealing with categorical features in predictive analytics, a common approach is to convert

such features into one-hot encodings [21,88,95] so that standard regressors like logistic regression [94]

and support vector machines [93] can be directly applied. Distinct from the continuous raw features

from images and audios, features from the web-scale data are mostly discrete and categorical [69].

Due to the large number of possible category variables, the converted one-hot features are usually of

high dimensionality but sparse [69], and simply using raw features rarely provides optimal results. On

this occasion, the interactions among different features act as the winning formula for a wide range

of data mining tasks [95–97]. The interactions among multiple raw features are usually termed as

cross features [95] (a.k.a. multi-way features and combinatorial features). For example, individual

variables occupation = {lecturer,engineer} and level = { junior,senior} can offer richer contextual
51
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information for user profiling with cross features, such as ( junior,engineer) and (senior, lecturer). To

avoid the high cost of task-specific manual feature engineering, factorization machines (FMs) [20]

are proposed to embed raw features into a latent space, and model the interactions among features via

the inner product of their embedding vectors.

4.1.2 Evolution of Factorization Machines

To better capture the effect of feature interactions, variants of the plain FM are proposed, like field-

aware FM for online advertising [92] and CoFM [84] for user behavior modelling. However, these

variants are still constrained by their limited linear expressiveness [69] when modelling the subtle and

complex feature interactions. Another line of research on FM-based models for predictive analytics

incorporates deep neural networks (DNNs) [69, 70, 98, 99]. Recently, motivated by the capability

of learning discriminative representations from raw inputs, deep neural networks (DNNs) [38] have

been adopted to extend the plain FM. For instance, He et al. [69] bridge the cross feature scheme of

FM with the non-linear form of DNN, and proposes a neural factorization machine (NFM). Instead

of the straightforward inner product in FM, NFM takes the sum of all features’ linear pairwise

combinations into a feed-forward neural network, and generates a latent representation of high-order

feature interactions. This is in a similar spirit to models like FM-supported neural network (FNN) [98],

where DNNs are utilized to learn non-linear high-order feature interactions. Both NFM and FNN also

use the embeddings from a pre-trained FM before applying DNNs in order to speed up training and

improve the prediction accuracy. With the idea of learning high-order feature interactions with DNNs,

more DNN-based FMs are devised for predictive analytics [70,71,95,100]. Qu et al. propose a product-

based neural network (PNN) [99], which introduces a product layer between embedding layer and

DNN layer, and does not rely on pre-trained FM parameters. More recently, hybrid architectures are

introduced in Wide&Deep [101], DeepFM [100] and xDeepFM [70] by combining shallow components

with deep ones to capture both low- and high-order feature interactions.

In short, there are two major trends of improvements over the plain FM. One is to make the

model “deep” with multi-layer network structures in order to exhaustively extract useful information

from feature interactions, e.g., the residual network in DeepCross [95], the pairwise product layer in

PNN [99], and the compressed interaction network in xDeepFM [96]. The other is to make the model

“wide” by considering multiple feature interactions in varied domains (usually coupled with “deep”

structures), e.g., separately modelling user logs and texts with CoFM [84], or fusing shallow low-order

output with dense high-order output via Wide&Deep [101], DeepFM [100] and xDeepFM [70]. Note

that in the remainder of this chapter, to avoid ambiguity, we use the term FM-based models to imply

both the plain FM and all its variants.

4.1.3 Motivation and Our Solution

However, these popular FM-based models mostly perform predictive analytics with the assumption

that there is no temporal order in the data. As a result, regardless of the temporal information available
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in various prediction tasks, the data will be partitioned for training/evaluation randomly rather than

chronologically, such as [21, 69, 71, 102]. Considering a real-world recommendation scenario, the

time-dependent order of products purchased by each user should be considered, and the recommender

system can only utilize users’ past purchase records to estimate their future preferences [103]. To

this end, we focus on the problem of temporal predictive analytics which considers such temporal

causality, and is more practical and realistic in various application scenarios.

Despite the efforts on enhancing the plain FM, all the aforementioned FM-based models still lack

the consideration of the sequential dependencies within high-order feature interactions, which is proven

to be critical for many temporal prediction tasks [1, 23, 37, 49]. With the rapidly increasing volume

of web-scale data, temporal predictive analytics inevitably involves features that are dynamically

changing over time, e.g., users’ shopping transactions on e-commerce platforms. We term such

features the dynamic features. In contrast, we refer to features that stay fixed (e.g., user ID) as static
features. Let us consider a generic item recommendation task, where the goal is to predict whether

a user will buy a specific item or not, as shown in Figure 4.1. Apart from the one-hot encoding

of both the user and candidate item, the common way for current FM-based models to account

for this user’s shopping record is to derive set-category features [21, 27, 102] that mark all her/his

previously bought items (see Figure 4.1). As is inferred from the user’s transaction (jeans→ jacket→
computer→mouse), the current intent of this user is to purchase accessories for her/his new computer

like keyboards, rather than other clothes. However, since traditional FM-based models view all the

purchased items from a constant point of time, all these dynamic features are evenly treated when

modelling feature interactions. Consequently, traditional FM-based models can hardly distinguish

the likelihood of purchasing a keyboard with purchasing a belt, because there are similar items in

the set-category features for both keyboards and belts, and the sequential characteristics of dynamic

features cannot be properly captured. Though the recently proposed translation-based FM [104]

performs recommendation by taking the sequential property of features into account, it models the

influence of only the last item (i.e., the mouse), thus easily making the recommended keyboard a

mismatch for the purchased computer. Moreover, for FM-based models, the deficiency of handling

sequential dependencies will create a severe performance bottleneck when the diversity and amount of

dynamic features grow over time.

In light of this, we aim to develop a general yet effective FM-based model to thoroughly mine the

sequential information from the dynamic features for accurate temporal predictive analytics. Hence,

in this thesis, we propose a Sequence-Aware Factorization Machine (SeqFM), which is the first

FM-based model to systematically combine sequential dependencies with feature interactions while

inheriting the non-linear expressiveness from DNNs and retaining the compactness w.r.t. the plain

FM. As demonstrated in Figure 4.1, SeqFM is built upon a multi-view learning scheme. Due to

different semantic meanings carried by static and dynamic features, we model different types of feature

interactions in three different contexts (i.e., views): static view for static features, dynamic view for

dynamic features, and cross view for both. To bypass the high demand on space and time of sequential

neural models using convolutional or recurrent computations, in each specific view, we leverage the
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Figure 4.1: The differences in feature interaction modelling between traditional FM-based models
(upper part) and our proposed SeqFM (lower part). Note that the embedding process of sparse features
is omitted to be succinct.

self-attention mechanism [62], which is highly efficient and capable of uncovering sequential and

semantic patterns between features. For the dynamic view and cross view, we further propose two

masked self-attention units to respectively preserve the directional property of feature sequence and

block irrelevant feature interactions. After encoding the high-order interactions between features via

the multi-view self-attention, a shared residual feed-forward network is deployed to extract latent

information from feature interactions. Intuitively, compared with “deep” or “wide” FM variants,

we aim to make our model “sequence-aware”, thus making full use of the contexts within dynamic

features. As a flexible and versatile model, we introduce three application scenarios for SeqFM,

namely ranking, classification, and regression, where corresponding experiments reveal significant

improvements over existing FM-based models. Furthermore, the simple structure of SeqFM also

ensures linear computational complexity and light-weight parameter size.

4.2 The Proposed Model: SeqFM

4.2.1 Preliminaries

Notations. Throughout this chapter, all vectors and matrices are respectively denoted by bold lower

case and bold upper case letters, e.g., g and G. All vectors are row vectors unless specified, e.g.,

x ∈ R1×n. To maintain simplicity, we use the superscripts ◦, . and ? to distinguish parameters in the

static view, dynamic view and cross view, respectively.

Factorization Machines (FMs). FMs are originally proposed for collaborative recommendation.

Specifically, for a given instance [user ID=2,gender=male,cities visited= Sydney&Shanghai], its
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input is a high-dimensional sparse feature x ∈ {0,1}1×m constructed by the concatenation of multiple

one-hot encodings [70, 95, 99]:

x = [0,1,0, ...,0]︸ ︷︷ ︸
user ID

[1,0]︸︷︷︸
gender

[0,1,0,1,0, ...,0]︸ ︷︷ ︸
cities visited

, (4.1)

where any real-valued feature (e.g., age) can also be directly included in x [21, 69], but we will focus

on the sparse categorical feature in our solution. Then, FMs are linear predictors that estimate the

desired output by modelling all interactions between each pair of features within x [20]:

ŷ = w0 +
m

∑
i=1

wixi +
m

∑
i=1

m

∑
j=i+1

〈vi,v j〉 · xix j, (4.2)

where m is the total amount of features, w0 is the global bias, wi is the weight assigned to the i-th

feature, and 〈., .〉 denotes the dot product of two vectors. vi, v j∈R1×d are corresponding embedding

vectors for feature dimension i and j, while d is the embedding dimension. Thus, the first two terms in

Eq.(4.2) can be viewed as a linear weighting scheme, while the third term models the effect of pairwise

feature interactions [71].

4.2.2 Sequence-Aware Factorization Machines

In this section, we first overview our proposed Sequence-Aware Factorization Machines (SeqFM), and

then detail each key component in the model.

Given a sparse feature vector x ∈ {0,1}1×m, the output ŷ of SeqFM is computed via:

ŷ = w0 +
m

∑
i=1

wixi + f (x), (4.3)

where the first two terms denote the linear components similar to the ones in Eq.(4.2), and the

global bias and weights of different features are modelled respectively. f (x) denotes our proposed

factorization component. Based on the construction rule of x, it can be viewed as the additive form of

the one-hot encodings for all non-zero features. Thus, x = ∑
n
i=1 gi, where gi = [0, ...,0,1,0, ...,0] is an

m-dimensional one-hot vector corresponds to one individual non-zero feature, and n denotes the total

number of non-zero features.

To conduct temporal predictive analytics with sequence-awareness, we split the original sparse

feature vector x into two views, namely the static view and dynamic view. In the running example

of Eq.(4.1), user ID and gender are modelled in the static view while visited cities are modelled

in the dynamic view. Then, we can obtain the static feature x◦ ∈ {0,1}1×m◦ and dynamic feature

x. ∈ {0,1}1×m.
where m◦+m. = m. Correspondingly, the additive form of input features naturally

splits into x◦=∑
n◦
i=1 g◦i and x.=∑

n.
i=1 g.i , where n◦ and n. are the respective numbers of non-zero features

in two views, and n◦+n. = n. Here, we use feature matrices G◦ ∈ {0,1}n◦×m◦ and G. ∈ {0,1}n.×m.

to stack these sparse input vectors, of which each row is an individual one-hot vector.

It is worth mentioning that the dynamic feature matrix G. is constructed in a chronological order.

That is to say, G. can be viewed as a sequence of dynamic features, so for row i < j, g.i ∈ G. is
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always observed earlier than g.j ∈G.. As dynamic features may update frequently over time, we pose

a threshold on the maximum sequence length that our model handles. To make the notations clear,

we keep using n. to denote the maximum length for the dynamic feature sequence. If the dynamic

feature sequence length is greater than the specified n., we consider the most recent n. features. If the

sequence length is less than n., we repeatedly add a padding vector {0}1×m.
to the top of G. until the

length is n..

So far, we can rewrite the SeqFM model in Eq.(4.3) as:

ŷ = w0 +[(G◦w◦)>;(G.w.)>]1+ f (G◦,G.), (4.4)

where w◦∈Rm◦×1 and w.∈Rm.×1 are column vectors representing weights for all features, [·; ·] denotes

the horizontal concatenation of two vectors, and 1 is a (n◦+n.)×1 vector consisting of 1s. In Eq.(4.4),

the first two terms serve the same purpose as those in Eq.(4.3), while f (G◦,G.) denotes the multi-view

self-attentive factorization scheme. The work flow of SeqFM is demonstrated in Figure 4.2. In what

follows, we will describe the design of f (G◦,G.) in detail.

4.2.3 Embedding Layer

As demonstrated in Figure 4.2, we first convert the sparse features G◦ and G. into dense representations

with embedding. The embedding scheme is essentially a fully connected layer that projects each

one-hot feature g to a dense embedding vector as the following:

E◦ = G◦M◦,

E. = G.M.,
(4.5)

where M◦∈Rm◦×d and M.∈Rm.×d are embedding matrices in the static and dynamic view, and d

is the latent embedding dimension. As such, we can obtain two embedded feature matrices E◦ ∈Rn◦×d

and E. ∈ Rn.×d , where each row is a embedding vector for the original feature.

4.2.4 Static View with Self-Attention

From Eq.(4.2), it is clear that in the traditional FM, feature interactions are modelled in a vector-wise

manner [70], where the dot product of two vectors is used. To better encode the subtle and fine-grained

information, recent FM-based models [69, 71, 99] shift to bit-wise (a.k.a. element-wise) interactions of

feature embeddings, such as element-wise product and weighted sum. In order to comprehensively

capture the complex interactions among features, we propose to jointly investigate vector-wise and

bit-wise feature interactions with the self-attention [62], which is a linear module that can be efficiently

computed. We start with the self-attention module in the static view:

H◦ = softmax
(Q◦K◦>√

d

)
V◦, (4.6)

where H◦ ∈ Rn◦×d is the latent interaction representation for all n◦ static features, while
√

d is the

scaling factor to smooth the row-wise So f tMax output and avoid extremely large values of the inner
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Figure 4.2: The overall architecture of SeqFM. We skip the linear term of SeqFM for better readability.

product, especially when the dimensionality is high. Q◦, K◦, V◦ ∈ Rn◦×d respectively represent the

queries, keys and values obtained using linear projection:

Q◦ = E◦W◦Q,

K◦ = E◦W◦K,

V◦ = E◦W◦V ,

(4.7)

and W◦Q, W◦
K , W◦V ∈ Rd×d are corresponding trainable projection weight matrices for queries, keys

and values. To be concise, we reformulate the self-attention module in Eq.(4.6) and Eq.(4.7) as the

following:

H◦ = softmax
(E◦W◦Q · (E◦W◦K)>√

d

)
·E◦W◦V , (4.8)

and each row h◦i ∈H◦ corresponds to the i-th feature. Intuitively, we have h◦i =wi1v◦1+wi2v◦2+· · ·+
win◦v◦n◦ where wi1,wi2, ...,win◦ are self-attentive weights assigned to projected features v◦1,v

◦
2, ..,v

◦
n◦∈

V◦. In fact, because the vector-wise interactions are encoded via the self-attentive weights from the

dot product scheme with So f tMax normalization, and the bit-wise interactions are encoded in an

additive form of features, the self-attention is able to account for both bit-wise and vector-wise feature

interactions between the i-th feature and all other features. Furthermore, being able to learn asymmetric

interactions, the projection operation with three distinctive subspaces makes the model more flexible.

4.2.5 Dynamic View with Self-Attention

In the dynamic view, due to the nature of sequential dependencies among n. dynamic features, the i-th

dynamic feature (i≤ n.) will only have the interactive influence from the previous features at j ( j ≤ i).
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For example, in the movie rating prediction task, we can only infer a user’s rating to a new movie from

her/his ratings to the movies this user has watched before. That is to say, the feature interactions in

the dynamic view are directional. Thus, to incorporate the directional property into the self-attention

mechanism, we propose the following masked self-attention to model the feature interactions in the

dynamic view:

H. = softmax
(E.W.

Q · (E.W.
K)
>

√
d

+M.
)
·E.W.

V , (4.9)

where H. ∈ Rn.×d carries the interaction contexts for all dynamic features, and W.
Q,W

.
K,W.

V ∈
Rd×d . Compared with other sequential approaches like recurrent neural networks, self-attention

enables vector-wise feature interactions and is more computationally efficient [23, 62]. Notably,

M. ∈ {−∞,0}n.×n. is a constant attention mask that allows each dynamic feature e.i to interact with

e.j only if j≤ i. Specifically, in the mask M., for its row and column indexes i, j ≤ n., the value of

each entry m.
i j ∈M. is determined as:

m.
i j =

{
0, if i≥ j

−∞, otherwise
. (4.10)

The Rationale of Attention Mask. We denote the matrix product of the query and key matrices in

Eq.(4.9) as A, i.e., A=
E.W.

Q·(E.W.
K)
>

√
d

∈Rn.×n. . Similar to [62], in A, each row ai1,ai2, ...,ain. contains

n. interaction scores between the i-th dynamic feature and all n. dynamic features. Then, for the

i-th feature, So f tMax is utilized to normalize these affinity scores to a probability distribution, i.e.,

pi1, pi2, ..., pin. = softmax(ai1,ai2, ...,ain.). By adding the attention mask M., for the i-th feature, the

interaction scores from i+1 become −∞, while the earlier ones in the sequence remain unchanged.

Consequently, with the So f tMax, pi j 6=0 for j≤ i while pi j≈ 0 for j> i, ensuring the interaction

strength on the i-th feature only associates with historical features where j≤ i.

4.2.6 Cross View with Self-Attention

Because static and dynamic features possess varied semantics, in the cross view, we deploy the third

attention head to model how static features interact with dynamic features. Similarly, we define another

masked self-attention unit below:

H? = softmax
(E?W?

Q · (E?W?
K)
>

√
d

+M?
)
·E?W?

V , (4.11)

where E? ∈R(n◦+n.)×d represents the cross view feature matrix constructed by vertically concatenating

feature matrices from both static and dynamic views along the first dimension:

E?=

[
E◦

E.

]
. (4.12)

In Eq.(4.11), H? ∈ R(n◦+n.)×d stacks the interaction contexts for all n◦+n. features, and there are

corresponding query, key and value projection matrices W?
Q,W

?
K,W?

V∈Rd×d . M?∈{−∞,0}(n◦+n.)×(n◦+n.)
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is the attention mask devised for the cross view. Each entry m?
i j ∈M? is formulated via:

m?
i j =

{
0, if i≤ n◦ < j or j ≤ n◦ < i

−∞, otherwise
. (4.13)

Following the explanation of the attention mask in Section 4.2.5, our cross view attention mask

blocks possible feature interactions within the same category, and only allows cross-category feature

interactions (i.e., interactions between static features and dynamic features). Intuitively, with this

dedicated view, the model further extracts information from the mutual interactions between static

properties and dynamic properties of features in a fine-grained manner.

4.2.7 Intra-View Pooling Operation

After calculating the representations for feature interactions in all three views, we feed these latent

feature matrices into our proposed intra-view pooling layer, which compresses all latent vectors from

each feature matrix into a unified vector representation. Specifically, for h◦i ∈H◦, h.
i ∈H. and h?

i ∈H?,

the intra-view pooling operation is defined as:

hview
=

1
nview

nview

∑
i=1

hview
i , (4.14)

where (hview
,hview

i ,nview) ∈ {(h◦,h◦i ,n◦),(h
.
,h.

i ,n
.), (h?

,h?
i ,n
◦+n.)}, and we use h◦, h. and h? to

denote the final vector representations after the pooling operation for static view, dynamic view and

cross view, respectively. Compared with the standard self-attention encoder structure in [62], the

intra-view pooling operation does not introduce additional model parameters. Moreover, the intra-view

pooling operation compactly encodes the information of pairwise feature interactions in the static,

dynamic and cross views.

4.2.8 Shared Residual Feed-Forward Network

With the multi-view self-attention and the intra-view pooling, all feature interactions are aggregated

with adaptive weights. However, it is still a linear computation process. To further model the complex,

non-linear interactions between different latent dimensions, we stack a shared l-layer residual feed-

forward network upon the intra-view pooling layer:

h̃
view
(1) = hview

+ReLU(LN(hview
)W1 +b1),

h̃
view
(2) = h̃

view
(1) +ReLU(LN(h̃

view
(1) )W2 +b2),

· · ·

h̃
view
(l) = h̃

view
(l−1)+ReLU(LN(h̃

view
(l−1))Wl +bl),

(4.15)

where (hview
, h̃

view
)∈{(h◦, h̃◦),(h.

, h̃
.
),(h?

, h̃
?
)}, ReLU is the rectified linear unit for non-linear

activation, while W ∈ Rd×d and b ∈ R1×d are weight and bias in each layer. Note that though the
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network parameters are different from layer to layer, the three views share the same feed-forward

network, as shown in Figure 4.2. In the following, we introduce the three key components in the shared

residual feed-forward network.

Residual Connections. The core idea behind residual networks is to propagate low-layer features

to higher layers by residual connection [105]. By combining low-layer interaction features with the

high-layer representations computed by the feed-forward network, the residual connections essentially

allow the model to easily propagate low-layer features to the final layer, which can help the model

enhance its expressive capability using different information learned hierarchically. Intuitively, in

our shared residual feed-forward network, to generate a comprehensive representation for feature

interactions in each view, the l-th layer iteratively fine-tunes the representation learned by the (l−1)-th

layer (i.e., h̃
view
(l−1)) by adding a learned residual, which corresponds to the second term in Eq.(4.15).

Layer Normalization. In Eq.(4.15), LN(·) denotes the layer normalization function [106], which

is beneficial for stabilizing and accelerating neural network training process by normalizing the layer

inputs across features. Unlike batch normalization [107], in layer normalization, each sample from a

batch uses independent statistics [23], and the computation at training and test times follows the same

process. Specifically, for an arbitrary layer input h̃
view
(l′) , LN(h̃

view
(l′) ) is calculated as:

LN(h̃
view
(l′) ) = s�

h̃
view
(l′) −µ

ε
+b, (4.16)

where l′≤ l and h̃
view
(l′) ∈{h̃

◦
(l′), h̃

.
(l′), h̃

?
(l′)}. Also,� is the element-wise product, µ and ε are respectively

the mean and variance of all elements in h̃
view
(l′) . Note that a small bias term will be added to ε in case

ε=0. The scaling weight s∈R1×d and the bias term b∈R1×d are parameters to be learned which help

restore the representation power of the network.

Layer Dropout. To prevent SeqFM from overfitting the training data, we adopt dropout [108] on

all the layers of our shared residual feed-forward network as a regularization strategy. In short, we

randomly drop the neurons with the ratio of ρ ∈ (0,1) during training. Hence, dropout can be viewed

as a form of ensemble learning which includes numerous models that share parameters [109]. It is

worth mentioning that all the neurons are used when testing, which can be seen as a model averaging

operation [108] in ensemble learning.

4.2.9 View-Wise Aggregation

With the h̃
◦
(l), h̃

.
(l) and h̃

?
(l) calculated by the l-layer shared residual feed-forward network, we perform

view-wise aggregation to combine all the information from different types of feature interactions. The

final representation is generated by horizontally concatenating the latent representations from three

views:

hagg = [h̃
◦
(l); h̃

.
(l); h̃

?
(l)], (4.17)

where hagg ∈R1×3d denotes the aggregated representation of non-linear, high-order feature interactions

within SeqFM. Since the representations learned by the shared residual feed-forward network are
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sufficiently expressive with an appropriate network depth l, we do not apply extra learnable weights to

the view-wise aggregation scheme.

4.2.10 Output Layer

After the aggregation of the latent representations from the static, dynamic and cross views, the final

vector representation hagg is utilized to compute the scalar output for the multi-view self-attentive

factorization component via vector dot product:

f (G◦,G.) = 〈p,hagg〉, (4.18)

where p ∈ R1×3d is the projection weight vector. At last, we summarize the entire prediction result of

SeqFM as:

ŷ = w0 +[(G◦w◦)>;(G.w.)>]1+ 〈p,hagg〉. (4.19)

As the scopes of both the input and output are not restricted, SeqFM is a flexible and versatile

model which can be adopted for different tasks. In Section 4.3, we will introduce how SeqFM is

applied to ranking, classification, and regression tasks as well as the optimization strategy of SeqFM.

4.2.11 Time Complexity Analysis

Excluding the embedding operation that is standard in all FM-based models, the computational cost of

our model is mainly exerted by the self-attention units and the feed-forward network. As the three

self-attention units are deployed in parallel, we only consider the cross view attention head that takes

the most time to compute. Hence, for each training sample, the overall time complexity of these two

components is O((n◦+ n.)2d)+O(ld2) = O((n◦+ n.)2d + ld2). Because l is typically small, the

dominating part is O((n◦+n.)2d). As n◦ is constant in the static view and n. is fixed with a threshold,

SeqFM has linear time complexity w.r.t. the scale of the data.

4.3 Applications and Optimization of SeqFM

We hereby apply SeqFM to three different temporal predictive analytic settings, involving ranking,

classification, and regression tasks. We also describe our optimization strategy.

4.3.1 SeqFM for Ranking

We deploy SeqFM for next-POI (point-of-interest) recommendation, which is commonly formulated

as a ranking task [91, 110]. For each user, next-POI recommendation aims to predict a personalized

ranking on a set of POIs and return the top-K POIs according to the predicted ranking. This is

accomplished by estimating a ranking score for each given user-POI pair (user,POI). For this ranking
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task, the input of SeqFM is formulated as follows:

G◦ =


g◦1
g◦2
...

g◦n◦


→user one-hot

→candidate POI one-hot}
other static

features

,G. =


g.1
g.2
...

g.n.




one-hot sequence

of visited POIs
. (4.20)

Note that other static features include the user/POI’s side information (e.g., occupation, gender,

etc.) and are optional subject to availability. We denote the (user,POI) pair as (u,v) to be concise. For

each user u, we denote an observed user-POI interaction as a positive pair (u,v+). Correspondingly, a

corrupted user-POI pair (u,v−) can be constructed, where v− is a POI that user u has never visited.

Thus, a training sample is defined as a triple (ui,v+j ,v
−
k ) ∈S , and S denotes the set of all training

samples. Following [19], we leverage the Bayesian Personalized Ranking (BPR) loss to optimize

SeqFM for the ranking task:

L =− log ∏
(ui,v+j ,v

−
k )∈S

σ(ŷi j− ŷik)

=− ∑
(ui,v+j ,v

−
k )∈S

log
(

σ(ŷi j− ŷik)
)
, (4.21)

where σ(·) is the Sigmoid function. We omit the regularization term for model parameters as the layer

dropout scheme is already capable of preventing our model from overfitting. For each user ui, ŷi j and

ŷik respectively denote the ranking score for item v+j and item v−k . The rationale of the BPR loss is that,

the ranking score for a POI visited by the user should always be higher than the ranking score for an

unvisited one.

4.3.2 SeqFM for Classification

For classification task, we conduct click-through rate (CTR) prediction, which is also one of the most

popular applications for FM-based models [70, 92, 95, 100, 101]. Given an arbitrary user and her/his

previously visited links (e.g., web pages or advertisements), the target of CTR prediction is to predict

whether this user will click through a given link or not. We formulate the input of SeqFM for this

classification task as:

G◦ =


g◦1
g◦2
...

g◦n◦


→user one-hot

→candidate link one-hot}
other static

features

,G. =


g.1
g.2
...

g.n.




one-hot sequence

of clicked links
. (4.22)

To enable the capability of classification, a Sigmoid operation is added to the output layer. To keep

the notations clear, we re-formulate the ŷ in Eq.(4.19) as:

ŷ = σ(w0 +[(G◦w◦)>;(G.w.)>]1+ 〈p,hagg〉), (4.23)
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where σ(·) denotes the Sigmoid function. Here, the ŷ ∈ (0,1) can be viewed as the possibility of

observing a (user, link) instance. By replacing (user, link) with the notion (u,v), we quantify the

prediction error with log loss, which is a special case of the cross-entropy:

L =− ∑
(ui,v+j )∈S +

log ŷi j− ∑
(ui,v−j )∈S −

log(1− ŷi j)

=− ∑
(ui,v j)∈S

(
yi j log ŷi j +(1− yi j) log(1− ŷi j)

)
, (4.24)

where S = S +∪S − is the set of labeled (u,v) pairs. Since we only have positive labels of observed

interactions denoted by (u,v+) ∈S +, we uniformly sample negative labels (u,v−) ∈S − from the

unobserved interactions during training and control the number of negative samples w.r.t. the size of

the positive ones.

4.3.3 SeqFM for Regression

Finally, we apply SeqFM to a regression task, namely rating prediction which is useful for mining

users’ preferences and personalities [21,76]. We use the same problem setting as [20,21], that is, given

a user and her/his rated items, we estimate this user’s rating to a new target item. SeqFM takes the

following as its input:

G◦ =


g◦1
g◦2
...

g◦n◦


→user one-hot

→ target item one-hot}
other static

features

,G. =


g.1
g.2
...

g.n.




one-hot sequence

of rated items
. (4.25)

We denote each (user, item) pair as (u,v). For each (ui,v j), the emitted output ŷi j is a continuous

variable that tries to match up with the ground truth rating yi j. Thus, we can directly apply the squared

error loss below:

L = ∑
(ui,v j)∈S

(ŷi j− yi j)
2, (4.26)

where S denotes the training set. Note that sampling negative training cases is unnecessary in the

conventional rating prediction task.

4.3.4 Optimization Strategy

As SeqFM is built upon the deep neural network structure, we can efficiently apply Stochastic

Gradient Decent (SGD) algorithms to learn the model parameters by minimizing each task-specific

loss L . Hence, we leverage a mini-batch SGD-based algorithm, namely Adam [63] optimizer. For

different tasks, we tune the hyperparameters using grid search. Specifically, the latent dimension

(i.e., factorization factor) d is searched in {8,16,32,64,128}; the depth of the shared residual feed-

forward network l is searched in {1,2,3,4,5}; the maximum sequence length n. is searched in

{10,20,30,40,50}; and the dropout ratio ρ is searched in {0.5,0.6,0.7,0.8,0.9}. We will further
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discuss the impact of these key hyperparameters on the prediction performance of SeqFM in Section

4.4. For ranking and classification tasks, we draw 5 negative samples for each positive label during

training. In addition, we set the batch size to 512 according to device capacity and the learning rate to

1×10−4. We iterate the whole training process until L converges.

4.4 Experiments

In this section, we outline the evaluation protocols for our proposed SeqFM, and then perform

experiments to evaluate SeqFM in various temporal prediction tasks. In particular, we aim to answer

the following research questions (RQs) via experiments:

RQ1: How effectively can SeqFM perform temporal predictive analytics compared with state-of-the-

art FM-based models?

RQ2: How do the hyperparameters affect the performance of SeqFM in different prediction tasks?

RQ3: How SeqFM benefits from each component of the proposed model structure?

RQ4: How is the training efficiency and scalability of SeqFM when handling large-scale data?

4.4.1 Datasets

To validate the performance of SeqFM in terms of ranking, classification, and regression, for each task

we consider two real-world datasets, whose properties are introduced below.

• Gowalla (Ranking): This is a global POI check-in dataset1 collected from February 2009 to

October 2010. Each user’s visited POIs are recorded with a timestamp.

• Foursquare (Ranking): This POI check-in dataset2 is generated world-wide from April 2012

to September 2013, containing users’ visited POIs at different times.

• Trivago (Classification): This dataset is obtained from the ACM RecSys Challenge3 in 2019.

It is a web search dataset consisting of users’ visiting (e.g., clicking) logs on different webpage

links.

• Taobao (Classification): It is a subset of user shopping log data released by Alibaba4. We

extract and sort users’ clicking behavior on product links chronologically.

• Beauty (Regression): A series of users’ product ratings5 are crawled from Amazon from May

1996 to July 2014, and different product categories are treated as separate datasets. Beauty is

one of the largest categories.
1https://snap.stanford.edu/data/loc-gowalla.html
2https://sites.google.com/site/yangdingqi/home/foursquare-dataset
3http://www.recsyschallenge.com/2019/
4https://tianchi.aliyun.com/
5http://snap.stanford.edu/data/amazon/productGraph/
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Table 4.1: Statistics of datasets in use.

Task Dataset #Instance #User #Object #Feature (Sparse)

Ranking
Gowalla 1,865,119 34,796 57,445 149,686

Foursquare 1,196,248 24,941 28,593 82,127

Classification
Trivago 2,810,584 12,790 45,195 103,180
Taobao 1,970,133 37,398 65,474 168,346

Regression
Beauty 198,503 22,363 12,101 46,565
Toys 167,597 19,412 11,924 50,748

• Toys (Regression): This is another Amazon user rating dataset on toys and games.

All datasets used in our experiment are in large scale and publicly available. The primary statistics

are shown in Table 4.1, where we use the word “object” to denote the POI, link, and item in different

applications. Following [19,72,91,111], we filter out inactive users with less than 10 interacted objects

and unpopular objects visited by less than 10 users. Note that for Beauty and Toys, we directly use the

provided versions without further preprocessing.

4.4.2 Baseline Methods

We briefly introduce the baseline methods for comparison below. First of all, we choose the latest and

popular FM-based models as the common baselines for all ranking, classification, and regression tasks.

Then, for each task, we further select two state-of-the-art methods originally proposed for the specific

task scenario as an additional competitor.

• FM: This is the original Factorization Machine [20] with proven effectiveness in many prediction

tasks [21, 102].

• Wide&Deep: Proposed by the Google team [101], the Wide&Deep model uses a DNN to learn

latent representations of concatenated features.

• DeepCross: It stacks multiple residual network blocks upon the concatenation layer for feature

embeddings in order to learn deep cross features [95].

• NFM: The Neural Factorization Machine [69] encodes all feature interactions via multi-layer

DNNs coupled with a bit-wise bi-interaction pooling layer.

• AFM: The Attentional Factorization Machine [71] introduces an attention network to distinguish

the importance of different pairwise feature interactions.

• SASRec (Ranking): This is the Self-Attention-based Sequential Recommendation Model [23]

with long-term and short-term context modelling.

• TFM (Ranking): The Translation-based Factorization Machine [104] learns an embedding and

translation space for each feature dimension, and adopts Euclidean distance to quantify the

strength of pairwise feature interactions.
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• DIN (Classification): The Deep Interest Network [27] can represent users’ diverse interests

with an attentive activation mechanism for CTR prediction.

• xDeepFM (Classification): It stands for the Extreme Deep Factorization Machine [70], which

has a compressed interaction network to model vector-wise feature interactions to perform CTR

prediction.

• RRN (Regression): The Recurrent Recommender Network [76] is a deep autoregressive model

for temporal rating prediction.

• HOFM (Regression): This is the Higher-Order Factorization Machine described in [112].

HOFM improves [20] with space-saving and time-efficient kernels to allow shared parameters

for prediction tasks.

4.4.3 Evaluation Metrics

To fit the scenario of temporal predictive analytics, we adopt the leave-one-out evaluation protocol

which is widely used in the literature [19, 27, 88, 104]. Specifically, within each user’s transaction, we

hold out her/his last record as the ground truth for test and the second last record for validation. All

the rest records are used to train the models. Set-category features are used as input for all FM-based

baseline models.

Evaluating Ranking Performance. To evaluate the ranking performance, we adopt the well-

established Hits Ratio at Rank K (HR@K) and Normalized Discounted Cumulative Gain at Rank K

(NDCG@K) which are commonly used in information retrieval and recommender systems [91, 110].

Specifically, for each positive test instance (user,POI) ∈S test , we mix the POI with J random POIs

that are never visited by the user. Afterwards, we rank all these J+1 POIs for the user. Then, we use

HR@K to measure the ratio that the ground truth item has a hit (i.e., is present) on the top-K list, and

use NDCG@K to further evaluate whether if the model can rank the ground truth as highly as possible:

HR@K=
#hit@K
|S test |

, NDCG@K=
∑s∈S test ∑

K
r=1

rels,r
log2(r+1)

|S test |
, (4.27)

where #hit@K is the number of hits in the test set. For each test case s∈S test , rels,r =1 if the item

ranked at r is the ground truth, otherwise rels,r=0. We set J=1,000 to balance the running time and

task difficulty. For K, we adopt the popular setting of 5,10,20 for presentation.

Evaluating Classification Performance. We adopt two evaluation metrics for the classification

task, namely Area under the ROC Curve (AUC) [95,96] and Root Mean Squared Error (RMSE) [69,71].

For each positive test instance (user, link) ∈S test , we draw a random negative link that the user has

never clicked, and predict the interaction possibility for both links. AUC measures the probability that

a positive instance will be ranked higher than the negative one. It only takes into account the order of

predicted instances and is insensitive to class imbalance problem. In contrast, RMSE evaluates the

distance between the predicted possibility and the true label for each instance.
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Table 4.2: Ranking task (next-POI recommendation) results. Numbers in bold face are the best results
for corresponding metrics. For both HR@K and NDCG@K, the higher the better.

Method
Gowalla Foursquare

HR@K NDCG@K HR@K NDCG@K
K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20 K=5 K=10 K=20

FM [20] 0.232 0.318 0.419 0.158 0.187 0.211 0.241 0.303 0.433 0.169 0.201 0.217
Wide&Deep [101] 0.288 0.401 0.532 0.199 0.238 0.267 0.233 0.317 0.422 0.165 0.192 0.218

DeepCross [95] 0.273 0.379 0.505 0.182 0.204 0.241 0.282 0.355 0.492 0.198 0.210 0.229
NFM [69] 0.286 0.395 0.525 0.199 0.236 0.264 0.239 0.325 0.435 0.170 0.198 0.225
AFM [71] 0.295 0.407 0.534 0.204 0.242 0.270 0.279 0.379 0.504 0.199 0.212 0.233

SASRec [23] 0.310 0.424 0.559 0.209 0.253 0.285 0.266 0.350 0.467 0.175 0.204 0.216
TFM [104] 0.307 0.430 0.556 0.216 0.256 0.283 0.283 0.390 0.512 0.203 0.223 0.248

SeqFM 0.345 0.467 0.603 0.243 0.283 0.316 0.324 0.431 0.554 0.227 0.262 0.293

Evaluating Regression Performance. We evaluate the regression performance with Mean Ab-

solute Error (MAE) and Root Relative Squared Error (RRSE), which are popular among relevant

research communities [1, 37]. Mathematically, they are defined as follows:

MAE =
∑y∈S test |ŷ− y|
|S test |

,RRSE =

√
∑y∈|S test |(ŷ−y)2

|S test |

VARS test
, (4.28)

where ŷ and y denote the predicted and real value respectively, and VARS test is the variance of all

ground truth values. MAE directly reveals the gap between prediction and ground truth, while RRSE

is the normalized root mean square error and is independent of the data scale and distribution.

4.4.4 Parameter Settings

To be consistent, we report the overall performance of SeqFM on all tasks with a unified parameter set

{d = 64, l = 1,n. = 20,ρ = 0.6}. Detailed discussions on the effects of different parameter settings

will be shown in Section 4.4.6. For all baseline methods, since all tasks are conducted on standard and

generic datasets with common evaluation metrics, we adopt the optimal parameters in their original

works.

4.4.5 Prediction Performance (RQ1)

We summarize the performance of all models in terms of ranking, classification, and regression with

Table 4.2, 4.3, and 4.4 respectively. We discuss our findings regarding the effectiveness results as

follows.

Ranking Performance. The results of the ranking task (next-POI recommendation) are reported

in Table 4.2. Note that higher HR@K and NDCG@K values imply better prediction performance.

Obviously, on both Gowalla and Foursquare, SeqFM significantly and consistently outperforms all

existing FM-based models with K ∈ {5,10,20}. In particular, the advantages of SeqFM in terms of

HR@5 and NDCG@5 imply that our model can accurately rank the ground truth POI in the top-5
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Table 4.3: Classification task (CTR prediction) results. Numbers in bold face are the best results for
corresponding metrics. For AUC, the higher the better; while for RMSE, the lower the better.

Method
Trivago Taobao

AUC RMSE AUC RMSE
FM [20] 0.729 0.564 0.602 0.597

Wide&Deep [101] 0.782 0.529 0.629 0.590
DeepCross [95] 0.845 0.433 0.735 0.391

NFM [69] 0.767 0.537 0.616 0.583
AFM [71] 0.811 0.465 0.656 0.544
DIN [27] 0.923 0.338 0.781 0.375

xDeepFM [70] 0.913 0.350 0.804 0.363
SeqFM 0.957 0.319 0.826 0.335

positions, which can better suit each user’s intent and boost the recommendation success rate. Though

SASRec shows promising effectiveness on Gowalla, it underperforms when facing higher data sparsity

on Foursquare. Another observation is that all FM-based models with deep neural networks (i.e.,

Wide&Deep, DeepCross, NFM and AFM) outperform the plain FM. As a model specifically designed

for sequential recommendation, TFM naturally performs better than the common baselines on both POI

check-in datasets. However, SeqFM still achieves higher ranking effectiveness. This is because TFM is

designed to only consider the most recently visited object (POI) in the dynamic feature sequence, while

SeqFM utilizes the self-attention mechanism to extract richer information from the entire sequence.

Classification Performance. We list all the results of the classification task (CTR prediction) in

Table 4.3. A better result corresponds to a higher AUC score and a lower RMSE value. At the first

glance, it is clear that our SeqFM achieves the highest classification accuracy on both Trivago and

Taobao. Similar to the observations from the ranking task, existing variants of the plain FM show the

benefit of adopting deep neural networks. As for the task-specific models for CTR prediction, the

attentive activation unit in DIN can selectively determine the weights of different features based on a

given link, while xDeepFM is able to thoroughly model the high-order interactions among different

features with its dedicated interaction network. However, there is a noticeable performance gap

between both additional baselines and our proposed SeqFM. This proves the insight of our work,

which points out that instead of simply treating all dynamic features as flat set-category features in

existing FM-based models, the sequence-aware interaction scheme for dynamic features in SeqFM is

more helpful for temporal predictive analytics.

Regression Performance. Table 4.4 reveals all models’ performance achieved in the regression

task (rating prediction) on Beauty and Toys. For both MAE and RRSE metrics, the lower the better.

As demonstrated by the results, despite the intense competition in the regression task, SeqFM yields

significant improvements on the regression accuracy over all the baselines. Furthermore, though

showing competitive regression results, the additional baseline HOFM is still limited by its linear

mathematical form, so approaches based on deep neural networks like RRN, NFM and AFM perform

slightly better owing to their non-linear expressiveness. Apart from that, we notice that compared

with the performance achieved by the plain FM, other FM-based approaches only shows marginal



4.4. EXPERIMENTS 69

Table 4.4: Regression task (rating prediction) results. Numbers in bold face are the best results for
corresponding metrics. For both MAE and RRSE, the lower the better.

Method
Beauty Toys

MAE RRSE MAE RRSE
FM [20] 1.067 1.125 0.778 1.023

Wide&Deep [101] 0.965 1.090 0.753 0.989
DeepCross [95] 0.949 1.003 0.761 1.010

NFM [69] 0.931 0.986 0.735 0.981
AFM [71] 0.945 0.994 0.741 0.997
RRN [76] 0.943 0.989 0.739 0.983

HOFM [112] 0.952 1.054 0.748 1.001
SeqFM 0.890 0.975 0.704 0.956

advantages against it in the regression task. In contrast, with 13% and 7% relative improvements

on RRSE over the plain FM, our proposed SeqFM highlights the importance of fully utilizing the

sequential dependencies for predictive analytics.

To summarize, the promising effectiveness of SeqFM is thoroughly demonstrated in ranking,

classification, and regression tasks. In the comparison with state-of-the-art baselines on a wide range

of datasets, the considerable improvements from our model further imply that SeqFM is a general and

versatile model that suits different types of temporal prediction tasks.

4.4.6 Impact of Hyperparameters (RQ2)

We answer the second research question by investigating the performance fluctuations of SeqFM

with varied hyperparameters. Particularly, as mentioned in Section 4.3.4, we study our model’s

sensitivity to the latent dimension d, the depth of residual feed-forward network l, the maximum

sequence length n., as well as the dropout ratio ρ . For each test, based on the standard setting

{d = 64, l = 1,n. = 20,ρ = 0.6}, we vary the value of one hyperparameter while keeping the others

unchanged, and record the new prediction result achieved. To show the performance differences, we

demonstrate HR@10 for ranking, AUC for classification, and MAE for regression. Figure 4.3 lays out

the results with different parameter settings.

Impact of d. The value of the latent dimension d is examined in {8,16,32,64,128}. As an

important hyperparameter in deep neural networks, the latent dimension is apparently associated with

the model’s expressiveness. In general, SeqFM benefits from a relatively larger d for all types of tasks,

but the performance improvement tends to become less significant when d reaches a certain scale

(32 and 64 in our case). It is worth mentioning that with d = 16, SeqFM still outperforms nearly all

the baselines in the temporal prediction tasks, which further proves the effectiveness of our proposed

model.

Impact of l. We study the impact of the depth of our shared residual feed-forward network with

l ∈ {1,2,3,4,5}. For regression task, there is a slight performance growth for SeqFM as l in creases.

Though stacking more deep layers in the neural network may help the model yield better performance
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Figure 4.3: Parameter sensitivity analysis.

in some specific applications, for both ranking and classification tasks, SeqFM generally achieves

higher prediction results with a smaller l. This is because deeper networks bring excessive parameters

that can lead to overfitting, and the information learned by deeper layers may introduce noise to the

model.

Impact of n.. As can be concluded from Figure 4.3, SeqFM behaves differently on varied

datasets when the maximum sequence length n. is adjusted in {10,20,30,40,50}. This is due to

the characteristics of sequential dependencies in different datasets. For instance, in Gowalla and

Foursquare, users tend to choose the next POI close to their current check-in location (i.e., the previous

POI), thus forming sequential dependencies in short lengths. As a result, a larger n. will take more

irrelevant POIs as the input, and eventually causes the performance decrease. In contrast, in Taobao,

users’ clicking behavior is usually motivated by their intrinsic long-term preferences, so a relatively

larger n. can help the model achieve better results in such scenarios.

Impact of ρ . The impact of different dropout ratios is investigated via ρ ∈ {0.5,0.6,0.7,0.8,0.9}.
Overall, the best prediction performance of SeqFM is reached when ρ is between 0.6 and 0.8. From

Figure 4.3 we can draw the observation that a lower dropout ratio is normally useful for preserving the

model’s ability to generalize to unseen test data (e.g., Foursquare and Trivago). However, on some

datasets, a smaller ρ comes with lower performance (e.g., Taobao and Beauty) because too many

blocked neurons may result in underfitting during training.
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Table 4.5: Ablation test with different model architectures. Numbers in bold face are the best results
for corresponding metrics, and “↓” marks a severe (over 5%) performance drop.

Architecture
HR@10 AUC MAE

Gowalla Foursquare Trivago Taobao Beauty Toys
Default 0.467 0.431 0.957 0.826 0.890 0.704

Remove SV 0.455 0.420 0.892↓ 0.765↓ 0.959↓ 0.762↓
Remove DV 0.424↓ 0.396↓ 0.862↓ 0.731↓ 0.972↓ 0.772↓
Remove CV 0.430↓ 0.404↓ 0.963 0.754↓ 0.935↓ 0.763↓
Remove RC 0.457 0.431 0.898↓ 0.761↓ 0.918 0.719
Remove LN 0.461 0.423 0.933 0.798 0.922 0.720

4.4.7 Importance of Key Components (RQ3)

To better understand the performance gain from the major components proposed in SeqFM, we conduct

ablation test on different degraded versions of SeqFM. Each variant removes one key component from

the model, and the corresponding results on three tasks are reported. Table 4.5 summarizes prediction

outcomes in different tasks. Similar to Section 4.4.6, HR@10, AUC and MAE are used. In what

follows, we introduce the variants and analyze their effect respectively.

Remove Static View (Remove SV). The attention head in the static view models the interactions

among all the static features. After removing it, a noticeable performance drop has been observed,

especially on classification and regression tasks. In our application of SeqFM, the static view directly

models interaction between the user and the target object (i.e., POI, link, and item), which is rather

important especially when the task relies on mining users’ personal preferences (e.g., the rating

prediction task).

Remove Dynamic View (Remove DV). The modelling of the sequential interactions among

dynamic features is crucial to the model’s performance in temporal predictive analytics. Hence, a

significant (over 5%) performance decrease has appeared in all three tasks. The results verify that the

sequence-awareness plays a pivotal role when prediction tasks involve dynamic features. Specifically,

the most severe performance drop is exerted in the classification task, including a 10% decrease on

Trivago and 12% decrease on Taobao. As these two datasets record users’ clicking behaviors on the

product links provided, the entire dynamic feature sequence carries the long-term preference of each

user. So, considering the dynamic dependencies can actually help our model accurately capture the

rich information from the dynamic features, and eventually yield competitive prediction effectiveness.

Remove Cross View (Remove CV). Similar to the effect of discarding the dynamic view, SeqFM

suffers from the obviously inferior performance (over 5% drop) regarding 5 datasets after the cross

view with self-attention head is removed. Apparently, in this degraded version of SeqFM, the inter-

actions between static features and dynamic features are discarded, leading to a significant loss of

information. This verifies the contribution of the self-attention head in the cross view to our model’s

final performance in all three tasks.

Remove Residual Connections (Remove RC). Without residual connections, we find that the

performance of SeqFM gets worse, especially on Trivago and Taobao datasets. Presumably this is
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because information in lower layers (i.e., the output generated by the attention head) cannot be easily

propagated to the final layer, and such information is highly useful for making predictions, especially

on datasets with a large amount of sparse features.

Remove Layer Normalization (Remove LN). The layer normalization operation is introduced

mainly for the purpose of stabilizing the training process by scaling the input with varied data scales

for deep layers. Removing the layer normalization also shows a negative impact on the prediction

performance, especially in the regression task where the properly normalized features can usually

generate better results.

4.4.8 Training Efficiency and Scalability (RQ4)

We test the training efficiency and scalability of SeqFM by varying the proportions of the training

data in {0.2,0.4,0.6,0.8,1.0}, and then report the corresponding time cost for the model training. It is

worth noting that the Trivago dataset is used for scalability test since it contains the most instances.

The growth of training time along with the data size is shown in Figure 4.4. When the ratio of training

data gradually extends from 0.2 to 1.0, the training time for SeqFM increases from 0.51×103 seconds

to 2.79×103 seconds. It shows that the dependency of training time on the data scale is approximately

linear. Hence, we conclude that SeqFM is scalable to even larger datasets.

4.5 Summary

In this chapter, we propose SeqFM, a sequence-aware factorization machine for temporal predictive

analytics. For the first time, we incorporate sequential dependencies into FM-based models by

proposing a novel multi-view self-attention scheme to model the interactions between different

features. SeqFM is then successfully applied to three different temporal prediction tasks including

ranking, classification and regression. The experimental results showcase that SeqFM is a powerful

yet general model that can yield superior performance in a wide range of real-world applications. We

summarize the specific contributions of this work as follows:
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• We point out that mining features’ sequential dependencies can greatly benefit the modelling of

feature interactions in real-world FM-based models. We introduce, to the best of our knowledge,

the first study to endow FM-based models with full sequence-awareness for temporal predictive

analytics.

• We propose SeqFM, a novel sequence-aware factorization machine. SeqFM utilizes an innovative

multi-view self-attention scheme to model the high-order feature interactions in a sequence-aware

manner.

• We conduct extensive experiments on a wide range of benchmark datasets to showcase the

superiority of SeqFM in different temporal predictive analytic tasks, validate the importance of

sequence-awareness in SeqFM, and reveal promising practicality and scalability of SeqFM.





Chapter 5

Conclusion

In this thesis, we have systematically investigated the problem of sequence modelling in the e-

commerce scenario. Specifically, we characterize sequence modelling for e-commerce into two main

fields, i.e., macro-level sequence modelling and micro-level sequence modelling that have different

focuses and applications. While e-commerce applications of macro-level sequence modelling such as

sales prediction [113], stock price forecasting [114] and trend discovery [115] are largely beneficial to

decision-makers like sales managers, traders and marketers, micro-level sequence modelling lays more

emphasis on enhancing the interactive engagement and maximizing commercial values of individual

end-users, such as sequential recommendation [72], targeted advertising [116] and personalized route

planning [117]. Hence, this set the tone for the first two research objectives, where we have tackled

macro- and micro-level sequence modelling with two concrete tasks, i.e., sales prediction and sequential

recommendation. Both tasks have seen wide applications, and are representative research directions

in modelling sequential e-commerce data at both macro- and micro-levels. For sales prediction, we

have proposed a novel model named TADA, which is based on an encoder-decoder multi-task LSTM

architecture. TADA utilizes two attention mechanisms to selectively obtain contextual information

in the decoding (i.e., prediction) stage and gather knowledge from similar historical sales trends,

thus achieving the state-of-the-art prediction accuracy. For sequential recommendation, our proposed

model AIR innovatively uses an attentional LSTM to model the transition patterns of category-wise

user intention instead of the commonly used item-wise user preference, which greatly alleviates the

sparse nature of user-item interactions in the recommendation data. Furthermore, an intention-aware

factorization machine is proposed in AIR to fully leverage the learned user intention to produce

fine-grained and personalized item recommendations under the sequential setting.

On top of addressing sequence modelling for e-commerce from each perspective individually, we

have extended our investigation by devising a generic supervised machine learning model that can

perform both macro- and micro-level sequence modelling and suit a wide variety of their applications.

In this regard, we have made a successful attempt by enhancing the long-standing factorization

machine (FM) model to the temporal predictive analysis setting. The new model we have developed

is called SeqFM, in which the novel multi-view directional self-attention units can support feature
75
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interaction modelling with sequential dependencies, leading to significant performance gain over both

FM-based prediction models and state-of-the-art deep neural models in multiple sequence modelling

tasks including ranking, classification, and regression.

Along this line of research, there are two promising future directions worth investigating. One

is fully explainable sequence modelling techniques, which aim to generate intuitive interpretations

to either convince the end-users of the model output [4] (e.g., recommendation results) or provide

decision-makers with data-driven insights to help humans derive new knowledge in e-commerce

business analysis. The other is to develop memory-efficient and computationally efficient deep

methods for sequence modelling, which will enable immense potential in applications [8] on resource-

constrained IoT and mobile devices.
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