60 research outputs found

    Toward composing variable structure models and their interfaces: a case of intensional coupling definitions

    Get PDF
    In this thesis, we investigate a combination of traditional component-based and variable structure modeling. The focus is on a structural consistent specification of couplings in modular, hierarchical models with a variable structure. For this, we exploitintensional definitions, as known from logic, and introduce a novel intensional coupling definition, which allows a concise yet expressive specification of complex communication and interaction patterns in static as well as variable structure models, without the need to worryabout structural consistency.In der Arbeit untersuchen wir ein Zusammenbringen von klassischer komponenten-basierter und variabler Strukturmodellierung. Der Fokus liegt dabei auf der Spezifikation von strukturkonsistenten Kopplungen in modular-hierarchischen Modellen mit einer variablen Struktur. DafĂĽr nutzen wir intensionale Definitionen, wie sie aus der Logik bekannt sind, und fĂĽhren ein neuartiges Konzept von intensionalen Kopplungen ein, welches kompakte gleichzeitig ausdrucksstarke Spezifikationen von komplexen Kommunikations- und Interaktionsmuster in statischen und variablen Strukturmodellen erlaubt

    On reproducibility and traceability of simulations

    Get PDF
    International audienceReproducibility of experiments is the pillar of a rigorous scientific approach. However, simulation-based experiments often fail to meet this fundamental requirement. In this paper, we first revisit the definition of reproducibility in the context of simulation. Then, we give a comprehensive review of issues that make this highly desirable feature so difficult to obtain. Given that experimental (in-silico) science is only one of the many applications of simulation, our analysis also explores the needs and benefits of providing the simulation reproducibility property for other kinds of applications. Coming back to scientific applications, we give a few examples of solutions proposed for solving the above issues. Finally, going one step beyond reproducibility, we also discuss in our conclusion the notion of traceability and its potential use in order to improve the simulation methodology

    MECSYCO: a Multi-agent DEVS Wrapping Platform for the Co-simulation of Complex Systems

    Get PDF
    Most modeling and simulation (M&S) questions about complex systems require to take simultaneously account of several points of view. Phenomena evolving at different scales and at different levels of resolution have to be considered. Moreover, expert skills belonging to different scientific fields are needed. The challenges are then to reconcile these heterogeneous points of view, and to integrate each domain tools (formalisms and simulation software) within the rigorous framework of the M&S process. To answer to this issue, we propose here the specifications of the MECSYCO co-simulation middleware. MECSYCO relies on the universality of the DEVS formalism in order to integrate models written in different formalism. This integration is based on a wrapping strategy in order to make models implemented in different simulation software inter-operable. The middleware performs the co-simulation in a parallel, decentralized and distributable fashion thanks to its modular multi-agent architecture. We detail how MECSYCO perform hybrid co-simulations by integrating in a generic way already implemented continuous models thanks to the FMI standard, the DEV&DESS formalism and the QSS method. The DEVS wrapping of FMI that we propose is not restricted to MECSYCO but can be performed in any DEVS-based platform. We show the modularity and the genericity of our approach through an iterative smart heating system M&S. Compared to other works in the literature, our proposition is generic thanks to the strong foundation of DEVS and the unifying features of the FMI standard, while being fully specified from the concepts to their implementations

    Ein verallgemeinerter Prozess zur Verifikation und Validerung von Modellen und Simulationsergebnissen

    Get PDF
    With technologies increasing rapidly, symbolic, quantitative modeling and computer-based simulation (M&S) have become affordable and easy-to-apply tools in numerous application areas as, e.g., supply chain management, pilot training, car safety improvement, design of industrial buildings, or theater-level war gaming. M&S help to reduce the resources required for many types of projects, accelerate the development of technical systems, and enable the control and management of systems of high complexity. However, as the impact of M&S on the real world grows, the danger of adverse effects of erroneous or unsuitable models or simu-lation results also increases. These effects may range from the delayed delivery of an item ordered by mail to hundreds of avoidable casualties caused by the simulation-based acquisi-tion (SBA) of a malfunctioning communication system for rescue teams. In order to benefit from advancing M&S, countermeasures against M&S disadvantages and drawbacks must be taken. Verification and Validation (V&V) of models and simulation results are intended to ensure that only correct and suitable models and simulation results are used. However, during the development of any technical system including models for simulation, numerous errors may occur. The later they are detected, and the further they have propagated through the model development process, the more resources they require to correct thus, their propaga-tion should be avoided. If the errors remain undetected, and major decisions are based on in-correct or unsuitable models or simulation results, no benefit is gained from M&S, but a dis-advantage. This thesis proposes a structured and rigorous approach to support the verification and valida-tion of models and simulation results by a) the identification of the most significant of the current deficiencies of model develop-ment (design and implementation) and use, including the need for more meaningful model documentation and the lack of quality assurance (QA) as an integral part of the model development process; b) giving an overview of current quality assurance measures in M&S and in related areas. The transferability of concepts like the capability maturity model for software (SW-CMM) and the ISO9000 standard is discussed, and potentials and limits of documents such as the VV&A Recommended Practices Guide of the US Defense Modeling and Simulation Office are identified; c) analysis of quality assurance measures and so called V&V techniques for similarities and differences, to amplify their strengths and to reduce their weaknesses. d) identification and discussion of influences that drive the required rigor and intensity of V&V measures (risk involved in using models and simulation results) on the one hand, and that limit the maximum reliability of V&V activities (knowledge about both the real system and the model) on the other. This finally leads to the specification of a generalized V&V process - the V&V Triangle. It illustrates the dependencies between numerous V&V objectives, which are derived from spe-cific potential errors that occur during model development, and provides guidance for achiev-ing these objectives by the association of V&V techniques, required input, and evidence made available. The V&V Triangle is applied to an M&S sample project, and the lessons learned from evaluating the results lead to the formulation of future research objectives in M&S V&V

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    Reusing simulation experiments for model composition and extension

    Get PDF
    This thesis aims to reuse simulation experiments to support developing models via model reuse, with a focus on validating the resulting model. Individual models are annotated with their simulation experiments. Upon reuse of those models for building new ones, the associated simulation experiments are also reused and executed with the new model, to inspect whether the key behavior exhibited by the original models is preserved or not in the new model. Hence, the changes of model behavior resulting from the model reuse are revealed, and insights into validity of the new model are provided

    Domain-specific languages for modeling and simulation

    Get PDF
    Simulation models and simulation experiments are increasingly complex. One way to handle this complexity is developing software languages tailored to specific application domains, so-called domain-specific languages (DSLs). This thesis explores the potential of employing DSLs in modeling and simulation. We study different DSL design and implementation techniques and illustrate their benefits for expressing simulation models as well as simulation experiments with several examples.Simulationsmodelle und -experimente werden immer komplexer. Eine Möglichkeit, dieser Komplexität zu begegnen, ist, auf bestimmte Anwendungsgebiete spezialisierte Softwaresprachen, sogenannte domänenspezifische Sprachen (\emph{DSLs, domain-specific languages}), zu entwickeln. Die vorliegende Arbeit untersucht, wie DSLs in der Modellierung und Simulation eingesetzt werden können. Wir betrachten verschiedene Techniken für Entwicklung und Implementierung von DSLs und illustrieren ihren Nutzen für das Ausdrücken von Simulationsmodellen und -experimenten anhand einiger Beispiele

    On reproducibility and traceability of simulations

    Get PDF
    International audienceReproducibility of experiments is the pillar of a rigorous scientific approach. However, simulation-based experiments often fail to meet this fundamental requirement. In this paper, we first revisit the definition of reproducibility in the context of simulation. Then, we give a comprehensive review of issues that make this highly desirable feature so difficult to obtain. Given that experimental (in-silico) science is only one of the many applications of simulation, our analysis also explores the needs and benefits of providing the simulation reproducibility property for other kinds of applications. Coming back to scientific applications, we give a few examples of solutions proposed for solving the above issues. Finally, going one step beyond reproducibility, we also discuss in our conclusion the notion of traceability and its potential use in order to improve the simulation methodology
    • …
    corecore