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Abstract

Simulation models and simulation experiments are increasingly complex. One way to
handle this complexity is developing software languages tailored to specific application
domains, so-called domain-specific languages (DSLs). This thesis explores the potential
of employing DSLs in modeling and simulation. We study different DSL design and
implementation techniques and illustrate their benefits for expressing simulation models
as well as simulation experiments with several examples.

Regarding simulation models, we focus on discrete-event models based on continuous-
time Markov chains (CTMCs). Most of our work revolves around ML-Rules, an rule-based
modeling language for biochemical reaction networks. First, we relate the expressive
power of ML-Rules to other currently available modeling languages for this application
domain. Then we define the abstract syntax and operational semantics for ML-Rules,
mapping models to CTMCs in an unambiguous and precise way. Based on the formal
definitions, we present two approaches to implement ML-Rules as a DSL. The core of
both implementations is finding the matches for the patterns on the left side of ML-Rules’
rules. The first approach makes use of ideas from functional programming and realizes
ML-Rules as an internal DSL embedded in Scala. The second approach utilizes the
language workbench Xtext and object-oriented programming to implement ML-Rules
as an external DSL. We relate both approaches to each other and discuss their specific
trade-offs, for example regarding computational efficiency. In addition, we demonstrate
how DSL implementation techniques can be employed to integrate CTMC-based modeling
into Repast Simphony, a software framework for agent-based simulation.

Simulation experiments benefit from DSLs in a different way than simulation models.
Here, we focus on more technical issues like repeatability, replicability, reproducibility,
and reusability of experiments. The utility of DSLs for expressing simulation experiments
is illustrated based on two different DSL implementations. First, we discuss SESSL,
an object-oriented Scala-based internal DSL, highlighting diverse ways in which DSLs
can support effective simulation experimentation. Based on the ideas of SESSL, we also
present a Scala-based internal DSL that is implemented in a purely functional fashion,
and discuss the implications.

i





Zusammenfassung

Simulationsmodelle und -experimente werden immer komplexer. Eine Möglichkeit, dieser
Komplexität zu begegnen, ist, auf bestimmte Anwendungsgebiete spezialisierte Software-
sprachen, sogenannte domänenspezifische Sprachen (DSLs, domain-specific languages), zu
entwickeln. Die vorliegende Arbeit untersucht, wie DSLs in der Modellierung und Simula-
tion eingesetzt werden können. Wir betrachten verschiedene Techniken für Entwicklung
und Implementierung von DSLs und illustrieren ihren Nutzen für das Ausdrücken von
Simulationsmodellen und -experimenten anhand einiger Beispiele.

In Bezug auf Simulationsmodelle konzentrieren wir uns auf diskret-ereignisbasiert Mod-
elle, die auf Markow-Ketten mit kontinuierlicher Zeitbasis (CTMCs, continuous-time
Markov chains) basieren. Der größte Teil dieses Abschnitts dreht sich um die regelbasierte
Modellierungssprache für biochemische Reaktionsnetze ML-Rules. Als Ausgangspunkt set-
zen wir die Ausdruckskraft von ML-Rules mit anderen verfügbaren Modellierungssprachen
in diesem Anwendungsgebiet in Beziehung. Im Anschluss definieren wir die abstrakte
Syntax und formale Semantik von ML-Rules, wodurch eine eindeutige Abbildung von
Modellen auf CTMCs hergestellt wird. Auf Grundlage dieser formalen Definitionen stellen
wir zwei Ansätze zur Implementierung von ML-Rules in einer DSL vor. Der Kern beider
Implementierungen ist das Finden der Vorkommen der Muster auf den linken Regelseiten
von ML-Rules. Der erste Ansatz nutzt Ideen aus der funktionalen Programmierung und
setzt ML-Rules als interne DSL in Scala um. Der zweite Ansatz nutzt die language
workbench Xtext und objekt-orientiere Programmierung, um ML-Rules als externe DSL
umzusetzen. Wir stellen beide Ansätze nebeneinander und diskutieren die spezifischen
Trade-offs, zum Beispiel in Bezug auf Recheneffizienz. Des Weiteren demonstrieren wir,
wie CTMC-basierte Modellierung mit Hilfe von DSL-Implementierungstechniken in Repast
Simphony, ein Framework für agentenbasierte Simulation, integriert werden kann.

Simulationsexperiment profitieren auf andere Weise als Simulationsmodelle von der
Nutzung von DSLs. Hier konzentrieren wir uns auf technischere Aspekte wie Wieder-
holbarkeit, Replizierbarkeit, Reproduzierbarkeit und Wiederverwendbarkeit von Experi-
menten. Der Nutzen von DSLs für das Ausdrücken von Simulationsexperimenten wird
mit Hilfe zweier DSl-Implementierungen gezeigt. Zunächst behandeln wir SESSL, eine
objektorientierte Scala-basierte interne DSL, wobei wir hervorheben, wie die Nutzung von
DSLs das effektive Durchführen von Simulationsexperimenten unterstützt. Aufbauend
auf den Ideen hinter SESSL stellen wir dann eine Scala-basierte interne DSL vor, die auf
rein funktionale Art implementiert ist, und diskutieren die Implikationen.

iii





Acknowledgements

I would have never finished this thesis without the support and assistance of many people.
First and foremost, I want to thank my supervisor Prof. Lin Uhrmacher. With her

knowledge and inspiring enthusiasm, she always had the right advice to help me overcome
any obstacle on my way to a finished thesis.

I would like to thank my colleagues for their constructive feedback and cooperation.
It was invaluable to always have someone to bounce ideas off, and I think much of this
thesis is the direct result of the great work atmosphere in the modeling and simulation
group. I am grateful to Tobias for introducing me to ML-Rules and to Roland for his
work on SESSL.

I want to thank my parents and my sister for their unshakable support. Most importantly,
I am grateful to Anna for her patience and for always believing in me.

v





Contents

1. Introduction 1
1.1. Languages for handling complexity . . . . . . . . . . . . . . . . . . . . 2
1.2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3. Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5. Bibliographical Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2. Domain-specific Languages 9
2.1. General-purpose and domain-specific languages . . . . . . . . . . . . . 9
2.2. Concrete syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1. Formal language theory . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2. Parser generators . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3. Parser combinators . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.4. Fluent interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3. Abstract syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1. Abstract syntax trees and abstract syntax graphs . . . . . . . . 16
2.3.2. Metamodels and language workbenches . . . . . . . . . . . . . 17
2.3.3. Deep and shallow embeddings in functional languages . . . . . 19

2.4. Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.1. Interpretation and Compilation . . . . . . . . . . . . . . . . . . 22
2.4.2. Type systems and static analysis . . . . . . . . . . . . . . . . . 23
2.4.3. Formal semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5. Designing and implementing domain-specific languages . . . . . . . . . 26
2.5.1. External DSLs . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.5.2. Internal DSLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.5.3. Expressive power . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3. Modeling population processes 33
3.1. Continuous-time Markov chains . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1. Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.2. Formal definition . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.1.3. Balance analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.4. Stochastic simulation algorithms . . . . . . . . . . . . . . . . . 36

3.2. Markov Population Models . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2.1. Modeling formalisms . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2.2. Next Reaction Method . . . . . . . . . . . . . . . . . . . . . . . 39

vii



Contents

3.2.3. ODE approximation . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3. Biochemical reaction networks as population processes . . . . . . . . . 43

3.3.1. Calculating the reaction rate . . . . . . . . . . . . . . . . . . . 45
3.3.2. Relating rate interpretations . . . . . . . . . . . . . . . . . . . . 47

3.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4. ML-Rules and Biochemical Reaction Networks 49
4.1. Modeling biochemical reaction networks with ML-Rules . . . . . . . . 49

4.1.1. Reaction-based modeling . . . . . . . . . . . . . . . . . . . . . . 49
4.1.2. Attributed entities and rule-based modeling . . . . . . . . . . . 50
4.1.3. Static and dynamic compartments . . . . . . . . . . . . . . . . 52
4.1.4. User-defined functions and functions on solutions . . . . . . . . 53
4.1.5. Deterministic events . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.6. Modularization . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2. Other Modeling Languages for Biochemical Reaction Networks . . . . 54
4.2.1. Antimony . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.2. BNGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.3. The κ-calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.2.4. PySB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.5. Chromar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2.6. ℓ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5. Syntax and semantics of ML-Rules 59
5.1. Population vector semantics and reaction-based modeling . . . . . . . 59
5.2. Rule-based modeling: attributed species, pattern matching, and rate

expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3. Beyond mass action kinetics: types, functions, and generalized rates . 65
5.4. Modeling structure: compartments, rest solution, links . . . . . . . . . 69
5.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5.1. Example models in the abstract syntax . . . . . . . . . . . . . . 74
5.5.2. Provability of properties and static analysis . . . . . . . . . . . 78
5.5.3. Practical issues . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.5.4. Comparison with other formally defined languages . . . . . . . 80

5.6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6. Implementation of rule-based modeling languages 87
6.1. Simulation modeling paradigms and languages . . . . . . . . . . . . . . 87

6.1.1. World views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.1.2. Simulation modeling with DSLs . . . . . . . . . . . . . . . . . . 89

6.2. Implementing ML-Rules . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.2.1. Pattern Matching algorithm . . . . . . . . . . . . . . . . . . . . 92
6.2.2. Differences between formal semantics and implementation . . . 96
6.2.3. Network-based simulation . . . . . . . . . . . . . . . . . . . . . 98

viii



Contents

6.3. ML-Rules as an internal DSL in Scala . . . . . . . . . . . . . . . . . . 99
6.3.1. Pattern Matching in Scala . . . . . . . . . . . . . . . . . . . . . 99
6.3.2. Unnested multisets . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.3. Pattern matching in nested multisets . . . . . . . . . . . . . . . 105
6.3.4. Links . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.3.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4. ML-Rules as an external DSL . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.1. Concrete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.2. Metamodel customizations . . . . . . . . . . . . . . . . . . . . . 111
6.4.3. Type checking . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.4. Code generation . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.4.5. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5. Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5.1. Concrete syntax . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.5.2. Editor support . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.5.3. Computational efficiency . . . . . . . . . . . . . . . . . . . . . . 120
6.5.4. Extensibility and interoperability . . . . . . . . . . . . . . . . . 124
6.5.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6. Excursus: Continuous-time agent-based modeling in social science . . . 125
6.6.1. Adapting the simulation algorithm . . . . . . . . . . . . . . . . 127
6.6.2. Implementing continuous-time simulation in frameworks for

agent-based modeling . . . . . . . . . . . . . . . . . . . . . . . 127
6.6.3. Rule-based modeling . . . . . . . . . . . . . . . . . . . . . . . . 130
6.6.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.7. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7. DSLs for Specifying Simulation Experiments 137
7.1. Simulation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.1.1. Layered experimentation . . . . . . . . . . . . . . . . . . . . . . 138
7.1.2. The scientific method and reproducibility . . . . . . . . . . . . 139
7.1.3. Software support for simulation experiments . . . . . . . . . . . 140

7.2. SESSL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
7.2.1. Overview of general concepts . . . . . . . . . . . . . . . . . . . 141
7.2.2. Extensions and refinements . . . . . . . . . . . . . . . . . . . . 144
7.2.3. Publishing SESSL experiments . . . . . . . . . . . . . . . . . . 147

7.3. Purely Functional Simulation Experiments . . . . . . . . . . . . . . . . 149
7.3.1. Simple experiments . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.3.2. Parallelism and replication conditions . . . . . . . . . . . . . . 151
7.3.3. Complex simulation experiments . . . . . . . . . . . . . . . . . 152
7.3.4. Expressing experiments in a DSL . . . . . . . . . . . . . . . . . 154
7.3.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.4. Adapting and generating experiments . . . . . . . . . . . . . . . . . . . 155
7.5. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

ix



Contents

8. Conclusion 159
8.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
8.2. Key insights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

8.2.1. Models vs. experiments . . . . . . . . . . . . . . . . . . . . . . 160
8.2.2. Formal semantics of modeling languages . . . . . . . . . . . . . 160
8.2.3. Explicit abstract syntax and static analyses . . . . . . . . . . . 161
8.2.4. Rule-based syntax in external and internal DSLs . . . . . . . . 162

8.3. Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

A. Multisets 165

B. Listings 167
B.1. Non-linear pattern matching algorithm in Scala . . . . . . . . . . . . . 167
B.2. The nondeterministic state monad in Scala . . . . . . . . . . . . . . . 169
B.3. Code generation in Xtext . . . . . . . . . . . . . . . . . . . . . . . . . 170

B.3.1. Generating Java code for an ML-Rules model . . . . . . . . . . 170
B.3.2. Generating Java code for an ML-Rules rule . . . . . . . . . . . 172

B.4. Functional simulation experiments . . . . . . . . . . . . . . . . . . . . 175
B.4.1. Deterministic random number generation . . . . . . . . . . . . 175
B.4.2. Simple experiments . . . . . . . . . . . . . . . . . . . . . . . . . 176
B.4.3. Composing the state monad and the IO monad . . . . . . . . . 177

x



1. Introduction

The complexity of simulation models is steadily increasing [50]. One reason is that
the growing availability of computational power makes previously infeasible simulations
possible. But another driving force are the application domains that spawn increasingly
ambitious simulation studies. For example, in 2012 for the first time a “whole-cell” model
depicting the functions of all genes in a biological cell was published, made possible by
advances in genomics [116]. The model contains and integrates knowledge about a specific
bacterium in all its complexity. Therefore, arguably the most valuable result of simulation
studies like this is the model itself.

This pattern of creating simulation models as a means to further the understanding
of real-world phenomena and processes can be found in different application areas. Sim-
ulation has become “a method of first resort” [143]. One prolific domain is cell biology,
which has lead to terms such as systems biology, computational biology, or executable
cell biology [78]. Here, increasingly complex biological systems are captured in increas-
ingly complex simulation models. Similarly, the social sciences have an interest in “the
exploration and understanding of social processes by means of computer simulation”, as
the Journal of Artificial Societies an Social Simulation (JASSS)1 puts it [214]. A third
example for a scientific domain that employs simulation modeling as a tool for capturing
complex phenomena is ecology [93]. In addition to the sciences, many applications in
engineering also rely on simulations of increasing complexity [53].

A direct consequence of the complexity of simulation models is that working with these
models becomes more complex as well. For example, such models are often stochastic,
have many input parameters, or change their dynamics during simulation. To explore the
model behavior or make reliable statements about model properties, increasingly complex
simulation experiments must be conducted.

In computer science, one central way to address complexity is abstraction [126]. The
idea of abstraction is, in fact, the essence of one of the most fundamental concepts
in computer science, the lambda calculus. The lambda calculus is a formally defined
language with rules for how terms are constructed (syntax) and evaluated (semantics) [189,
p. 51ff]. Abstraction is captured by these rules as factoring out elements of a term into a
function parameter. This way, unimportant details can be abstracted away and solutions
to complex problems can be generalized and expressed succinctly. Thus, the lambda
calculus exemplifies how computer science employs languages to express abstractions and
handle complexity.

1jasss.soc.surrey.ac.uk
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1. Introduction

1.1. Languages for handling complexity

This thesis applies the idea of using languages that allow to abstract over specific complex
application domains in the area of modeling and simulation. Of course, abstraction is the
key idea in modeling and simulation, as models are abstractions of real-world phenomena.
But languages and abstraction play an important role in modeling and simulation beyond
that. We illustrate this with an example.

Assume that we are modeling how the size of a animal population develops. If we
assume atomic birth and death events, we could describe the model with statements like
the following.

• If the population size is 2, the next population size is either 1 or 3.

• If the population size is 3, the next population size is either 2 or 4.

• If the population size is 4, the next population size is either 3 or 5.

We could continue to enumerate state transitions this way. However, we could also
abstract over these statements and make the underlying pattern explicit.

• If the population size is x and x ≥ 2, the next population size is either x − 1 or
x+ 1.

Similarly as in the lambda calculus, we factored out the concrete population size into
the variable x, which we then used in arithmetic expressions. By replacing x with concrete
numbers and evaluating the arithmetic expressions, we can obtain the statements of the
original model description again. In this way, syntax and semantics rules can define
languages that allow abstract, precise description of simulation models. Without an upper
limit for x, this one sentence even describes an infinite system.

Abstraction through languages is also useful for handling the complexity of simulation
experiments. However, as experiments are essentially executable programs, we can rely
on standard programming language techniques for abstraction. For example, we can
wrap repeated code in a reusable module. As simulation experiments are part of the
scientific method, they must support the reliability of experimental results, for example
by allowing researchers to communicate, replicate, and adapt experiments. These specific
requirements can be handled with appropriate languages, even for complex experiments.

Choosing an appropriate language for expressing simulation models or simulation
experiments does not make them less complex. However, choosing an inappropriate
language might make them appear more complex than they are. As argued by Fred
Brooks in his influential article “No Silver Bullet: Essence and Accidents of Software
Engineering”, complexity can be divided into essential and accidental complexity [37].
Whereas the essential complexity is inherent to the problem at hand (modeling a system
or conducting an experiment with a model), the accidental complexity results from using
a suboptimal language for solving the problem.

One way to minimize the accidental complexity is developing languages tailored to
the problem at hand, so-called domain-specific languages (DSLs) [80]. In this thesis we

2



1.2. Terminology

investigate how DSLs can be applied to simulation models and simulation experiments.
DSLs for modeling are designed with appropriate domain-specific abstractions, leading to
succinct and readable model descriptions. DSLs for experiments focus on supporting the
reliability of experimental results.

1.2. Terminology

Before describing the contributions of this thesis, we give some precise definitions of some
of the terms we already used informally above. The definitions follow the M&S textbooks
by Law [133] and Zeigler, Muzy, and Kofman [255].

We define a model2 as an abstract surrogate of a system, whereas a simulation is an
execution of a model that, given some input, generates output. It is often desirable to
separate model and simulation (algorithm). As Page puts it, “the syntax concomitant
with [the simulation algorithm] clutters a programmed model with details that contribute
nothing to the description of the behavior of the underlying system. Since ideally, in order
to facilitate model analysis, a description free of these and other implementation details is
preferable, the need for higher level model representational forms becomes evident” [178,
p. 21]. The “higher level” model representation often takes the form of a modeling language
(or modeling formalism), which abstracts over models by providing specific syntax and
semantics. Modeling languages can be textual or graphical.

The primary use of models is to run simulation experiments with them. In his textbook,
Cellier describes this relation as follows: “A model (M) for a system (S) and an experiment
(E) is anything to which E can be applied to answer a question about S” [45, p. 5]. The
idea that a model only represents a system under specific experimental conditions has been
formalized as experimental frame by Zeigler. Thus, it is important to describe experiments
precisely. Such experiment descriptions can be formulated in tailored languages.

1.3. Contributions

This thesis explores the utility of developing domain-specific languages tailored to specific
application domains in modeling and simulation. The main contributions are the following:

• We develop the formal syntax and semantics of ML-Rules, an expressive rule-based
modeling language for biochemical reaction networks. ML-Rules models are mapped
to continuous-time Markov chains (CTMCs), an established formal foundation for
discrete-event simulation models.

• We present two different approaches of implementing ML-Rules, as an internal DSL
employing functional programming and as an external DSL in the object-oriented
programming paradigm. The implementations expose the characteristic trade-offs
of both approaches.

2Unfortunately, the term “model” is used in many different contexts. Unless otherwise noted, in this
thesis the term will mean a simulation model as defined here.

3



1. Introduction

• We integrate the idea of rule-based modeling with CTMC semantics into a framework
for agent-based modeling, again employing DSL techniques.

• We present extensions to SESSL, an object-oriented DSL for experiment specifica-
tion. These extensions highlight diverse ways in which DSLs can support effective
simulation experimentation.

• Based on the insights gained during the work on SESSL, we propose expressing
simulation experiments as pure functions. This allows us to give guarantees about
determinism of complex experiments.

To keep the thesis focused on these contributions, some other related topics will not be
covered.

• We focus on stochastic models. Much of this thesis also applies to deterministic
simulation, but this distinction will not be considered further.

• We do not discuss graphical languages, but focus on textual languages. Although
graphical representations can be richer in terms of transported information, text-
based notations are typically more explicit and unambiguous (“The question is not
‘Is a picture worth a thousand words?’, but ‘Does a given picture convey the same
thousand words to all viewers?’ ” [186]).

• There exists a plethora of simulation algorithms for CTMCs. We largely glance
over questions of computational efficiency and specific algorithms, and only touch
upon simulation algorithms when they interact with the modeling language.

Furthermore, some of the work in this thesis is based on preexisting work. In particular,
ML-Rules has been first proposed in 2011 by Maus, Rybacki, and Uhrmacher [149] and
continuously developed since then. It has been implemented twice, and we sometimes
refer to the most recent implementation authored by Tobias Helms as “ML-Rules 2” [101].
Similarly, SESSL has been first been presented in 2014 [70]. The work described in this
thesis is a further development of the initial implementation authored by Roland Ewald.

1.4. Outline

The thesis is structured as follows. In Chapter 2, we give background on software languages
and, more specifically, DSLs. The fundamentals of modeling and simulation with CTMCs
are given in Chapter 3. Chapter 4 contains an introduction to ML-Rules and related
languages. The syntax and semantics of ML-Rules is defined in Chapter 5. Chapter 6 is
concerned with the implementation of ML-Rules as well as extending some of its ideas to
agent-based modeling. Support for simulation experimentation with DSLs is considered in
Chapter 7. Finally, Chapter 8 summarizes the thesis and makes some concluding remarks.
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Some parts of this thesis contain revised content of published articles.
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The following publications I co-authored are also referenced in this thesis:

• An informal introduction to ML-Rules has been published as a book chapter:

Tobias Helms, Tom Warnke, and Adelinde M. Uhrmacher. “Multi-Level
Modeling and Simulation of Cellular Systems: An Introduction to ML-
Rules”. In: Modeling Biomolecular Site Dynamics. Ed. by William S.

5

https://doi.org/10.1145/2769458.2769467
https://doi.org/10.1145/2769458.2769467
https://doi.org/10.1109/wsc.2016.7822181
https://doi.org/10.1093/bioinformatics/btx741
https://doi.org/10.1109/wsc.2018.8632429
https://doi.org/10.1109/ds-rt47707.2019.8958655


1. Introduction
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Simulation Conference. Piscataway, New Jersey: IEEE, 2015. doi:
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support developing models by successive extension”. In: Simulation
Modelling Practice and Theory 68 (Nov. 2016), pp. 33–53. doi: 10.1016/
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Danhua Peng et al. “Reusing simulation experiment specifications in
developing models by successive composition — a case study of the
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2. Domain-specific Languages

Before studying domain-specific languages in particular, we consider the terminology for
languages in general. We follow Kleppe [120] and adopt the term software languages
to refer to all artificially designed languages that define the input for some software,
including programming languages, specification languages, or (simulation) modeling
languages. Similarly, we adopt the term mogram to refer to programs, specifications,
(simulation) models, or any other artifacts expressed in a software language.

When working with software languages, three fundamental aspects can be distinguished.

Concrete Syntax The concrete syntax describes how the language appears to the user.
This typically includes matters like keywords, handling whitespaces, capitalization,
or operator preference rules. Generally, describing and processing concrete syntax
is tackled with grammars and parsers, based on formal language theory. Concrete
syntax is further discussed in Section 2.2.

Abstract Syntax A mogram can be translated from the concrete syntax to the abstract
syntax. Here, the mogram is reduced to its essence and stripped of any superfluous
syntactical information. For example, keywords, whitespaces, or the order in which
language constructs appear are typically abstracted over. Abstract syntax is often
captured in an abstract syntax tree (AST) or graph, which can be represented
as a metamodel in object-oriented programming. These concepts are studied in
Section 2.3.

Semantics The third component is the semantics of the language, which assigns a meaning
to the mogram. Different semantics can be defined, for example to evaluate the
mogram to a result, to translate it to another language, or to typecheck it. The
description of the semantics of a language can take diverse forms, ranging from
formal, explicit approaches to pragmatic, implicit ones. Section 2.4 considers
semantics in more detail.

The pipeline consisting of these components is visualized in Figure 2.1. Sometimes, more
intermediate stages are defined, but for the purpose of this thesis these three language
aspects suffice. Most importantly, this framework allows characterizing the approaches
that are introduced in the remainder of this chapter. Before looking further into these
approaches, we investigate the nature of domain-specific languages.

2.1. General-purpose and domain-specific languages

Software languages can be distinguished regarding their genericity. Most mainstream
programming languages, for example C, C++, or Java, have been designed to be applicable
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Concrete
Syntax

Abstract
Syntax

Semantics
Text ValueParse Tree

Abstract
Syntax Tree

Syntactic Error Semantic Error
(e.g., Type Error)

Compile Error
Runtime Error

Figure 2.1.: The main components of a language definition at work. By passing through
these components, the set of possible inputs is constrained more and more.
Processing input texts according to the concrete syntax produces a parse
tree for syntactically correct inputs. The parse tree is then further processed
to an abstract syntax tree, making sure that the input is free of semantic
errors. The semantics is then only invoked on valid abstract syntax trees and
evaluates them to a result value or encounters an error during evaluation.

in diverse application domains. They have been used to build server and desktop client
software, mobile applications, or games. A single programming language that supports
such diverse application areas is a general-purpose (programming) language (GPL).

In contrast to a GPL, a domain-specific language (DSL) is not designed for developing a
complete software system, but rather for developing an individual aspect of such a system.
In his book “Domain-specific languages”, Martin Fowler defines a DSL as a programming
language that is tailored to a certain application domain, but less expressive than a
GPL [80, p. 27f]. DSLs are typically not Turing-complete and, for example, do often not
include loops, conditional branching, or recursive functions, which limits DSLs to solving
specific problems1. Thus, in the sense of formal expressiveness, DSLs are generally less
expressive than GPLs.

But formal expressiveness is not the only, arguably not even the most important measure
for a language, as stated by Alan Perlis: “Beware of the Turing tar-pit in which everything
is possible but nothing of interest is easy” [185]. Instead, practical expressiveness measures
“how readily ideas can be expressed” in a language, relying, for example, on the language’s
conciseness and readability [74, 75]. Thus, in the sense of practical expressiveness, DSLs
are generally more expressive than GPLs.

Alternatively, an article by van Deursen et al. characterizes DSLs as programming
languages that offer “expressive power focused on, and usually restricted to, a particular
problem domain.” [61] This definition also emphasizes that, in comparison to GPLs, DSLs
are more expressive in their targeted application domain, but less expressive in the sense
of being generally applicable. This matches the above notions of practical and formal
expressiveness, respectively.

Depending on the specific problem domain, the practical expressiveness of a DSL can

1There are examples of DSLs that are Turing-complete, but not necessarily deliberately. For example,
the input language for the UNIX typesetting formatter troff “has conditionals and recursion but not
loops; it is accidentally Turing-complete” [195, p. 195].
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depend on quite different properties. For example, SQL is a DSL that allows for querying
databases by providing operators such as SELECT, FROM, and WHERE. SQL queries are typically
more concise and readable than equivalent code in a GPL. Moreover, in comparison to
GPL code, SQL queries have a simple declarative structure, which facilitates analyzing
and optimizing queries rather than just executing them.

The declarative nature of many DSLs, as exemplified by SQL, means that “they can be
viewed as specification languages, as well as programming languages” [61]. Thus, DSLs
can not only be used to replace executable code (as SQL does, for example), but also to
encode the structure and layout of a document (e.g., LATEX or Markdown), or to specify
a mathematical object (e.g., a system of differential equations or a stochastic process).
As these examples show, the declarativity of DSLs also facilitates integrating knowledge,
metaphors, and semantics of the domain.

Independently of its genericity, a software language comprises concrete syntax, abstract
syntax, and semantics. Many language implementation techniques can be (and have been)
used for GPLs as well as for DSLs. Consequently, unless otherwise noted, the following
description apply to GPLs as well as DSLs.

2.2. Concrete syntax

The concrete syntax of a language describes the mograms that belong to the language.
The main task regarding concrete syntax in the context of textual software languages is
translating valid input strings into a tree that describes the syntactical structure. This
process of deciding whether a mogram is valid and, if so, translating it, is called parsing [3,
p. 30]. The resulting parse tree is then typically translated further to a representation of
the mogram’s abstract syntax (see Section 2.3).

We begin our study of concrete syntax with formal language theory, which sets (and
also continues to push) the limits of parsable concrete syntax. The central result of these
theoretical considerations is that designers of software languages are largely limited to
the language class of context-free languages. Based on this result, we subsequently look
into parser generators and parser combinators, which are two approaches that support
the development of parsers for context-free languages.

2.2.1. Formal language theory

Formal language theory provides some insights regarding the construction of languages
with grammars as well as the inverse operation, parsing a text and interpreting it as part
of the language [161, p. 9ff.].

Formally, the terms language and grammar can be defined as follows: A language L is
a subset of all strings of finite length over a finite alphabet X. The strings that belong
to L are called sentences. Whereas languages are potentially infinite sets, they can be
finitely described with a grammar that is able to generate all its sentences. A grammar
G = (X,V, S, P ) contains four elements: the alphabet of terminal symbols X (from which
the sentences of the language are built), the alphabet of nonterminal symbols V (which
are placeholders that do not appear in final sentences), a start symbol S ∈ V , and the
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set of productions P . Each production is a rule u → v, stating that the string u can
be replaced by the string v. u needs to contain at least one nonterminal symbol. The
language L(G) is defined by the grammar G as the reflexive transitive closure of applying
the productions to the start symbol until all nonterminal symbols have been replaced.

The Chomsky hierarchy describes how different classes of formal languages relate to each
other, based on properties of the productions [49]. It states that right-linear languages
are a proper subset of context-free languages, context-free languages are a proper subset
of context-sensitive languages, and context-sensitive languages are a proper subset of
recursive enumerable sets of strings. Each of these language types can be generated with
a grammar with specific restrictions. For example, right-linear languages are generated if
the grammar only contains productions of the form A→ aB or A→ a, where A and B are
nonterminal symbols and a is a terminal symbol. Right-linear languages can equivalently
be generated with regular expressions, which is why they are sometimes called regular
languages. Context-free languages are generated by grammars with productions of the
form A → ω, where A is a nonterminal symbol and ω is a non-empty string that may
consist of terminal and nonterminal symbols. Context-sensitive languages then allow that
the nonterminal symbol on the left side is embedded in some context, and productions
have the form ϕ1Aϕ2 → ϕ1ωϕ2, where A is a nonterminal symbol and ω, ϕ1, and ϕ2 are
strings that may consist of terminal and nonterminal symbols. Grammars that are not
restricted generate recursive enumerable sets of strings.

Based on this hierarchy, the expressive power of the different language classes can be
characterized. For example, the language {anbn} can be shown to be context-free, whereas
the language {anbncn} can be shown to be context-sensitive, but not context-free [161,
p. 12].

Similarly to the relation between language classes and grammar restrictions, the dif-
ferent language classes require specific parsing techniques. Regular languages can be
parsed with finite automata, context-free languages can be parsed with push-down au-
tomata. Novel parsing techniques, for example for context-sensitive languages, are still
actively researched [132]. This theoretical classification has practical consequences. Most
importantly, most programming languages are context-free languages, as this class is
easy enough to parse and powerful enough to express typical programming language
constructs [161, p. 14]. For example, context-free languages can express that scopes (e.g.,
defined with { }) must be nested correctly.

Due to the structure of the production rules in context-free grammars, the derivation of
a sentence can be shown in a derivation tree. The start symbol is the root of the tree, and
each nonterminal symbol has as its children the symbols that replaced it. Nonterminal
symbols are the leafs of the tree. This tree structure is also the basis for parsing. Whereas
the derivation tree defines the produced sentence, parsing a sentence results in a parse
tree.

Two main approaches exist to parse context-free languages: top-down parsing and
bottom-up parsing. They impose further restrictions on the formulation of the grammar:
top-down parsing is related to the grammar class LL, and bottom-up parsing is related
to the grammar class LR. Other, more general prerequisites for parsing exist as well. For
example, an important property of grammars is that they are unambiguous, that is, for
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every given input there is at most one way to parse it (i.e., at most one parse tree). A
notable counterexample to unambiguity is the so-called “dangling-else”: the expression if

B1 then if B2 then S1 else S2 can be parsed as if B1 then (if B2 then S1) else S2 or as if

B1 then (if B2 then S1 else S2) [1].
LL(k) grammars are grammars in which the possible derivations of each nonterminal

have distinct prefixes of a length < k. In other words, when parsing it suffices to look at
the next k tokens to decide which derivation produced the input. This allows for writing
efficient top-down parsers that operate without backtracking. However, it also imposes
some constraints on how the grammar can be constructed, and also on what languages
can be described with such a grammar. For example, LL(k) grammars are not allowed to
be left-recursive.
LR(k) grammars can describe more languages than LL(k) grammars and can be used

for efficient bottom-up parsing. In a LR(k) grammar, every sentence can be produced
with a rightmost derivation, that is a derivation that replaces the rightmost nonterminal
symbol. To parse such a sentence, this derivation can be reversed, which is possible
without backtracking if the grammar is unambiguous. The according parsing technique is
shift-reduce-parsing.

Formal language theory gives some hints about the limits for the communication
between humans and computers. For example, the classification of languages regarding
their parsability influences the design of programming languages. In particular, it shows
that properties such as unambiguity are important prerequisites for processing a language
with a computer. This also implies that natural languages such as English are hard to
parse: they typically allow ambiguous sentences such as “I saw a man on a hill with a
telescope”2. Consequently, the freedom in the design of software languages (including
DSLs) is not unlimited—the syntax of the language must still allow for efficient parsing,
according to the considerations above.

2.2.2. Parser generators

Although parsers for context-free languages can be implemented by hand, the implemen-
tation of a parser can be facilitated by a parser generator. The first tools for parser
generation were developed as early as the 1970s, when lex and yacc were released. Their
more modern GNU counterparts flex and bison were developed in the 1980s [138, p. 9].
Both tool pairs can generate C code that implements a parser. Whereas lex tokenizes an
input text based on regular expressions (lexical analysis), yacc parses the tokes stream in
a syntax specified by a context-free grammar (syntactical analysis). yacc processes LALR
(an LR subclass) grammars specified in simplified Backus-Naur-Form (BNF). A grammar
rule in yacc can be annotated with code to execute after successfully processing the rule.
Because the code can access the already parsed elements of the rule, the parser can
perform arbitrary actions with the recognized input. One option is directly evaluating the
input and returning some result, for example when parsing constant arithmetic expressions.
The following yacc grammar snippet defines production rules for the nonterminal symbol

2
https://www.byrdseed.com/ambiguous-sentences/
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exp, using the terminal symbols NUMBER and ADD [138, p. 11]. It allows constructing addition
expressions such as 3 + 4 + 5. The C code in brackets is executed after parsing a rule and
adds the numerical value of the right side to the result of recursively evaluating the left
side. The sum is assigned to the node representing the addition, thereby evaluating the
addition “on the fly”.

exp: NUMBER

| exp ADD NUMBER { $$ = $1 + $3; }

;

Note that the grammar snippet is left-recursive: the leftmost symbol in one rule for
exp is exp itself. Left-recursion would be problematic for a top-down (LL) parser, but the
bottom-up parser generated by yacc can handle left-recursion without a problem.

The ideas of lex and yacc have also been implemented in more modern parser genera-
tors. Most notable, ANTLR is a heavily used parser generator, particularly in the Java
ecosystem [180]. ANTLR v3 employs code annotations for grammar rules similarly as
yacc. Whereas ANTLR v3 uses LL parsing, the more recent ANTLR v4 uses Adaptive
LL (ALL) parsing, which includes parsing-time checks. ANTLR v4 also separates the
grammar definition from the code that is invoked for individual rules, and relies on the
listener and visitor patterns to decouple the code from the grammar. This facilitates using
a grammar with different target languages. The listener approach allows for implementing
methods that are invoked before or after a grammar rule has been processed, facilitating
an approach similar to the code annotations in yacc. Results from evaluating individual
tree nodes can be stored in an auxiliary data structure and retrieved when necessary. On
the other hand, the visitor approach allows for controlling how the AST is traversed and
returning a value for each processed tree node. This facilitates processing the AST with
side-effect-free functions.

As stated in the previous section, the language-theoretical foundations limit the gener-
ality of context-free grammars and, consequently, generated parsers. Parser generators
are most useful for quickly implementing simple languages. While generating a parser
from a grammar, they make sure that the grammar satisfies the prerequisites for parsing
(such as unambiguity). In compiler suites for GPLs, however, the additional effort for
implementing a hand-written parser is often justified by the flexibility of the implementa-
tion. For example, GCC and Clang rely on hand-written parsers, citing as reasons the easier
integration of diagnostics and error reporting [52, 166].

2.2.3. Parser combinators

As an alternative to defining grammars and generating parser code, the implementation
of parsers can also be supported by parser combinators. Parser combinators are a
concept that was developed in the area of functional programming [234]. A parser can be
represented as a function that maps some input to a list of pairs of a parsing result and
the remaining input (a list of results because several successes are possible if the grammar
is ambiguous). With functions being first-class values, functional programming languages
enable combinators that allow combining individual parsers to more complex parsers.
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The resulting parsing technique is recursive-descent parsing, which is a top-down parsing
technique [3, p. 181]. Consequently, it works best with grammars of the LL(1) class,
and requires inefficient backtracking for other grammars [171, p. 754]. Although many
languages can be described with an LL(1) grammar, this again imposes constraints on
what languages can be parsed and how the grammars have to be formulated. For example,
left-recursion needs to be eliminated for using an LL parser, which often makes the
resulting parse trees harder to process [3, p. 49].

The big advantage of parser combinators is that they can be realized as simple libraries,
relying solely on the features that functional programming languages offer. By defining
the parser as a function, functional composition can be used to combine parsers. For
example, alternative productions can be realized by concatenating the lists that result
from trying both productions on the same input. In Haskell, this can be expressed as
follows [108]:

newtype Parser a = Parser (String -> [(a, String)])

plus :: Parser a -> Parser a -> Parser a

(Parser p) `plus` (Parser q) = Parser (\inp -> (p inp) ++ (q inp))

Using monadic function composition, parsers can be sequenced, for example to parse a
repetition of a given parser [109]. Haskell’s do-notation provides a succinct syntax for this:

many :: Parser a -> Parser [a]

many p = neSeq `plus` return []

where neSeq = do a <- p

as <- many p

return (a:as)

Based on some primitive parsers and some simple combinators, parsers can be composed
in arbitrarily complex ways in idiomatic functional programs. Thus, parser combinators
require significantly less technical overhead than parser generators, as no grammar has to
be written as input to some code generation component. However, this also means that
parsers defined via combinators are not checked for properties such as ambiguity. It is
very easy to create a nonterminating left-recursive parser with parser combinators. In
addition, parser combinators typically operate directly on textual input instead of token
streams created by lexical analysis. Consequently, this abstraction, which, for example,
can remove whitespaces, must be integrated into the parser.

2.2.4. Fluent interfaces

In contrast to the theoretically grounded parser approaches, fluent interfaces are a simple,
pragmatic way to define a language [80, p. 343ff.]. The idea here is to define methods that
return objects that again provide appropriate methods. When method calls are chained,
the resulting code is, given appropriately named methods, readable.

Fluent interfaces are typically used to implement DSLs in small, well-defined application
domains. They also require an existing object-oriented GPL that provides a system of
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classes and objects. For example, the library AssertJ uses a fluent style to define assertions
for Java unit tests [8]. AssertJ allows formulating assertions as the following:

assertThat(fellowshipOfTheRing).hasSize(9)

.contains(frodo, sam)

.doesNotContain(sauron);

Another example for fluent interfaces is the variant of the Builder pattern that Joshua
Bloch suggests for constructing objects [27, p. 10ff.]. Finally, the Stream API introduced
in Java 8 supports expressing stream pipelines with a fluent interface [112].

2.3. Abstract syntax

After a mogram has been parsed, the relevant information is extracted and superfluous
information discarded. The structure of the resulting information is captured by the
abstract syntax. It is abstract as it does not include, for example, where in an expres-
sion parentheses were used; instead, the relation of operators and operands is directly
represented. Nevertheless, the abstract syntax can be defined with BNF production rules
similarly to the concrete syntax. Technically, the abstract syntax often takes the form of
a tree, the abstract syntax tree (AST). After shortly studying ASTs in more detail, we
look into metamodels, an object-oriented flavor of abstract syntax representation, and
into representing abstract syntax in functional languages.

2.3.1. Abstract syntax trees and abstract syntax graphs

Whereas a parse tree is tightly connected to the concrete syntax, an AST allows decoupling
parsing a language from further processing it (see Figure 2.2). Many checks that are hard
or impossible during parsing can be easily evaluated on the AST [3, p. 287]. For example,
many languages allow referring to an identifier that is declared later in the mogram.
Parsing can not resolve such forward references, at least not in one pass. The AST can
abstract over order of definitions, which removes the “forward” in forward references.

When implementing a DSL, the representation of the abstract syntax is sometimes
called a semantic model [80, p. 159ff.]. As DSLs are created for specific domains, the
semantic model can neglect the concrete syntax even more and instead adopt domain
concepts. In traditional compilers, a similar level of abstraction is sometimes used in the
intermediate representation that separates front end and back end [3, p. 463].

Representing references inside a mogram, for example to an identifier, violates the
tree property of the AST. Instead, the abstract syntax is then captured in a directed
acyclic graph (with a spanning tree) [3, p. 290f.]. Besides references to identifiers, non-tree
edges in this graph can result from recursive definitions or sharing sub-expressions [173].
Decorating the AST with additional edges makes subsequent analyses and translations
much easier (see Section 2.4). We now study one way to construct rich abstract syntax
models.
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Figure 2.2.: The parse tree and the corresponding abstract syntax tree for the expression
3 + 4 + 5. Whereas the parse tree strictly follows the grammar rules, the
nodes in the abstract syntax tree are operators and operands, encoding the
logical structure of the expression.

2.3.2. Metamodels and language workbenches

In object-oriented programming, the unified modeling language (UML) is a generic
framework for modeling software. As a less generic (and therefor easier to handle)
alternative, DSLs for modeling software are increasingly popular in the field of domain-
specific modeling/model-driven engineering [81]. The rise of DSLs for modeling software
has raised the challenge of providing tools for each new DSLs [82]. Language workbenches
have been developed to address this challenge by supporting the rapid creation of editor,
analyzer, or code generation components for new languages [69]. This is comparable to
parser generators, which simplify the arduous process of developing tools for lexical and
syntactical analysis.

The pivotal point of using language workbenches is the generation of a metamodel. For
a given language, the metamodel describes the types of nodes in the abstract syntax
tree/graph as well as their relation in an object-oriented fashion [82]. For example,
each node type is represented by a class or interface, and an edge between nodes is an
association between classes. Such a metamodel can be captured in languages for describing
metamodels, such as the UML (which, in some sense, makes the UML a metametamodel!).
Figure 2.3 shows an exemplary metamodel for a simple addition language.

The inference of better (i.e., more precise, expressive, etc.) metamodels is the driving
force of language workbench development. Based on the metamodel, additional features
such as generation of editors, code generation, but also combining and reusing language
definitions are provided. In the following, we shortly look into some examples for language
workbenches.
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Addition Number

Expression

2

Figure 2.3.: A UML class diagram describing a simple metamodel for a language of nested
addition expressions. Addition and Number are subclasses of the abstract
class Expression. An Addition contains two Expression instances.

Xtext is a language workbench that is developed as part of the Eclipse ecosystem [63,
254]. It relies on ANTLR 3 for parser generation and, for a given grammar, automatically
generates an Eclipse plug-in that allows text editing with syntax highlighting, auto-
completion, jump-to-definition, and many other features known form modern programming
language IDEs. The inferred metamodel is based on the Eclipse Modeling Framework
(EMF) [21] and exploits annotations of the grammar for the concrete syntax. For a
metamodel, Xtext generates Java code, providing, for example, stub files for implementing
scoping, cross-references, and static analysis and validation. Moreover, Xtext enables
serializing parsed DSL mograms back to their DSL representation (“unparsing”).

MontiCore is based on Eclipse, but in contrast to Xtext, it originated in academic
research [125]. MontiCore focuses on defining DSLs in a modular fashion to enable reuse
and composition. From the description of the concrete syntax (given as a grammar),
MontiCore infers a metamodel based on annotations of the grammar. To this end, various
object-oriented extensions are integrated into the grammar specification: an inheritance
relationship between nonterminals, interfaces for nonterminals, and abstract nonterminals,
as well as associations between nonterminals. This extended grammar is then transformed
to a standard ANTLR EBNF grammar, and the additional information is exploited for
metamodel inference. This way, more sophisticated class structures can be generated than
with a pure ANTLR grammar. Grammars augmented this way can then be composed
through inheritance, where a new grammar inherits the production rules of a number of
existing grammars, and embedding, where a nonterminal in the host grammar is resolved
by rules of an embedded grammar. Again, MontiCore infers the metamodel for composed
grammars automatically. This facilitates the independent development of individual DSLs.
As typical for language workbenches, MontiCore supports the generation of further DSL
tools such as an Eclipse editor plug-in.

AToM3 and its successor AToMPM are language workbenches for multi-formalism
metamodeling [131, 225]. Here, metamodels for different formalisms can be specified and
transformations between those metamodels can be defined. As these transformations
operate on the abstract syntax graphs of the formalisms, they can all be expressed with
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graph grammars. This way, diverse components of a complex system can be modeled in
the most appropriate formalism, and to simulate the overall system all components are
transformed to a universal formalism, for example DEVS.

A language workbench that follows another approach is Jetbrains’ Meta Programming
System (MPS) [181, 162]. MPS does not rely on pure textual DSL programs, but rather
allows projectional editing of the AST. Because the abstract syntax does not have
to be inferred from some textual concrete syntax, no grammar or parser is required.
Instead, DSLs are defined as a structure of concepts of which the AST is constructed.
Consequently, DSLs can integrate non-parseable syntax such as diagrams, tables, or
mathematical notations. For these syntactical forms, different editor components can
be created, reused, and combined. As a result, an IDE with the usual features can be
generated for a DSL. Similar to Xtext and MontiCore, the primary target of MPS DSLs
is the generation of Java code.

2.3.3. Deep and shallow embeddings in functional languages

The functional programming community has developed a particular understanding of
embedded languages. Because embedding a language requires an existing GPL, this is
typically used to implement a DSL on top of a general-purpose functional programming
language.

Inspired by FP’s mathematical foundations, the vocabulary of a DSL is often equated
to an algebra [92]. Here, an Ω-algebra is defined via a set of operator symbols Ω, each
ω ∈ Ω having an arity ar(ω) [188]. The relations of the operator symbols from Ω is
described by a set E of equations, constructed with the help of variables. An Ω-algebra
A is then a set |A| and an interpretation function aω that maps each operator symbol
ω ∈ Ω to a function |A|ar(ω) → |A| in such a way that the equations in E are satisfied
when replacing the variables with values from |A|.

Whereas the concrete syntax is largely determined by the host language, the algebra
takes the role of the abstract syntax. By defining a DSL as an algebra, the interpretation
function formalizes the separation of the abstract syntax from its semantics. Two major
approaches to implement algebraic vocabularies in functional programming languages
have been proposed: the deep and the shallow embedding [86]. The deep embedding
reifies the operator symbols as constructors of an algebraic data type (ADT). Thus, a
DSL term is represented by an AST. The shallow embedding, on the other hand, directly
evaluates the operators to values of the host language.

Gibbons and Wu give the classical example to illustrate the difference between deep
and shallow embeddings and its implications [86, 222]. Consider a very simple language
of integer literals and addition, allowing expressions such as the following:

eval(add(add(lit(3), lit(4)), lit(5)))

lit (integer literal) and add (integer addition) are the operator symbols of a very simple
algebra with arities one and two, respectively. We want to provide an interpretation of
the algebra in the set of integers.

A deep embedding of the language includes a recursive ADT, to which expressions
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are converted. The resulting tree of ADT values corresponds to the AST and can be
evaluated with a recursive function (more precisely, a fold):

sealed trait Expr

case class Lit(a: Int) extends Expr

case class Add(a: Expr, b: Expr) extends Expr

def lit(a: Int): Expr = Lit(a)

def add(a: Expr, b: Expr): Expr = Add(a, b)

def eval(e: Expr): Int = e match {

case Lit(a) => a

case Add(a, b) => eval(a) + eval(b)

}

A shallow embedding of the language directly applies the semantics of the evaluation to
each subexpression. Consequently, the eventual eval is reduced to the identity function:

def lit(a: Int): Int = a

def add(a: Int, b: Int): Int = a + b

def eval(e: Int): Int = e

When comparing the extensibility of both approaches, the expression problem can be
observed [235]: The deep embedding can be easily extended with additional evaluation
functions (e.g., to generate a string representation of the expression), but adding new
constructs to the language (e.g., multiplication) requires changing all evaluators. Con-
versely, the shallow embedding makes adding more language constructs easy, but adding
new evaluators requires revisiting all language constructs.

Finding ways to mitigate the expression problem is the subject of recent and current
programming language research (termed “the holy grail in embedded language implemen-
tation” [222, p. 24]). Although these approaches are not the focus of this thesis, some
important examples need to be mentioned for the sake of completeness.

• It has been shown that free monads (an example of a deep embedding) can be
combined without running into the expression problem [224].

• An approach to solve the expression problem that is based on shallow embedding is
the tagless final encoding [44].

• Deep and shallow embeddings can also be combined to tackle the expression prob-
lem [222].

In general, DSLs embedded in functional programming languages often benefit from the
powerful type checkers of their host language (e.g., Haskell, OCaml, or Scala). This way,

20



2.4. Semantics

many classes of errors in the DSL code can be detected with minimal implementation
effort by the DSL developer.

The main downsides of deeply embedded DSLs is that their implementation often
requires replicating elements of the host language’s compiler [66]. In shallow embeddings,
on the other hand, opportunities for static analysis are severely limited.

2.4. Semantics

The formalizations of the concrete and abstract syntax of software languages (grammars,
ASTs, etc.) have largely been adopted by practitioners. However, the semantics of software
languages, describing the meaning of a mogram in the language, is often not formalized
in practice. In the seminal compiler text book by Aho, Sethi, and Ullman (“the dragon
book”), the authors wrote in 1985 [3, p. 25]:

With the notations currently available, the semantics of a language is much
more difficult to describe than the syntax. Consequently, for specifying the
semantics of a language we shall use informal descriptions and suggestive
examples.

It seems that in the 35 years since these sentences were written, this has not changed
significantly. To date, few programming languages have a complete formal specification
of semantics, with Standard ML being a notable example [219, 160]. Many practical
programming languages are designed with an informally specified semantics. “A common
form is a reference manual, which is usually a careful narrative description of the meaning
of each construction in the language.” [160, p. ix]. Sometimes, the languages are retrofitted
with formal semantics, at least for parts of the language. For example, formal semantics
for Java 1.4 and a subset of C 99 have recently been proposed [28, 67].

Informal as well as formal semantics are defined on the abstract syntax of the language,
often by recursively traversing the AST and using non-tree edges to resolve references
etc. It is also important to note that informal and formal semantics are not mutually
exclusive. For example, by providing a formal type system and checking types of an input
program, run-time type errors in (informal) implementations can be avoided [189, p. 4].
Moreover, formal semantics allows analyzing and transforming programs while being
“correct-by-construction” [153]. Similarly, semantic information facilitates optimizations
of a program, for example to determine whether variables can be safely inlined [3, pp. 14f].

In the following, we consider informal specifications of semantics in the form of reference
algorithms for interpretation or compilation3. Afterwards, we look into formally specified
semantics.

3DEVS is an example for a simulation modeling language a semantics that is defined by a reference
algorithm. Zeigler, Muzy, and Kofman [255, p. 196] give the semantics of DEVS as “abstract simulators”
that “characterize what has to be done to execute [. . . ] models”.
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2.4.1. Interpretation and Compilation

Compilers and interpreters are algorithms that consume some abstract representation of
a mogram (such as an AST). A compiler translates the mogram into another language,
whereas an interpreter evaluates it [3, p. 1ff.]. As such, compilers and interpreters
informally define the semantics of a language through a reference implementation of the
language semantics. This “pragmatic” style of describing the semantics of a language is
more common than the formal one discussed in the next section [120].

A way to relate interpretation and compilation is Futamura’s work regarding partial
evaluation [84]. The fundamental difference between both approaches is that a compilation
algorithm distinguishes compile-time and run-time, whereas an interpreter only knows
run-time. This means that (typically) an interpreter is easier to implement, but interpreted
execution is less efficient than executing a compiled program.

Futamura’s ideas revolve around a transformation of computation processes. By
providing values for a subset of the inputs of a computation, a specialized, possibly simpler
computation can be obtained. For example, consider the following computation:

f(x, y) = x× (x× x+ x+ y + 1) + y × y

If we evaluate this for x = 1 and y = 1, 2, . . . , n, we need to perform 3n multiplications
and 4n additions. Compare this to the following computation where x = 1 has already
been evaluated (which requires 2 additions and 2 multiplications):

f(1, y) = fx=1(y) = 1× (1× 1 + 1 + y + 1) + y × y = 3 + y + y × y

Now evaluating for y = 1, 2, . . . , n requires n multiplications and 2n additions. To
get from f(x, y) to fx=1(y) we partially evaluate f with x = 1. More generally, we
transform a computation π(c1, . . . , cn, r1, . . . , rm) by already assigning values c′1, . . . , c

′
n

to the parameters c1, . . . , cn, yielding a computation with the remaining parameters
r1, . . . , rm. When assigning values r′1, . . . , r′m to the parameters r1, . . . , rm, the transformed
computation yield the same results as the original one. This transformation is called α.

π(c′1, . . . , c
′
n, r

′
1, . . . , r

′
m) = α(π, c′1, . . . , c

′
n)(r

′
1, . . . , r

′
m)

The Futamura projections can now be defined based on an interpreter π(p, i1, . . . , in)
for a program p and inputs i1, . . . , in. π takes as inputs the program (source code) itself
and the inputs for the program.

π(p, i1, . . . , in) Interpreter
= α(π, p)(i1, . . . , in) Futamura Projection 1: Executable
= α(α, π)(p)(i1, . . . , in) Futamura Projection 2: Compiler
= α(α, α)(π)(p)(i1, . . . , in) Futamura Projection 3: Compiler-Compiler

The first Futamura Projection results from specializing the interpreter to the program,
yielding the executable program α(π, p). Here, parsing, type-checking, etc. are done
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and the source code p is not needed anymore. Next, by another level of specializing,
we can abstract over the program p as well. The result is a compiler: a computation
α(α, π) that computes an executable from each given program code p. Adding another
level of specialization, the computation abstracts over the interpreter and, thus, yields
a computation that transforms any interpreter to a compiler. In practice, these ideas
have mostly been applied in constrained contexts, for example in the form of multi-stage
programming [198].

This shows that interpretation and compilation are two points in the continuum of
abstracting and specializing the execution of programs. In many modern programming
ecosystems, however, the concept of Virtual Machines (VMs) introduces another level of
abstraction. For example, programs written in Java, Scala, or Groovy can be compiled to
bytecode, which is then interpreted by the Java Virtual Machine (JVM). Languages such
as Erlang or Ruby use VMs as their primary execution platform in a similar way.

2.4.2. Type systems and static analysis

Type systems play a central role in programming language research. For example,
the influential textbook by Benjamin C. Pierce is termed “Types and programming
languages” [189]. In that book, a type system is defined as “a tractable syntactic method
for proving the absence of certain program behaviors by classifying phrases according
to the kinds of values they compute” [189, p. 1]. In particular, using a type system to
determine the type of a term does not require the evaluation of that term. Thus, with
respect to Figure 2.1 type checking is an additional method to detect errors early before
evaluating a mogram. All operations on a mogram that occur after type checking can
then rely on the types of the mogram being correct. For example, it is claimed that
in Haskell, a programming language with a powerful type system, a program “usually
works” once it passes the type checker [249]. This can make a significant difference for
the programming experience.

Formally, a type system is defined via a ternary typing relation Γ ⊢ t : T , where
Γ = t1 : T1, t2 : T2, . . . is a typing context. Then, Γ ⊢ t : T means that in the context Γ
the term t has the type T . The context can be omitted if it is empty. For example, the
typing rules for a let-in expression can be expressed as follows [189, p. 124]:

Γ ⊢ t1 : T1 Γ, x : T1 ⊢ t2 : T2

Γ ⊢ let x = t1 in t2 : T2

T2 is the overall type of the expression let x = t1 in t2 in the context Γ, given that the
type of t1 can be determined to be T1 in the context Γ and, in the context Γ extended
with the information that x is of type T1, it can be determined that t2 is of type T2.

In some programming languages, terms are explicitly annotated with type information
(e.g., Java or C). Other programming languages, in particular functional languages such as
ML or Haskell, are able to infer types and do not require type annotations. Programming
languages can also be distinguished regarding the time at which type checking is done.
Statically typed languages check types at compile-time, whereas dynamically typed
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languages check types at run-time [189, p. 2]. Thus, static typing is more useful for
catching errors early and avoiding a specific classes of run-time errors, whereas dynamic
typing enables more rapid development without needing to satisfy the type checker.
Whereas this reasoning applies mostly to GPLs, it is also valid for DSLs.

Static type checking is an example for static analysis, that is the inference of properties
of a mogram without executing it. Other well-known static analyses for GPLs include
escape analysis [24], which statically determines the lifetime of data to support memory
management, and Rust’s borrow checker [148], which detects possible memory errors.
However, static analysis has also been successfully applied to DSLs. For example, the
simulation modeling language Kappa is equipped with a static analyzer that allows to
statically determine unreachable states [33]. As DSLs are generally simpler than GPLs,
static analysis should be simpler for DSLs as well.

2.4.3. Formal semantics

Alternatively to providing a reference implementation of a compiler or interpreter for a
software language, semantics can also be defined formally. The former approach implicitly
fixes the semantics of a language, constraining all future implementations to yield the
same results as the reference implementation. A formal definition of the semantics is
explicit, specifying the behavior of all language implementations declaratively. Typically,
this means that the semantics assign a meaning to each construct that appears in the
AST.

In general, it should be more feasible to define formal semantics for a DSL than a
GPL. DSLs are (by definition) less powerful in terms of theoretical expressiveness than
GPLs, and, thus, typically smaller in terms of syntax. For example, SQL’s semantics
have been formalized by translating queries to relational algebra as early as 1985 [46].
In addition to the dynamic semantics (describing the evaluation of programs), the static
semantics (including typing rules) are typically more elaborate in GPLs, for example to
take object-oriented programming, subtyping, or higher-kinded types into account [189].
Again, due to their simplicity, DSLs are often not concerned with complex typing rules
and have simple type systems.

The standard text books list three basic styles of specifying formal semantics [189,
p. 32f][228, p. xix][215, p. vii], listed below. The following short explanations are illustrated
with semantic rules for the language constructs SKIP (the empty command) and ; (the
sequencing of commands). These two are elements of virtually all imperative programming
languages and nicely demonstrate the different viewpoints of the individual semantic
styles. For the sake of simplicity, questions of termination, non-determinism etc. are
ignored.

• Operational semantics defines a translation function that maps the terms of the
language to equivalent terms. The meaning of a term is then defined as the term that
results from following this mapping until no further translations apply (Figure 2.4).
Alternatively to this small-step semantics, big-step semantics are defined with a
relation that directly maps a term to its final form (Figure 2.5). To emphasize the
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(SKIP;C2, s)⇒ (C2, s)

(C1, s)⇒ (C ′
1, s

′)

(C1;C2, s)⇒ (C ′
1;C2, s

′)

Figure 2.4.: For small-step semantics, a translation function ⇒ maps a pair of a program
and an (abstract) machine state to a pair of the remaining program and a
changed machine state by taking an atomic computation step. The first rule
states that executing a sequence of SKIP and some other command C2 can be
continued by just executing C2. The second rule reduces the first command
in a sequence. For example, the first command might be reduced to SKIP

(possibly in several steps), which makes the first rule applicable.

(SKIP, s) ⇓ s

(C1, s1) ⇓ s2 (C2, s2) ⇓ s3

(C1;C2, s1) ⇓ s3

Figure 2.5.: For big-step semantics, a translation function ⇓ maps a pair of a program
and an (abstract) machine state to a final state. The command SKIP leaves
the state unchanged, which is defined by the first rule. The second rule
states that a sequence of two commands C1 and C2 is executed by executing
C1, yielding state s2, and then using s2 as the initial state for executing C2,
which yields the overall result state s3.

difference, applying small-step semantics is sometimes called reduction, and big-step
semantics is called evaluation [189, p. 34].

• Denotational semantics defines an interpretation function that maps language terms
to objects of some semantic domain (Figure 2.6). For example, SQL queries can
be translated to relational algebra expressions [46], which allows proofs about the
equivalence of queries.

• Axiomatic semantics finally defines laws about the terms of the language. One way
to do this is to give Hoare-triples {P}C{Q}, where P is termed the pre-condition,
C is the program (fragment), and Q is the post-condition. Such a triple expresses
that, in a state in which P holds, the execution of C will yield a state in which Q
holds. The semantics of a language can be defined with a collection of such triples
(Figure 2.7).

The relation of the definition styles to each other shifted in the last decades. Tennent
[228] used the denotational style as the primary approach to defining semantics in 1991,
whereas in 2002 Pierce [189] argues that operational semantics surpasses the other styles
in flexibility and simplicity. The 2014 textbook by Nipkow and Klein [167] confirms this
and focuses on operational semantics as well. In the remainder of this thesis, we will
mainly use operational semantics.
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[[SKIP]](s) = s

[[C0;C1]](s) = [[C1]]([[C0]](s))

Figure 2.6.: Denotational semantics of commands are defined by a function [[·]] that maps
each command to a function from states to states. As such, the semantics
of SKIP is the identity function. A sequence of commands is mapped to the
composition of the functions defined by the individual commands.

{P}SKIP{P}
{P}C0{Q} {Q}C1{R}

{P}C0;C1{R}

Figure 2.7.: For axiomatic semantics, inference rules about Hoare-triples (pre-condition,
program (fragment), post-condition) are defined. The SKIP command does not
change anything and, thus, pre- and post-condition are equal. Two sequenced
commands are glued together by using the post-condition of executing the
first command as the pre-condition of executing the second command.

2.5. Designing and implementing domain-specific languages

Concrete syntax, abstract syntax, and semantics are the necessary ingredients for GPLs
as well as DSLs. However, due to DSLs focusing on a specific application domain, they
are often smaller in all three aspects. For that reason, DSLs are sometimes called “little
languages” [19]. Consequently, the implementation of a DSL can be expected to be
simpler than the implementation of a GPL. One trick of many DSLs is that they only
form a thin layer above an existing GPL. We have already studied code generation and
embeddings in functional languages, which both heavily rely on a target or host language.
The interaction with an existing language is captured in two DSL categories: external
DSLs are defined independently of any existing language, whereas internal DSLs reuse
the syntax and semantics of an existing language. We now look into this distinction and
how it interacts with the techniques covered so far. There are many previous comparisons
of both approaches, for example in the textbook by Fowler [80], some also specific to
Scala [15, 7].

2.5.1. External DSLs

The concrete syntax, abstract syntax, and semantics of external or standalone DSLs can
be designed without constraints imposed by a preexisting language. In particular, the
language and its implementation are independent. Therefore, the language design can
generously adopt and integrate conventions and metaphors of the application domain.
This refers to syntax, allowing arbitrary choices of keywords, punctuation, and other
structuring elements, as well as semantics, allowing arbitrary evaluation and execution
models. However, this design freedom is limited in several ways. First and foremost,
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(a) The generated metamodel for a simple grammar of arithmetic
expressions. Xtext automatically inferred that Number is
a subclass of Expression, encoded by the arrow -> in the
metamodel.

(b) In the generated editor,
autocompletion based on
the grammar is available.

Figure 2.8.: The metamodel and editor as generated by Xtext.

formal language theory tells us that a language must satisfy certain properties to be
parsable by a computer. Ambiguity and context-sensitivity, for example, make employing
established efficient parsing algorithms hard or even impossible. A second limitation arises
from the tools that support the implementation of parsers. Parser generators and language
workbenches only accept certain kinds of grammars and might require unintuitive changes
in the language definition just to please the parsing algorithm. Parser combinator libraries,
on the other hand, are customizable, but lack the ability to check a given grammar for
properties such as ambiguity.

External DSLs often appear in an imperative or object-oriented setting [86]. When
object-oriented programmers talk about DSLs, they mostly refer to grammar-based parsing
and generating code in their OOP language of choice. This principle is embodied in
language workbenches such as Xtext (see Section 2.3.2). The idea of metamodels as used
by language workbenches is closely related to the idea of domain models and similar
object-oriented design principles [80, p. 160].

As a simple example for implementing an external DSL with Xtext we use a language
that consists of additions and subtractions of integers (cf. Section 2.3.2). One way to
express the grammar is the following:

Expression:

Number

| left=Number op=('+' | '-') right=Expression;

Number:

value=INT;

The definition for integer literals INT is provided by Xtext.
Using this grammar, Xtext autogenerates an EMF metamodel with the two classes

Expression and Number (Figure 2.8a). The identifiers in the grammar (left, op, right, and
value) are translated to attribute names in the metamodel. Based on the first alternative
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of the first rule, Number is inferred to be a subclass of Expression in the metamodel. Such
type relations can be exploited in the language implementation. For example, it is possible
to write a polymorphic function for evaluating any Expression object, including Number

objects. Xtext also generates Java classes and interfaces implementing the metamodel.
The metamodel classes can be instantiated by parsing a concrete arithmetic expression.

Xtext generates an ANTLR 3 parser and an Eclipse plug-in with an editor based on
the given grammar. With Xtext’s default settings, the editor already provides some
language-specific features, for example autocompletion (Figure 2.8b).

Depending on the language, Xtext can provide a sizable part of the language implemen-
tation without any additional work by the language implementer. The language-specific
metamodel facilitates implementing features beyond the defaults. Typical example are
type checking, scoping rules, and interpretation or compilation. Xtext provides extension
points for these features to integrate them seamlessly into the generated Eclipse plug-in.
In particular, the generation of Java code is well integrated, as the generated code can be
directly compiled in Eclipse. Therefore, mograms in an external DSL in Xtext can be
written and executed like in a standard programming language. This makes Xtext (and
other language workbenches) a valuable tool for implementing external DSLs.

2.5.2. Internal DSLs

Internal DSLs or embedded DSLs are implemented as a part of a host GPL. Whereas
the design of external DSLs is based on formal language theory, grammars, and parsing
techniques, the idea of internal DSLs can be considered as designing particularly expressive
APIs. Thus, the host language’s functionality as well as its libraries, tools, and editors
can be reused when working with the DSL. Internal DSLs “are just expressions in
the host language, written in a form that makes them read well as a language” [80,
p. 85]. Consequently, their syntax and semantics must be compatible with the host
language, which constrains the language design freedom. How much the language design is
constrained depends heavily on the concrete host language. Some GPLs are known to be
more suited for the definition of internal DSLs than others, and the ability to define DSLs
can be a central feature of a GPL. For example, the Lisp family of languages is known
to facilitate the development of embedded languages due to its integration of code and
data [80, p. 488]. Similarly, Ruby has many features that benefit the implementation of
internal DSLs [55]. Scala is advertised as a language that supports embedded DSLs [171,
p.xxxix]. By “bending” existing GPLs this way, internal DSLs can be easily implemented.
Another example, applicable to any object-oriented language, is the idea of fluent interfaces
from Section 2.2.4.

Internal DSLs often appear in functional programming languages [86]. In Section 2.3.3
we distinguished shallow and deep embeddings; particularly the deep embedding relies
heavily on algebraic data types as typically offered in FP languages. Higher-order functions
are another feature of FP languages that is very useful in designing shallowly embedded
DSLs.

We again use the example of addition and subtraction expressions to illustrate the
implementation of internal DSLs. In contrast to the discussion in Section 2.3.3, we now
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focus on implementing the concrete syntax of an internal DSL. We aim to replace the
functions lit (for integer literals) and add (for addition) with syntactically lighter variants.
As the host language we use Scala and demonstrate how features of the host language
interact with the language design.

A first improvement is to replace lit with Number, and then add with the infix operator
+, which is enabled by two features of Scala. First, symbols can be used as method names.
Second, methods with one argument can be invoked without a dot . and parenthesis ().
For example, the following two expressions are equivalent:

Number(3).+(Number(4)).+(Number(5))

Number(3) + Number(4) + Number(5)

Thus, to use the infix operator + in the DSL, it suffices to implement in the class Number

(or a superclass) a method named + that takes another Number (or a superclass) as its
argument.

As a next step, we would like to eliminate the Number constructor calls. Ideally, we would
just write 3 + 4 + 5, and be able to construct an abstract syntax tree with each integer
wrapped in a Number object. To enable the compiler to do thus wrapping automatically,
we can define an implicit conversion:

implicit def intToNumber(i: Int): Number = Number(i)

Then, when the compiler encounters an Int value in a place where it requires a Number, it
uses the implicit conversion to create a Number object. However, the compiler can perfectly
evaluate 3 + 4 + 5 and, therefore, will not look for implicit conversions here. To force the
usage of our Number type, we need some syntactical overhead. For example, the following
expressions would work:

Number(3) + 4 + 5

(3: Number) + 4 + 5

This exemplifies the limits of internal DSLs. With the syntax and semantics rules of
the host language taking preference over definitions in the language, the design flexibility
of external DSLs cannot be achieved. Different features of the host language, for example
infix method calls or implicit conversions, can alleviate that, but never close the gap to
external DSLs completely. The advantage of internal DSLs is that the implementation
does not need to cross language borders and is, therefore, much simpler. In particular,
the host language’s type system, libraries, and tools can be reused. But then, a DSL
might require domain-specific error messages, which might conflict with reusing the host
language compiler [209].

2.5.3. Expressive power

The limits in the design of the language syntax are set by formal language theory for
external DSLs and by the host language for internal DSLs. However, in both cases there
is no intrinsic limit for the language semantics. Although DSLs are defined as languages
with inferior formal expressiveness, it is perfectly possible to reimplement all features of a
typical GPL when designing a DSL. In fact, one important insight when designing a DSL
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is to make it as expressive as needed, but not more. The usefulness of DSLs is a direct
consequence of their reduced expressiveness, as this allows processing DSL mograms in a
more straightforward way than GPL programs. Informally speaking, “constraints liberate,
liberties constrain” [23]. As a consequence, it can be deduced that a more powerful
language allows for less reasoning about mograms in the language.

This quite abstract concept can be illustrated with the relation of defining and calling
a function [23]. Consider the following two function signatures:

def foo(a: Int): Int

def bar[A](a: A): A

The function foo is very specific in its type. As a result, calling it is constrained to specific
input values; its implementation, on the other hand, is unconstrained and could return
essentially every possible Int value. In contrast, the function bar can be called without
constraints. But for exactly that reason, it can not make any assumptions about its input
value—it is constrained to one implementation: returning its argument4. Freedom for the
caller limits the freedom for the callee and vice versa. In the same sense, freedom for the
user of a DSL limits the freedom of the DSL implementation.

Another example for trading freedom is referential transparency. Calls to a pure function,
that is a deterministic function that does not cause any side effects, are referentially
transparent. In a language that only allows pure functions, function call results can be
freely memoized and reused. For example, the following snippet can be optimized by a
compiler only if the function foo is a pure function. Depending on the cost of evaluating
foo(5), such optimizations can increase the performance of programs tremendously.

// original version

bar(foo(5), foo(5), foo(5))

// optimized version

val foo5 = foo(5)

bar(foo5, foo5, foo5)

This exemplifies how not allowing the language user to do side effects gives the language
implementer the chance to transform and optimize the program. In general, constraining
the expressive power of the language means more potential for analysis and optimization
in the language implementation.

2.6. Summary

In this section we have investigated the three main components of software languages:
concrete syntax, abstract syntax, and semantics. Many considerations regarding these
aspects apply to GPLs as well as to DSLs. However, DSLs are typically simpler than
GPLs, which means that less sophisticated methods are required to implement them, and

4Technically, it could also run forever or crash the program and, thus, never return a value at all.
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it is simpler to statically analyze a DSL than a GPL. For example, the evaluation order
in a declarative DSL can be chosen optimally, whereas statements in an imperative GPL
have a fixed order.

Two main approaches to implementing DSLs can be distinguished: external DSLs,
which define their own syntax and semantics, and internal DSLs, which reuse syntax and
semantics of their host language.

To implement external DSLs, language workbenches are one popular way. For example,
the language workbench Xtext takes as input an augmented grammar and generates a
parser for handling the concrete syntax, a metamodel to represent the abstract syntax,
and extension points to implement semantics (e.g., a type checker, a code generator, or
an interpreter). This way, the DSL and the implementation language can be completely
separated.

In contrast, internal DSLs are implemented without leaving the host language. Thus,
the concrete syntax is represented with host language constructs. In a deeply embedded
internal DSL, the abstract syntax is expressed with host language data structures, and
the semantics as functions from the abstract syntax to some result. A shallow embedding,
on the other hand, directly maps the concrete syntax to some result, omitting an explicit
abstract syntax.

The utility of using a DSL is largely independent of whether it is internal or external.
Although both variants have different implications regarding the design of the concrete
syntax, they both allow encoding domain-specific concepts in the abstract syntax and
the semantics. This makes DSLs useful in modeling and simulation, in particular for
specifying simulation models based on stochastic processes. Before taking a closer look
at such DSLs, we give a short introduction to the underlying math of a specific class of
stochastic processes in the next chapter.
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In the previous chapter, we discussed DSLs from a software perspective. However, as
established in the introduction, DSLs used for simulation modeling can also be considered
as languages that describe mathematical objects. In the following, we look into CTMCs,
one class of such objects, and how it can be employed to model and simulate various
processes. In particular, we see that complex stochastic processes with infinite state
spaces can be specified succinctly, a fact we rely on in the next chapter when we study
DSLs for simulation modeling.

3.1. Continuous-time Markov chains

Continuous-time Markov chains (CTMCs) are stochastic processes that are very well suited
for simulation modeling for several reasons. First, they can express many of the problems
that simulation addresses, for example biochemical reaction networks. “[T]he scientific,
engineering, and even financial and humanities literature, abounds with examples of
random processes which have been modelled, with varying degrees of success, by Markov
chains” [6, p. vii]. Second, they can be efficiently executed using so-called stochastic
simulation algorithms (SSAs). Lastly, they can be succinctly specified using different
kinds of formalisms [103]. The following definitions are taken from Anderson [6] and Whitt
[248]. An overview of alternatives to CTMCs for defining stochastic processes is given
in De Nicola et al. [58].

3.1.1. Intuition

Before giving the formal definition of CTMCs, we introduce the intuitive meaning behind
it based on an example. We model with a CTMC how some machine, for example a
printer, breaks down and gets repaired [248, p. 10f.]. Figure 3.1 shows a rate diagram
for the example model. The machine has three states: it is working, broken, or getting
repaired. A working maching breaks with a rate of 0.05. When broken, the machine gets
repaired with a rate of 1.0. The repair can be successful with a rate of 0.9, or fail with a
rate of 0.1. The rates are the rates of exponential distributions, and can be interpreted as
follows. A state transition with the rate λ occurs λ time per time unit on average, or,
conversely, it takes 1/λ time units until the state transition occurs on average.

This way, a CTMC describes how a system changes its state through time, where
the duration of staying in each state follows some distribution, such as the exponential
distributions in the example above. The defining property of CTMCs is the Markov
property. It states that the future development of the system only depends on its current
state, not on its past states. This benefits reasoning about CTMCs, and simulation
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0.05

0.1

0.9 1.0

(1)
Working

(3)
Repair

(2)
Broken

Figure 3.1.: The rate diagram (or intensity graph) of a simple CTMC is a graph, in which
the states are the nodes and the possible state transitions are directed edges,
labeled with the transition rates

algorithms are able to exploit the Markov property as well. If further the development
of the system does not depend on the time already spent in the current state, the
CTMC is called homogeneous. When using exponential distributions, CTMCs are always
homogeneous; however, there exist generalizations of the exponential distribution that
can be used in CTMCs that are inhomogeneous. We will not consider inhomogeneous
CTMCs any further in this thesis.

Given a CTMC, the behavior of the modeled system can be investigated in several
ways. It is possible to analytically determine what proportion of time is spent in each
state, assuming that the CTMC runs infinitely long. Alternatively, simulation algorithms
sample trajectories through the state space by, given a state, computing the time and
destination of the next state transition. In our example, both methods could answer
questions such as “what proportion of the total time is the printer working?” Before going
into more detail, however, we give some formal definitions for CTMCs and related terms.

3.1.2. Formal definition

Consider a stochastic process {X(t), t ∈ [0,∞)}, where t is the time and the X(t)
are states from a set E (called the state space). This process is a CTMC, if for any
0 ≤ t1 ≤ t2 ≤ · · · ≤ tn ≤ tn+1 and corresponding states i1, i2, . . . , in, j ∈ E the Markov
property holds:

P (X(tn+1) = j|X(t1) = i1, X(t2) = i2, . . . , X(tn) = in) = P (X(tn+1) = j|X(tn) = in)

As described above, this equality states that the future development of the process
depends only on its current state, not on its past states. Homogeneity can be defined as
follows: A CTMC is homogeneous, if for any 0 ≤ s ≤ t and i, j ∈ E
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P (X(t) = j|X(s) = i) = P (X(t− s) = j|X(0) = i).

This states that the probability for any state transition is independent of how long the
system already is in the current state. The right side of that equation can be transformed
to the transition function of the CTMC:

Pi,j(t) = P (X(t) = j|X(0) = i) for i, j ∈ E, t ≤ 0

The transition function tells us how probable it is to find the system in state j when,
t time units earlier, it was in state i. This includes transitioning through intermediate
states before reaching j. To fully define a CTMC, we additionally need a distribution
about the probabilities of all states j ∈ E at t = 0, denoted as P (X(0) = j). Then, the
probability to be in any state j ∈ E at time t is

P (X(t) = j) =
∑︂
i∈E

P (X(0) = i)Pi,j(t).

This expresses that the probability of being in state j after time t is the sum of all
probabilities of being in state i at time t = 0 and transitioning from i to j in t time units,
maybe passing through intermediate states.

Instead of handling the transition function directly, often its derivative Q is used. One
way to define it is via the infinitesimal differential:

Qi,j = lim
h→0

Pi,j(h)− Pi,j(0)

h

where

Pi,i(0) = 1

Pi,j(0) = 0 for i ̸= j,

meaning that no state transitions occur without time passing. By interpreting Q and
P as matrices, the same derivation can be expressed as Q = P ′(0). Q is called the
q-matrix. The example from Figure 3.1 is captured in the following q-matrix, where each
diagonal element is the negative of the sum of the non-diagonal elements of that line. The
non-diagonal elements are the transition rates.

Q =

⎡⎣−0.05 0.05 0
0 −1.0 1.0
0.9 0.1 −1.0

⎤⎦
3.1.3. Balance analysis

After defining CTMCs formally, the task of analyzing a given CTMCs can be formalized
as well. For example, we might want to know what distribution of states emerges in the
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(infinitely) long run. This distribution can, under certain conditions, be determined by
solving a system of linear equations [6, p. 160f.]. We represent such a distribution by
listing the probabilities for all individual states αi, i ∈ E in a line vector (α1, α2, . . . ).
The αi, i ∈ E must sum up to 1: ∑︂

i∈E
αi = 1

A steady-state or stationary distribution can then be formally defined as a distribution
that does not change when the CTMC continues to run:∑︂

i∈E
αiPi,j(t) = αj for all j ∈ E, t ≥ 0

We can also describe the steady-state distribution via the q-matrix (the derivative of
the transition function) by stating that the change is 0:

αQ = 0

Applying this equation to the example yields the following system of linear equations:

−0.05α1 +0.9α3 = 0

0.05α1−1.0α2+0.1α3 = 0

+1.0α2−1.0α3 = 0

α1+ α2+ α3 = 1

With the unique solution α1 = 0.9, α2 = α3 = 0.05. We can conclude that the machine
in our example model is working 90% of the time.

3.1.4. Stochastic simulation algorithms

The analytical approach to finding a steady-state distribution only works “for Markov
chains with a very simple structure” [103, p. 19]. For complex CTMCs, the steady-
state distribution can be obtained analytically only by approximation (see, for example,
Dayar et al. [57]).

Alternatively, the CTMC can be explored with stochastic simulation algorithms (SSAs).
Examples for SSAs are the so called Doob-Gillespie algorithms [62, 88, 89]. These
algorithms sample a trajectory from the CTMC defined by the model by repeating a
simple step. Given the current simulation time t and the current model state i the
algorithms determine the time of the next state change t′ and the next state i′ following
the CTMC’s distribution. The initial state i0 of the model at time t = 0 is given by
an initialization. The variations of the stochastic simulation algorithm differ in the
implementation of this step.
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One of the basic SSA variants originally introduced by Gillespie is the First Reaction
Method. In the First Reaction Method the basic SSA-step described above consists of
three parts:

1. Sample a waiting time ∆tj for each state j ̸= i that is not the current state i. As
waiting times follow an exponential distribution with parameter qi,j , this can be
efficiently done using the inversion method:

∆tj =
1

qi,j
ln

1

r
, r ∼ uniform(0, 1)

2. Find the state i′ with minimal ∆tj .

i′ = argmin
j

∆tj

3. Set t to t+∆ti′ and set the current state to i′.

The First Reaction Method directly implements the idea of the so-called stochastic race.
All possible transitions compete against each other and the one with the shortest waiting
time drawn wins. Transitions with higher transition rates qi,j are chosen with higher
probability.

For example, if in our example the state at time t is “Repair”, the successor states are
“Working” (with a rate of 0.9) and “Broken” (with a rate of 0.1). The time of transitioning
to the next state is the minimum of ∆tWorking and ∆tBroken. We draw numbers from
exponential distributions for both: ∆tWorking = 1.53 and ∆tBroken = 3.06. Thus, the next
state is “Working” and the transition occurs at t+ 1.53 time units.

Alternatively to the First Reaction Method, Gillespie proposed the Direct Method. The
Direct Method exploits that the minimum of the ∆tj is itself exponentially distributed
with the rate

∑︁
i̸=j ∆tj . This way, the overall waiting time ∆ti′ can be drawn directly.

The successor state is then chosen according to the proportion of the transition rate to
the sum of the rates of all possible transitions:

P (µ = j) =
qi,j∑︁
k ̸=i qi,k

For example, if again the state at time t is “Repair”, the sum for all rates for transitions
leaving the state is 1.0. Thus, ∆ti′ ∼ Exp(1.0). We draw the value ∆ti′ = 1.53, and
then select the successor state according to their rate’s proportion of the sum of all rates:
P (Working) = 0.9/0.9 + 0.1 and P (Broken) = 0.1/0.9 + 0.1. When selecting “Working”, we
obtain the same successor state and transition time as with the First Reaction Method.

3.2. Markov Population Models

Markov Population Models are a particularly popular variant of CTMC models for
simulation [103]. In the simplest case, they describe the development of the size of a
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1 2 3 40

λ 2λ 3λ

2µµ 3µ 4µ

...

Figure 3.2.: A snippet of the (infinite) rate diagram of a simple birth-death-process. The
state transition from 0 to 1 has the rate 0 and is omitted in the graph.

single population, which only changes in steps of 1. That is, each state n = 0, 1, 2, . . . has
a transition to the state n+ 1 (a birth) with the rate λn and a transition to the state
n − 1 (a death) with the rate µn. µ0 is commonly set to 0 (a population size can not
become negative).

One way to model a population of entities, where each can proliferate or die, is to factor
the population size into the rate [6, p. 62f.]. Thus, in the birth-death-process as described
above, λn = λn and µn = µn for some constants λ and µ. The reasoning behind this
form of transition rate is based on chemistry and, therefore, explained later in Section 3.3.
We call constants like λ and µ rate constants and the product of the rate constant with
the population size the propensity of the state transition. Consequently, for this simple
model the propensities are precisely the positive elements of the q-matrix:

qi,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
λi if j = i+ 1 and i ≥ 1

µi if j = i− 1 and i ≥ 1

−(λ+ µ)i if j = i

0 otherwise

Figure 3.2 shows the rate diagram for this definition. Note that, although the CTMC’s
state space is infinite, the description is finite, and even quite succinct.

More generally, population models can include n distinct species. The state space is
then Zn

+, containing tuples with n non-negative integers, where the i-th integer is the
population size of the i-th species. As the individual species can interact in various
ways, multi-dimensional population processes are a powerful modeling tool. For example,
consider a two-dimensional population model with states (m,n), in which m is the size of
a predator species and n is the size of a prey species [6, p. 324ff.]. Then we can define
(omitting the diagonal and the 0 matrix elements):

q(m1,n1),(m2,n2) =

⎧⎪⎨⎪⎩
λn1 if m1 = m2 and n1 + 1 = n2 and n1 ≥ 1

βm1 if m1 − 1 = m2 and n1 = n2 and m1 ≥ 1

αm1n1 if m1 + 1 = m2 and n1 − 1 = n2 and n1 ≥ 1

This describes three types of state change: the birth of a prey entity, the death of
a predator entity, and a predator entity feeding on a prey entity and proliferating in
the process. For certain choices of λ, β, and α, this system exhibits periodic behavior.
However, as soon as the predator (or prey) species dies out, the system degrades to a pure
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birth (or death) process (see Figures 3.4a and 3.4b). Figure 3.3 shows the rate diagram
for this CTMC.

3.2.1. Modeling formalisms

The matrix notation that we used to describe population models and CTMCs in general
is only one way of specification. In the same way we described the matrix elements with a
few expressions, tailored modeling formalisms can be used to specify a population model
in a more abstract way. Henzinger, Jobstmann, and Wolf [103] give an overview that we
summarize here. The decisive quality of these formalisms, including the above description
of the matrix, is that they define transition classes of state transitions instead of individual
state transitions. For example, in the prey-predator-model, the matrix description does
not describe a transition for one particular state. Instead, by ranging over all matrix
elements, it describes all state transitions that occur with three expressions.

These modeling formalisms are essentially software languages according to our definition
in the previous chapter. Although Petri Nets are a graphical language, syntax and
semantics can be defined as we discussed for software languages. In particular, the state
space of a stochastic Petri Net with exponentially distributed firing times is a CTMC, and
populations can be represented by a specific place, with the number of tokens encoding the
population’s size. Similarly, stochastic process algebras or stochastic guarded commands
are languages that can be used to specify population models. As textual languages with
origins in computer science, formal definitions of syntax and semantics are a natural
aspect of these approaches. A more domain-specific approach are stoichiometric equations,
which adopt notational conventions from biochemical reactions (see Section 3.3). First,
we consider two more modes of evaluating CTMCs that are tailored to population models.

3.2.2. Next Reaction Method

As an extension to the First Reaction Method, Gibson and Bruck proposed the Next
Reaction Method [87]. It exploits the fact that in many population models state transitions
are caused by parallel, independent processes. One such process corresponds to one
transition class. For example, in Figure 3.3, the state transitions for prey proliferating (an
upward arrow) and predators dying (an arrow to the left) can be considered independent.
If in a given state both transitions are possible and one of them actually occurs, the other
is still possible with the same rate as before.

For example, in the state (2, 2) a prey proliferates with the rate 2λ and a predator
dies with rate 2β. If now the transition caused by proliferation of prey occurs, the
successor state is (2, 3). In this new state, the rate for a predator dying is still 2β. If
the transition caused by the death of a predator fires first, the rate for prey proliferation
remains unchanged.

The Next Reaction Method makes use of this observation by not re-evaluating all rate
expressions after a state transition. Instead, the firing times that have been drawn for state
transitions are kept in an event queue and only updated if the value of the corresponding
rate expression changed. To determine which rate expressions have changed, a dependency
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Figure 3.3.: A snippet of the (infinite) rate diagram of a simple two-dimensional predator-
prey-model. Proliferating prey is represented by an upwards state transition,
the death of a predator by a transition to the left. A predator feeding on a
prey is represented by a transition to the lower right. In the states colored
green the prey species has died out, and the system degraded to a death
process of the predator species. In the states colored red the predator species
has died out, and a birth process of the prey species remains.
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graph between classes of state transitions is maintained. Identifying these classes relies
on the modeling formalism that generated the CTMC. In the dependency graph, a class
of state transitions B depends on another class A, if executing a state transition in A
makes re-evaluating the rates of state transitions in B necessary. For example, in the
predator-prey model in Figure 3.3 the rate of a predator feeding on a prey (an arrow
to the lower right) must be re-evaluated if a prey proliferates (an upward arrow) or a
predator dies (an arrow to the left).

Depending on the model, the number of dependencies can be much smaller than the
number of transition classes, which allows for more efficient simulation in comparison to
the Direct or First Reaction Method. The Optimized Direct Method [42] further increases
the simulation efficiency. It also adopts the idea of using a dependency graph. However,
the Optimized Direct Method only saves the values of the transition rates instead of the
firing times, saving the overhead for managing an event queue.

3.2.3. ODE approximation

The SSAs we have studied so far are exact, in that they produce a statistically accurate
sample path through the CTMC [91]. However, their performance heavily depends on
the population sizes in the model. In particular, larger population sizes usually lead to a
higher frequency of reactions, meaning that the simulation progresses more slowly. There
are SSA variants that sacrifice exactness to speed up the simulation in several ways.

As an alternative, it is possible to express the changes of the population sizes as a system
of ordinary differential equations (ODEs) [129]. This can then be evaluated numerically
with an ODE solver, leading to a deterministic interpretation of the CTMC. The system
of ODEs is called the reaction-rate equation and defined as [91]:

dXi(t)

dt
=

∑︂
j

vi,jαj(X(t)),

where X(t) is the state vector at time t, vi,j is the i-th element of the change vector
for the j-th state transition class, and αj(·) is the state-dependent rate of the j-th state
transition class. The change vector describes the changes caused by the transitions in a
transition class as the difference in each population size.

The predator-prey example can be reformulated in this approach as follows:

X1 = m X2 = n

α1((m,n)) = λn v1,1 = 0 v2,1 = 1

α2((m,n)) = βm v1,2 = −1 v2,2 = 0

α3((m,n)) = αmn v1,3 = 1 v2,3 = −1

41



3. Modeling population processes

0

5

10

15

20

25

30

0 5 10 15 20

t

Predator
Prey

(a) A stochastic simulation run in which the
predator species dies out. Subsequently, the
prey population grows exponentially.
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(b) A stochastic simulation run in which first the
prey species and then the predator species
dies out.
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(c) A numerical solution of the reaction-rate equation. The predator population and the prey
population oscillate.

Figure 3.4.: Three plots of simulation runs for a predator-prey-model with α = 0.1,
β = 1.0, and λ = 0.1. Initially, there are 20 prey and 4 predator entities.

42



3.3. Biochemical reaction networks as population processes

dX1(t)

dt
=

dm(t)

dt
= 0λn− 1βm+ 1αmn = −βm+ αmn

dX2(t)

dt
=

dn(t)

dt
= 1λn+ 0βm− 1αmn = λn− αmn

A numerical solution of this system of ODEs is plotted in Figure 3.4c. It shows the
typical periodic behavior of both populations. More prey leads to more predators, and
more predators lead to less prey.

The approximation of a CTMC with a system of ODEs produces different behavior than
an exact simulation with an SSA. First, the ODE approximation is deterministic, whereas
the SSA is stochastic. Second, the population sizes in the SSA are discrete, whereas the
ODE approximation uses continuous variables. This leads to the third difference: in the
SSA simulation, one of the populations can die out, which leads to a degraded model
behavior1. In the ODE approximation, however, this is not possible. In general, the ODE
approximation is imprecise if small population sizes occur in the model. When a model
contains population sizes that are “not too many orders of magnitude larger than one,
discreteness and stochasticity may play important roles” [91, p. 36].

3.3. Biochemical reaction networks as population processes

We already introduced CTMCs and their subclass MPMs. We now study how MPMs
can be used for modeling biochemical reaction networks (BRNs) based on stoichiometric
equations. But first, we introduce some terminology.

First, we assume that biochemical reactions occur in a (chemical) solution. A reaction
can be described by stoichiometric equations of the general form

Reactants rate−−→ Products,

where reactants and products are potentially empty lists of biochemical species, and
the rate is a real number. Reactions are a natural and established representation of
biochemical processes.

There are two different ways to relate solutions and species. A solution can be
interpreted as a mapping of each species to a concentration. Alternatively, a solution can
be interpreted as a mapping of each species to the discrete number (count) of entities
present. Whereas integer entity counts lead to the discrete states of MPMs, real-valued
concentrations correspond to the ODE approximation as discussed in Section 3.2.3. In the
remainder of this thesis, we will be concerned with entities rather than concentrations. As
a last term, we call the entirety of entities of the same species in a solution a population.

A model’s behavior is then defined by a list of reactions. For example, the predator-prey
model from the Section 3.2 can be expressed as follows2:

1It can actually be shown that one of the species will die out with probability 1 if the process runs
infinitely long [6, p. 325].

2We ignore the fact that these are not chemical reactions.
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3. Modeling population processes

Prey λ−→ 2Prey

Predator β−→ ∅

Predator + Prey α−→ 2 Predator

As shown in Section 3.2, the rates for the transitions from a specific state also depend
on the population sizes in that state. Thus, the rate of a reaction results from multiplying
the constant above the reaction arrow with the reactant population sizes. We now give
the general reasoning behind these mass action kinetics [103][90, p. 356ff.].

Chemical solutions are often assumed to be be “well-stirred”, meaning that the chemical
entities (molecules) are uniformly distributed. When we model populations of molecules,
we assume that the molecules move randomly in some confined volume. The probability
for two specific molecules to react in some infinitesimal time interval is then the product
of the probability of those molecules colliding and the probability of a reaction, given a
collision. A similar argument can be made for reactions with more reactants, and reactions
with one reactant do not require collision at all. For a constant volume the probability
for a specific reaction to occur within the next infinitesimal time interval is proportional
to the number of distinct combinations of reactants in the current state.

Thus, for a reaction of the form

c1X1 + . . .+ cnXn
r−→ . . . ,

where ci is the number of required entities of species Xi, and a state

(s1, . . . , sn),

where si is the number of available entities (population size) of species Xi, the rate for a
state transition according to this reaction is

r ·
n∏︂

i=1

(︃
si
ci

)︃
If the volume Ω is to be taken into account, the formula changes to

r ·
n∏︂

i=1

(︃
si
ci

)︃
· Ω1−

∑︁n
i=1 ci

Mass action kinetics are the fundamental assumption behind modeling BRNs as MPMs,
and also allow succinct formulation of such models. However, there is a subtle ambiguity
that occurs when several entities of the same population react.
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3.3. Biochemical reaction networks as population processes

3.3.1. Calculating the reaction rate

We now consider the calculation of reaction rates according to mass action kinetics in
more detail. For simplicity, we focus on second-order reactions, that is reactions with
two reactants. A heteroreaction is a reaction with reactants from distinct populations,
whereas in a homoreaction two entities from the same population react [68]. As mentioned
in Section 3.3, biochemical reactions can be formulated and evaluated as differential
equations (modeling continuous concentrations) and as discrete-event systems (modeling
individual molecules). Surprisingly, the translation between both approaches is different
for heteroreactions and homoreactions.

Heteroreactions

We first consider the following reaction as a reaction of concentrations.

A+B −→ A+B + C.

This reaction does not modify the concentration of A and B, whereas the concentration
of C increases linearly. The evolution of the concentration c(t) of C over time can be
solved. The concentrations a(t) = a0 and b(t) = b0 remain constant. For simplicity we
assume an initial concentration c(0) = 0. The reaction rate constant k describes how fast
this reaction occurs.

dc(t)

dt
= ka(t)b(t) = ka0b0

c(t) = ka0b0t

Alternatively, the reaction can be expressed as a discrete-event system in which one A
and one B react with a stochastic rate constant r. We can then describe the evolution of
the mean population size of C(t) over time as a differential equation [90, p. 353]. Again
the population sizes A(t) = A0 and B(t) = B0 remain constant, and we assume that
C(0) = 0. The stochastic rate constant r is multiplied with the number of distinct reactant
combinations:

dC(t)

dt
= rA(t)B(t) = rA0B0

C(t) = rA0B0t

As both approaches describe the same process, we want the evolution of c(t) and C(t)
to be identical. To express this, we translate between concentration and population size
by assuming a constant factor γ, which yields γs(t) = S(t) for any species S. A typical
choice for γ would be γ = V NA (the surrounding volume multiplied with the Avogadro
constant) [43]. This way, the population size is interpreted as the number of particles per
volume.
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3. Modeling population processes

γc(t) = C(t)

γka0b0t = rA0B0t

γk
A0

γ

B0

γ
t = rA0B0t

r =
k

γ

Thus, we can now determine a stochastic rate constant r that corresponds to an
equivalent reaction rate constant k.

Homoreactions

Now consider the reaction

A+A −→ A+A+ E

Expressing this via concentrations yields an equation similar to the one for heteroreac-
tions. Again, the concentration of A is constantly a0 and the initial concentration of E is
e0 = 0

de(t)

dt
= ka(t)a(t) = ka0a0 = ka20

e(t) = ka20t

Expressing this reaction as a discrete-event system, however, leads to a different
formulation for the number of distinct reactant combinations.

dE(t)

dt
= r

A(t)(A(t)− 1)

2
=

r

2
A0(A0 − 1)

E(t) =
r

2
A0(A0 − 1)t ≈ r

2
A2

0t

Now the requirement that both descriptions produce an identical evolution leads to a
different factor between k and r as well.

γe(t) = E(t)

γka20t =
r

2
A2

0t

γk
A2

0

γ2
t =

r

2
A2

0t

r = 2
k

γ

Now, r is twice as large as for a heteroreaction.
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3.3. Biochemical reaction networks as population processes

3.3.2. Relating rate interpretations

We have seen four descriptions of a system in time. It is sensible to expect all four
formulations to produce the same behavior, given the same initial conditions. This
expectation is fulfilled for concentration-based formulations, where the same reaction
rate constant k produces the same behavior in hetero- and homoreactions. In the
discrete-event paradigm, however, where the number of distinct reaction combinations
is factored into the reaction propensity, the stochastic rate constant of a second-order
homoreaction needs an additional factor 2. More generally, for a reaction as defined in
Section 3.3 the factor is

∏︁n
i=1 ci!. The rate is then no longer multiplied with the binomial

coefficient
∏︁n

i=1

(︁
si
ci

)︁
, but with the “falling factorial” [106] or “m-fold falling product” [176]:∏︁n

i=1 [si(si − 1) . . . (si − ci + 1)].
Concretely, when writing two reactions with the same reaction rate constant k

A+B
k−→ A+B + C

A+A
k−→ A+A+ E

both reactions will be equally fast in the concentration interpretation. Thus, C and E
are produced equally fast. In the discrete-event interpretation, however, the first reaction
is twice as fast as the second one. Thus, C is produced twice as fast as E.

In a concrete modeling formalism as the ones mentioned in Section 3.2.1, there are
different ways to express and evaluate the reaction propensity.

• The language might just use the formulas as shown above. The modeler is required
to manually multiply the rate of each homoreaction with 2 if she wants it to have
the same propensity as a corresponding heteroreaction.

• The language might not automatically assume mass action kinetics, but instead
require the modeler to explicitly specify the rate in dependence on the population
sizes. As we will see in the next chapter, this is the approach taken by ML-Rules.

• Alternatively, the implementation of a modeling language could automatically
detect homoreactions and modify their rate accordingly. Then the rules for what
transformations are applied and when they are applied must be made clear to the
modeler. Such rules are often associated with the term “symmetry”3 and can be
established formally, for example with graph patterns. This approach is taken in
the modeling language BioNetGen [221].

• Lastly, a simulation algorithm can factor in the 2 indirectly by creating two reactions
for each reactant pair. This, for example, happens naturally in process algebra
approaches [43]. Again, this means that the rules for how reactions are instantiated
must be kept in mind when writing rate expressions.

3The Kappa Language User Manual contains a detailed discussion of symmetry and its implications for
rate calculation [34]. However, the language implementation does currently not contain an automated
handling of symmetries.
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3. Modeling population processes

These options differ in how explicit they make the calculation of the final reaction
propensity. More implicit approaches lead to simpler rate expression, but also require the
modeler to know how the rate expression is interpreted. Rule-based modeling languages
as introduced in the next chapter make this even more complex, as there a single
reaction rule might encode several reactions, which can simultaneously include homo-
and heteroreactions [207]. Without going into much detail yet, here is a simple example.
Consider a rule

C(v1) + C(v2)
kxy−−→ C(v1 + v2)

that merges two C entities and adds up their attributes values (modeling the entities’
volume, for example). The placeholder variables v1 and v2 can take equal or distinct values.
If they take equal values, both reactants are equal as well and we have a homoreaction.
If they take distinct values instead, the reactants are distinct and the reaction is a
heteroreaction. Depending on which of the approaches above has been chosen, these cases
might need to be handled differently by the modeler or the formalism. We shortly revisit
this issue in Section 6.1.1.

3.4. Summary

This chapter gives a short introduction to CTMCs, which are a valuable tool for simulation
modeling of biochemical reaction networks. One reason is that population processes can
be mapped very well to CTMCs. Another reason is the simplicity of CTMCs. A CTMC
can often be described with a small set of state transition rules.

Despite (or maybe because of) the simplicity of CTMCs, care must be taken when
translating from a modeling language to a CTMC. There is no consensus on a “right” way
of determining the rate for a state transition from the population sizes in the source state,
which might include instantiating several equivalent reactions. Established modeling
languages have taken different approaches and make different assumptions. This holds
the danger of ambiguities and misinterpretations about how a language implementation
executes a given model, which in turn can lead to wrong results from simulation studies.

One way to avoid ambiguities is to equip a language with a formal semantics. Then it
is not important to be familiar with the language implementation, and models can be
reasoned about on a more abstract level. Before looking into formal definitions, however,
we give an informal overview about modeling language concepts in the next chapter.
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4. ML-Rules and Biochemical Reaction
Networks

In the previous chapter we have seen how biochemical reaction networks (BRNs) can
be modeled as continuous-time Markov chains (CTMCs). Several DSLs for modeling
have adopted this idea. This chapter revolves around ML-Rules, a modeling language for
dynamically nested BRNs first proposed in 2011 [149]. We study ML-Rules and other
modeling languages in that domain as well as their relation.

4.1. Modeling biochemical reaction networks with ML-Rules

In the following, we introduce a model of the Wnt/β-catenin signaling pathway as
presented by Lee et al. [136] and transformed to a stochastic model by Mazemondet et al.
[150]. The Wnt/β-catenin signaling pathway plays an important role for the proliferation
and differentiation of human neural progenitor cells. It includes a number of cascading
processes that start outside of the cell and lead to effects in the cell core. In contrast to
later extensions [95], the model we consider here distinguishes only three locations: the
space outside the cell, the cell itself (the cytosol), and the cell core (the nucleus). We will
use this simple example model as a recurring example in the next chapters.

The model consists of 5 species and 12 reactions. An initial amount of extracellular Wnt
leads to the dephosphorylation of AxinP in the cell, yielding Axin. As AxinP degrades
β-catenin, the extracellular Wnt induces an increase of β-catenin in the cell. Subsequently,
β-catenin shuttles into the cell’s nucleus and triggers the production of Axin in the cell.
The Axin is phosphorylated and, thus, β-catenin is again increasingly degraded. As the
extracellular Wnt degrades over time, this negative feedback loop negates the effect of
the Wnt, and the model goes into a steady state. These species and reactions can be
visualized as a network (Figure 4.1).

Based on this example model, we will now introduce ML-Rules and its features. As this
means that we move from the abstract, formal space to a concrete technical implementation,
we use a mono-spaced font to denote ML-Rules snippets.

4.1.1. Reaction-based modeling

The first approach to modeling a biochemical system as a CTMC is just enumerating all
chemical species in the system as well as the reactions between them (see Section 3.2).
This level of abstraction is the basis of the systems biology markup language (SBML),
which is the de-facto standard exchange format in the systems biology community [107].
For example, SBML is one of the languages that is used to store and curate biological
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Figure 4.1.: A visualization of the species and reactions in the Wnt/β-catenin model. Plain
arrows denote reactions, and arrows with a bar behind a white arrow head
denote reactants that are not consumed, but still required for the reaction to
occur (“necessary stimulation” [135]). Double-ended arrows denote reversible
reactions. The symbol ∅ is used for reactions that either have no reactants
or products. Of the 12 reactions, we marked the reactions 2, 7, and 10. The
enumeration of the reactions is taken from the publication by Mazemondet
et al. [150].

models in the BioModels database [147]. As SBML is primarily designed to be machine-
readable rather that human-readable, it does not provide an interface for creating and
editing models and is not a modeling language per se. However, SBML model definitions
can be imported and exported by various tools that allow for performing modeling tasks
(including graphical tools [135]).

The following ML-Rules snippet specifies some species and the reaction 2 from the
model above:

Wnt(); Axin(); AxinP(); //declare species

Wnt:w + AxinP:a -> Wnt + Axin @ k2*#w*#a; // reaction no. 2 -> rate constant k2

This snippet shows a first difference between the more abstract paradigm and the im-
plementation in ML-Rules. ML-Rules is not fixed to mass action kinetics and requires
explicitly factoring the population sizes into the rate. Variables (w, a) can be bound to
the reactants, and #w and #a are then expressions that evaluate to the population sizes.
Thus, this reaction has a higher propensity if more Wnt is available, although no Wnt is
consumed. In particular, this reaction does not occur at all if Wnt is absent, because in
that case the rate is 0. This models the necessary stimulation as described in Figure 4.1.

4.1.2. Attributed entities and rule-based modeling

To be able to design models with a higher level of detail, the concept of attributed entities
has been introduced (also called multi-state entities [220]). Here, entities have a number
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4.1. Modeling biochemical reaction networks with ML-Rules

of attributes with values from specific value domains, giving each entity a local state. For
example, in the Wnt model the species Axin and AxinP are two states of the same protein
with a phosphorylation site. It can also be modeled as a species with an attribute that
can take on values representing “phosphorylated” and “not phosphorylated”.

Wnt(); Axin(bool); //declare species

Now each Axin entity will have an attribute which has one of the values true or false.
Thus, Axin becomes Axin(false) and AxinP becomes Axin(true).

In the example model it is easy to make this translation in both directions. In general
however, this poses a challenge for reaction-based modeling languages, as each attributed
entity can now have multiple realizations. If a specific attribute is irrelevant for a reaction,
the reaction would still need to be defined for each value of this attribute. If species
have more attributes and several attributed species interact, this leads to a combinatorial
explosion.

This shortcoming has led to the development of rule-based modeling languages, in
which reaction rules rather than reactions are specified [72]. The left hand side of a
reaction rule can contain variables, to which concrete values get assigned during pattern
matching against the actual solution. These variables can then be used to define the rate
and the products. Consequently, each reaction rule can lead to instantiating a number of
reactions, avoiding the combinatorial explosion. On the language design side, the concept
of reaction rules also provides means to manage the complexity of the modeled system. By
adopting a “don’t-care-don’t-write” attitude, reaction rules allowing omitting the context
of the reaction as much as possible and focusing on the reaction described by the rule.
The Wnt-stimulated Axin dephosphorylation in reaction 2 can now be expressed with
concrete attribute values.

Wnt:w + Axin(true):a -> Wnt + Axin(false) @ k2*#w*#a;

// Wnt:w + Axin(true, x):a -> Wnt + Axin(false, x) @ k2*#w*#a;

Below the actual rule, the snippet shows how the rule could look like if Axin had a second
attribute that remains unchanged by the reaction. Here, true and false are proper values,
whereas x is a variable. This second artificial rule demonstrates that the number of
necessary rules is independent of the possible values of the second attribute. Consequently,
attributes could have infinite domains, which is not possible in the pure reaction-based
paradigm.

Attributes in ML-Rules do not have canonical names and instead are identified by their
position in the list of attributes. Thus, in a reaction of two entities of the same species,
their attributes can be assigned different names. In the following (imaginary) rule, x1 and
x2 refer to the same attribute of the Axin entities a1 and a2, respectively:

Axin(x1):a1 + Axin(x2):a1 -> ...;

Other rule-based languages assign names to attributes, which allows omitting unchanged
attributes instead of repeating them on both sides of the reaction rule. In terms of
programming language concepts, ML-Rules’ entities with positional attributes can be com-
pared to tuples, whereas entities named with named attributes correspond to records [189,
pp. 128ff.].
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Rule-based modeling approaches can also be distinguished regarding the effect of a
reaction. Whereas ML-Rules supports reactions that create or remove entities from a
solution, it also allows to model that entities bind to each other. Thus, some of the
reactant’s attributes are modified to denote that they are connected as a result of the
reaction. For example, in the following snippet two A entities are linked by assigning a
new, unused, and unique shared value (generated by nu()1) to one of their attributes.

A(link,link);

A(l,free):a1 + A(free,r):a2 -> A(l,x) + A(x,r) @#a1*#a2 where x = nu();

This way, A entities can form chains. Again, this can not be expressed in the reaction-based
paradigm. First, a species would have to be introduced for each possible chain length,
which can theoretically be infinite. Second, species linked in a chain are also still reactants
for other rules, whereas for each new species representing linked entities all rules would
have to be duplicated.

Finally, ML-Rules also supports arbitrary functions to encode the effect of a reaction.
With “functions on solutions”, which were introduced in Warnke, Helms, and Uhrmacher
[239], the right side of a reaction rule can contain function calls that yield solutions. This
feature can be used to encode reaction effects that are hard or impossible to express with
pattern matching (see Section 4.1.4).

4.1.3. Static and dynamic compartments

A model aspect that is central to BRNs is compartmentalization [247]. By modeling a
system as a set of compartments in and between which different processes occur, the
natural structure of biochemical systems can be approximated. Particularly interesting
are the concepts of upward causation (the contents of a compartment influence the
compartment’s dynamics) and downward causation (the compartment influences the
dynamics of its contents). Both patterns of causal relation are common in biological
systems [41]. This leads to nested systems with several levels of compartments and
sub-compartments, for example a compartment with cells, where each cell contains a cell
nucleus and/or different kinds of organelles (e.g., mitochondria). To make the structure
of the Wnt model explicit, we can introduce the additional compartmental species Cell

and Nucleus. We can also merge both β-catenin species and distinguish them regarding
their location. Bcat is then either in the Cell or the Nucleus, and the shuttling into the
nucleus (reaction 10) can be expressed with a rule.

Cell()[]; Nucleus()[]; // [] denotes a compartmental species

Bcat(); Wnt(); Axin(bool);

Wnt:w + Cell[Axin(true):a + s?]:c -> Wnt + Cell[Axin(false) + s?] @ k2*#c*#w*#a;

Bcat:b + Nucleus[s?] -> Nucleus[Bcat + s?] @ k10*#b;

1The name nu() for the function generating new unused values is inspired by the operator ν in the
π-calculus playing the same role [158]. We will later also use the symbol ν for this operator in the
formal definition of ML-Rules.
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The Axin(true) in the first rule is now matched in the subsolution of the Cell, and the
variable s? holds all the remaining entities in that subsolution. Therefore, s? is called the
“rest-solution”. By also using s? on the right side, all unmatched entities are unaffected
by the reaction. In the second rule, we can omit the population size for Nucleus, as a cell
always has exactly one nucleus. Similar to the introduction of attributes, the translation
from two β-catenin species to one species located in two compartments and back is
straightforward for this simple model. In more complex models, however, this can lead
to much more succinct models, as one rule that can be applied in all compartments can
replace many reactions, each for one compartment.

Compartmental species can also have attributes, which can then factor into the reaction
rate. For example, the volume of the surrounding cell can be factored in the rate
expression (downward causation) to model the degradation of cytosolic Bcat stimulated
by phosphorylated Axin (Axin(true)) with correct mass action kinetics (reaction 7). As a
reaction with two reactants, the rate is divided by the cell’s volume (see Section 3.3):

Cell(num)[]; // Cell is a compartmental species with one attribute

Bcat(); Axin(bool);

Cell(vol)[Axin(true):a + Bcat + s?]:c ->

Cell(vol)[Axin(true) + s?] @ k7*#c*#w*#a/vol;

Conversely, a rule could express that the volume changes as a result of some reaction in
the cell (upward causation).

Furthermore, a number of biological processes involves the creation, destruction, and
modification of compartments during the simulation. In ML-Rules, dynamic compartments
can be implemented naturally by having differently nested compartmental entities on the
left and right rule side. For example, we can express cell division as replacing one cell
with two cells [149]:

Cell(v)[s?]:c -> Cell(v/2)[s?] + Cell(v/2)[s?];

However, we have duplicated the contents of the dividing cell (the subsolution s?). To
distribute the contents among the successor cells instead, we need the next feature of
ML-Rules: functions on solutions.

4.1.4. User-defined functions and functions on solutions

An important feature of modeling languages for BRNs that is required to cope with the
ever-increasing complexity of models is the ability to define and invoke functions. SBML,
for example, allows for mathematical expressions to determine the rate of a reaction.
However, functions are not only useful for the calculation of rates. In ML-Rules, arbitrary
functions can also be used to calculate attribute values of reaction products, or to define
reaction constraints based on the context in which a reaction takes place. As the following
snippet shows, the syntax for function definitions is inspired by Haskell:

max :: num -> num -> num; // declaration of function signature

max x y = if(x > y) then x else y; // definition
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ML-Rules also allows “functions on solutions”. These allow, for example, counting how
many entities of a specific type exist in a solution without making them reactants.
Functions of solutions can also return solutions. The utility of functions on solutions
depends on the idea of rest-solutions, as binding a rest-solution to a variable allows using
it as a function argument. For example, we can now fix the cell division rule from the
previous section using functions halfl and halfr. halfl(s?) and halfr(s?) distribute the
entities in s? into two solutions such that halfl(s?)+ halfr(s?) = s?2.

Cell(v)[s?]:c -> Cell(v/2)[halfl(s?)] + Cell(v/2)[halfr(s?)];

4.1.5. Deterministic events

Simulation models are typically initialized with a certain state and simulated until some
stop condition (e.g., reaching a specific simulation time or a steady state). To model
changes in the context of the model or extrinsic perturbations during the simulation,
ML-Rules allows adding deterministic events. These are executed by the simulation
algorithm at a specified time. For example, in a model of metastatic cancer, treatments
such as chemotherapy can be modeled this way [20]. However, deterministic events can
not be expressed with CTMC-based languages.

4.1.6. Modularization

To facilitate working with big models, some modeling languages provide constructs to
factor out submodels. This is particularly helpful for recurring submodels, which can be
reused multiple times after definition. Fully leveraging such modularization techniques
requires that the modules can be parameterized. ML-Rules has no explicit support for
model modularization and composition, but ML-Rules models have been successfully
composed. For example, Haack et al. [95] composed three sub-models to investigate the
interaction of intracellular and membrane kinetics in the Wnt pathway.

4.2. Other Modeling Languages for Biochemical Reaction
Networks

Before and after the development of ML-Rules a plethora of other modeling languages
have been developed. Each of these languages is influenced by earlier languages, and some
languages are still actively developed. The individual modeling languages can mainly be
distinguished by the set of features they support. We focus on the definition of reactions
and rules in each language, and show snippets of the concrete syntax for illustrative
purposes. All following examples have been successfully tested in the currently available
language implementations.

2Note that this implies halfl(s?) ̸= halfr(s?) if an entity population in s? has an odd size.
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4.2.1. Antimony

Antimony is one of the most popular tools for creating SBML-conforming models [217].
It is implemented as an external DSL with a feature set that largely matches SBML. In
contrast to the XML-based SBML, however, Antimony offers a succinct, human-readable
syntax. For example, a reaction of two species L and R producing an LR can be defined as
follows:

L + R -> LR; k*L*R

The reaction rate is the product of a rate constant k with the population sizes of both
reactant species to implement mass-action kinetics. Although, due to the limitations
of SBML, Antimony currently does not support attributes and rule-based modeling, it
provides some additional features. For example, the definition and reuse of modules
facilitates composing models by identifying species in different modules. When exporting,
modules are flattened to plain SBML and, thus, can be executed with all SBML-compatible
tools.

4.2.2. BNGL

The BioNetGen Language (BNGL) is a rule-based modeling language [25]. Like other
rule-based approaches, BNGL adopts a “don’t-care-don’t-write” attitude, meaning that
only the aspects of the reaction rule that are necessary for its description have to be
written down. For example, BNGL allows omitting the attributes of the reacting entities
that do not play a role in the reaction rule. BNGL provides discrete attributes and has
been designed with an emphasis on binding reactants. Similar as above, the following
rule describes a reaction of two species L and R with free binding sites r and l, which are
bound to each other as a result of the reaction.

L(r) + R(l) -> L(r!1).R(l!1) k

Only the rate constant k must be given, as the numbers of available reactants are implic-
itly factored into the rate (mass action kinetics). Through its extension compartmental
BNGL (cBNGL), BNGL supports a fixed hierarchy of compartments that can be defined
and then used in rules to constrain reactions [97]. Furthermore, the network-free simulator
NFSim allows extending BNGL models with bounded integer-valued attributes [218].
However, attributes in BNGL serve primarily to encode links between entities.

4.2.3. The κ-calculus

The κ-calculus is, similarly to BNGL, a rule-based modeling language that focuses on
rules that create or dissolve bindings between entities [56]. The following rule is the
equivalent of the above BNGL rule in κ-calculus, where . denotes an unbound binding
site:

L(r[.]),R(l[.]) -> L(r[1]),R(l[1]) @ 'k'
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LBS-κ [182] is an extension of the κ-calculus that allows for modularization. Thus,
models can be disassembled into reusable components. LBS-κ also enables the generation
of model code through embedded F# scripts. A script with a loop, for example, can be
used to generate many similar model components by generating a slightly similar string
in each iteration. All strings can then be concatenated and inserted in the model code.
Moreover, LBS-κ adds static compartments to the κ-calculus.

More recently, the κ-calculus has been extended with bounded counters, which allow
abstracting over rules and entity states with natural-number-typed attributes [32]. Simi-
larly to BNGL, however, the κ-calculus uses attributes primarily to encode links between
entities.

4.2.4. PySB

Some modeling languages for BRNs have been defined as internal DSLs. PySB is one
of the most prominent examples [142]. The language is based on the GPL Python and
employs Python’s programming constructs to structure the definition of models. Recurring
model components can be wrapped in macros, which can then be invoked in concrete
model descriptions. A sophisticated system of inheritance techniques further enables
reusing models. To execute a model, PySB can communicate with BioNetGen, Kappa, or
other external software. Thus, PySB is a rule-based language that adds programmatic
modularization and reusability to BNGL and the κ-calculus. Individual rules can be
defined in a way that resembles the syntax of those languages. This syntactical freedom
is achieved by overloading operators as well as macros and other metaprogramming
techniques. However, the set of available operator symbols is constrained by Python. For
example, PySB uses >> to separate the left and right rule side, as the more common -> is
reserved by Python. The above BNGL rule

L(r) + R(l) -> L(r!1).R(l!1) k

can be encoded in PySB as

Rule('L_binds_R', L(r=None) + R(l=None) >> L(r=1)

4.2.5. Chromar

Chromar is a Haskell-based internal DSL for rule-based modeling of BRNs [106]. The
language implementation is purely functional and reuses many of Haskell’s features. To
offer the typical rule syntax, Chromar uses quasi-quotation, a technique for macro-like
compile-time code manipulation. The rule expression inside the quasi-quotes is parsed
and transformed to valid Haskell code. Thus, Chromar can be characterized as an internal
DSL with a sublanguage for rule definition, which is an external DSL. As an internal
DSL, Haskell’s features for abstraction, modularization, and reuse can be employed for
Chromar models.

In contrast to BNGL and the κ-calculus, Chromar does not use attributes for linking
entities, but rather to equip entities with a local state. Therefore, we use another example
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rule than above. The following Chromar rule expresses that two A entities may react by
incrementing the x attribute of one reactant and decrementing the x attribute of the other.
A guard is defined to prohibit that values of x fall below zero.

[rule| A{x=x}, A{x=y} --> A{x='x+1'}, A{x='y-1'} @ '1.0' ['y > 0'] |]

4.2.6. ℓ

The modeling language ℓ also allows for embedding GPL code in the model [256]. Here,
however, the code is not used to generate model components, but rather to augment
reaction rules with imperative blocks. If a rule contains such a block, the code in it is
executed when a reaction derived from the rule occurs. This way, complex model behavior
can be implemented imperatively as a sequence of commands in a programming language
that resembles C#. The Chromar rule above can be expressed in ℓ with a dyn block with
a conditional rate and by accessing the matched reactants directly in a react code block:

dyn [A] [A]

when reagent_2.first(A{}).x > 1 rate 1.0

react

var a1 := reagent_1.first(A{});

var a2 := reagent_2.first(A{});

a1.x := a1.x + 1;

a2.x := a2.x - 1;

end

However, the available (closed-source) implementation does not contain the method
first that is described in the corresponding paper and used to access the individual
reactants. Thus, some workarounds are necessary to express a rule as the one above.

4.3. Summary

BRNs can be very effectively modeled with reaction- or rule-based languages, as reactions
or rules can be defined independent of each other and models mainly are an enumeration of
rules. However, different approaches to define rules exist. Various language concepts have
evolved due to the individual languages’ different feature sets and the different research
questions they tackle. Even though the implementation strategies of the individual
languages differ, the user-facing syntax and semantics are quite homogeneous. Table 4.1
shows an overview of the features of the surveyed modeling languages in comparison to
ML-Rules.

One important conclusion is the central role of attributes. The expressive power of a
particular language is tightly connected to its usage of attributes. For example, BNGL
and the κ-calculus focus on defining binding links between entities by assigning shared
attribute values to them. ML-Rules’s subsolution in square brackets [] can be interpreted
as an attribute with a solution as its value. In addition, attribute values can be used in
rate expressions to constrain a reaction or influence its propensity. The expressive power
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Feature Language
Antimony BNGL κ-calculus ML-Rules PySB Chromar ℓ

Citation [217] [25] [56] [149] [142] [106] [256]

Attributes
discrete ✓ ✓ ✓ ✓ ✓ ✓
continuous ✓ ✓ ✓

Compartments
static ✓ ✓ ✓ ✓ ✓ ✓
dynamic ✓

User-defined functions ✓ ✓ ✓ ✓ ✓ ✓ ✓

Reaction effect
Replacement ✓ ✓ ✓ ✓ ✓ ✓ ✓
Bindings ✓ ✓ ✓ ✓ ✓
Custom Code ✓ ✓ ✓

Deterministic events ✓ ✓ ✓ ✓

Modularization ✓ ✓ ✓

Table 4.1.: Features of modeling languages for biochemical reaction networks

of attributes has been recognized and lead to the development of tailored DSLs outside
the simulation community as well [5, 59].

ML-Rules distinctive feature in comparison to all other languages is its support for
dynamic compartments. This is a fundamental difference, similar to the distinction of
discrete and continuous attributes. First, this requires that rules need to be applied in
all (sub)solutions, because it is not known which compartments will exist when running
the model. Second, models with only static compartments and discrete attributes can be
“flattened” by specializing the species definitions to all possible combinations of attribute
values and locations. Continuous attributes, dynamic compartments, and unrestricted
binding, however, makes the number of species infinite, which makes it impossible to
enumerate them. Thus, any of these enables a modeling language to express models that
can not be expressed with simpler languages. As ML-Rules has all of these features, it
is among the most powerful modeling languages for BRNs. We will return to relating
the formal expressiveness of languages in Section 5.5.4 after having discussed the formal
semantics of ML-Rules.
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We now give the abstract syntax and formal semantics of ML-Rules in an incremental
fashion. Starting with a very simple version of the language, we make the language more
expressive by adding new features in every step. In the end, we arrive at the full expressive
power of ML-Rules. We then look into some example models and use the formalized
language description as the basis for discussing ML-Rules and its distinctive features.

5.1. Population vector semantics and reaction-based
modeling

For the first incarnation of ML-Rules, the semantics will be based on encoding solutions1

as vectors. A reaction is characterized by its change vector (which can be easily determined
as Products− Reactants) and its rate constant. This approach relies on models with a
known finite number of populations, as described in Section 4.1.1. Later, we relax this
constraint to enable the description of more complex models.

For the definitions, we rely on some prerequisites. We assume that there is a known
number n of species in the model. As shown in Section 3.2, the population sizes of all
species can then be represented as a vector. The set of species names is S, and the
bijective function idx : S → {1, . . . , n} maps each species to a unique number. For now
we also assume that the change vectors of all reactions are distinct and non-zero. All
bold variables, such as x, are vectors with n elements, where the i-th element represents
the size of the population of the i-th species. For example, given two species A,B ∈ S a
solution with 2 A entities and 3 B entities could be denoted as x = (2, 3) with idx (A) = 1
and idx (B) = 2.

The abstract syntax of this first, simple language can be defined in two EBNF rules. In
a reaction, reactants and products are represented as lists of species names. Each species
name is preceded by a count c. When writing example rules, we do not require writing a
count of 1 and just assume the count to be 1 if it is not explicitly given. Note that, for
simplicity, we do not restrict usage of ∅. Thus, reactions such as ∅+ ∅+ S

r−→ ∅+ ∅ are
allowed. The semantics will be responsible for handling those correctly.

1In the following, we will use the terms solution (in the biological sense) and state (of a CTMC) as
synonyms.
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sol ::= solution
cS c ∈ N, S ∈ S population
sol + sol addition
∅ empty solution

reac ::= sol
r−→ sol r ∈ R reaction

Note that we do not define the abstract syntax of a complete model. Instead, we assume
that a model consists of a set of reactions as defined by the syntax rule reac.

We define the operational semantics of the language with a big-step operator ⇓ that
ultimately maps a model to a CTMC. The big-step operator is parameterized with a
source state x. ⇓x maps each reac to a transition from the state x to a successor state x′

with a specific propensity p, if such a transition exists. Then p is the entry qx,x′ of the
CTMC’s q-matrix. Because we assume that the change vectors of all reactions are distinct
and non-zero, we can get at most one p for each qx,x′ with x ̸= x′, and no entries qx,x on
the diagonal. All entries of the q-matrix for which no value is induced by the reactions of
the model are assumed to be zero (or, for entries on the diagonal, the negative line sum
as introduced in Section 3.1.2).

(EMPTY)
∅ ⇓x 0

(NAME)

v ∈ Rn vi =

{︄
c i = idx (S)

0 otherwise

cS ⇓x v

(SUM)
sol1 ⇓x v1 sol2 ⇓x v2 v = v1 + v2

sol1 + sol2 ⇓x v

(REACTION)
sol1 ⇓x l sol2 ⇓x k l ≤ x x′ = x− l+ k p = r ·

∏︁n
i=1

(︁
xi
li

)︁
sol1

r−→ sol2 ⇓x qx,x′ = p

The left and the right side of a reaction are evaluated to vectors l and k that represent
the entities consumed and produced by the reaction, respectively. A transition can only
occur if the current state x contains at least the entities in l. Then the result of evaluating
the reaction is a state transition from x to x′, where x′ results from removing l from x
and adding k instead. The propensity of this transition is determined from the number
of available and needed reactants by the law of mass action kinetics (see Section 3.3).
As a result, a reaction evaluates to an entry in the q-matrix of the underlying CTMC.
This way, the transitions between the states of the predator-prey model as depicted in
Figure 3.3 are generated from the following reactions:
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3A 2A

3k

3l

(a) Each of the two reactions induces a state
transition to the same successor state.

3A 2A
3k + 3l

(b) Both state transitions merged by summing
their propensities, yielding the unique tran-
sition between the states 3A and 2A.

Figure 5.1.: Two state transitions are induced by the reactions A k−→ ∅ and 2A
l−→ A in the

state 3A. Both lead to the successor state 2A. The overall propensity for the
transition to 2A is obtained by summing the propensities of the individual
transitions.

Prey λ−→ 2Prey

Predator β−→ ∅

Predator + Prey α−→ 2 Predator

Before proceeding, we reconsider our assumption that the change vectors of all reactions
are distinct. This assumption is quickly violated, for example with the reactions A

k−→ ∅
and 2A

l−→ A. In each state with at least two A entities, both reactions induce a transition
to a successor state with one less A entity. In that case the transition rate to that successor
state must be the sum of both reactions’ propensities (see Figure 5.1).

The issue of composing competing state transitions, some of which may lead to the
same destination state, is central to defining the semantics of modeling languages with
CTMC semantics [60]. There are essentially two ways of addressing this issue. First, with
an appropriate encoding of state transitions, their composition can be expressed directly
as shown by De Nicola et al. [58]. Roughly speaking, the approach inserts an additional
layer of continuation functions in the mapping of syntax to the CTMC. By defining
appropriate operations on these continuation functions, transitions can be composed
elegantly. The other way of dealing with composition of state transition uses a two-step
approach. It first constructs a “proto-CMTC” in which multiple transitions between a
pair of state are allowed, and then in a second step sums up the transitions’ rates to
obtain the overall rate2.

As we are mostly concerned with constructing the individual state transitions, we adopt
the second approach. From now on, we will denote such transitions from one state x to

2Note that the SSA as presented in Section 3.1.4 can omit the second step of conflating transitions to
the same destination state. It still works correctly if it samples transitions in the “proto-CTMC”. Our
implementations of ML-Rules will exploit this as well.
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another state x′ with a propensity of p as x
p
=⇒ x′. The operational semantics will yield

such transitions, and the entry in the q-matrix is defined as the sum of the propensities
of all transitions from x to x′. This sum is defined over a multiset (see Appendix A), as
multiple reactions can yield the same propensity p. We also exploit that our model is
defined as a set of reactions, which allows us to write statements about all reactions as
multiset comprehensions with reac ∈ Model . We replace the rule (REACTION) with the
following two rules:

(REACTION)
sol1 ⇓x l sol2 ⇓x k l ≤ x x′ = x− l+ k p = r ·

∏︁n
i=1

(︁
xi
li

)︁
sol1

r−→ sol2 ⇓x x
p
=⇒ x′

(Q)
qx,x′ =

∑︁{︂
p | reac ⇓x x

p
=⇒ x′, reac ∈ Model

⃓⃓⃓}︂
The premises of the rule (REACTION) are unchanged. They still express that the left

side of a reaction must be a subset of the current solution and that the propensity is
calculated according to mass action kinetics. The resulting state transitions are conflated
by the rule (Q). In the next sections, we will omit rule (Q) and only define the CTMC
up to the reactions x

p
=⇒ x′ with source and destination states as well as the propensity.

5.2. Rule-based modeling: attributed species, pattern
matching, and rate expressions

The next incarnation of ML-Rules now allows assigning attributes to each species. Conse-
quently, the left sides of reactions do not necessarily refer to concrete species anymore,
but can use patterns with variables, which are matched to the concrete state. This
way, we avoid the combinatorial explosion caused by having to write a reaction for each
combination of attribute values. Thus, our model description stays succinct by using
patterns. This is the paradigm of rule-based modeling, where we specify a model with
reaction rules instead of reactions (see Section 4.1.2). When applied to a concrete state,
several reactions can be instantiated for each rule.

For example, consider a model of a species with a volume attribute. We can express
that the entities can merge and split while preserving the overall volume in two rules:

A(v1) +A(v2)
rm−−→ A(v1 + v2)

A(v)
rs·v−−→ 2A(v ÷ 2)

We use variable names on the left side of the rule and determine new values for the
attributes via expressions over these variables (and constants). For now, we restrict the
attribute values to the reals and the expressions to standard arithmetic expressions. We
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will add more types and a type system later. The second rule shows that we can also use
expressions to calculate the rate of the resulting reaction in dependence on the attribute
values. Here we make larger As more likely to split.

The abstract syntax must be adapted to include patterns and expressions. To represent
the variables, we additionally need a set of variable names V. We additionally assume
a function ar : S → N0 that assigns an arity to each species name. Further, for any
syntactical element a, we write ã to refer to a vector (a1, . . . , an), where n is clear from
context.

e ::= expression
c c ∈ R constant
x x ∈ V variable
e+ e | e− e | e · e | e÷ e arithmetics

sol ::= solution
cS(ẽ) c ∈ N, S ∈ S entity
sol + sol addition
∅ empty solution

rule ::= sol1
e−→ sol2 fv(sol2) ∪ fv(e) ⊆ fv(sol1) rule

We make sure that all variables that are used in the rate expression of a rule or on
its right side have already been used on the left side by relating the free variables. fv(·)
determines the set of all unbound variable names in a term. As we do not have a binding
construct in the language yet, these are all variable names.

Introducing real-valued attributes has important consequences for the semantic founda-
tion of the language. As there are uncountably infinitely many valuations of each species,
we can no longer represent a solution with a vector of population sizes. However, we can
still define a semantics that evaluates rules transitions in an underlying CTMC. To this
end, we now represent solutions by multisets A = (A,nA) (see Appendix A). A will be a
subset of all possible entity valuations of all species: A ⊆ {S(ṽ)|S ∈ S, ṽ ∈ Rn, n = ar(S)}.
For example, given a species C ∈ S with ar(C) = 1 a solution that consists of 3 C entities
with an attribute value of 1 and one C entity with an attribute value of 2 is written as
the multiset

{︁
C(1)3, C(2)

⃓⃓}︁
, whereas the same entities would be written as 3C(1) + C(2)

in the abstract syntax. In both cases, we allow omitting the count if it is 1.
The operational semantics is shown below. The big-step evaluator is now ⇓A,σ and

parameterized with the current solution as a multiset A and a variable assignment
σ : V → R. We use the metavariables A,B, C, . . . to range over multisets of entities, and
v, v1, v2, . . . for the values of expressions, which are real numbers for now.
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(CONSTANT)
c ⇓A,σ c

(VAR)
σ(x) = v

x ⇓A,σ v
(PLUS)

e1 ⇓A,σ v1 e2 ⇓A,σ v2

e1 + e2 ⇓A,σ v1 + v2

(ENTITY)

ẽ = (e1, . . . , en) ṽ = (v1, . . . , vn)
e1 ⇓A,σ v1 . . . en ⇓A,σ vn

cS(ẽ) ⇓A,σ {|S(ṽ)c|}

(SUM)
sol1 ⇓A,σ B sol2 ⇓A,σ C
sol1 + sol2 ⇓A,σ B ⊎ C

(EMPTY)
∅ ⇓A,σ ∅

(RULE)

sol1 ⇓A,σ B sol2 ⇓A,σ C e ⇓A,σ v B ⊆ A D = A⊖ B ⊎ C
A = (A,nA) B = (B,nB) p = v

∏︁
a∈A

(︁nA(a)
nB(a)

)︁
sol1

e−→ sol2 ⇓A,σ A
p
=⇒ D

The evaluation of expressions is straightforward. Variables are read from the variable
assignment σ. The assignment is never modified in any inference rule, meaning that a
variable has the same value at all use sites. We give the inference rule (PLUS) as an
example for defining an arithmetic operation and omit the ones for other operations.

The rule (ENTITY) allows defining entities as reactants as well as products of rules.
Each attribute value is computed from an expression, which enables binding variables to
values on the left rule side as well as calculating new attribute values on the right rule
side.

In the inference rule (RULE) we rely on the submultiset relation ⊆ as well as multiset
difference ⊖ and sum ⊎ (see Appendix A). Apart from the adaptations for replacing
vectors with multisets, the instantiation of reactions works similarly as in the previous
section. The current solution must contain at least the needed reactants. The successor
state is the result of removing the reactants from the current solution and adding the
products instead. To calculate the propensity, we rely on the multiplicities of the entities
as encoded in the multisets.

Note that now one rule can induce several state transitions from a given state by
instantiating it with different variable assignments σ. This is different than in the
last section, where one reac induced at most one transition per state. Moreover, the
destination states of transitions induced by one rule are not necessarily distinct. For
example, consider the rule A(x) + A(y)

k−→ A(x + y) (Figure 5.2). If some σ induces a
transition to a destination state, the same destination state is reached with the transition
induced by σ′ with σ′(x) = σ(y) and σ′(y) = σ(x). In general, however, different matches
lead to different destination states3 [106].

3The question of whether two matches lead to same destination states is also discussed in the Kappa
manual [34]. Also see Section 3.3.2.
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2A(1)
2A(2)

A(1)
A(2)

A(3)

3A(2)

2A(1)
A(4)

σ(x) = 1
σ(y) = 1

σ(x) = 2
σ(y) = 2

σ(x) = 1
σ(y) = 2

σ(x) = 2

σ(y) = 1

(a) Four different variable valuations σ lead to
state transitions.

2A(1)
2A(2)

A(1)
A(2)

A(3)

3A(2)

2A(1)
A(4)

k

8k

k

(b) The state transitions merged by summing
their propensities.

Figure 5.2.: The state transitions induced by the rule A(x)+A(y)
k−→ A(x+y) in the state

2A(1) + 2A(2). Four state transitions lead to three successor states. The
uppermost and lowermost transitions correspond to homoreactions, whereas
the two center transitions correspond to heteroreactions (see Section 3.3.2).
The successor state is the same if the values for x and y are flipped.

5.3. Beyond mass action kinetics: types, functions, and
generalized rates

Whereas mass action kinetics are frequently used, they are by no means the only way to
define reaction rates. In fact, many biochemical phenomena can only be modeled by using
alternative kinetics. For example, the bistable toggle switch has the following form [103]:

∅
c1

c2+(#B)2−−−−−−→ A A
c3·#A−−−−→ ∅

∅
c4

c5+(#A)2−−−−−−→ B B
c6·#B−−−−→ ∅,

where the ci are positive constants and #S is the number of entities of species S in the
current state. To implement such kinetics, we allow the modeler to explicitly specify how
the rate depends on the population sizes. More generally, we now allow more kinds of
values and, additionally, add functions that operate on different types of values. A type
system makes sure that values have the correct type for their use.

We start by defining the available types τ as the set of the base types for natural
numbers, real numbers, character strings, entities, and solutions. Whereas solutions
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sol represent general multisets of entities, the type entities ent is used to represent one
reactant of a reaction. This reactant can have a multiplicity > 1. Consequently, values of
type ent are also multisets (with only one element with a non-zero multiplicity).

Constants now have an arity, which allows encoding functions. Thus, we introduce
a set of typed n-ary constants F = {f : τ1 × . . . × τn → τ ′, . . .}, where ar(f) = n
denotes the arity of f . For each f : τ1 × · · · × τn → τ ′ ∈ F , there exists a function
[[f ]] : Vals(τ1) × · · · × Vals(τn) → Vals(τ ′), where Vals(τ) denotes the set of values of
type τ . The constants in F can encode various functions, including arithmetic operations
or an if-then-else construct. Constants with an arity of zero are just typed constant values.
Similarly, the set of species names includes types: S = {S : τ̃ , . . .}. Variables get assigned
a type, too: V = {x : τ, . . .}.

Expressions consist of constants that are applied to the correct number of arguments, an
operator cur that represents the current solution (cf. John et al. [113]), and expressions
to construct solutions. Consequently, the right side of a rule is now an expression. The
left side of a rule is a pattern, which now also allows adding a variable to a matched entity
pattern.

τ ::= type
nat natural number
real real number
string character string
ent entity
sol solution

e ::= expression
f(e1, . . . , en) f ∈ F , ar(f) = n application
x x ∈ V variable
cur current solution
eS(ẽ) entity
e+ e addition
∅sol empty solution

pat ::= pattern
cS(ẽ) ▷ x c ∈ F , ar(c) = 0, S ∈ S, x ∈ V entity pattern
pat + pat addition
∅pat empty pattern

rule ::= pat
e1−→ e2 (fv(e1) ∪ fv(e2)) ⊆ fv(p) rule

To allow defining rates in dependence on the reactant’s population sizes, we can now
define a function symbol count : (ent × sol) → nat. The expression count(s,A) can be
evaluated with s being an entity and A being a solution. It will count how often s occurs
in A. count ignores the multiplicity of s. If the multiplicity of s shall be taken into account,
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it can be factored in manually.

[[count]](s,A) = [[count]]({|S(ṽ)v|} , (A,nA)) =

{︄
nA(S(ṽ)) S(ṽ) ∈ A

0 otherwise

Now we can express the rules for the bistable toggle switch above in ML-Rules, by using
cur to obtain the current solution and counting As and Bs:

∅
c1

c2+(count(B,cur))2−−−−−−−−−−→ A A
c3·count(A,cur)−−−−−−−−−→ ∅

∅
c4

c5+(count(A,cur))2−−−−−−−−−−→ B B
c6·count(B,cur)−−−−−−−−−→ ∅,

count can also be used to express mass action kinetics (see Section 3.3). This is
facilitated by equipping a reactant pattern with a pattern variable, which can then be
used as the first argument for count. For example, in Figure 5.2 we considered the rule
A(x) +A(y)

k−→ A(x+ y). We now express this as A(x) ▷ ax +A(y) ▷ ay
k·ma−−−→ A(x+ y),

where the mass action factor ma is

ma =

{︄
count(ax, cur) · count(ay, cur) x ̸= y

count(ax, cur) · (count(ax, cur)− 1) · 1/2 x = y

The first case handles heteroreactions (the center transitions in Figure 5.2), whereas
the second case handles homoreactions (the uppermost and lowermost transitions in
Figure 5.2). In practice, this distinction of cases can be expressed with an if-then-else

construct comparing x and y4. This way, the calculation of propensities for a reaction is
explicit (also see Section 3.3.2). Different approaches or interpretations of the kinetics
can be encoded directly in the rate expression. For example, for every transition with
x ̸= y there is a transition with x and y flipped leading to the same successor state. If
the modeler decides that one combination of values for x and y should induce only one
transition, she could replace x ̸= y with x < y and let the rate be 0 if x > y.

4As Honorato-Zimmer et al. [106] put it, such distinctions require “a sufficiently rich stock of conditional
expressions for rate expressions”.

67



5. Syntax and semantics of ML-Rules

(CONSTANT)
e1 ⇓A,σ v1 . . . en ⇓A,σ vn

f(e1, . . . , en) ⇓A,σ [[f ]](v1, . . . , vn)
(VAR)

σ(x) = v

x ⇓A,σ v

(CUR)
cur ⇓A,σ A

(ENTITY)

ẽ = (e1, . . . , en) ṽ = (v1, . . . , vn)
e1 ⇓A,σ v1 . . . en ⇓A,σ vn e ⇓A,σ v

eS(ẽ) ⇓A,σ {|S(ṽ)v|}

(SOL-SUM)
e1 ⇓A,σ B e2 ⇓A,σ C
e1 + e2 ⇓A,σ B ⊎ C

(SOL-EMPTY)
∅sol ⇓A,σ ∅

(PATTERN)

ẽ = (e1, . . . , en) ṽ = (v1, . . . , vn)
e1 ⇓A,σ v1 . . . en ⇓A,σ vn a = {|S(ṽ)c|} σ(x) = a

cS(ẽ) ▷ x ⇓A,σ a

(PAT-SUM)
pat1 ⇓A,σ B pat2 ⇓A,σ C
pat1 + pat2 ⇓A,σ B ⊎ C

(PAT-EMPTY)
∅pat ⇓A,σ ∅

(RULE)
pat ⇓A,σ B e2 ⇓A,σ C B ⊆ A D = A⊖ B ⊎ C e1 ⇓A,σ v

pat
e1−→ e2 ⇓A,σ A

v
=⇒ D

The semantics separates terms for patterns (which only appear on the left side of the
rule) from entities and solutions (which only appear on the right side of the rule). The
inference rule (RULE) is again only slightly adapted from the previous version. We
replaced the implicit calculation of a reaction propensity according to mass action kinetics
with a propensity explicitly defined as an expression.

The new inference rule (PATTERN) requires some further explanation. It handles the
evaluation of an entity pattern cS(ẽ) ▷ x to a concrete entity a, making sure that the
variable assignment σ maps x to a. a contains the c needed copies of the reactant entity.
Thus, x is also mapped to all needed copies of the reactant, and when x is added as a
product of the rule, the entities a are not consumed, but remain unchanged. For example,
in a rule like

3A(x, y, z) ▷ a+B() ▷ b
·−→ a,

only the B entity is consumed, and the 3 A entities are not affected.
With the introduction of functions that operate on entities and solutions, we have to

make sure that the types in each rule definition line up. Therefore, we define a type system
that handles each syntactical form. Most of the type constraints are straightforward. The
main task of the type system is to make sure that all expressions evaluate to a value of
the correct type. For example, the rate in a rule must be a real number, whereas the left
and the right rule side must be solutions.
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5.4. Modeling structure: compartments, rest solution, links

(T-CONSTANT)
f : τ1 × · · · × τn → τ ′ ∈ C ⊢ e1 : τ1 . . . ⊢ en : τn

⊢ f(e1, . . . , en) : τ
′

(T-VAR) x : τ ∈ V
⊢ x : τ

(T-CUR) ⊢ cur : sol

(T-ENTITY)

S : (τ1, . . . , τn) ∈ S ẽ = (e1, . . . , en)
⊢ e1 : τ1 . . . ⊢ en : τn ⊢ e : nat

⊢ eS(ẽ) : ent

(T-SOL-SUM)
⊢ sol1 : sol ⊢ sol2 : sol

⊢ sol1 + sol2 : sol
(T-SOL-EMPTY)

⊢ ∅sol : sol

(T-ENTITY-SOL) ⊢ sol : ent
⊢ sol : sol

(T-PATTERN)

S : (τ1, . . . , τn) ∈ S ẽ = (e1, . . . , en)
⊢ e1 : τ1 . . . ⊢ en : τn ⊢ c : nat ⊢ x : ent

⊢ cS(ẽ) ▷ x : ent

(T-PAT-SUM)
⊢ pat1 : sol ⊢ pat2 : sol

⊢ pat1 + pat2 : sol
(T-PAT-EMPTY)

⊢ ∅pat : sol

(T-RULE)
⊢ pat : sol ⊢ e2 : sol ⊢ e1 : real

⊢ pat
e1−→ e2

5.4. Modeling structure: compartments, rest solution, links

The last extension of ML-Rules’ semantics concerns the modeling of structure and
structural changes. So far, all populations are part of the same solution, that is without
any further structure. We now add two structural features to the language. First, entities
can now have subsolutions, which makes the model state a tree of solutions. The ability
to model changes in this nesting of subsolutions, to model dynamic compartments, is
ML-Rules’ most distinctive feature (see Section 4.1.3). Second, entities can be linked
together by sharing a unique attribute value. Both additions become new attributes or
attribute types. Section 5.5.1 shows the formal definition at work in some examples.

First we look into the motivation for using links. The building of Actin filaments can
be modeled by giving each Actin entity two binding sites (the barbed end and the pointed
end) [218]. Then, a reaction that elongates a filament can be modeled as the creation of
a new link between a free Actin and the last Actin in an existing filament. The reverse
reaction severes the link between two Actins:
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A(b, free) +A(free, p)
relon−−−→ (νl) A(b, l) +A(l, p)

A(b, l) +A(l, p)
rsev−−→ A(b, free) +A(free, p)

Here, free is a special value of the attributes, meaning that no link value is set, and ν
is an operator generating new unique link values. By only matching reactants with the
value free, only unlinked entities are candidates for being linked. Vice versa, only entities
with the same link value can be separated via the second rule.

Dynamic nesting also fits well to rule-based modeling (see Section 4.1.3). By structuring
entities into nested solutions, rules only need to be written once and can then be applied
to the entities in all solutions. But entities can also move between solutions and react
with entities in other solutions, and the structure of solutions can change during runtime.
There are many examples of biological processes where compartmental dynamics play
a role. For example, we can define endocytosis (i.e., a cell “eating” some particle and
wrapping it in a vesicle) by modeling cells and vesicles as entities with subsolutions:

Cell(subsol) + P
rendo−−−→ Cell(subsol + Vesicle(P ))

This way, rules are able to describe the reactants’ structural relation and the changes
in those relations. An additional ingredient to model parts of the subsolutions that do not
change is the rest solution. In reactant patterns, a subsolution must always be matched
completely. A rule can explicitly require some entities in the subsolution and subsume
the remaining entities under a variable. For example, the following rule models a particle
that leaves a cell, whereas the other contents of the cell remain unchanged:

Cell(P + rest)
rout−−→ Cell(rest) + P

Links and nesting require some changes to the syntax and semantics. For links, the
complex part is the generation of new link names. For nesting, it is the application of
rules at all structural levels.

In the abstract syntax, the operator cur is not meaningful anymore, as there is no single
current solution5. Instead, we introduce the operator #, which takes a variable as an
argument. The expression #x will be evaluated to the count of x entities in the solution
in which the pattern that the variable x is bound to has been matched. The expressions
and patterns for entities have, in addition to their attribute vector, an attribute that
holds their subsolution. The elements of the multisets now also have the general form
S(ṽ; v), where v is the (potentially empty) subsolution. Patterns now contain a variable
for the rest solution, and new link values for the right rule side can be generated with the
ν operator. Therefore, the free variables are only the ones not bound by the ν operator.
For example, in the rule

5There is a single root solution, which is important for representing the model state as a data structure,
but not so much for the evaluation of rules.
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A(x, free; s1) +A(y, free; s2)
·−→ (νl)A(x, l; s1) +A(y, l; s2)

the variable l is bound on the right side and, therefore, is not required to occur on the
left rule side. x and y, however, are free on the right side and must occur on the left side.

τ ::= type
nat natural number
real real number
string character string
ent entity
sol solution
link link

e ::= expression
f(e1, . . . , en) f ∈ F , ar(f) = n application
x x ∈ V variable
#x count
eS(ẽ; e) entity
e+ e addition
∅sol empty solution

pat ::= pattern
cS(ẽ; patr) ▷ x c ∈ F , ar(c) = 0, S ∈ S, x ∈ V entity pattern
pat + pat addition
∅pat empty pattern

patr ::= pat + x x ∈ V pattern with rest

rule ::= patr
e1−→ (νx̃)e2 x̃ ∈ V , (fv(e1) ∪ fv((νx̃)e2)) ⊆ fv(patr) rule

The semantics are adapted to account for structure in the model as well.

• As the link values introduced with ν should not make a difference for the result of
a rule, we introduce an equivalence relation ≡ on solutions. Two solutions are equal
with respect to ≡ if they only differ in the generated link values. This is similar to
the α-equivalence in the λ-calculus or π-calculus [159]. As usual, [A] = {B|A ≡ B}
denotes the equivalence class of A.

• The states of the CTMC are now defined by the equivalence classes induced by ≡.
In the inference rule (RULE), big-step operator ⇓A,σ now associates a reaction rule
with a transition [A] v

=⇒ [D] on equivalence classes. The right rule side is evaluated
with an additional valuation σ′ of the link variables requested with the ν operator.

• A pattern with rest patr always matches the whole solution it is evaluated in. All
entities not matched by the pattern are assigned to the rest solution variable, as
defined in (REST). Consequently, the premises in (RULE) are simpler than before,
as the left rule side now matches the complete solution.
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• The state now consists of multiple nested solutions and rules can be applied at
all levels. Therefore, it does not suffice anymore to only determine transitions to
successor states and their propensities in the current solution. Instead, the rule
(SUB) recurses into the subsolutions of all entities in a solution and “lifts” them to
the current solution. In particular, if a solution A contains an entity S(ṽ,B) and a
transition takes the subsolution B to C, then a successor state of A is A with one
S(ṽ,B) replaced with one S(ṽ, C) instead. If A contains c copies of S(ṽ,B) and the
propensity of the original transition from B to C is v′, then the lifted transition has
a propensity of c · v′. This way, the independent parallelism of the copies of B is
taken into account. This lifting step can be applied multiple times, allowing to lift
all transitions in all subsolutions to a single root solution. The recursion stops on
empty subsolutions.

• At the same time, a single rule can already span multiple nesting levels. The inference
rule (PATTERN) is changed to enable the matching of subsolution patterns. The
recursion patr ⇓B,σ B uses the subsolution of the entity as the evaluation context.

• The function # is evaluated in a similar way as variables. The variable valuation σ
assigns a value to symbols of the form #x, where x is a variable. In the inference
rule (PATTERN) x is set to the entities actually matched by the pattern, whereas
#x is set to the count of such entities in the solution. The retrieval of the value
of #x is defined in the inference rule (#). Typically, expressions like #x are then
used in the rate expression, for example to calculate the propensity according to
mass action kinetics, replacing the count function from the previous section.
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(CONSTANT)
e1 ⇓A,σ v1 . . . en ⇓A,σ vn

f(e1, . . . , en) ⇓A,σ [[f ]](v1, . . . , vn)

(VAR)
σ(x) = v

x ⇓A,σ v
(#)

σ(#x) = v

#x ⇓A,σ v

(ENTITY)

ẽ = (e1, . . . , en) ṽ = (v1, . . . , vn)
e1 ⇓A,σ v1 . . . en ⇓A,σ vn e ⇓A,σ v e′ ⇓A,σ B

eS(ẽ; e′) ⇓A,σ {|S(ṽ;B)v|}

(SOL-SUM)
e1 ⇓A,σ B e2 ⇓A,σ C
e1 + e2 ⇓A,σ B ⊎ C

(SOL-EMPTY)
∅sol ⇓A,σ ∅

(PATTERN)

ẽ = (e1, . . . , en) ṽ = (v1, . . . , vn)
e1 ⇓A,σ v1 . . . en ⇓A,σ vn patr ⇓B,σ B
a = {|S(ṽ;B)c|} σ(x) = a σ(#x) = nA(S(ṽ;B))

cS(ẽ; patr) ▷ x ⇓A,σ a

(PAT-SUM)
pat1 ⇓A,σ B pat2 ⇓A,σ C
pat1 + pat2 ⇓A,σ B ⊎ C

(PAT-EMPTY)
∅pat ⇓A,σ ∅

(REST)
pat ⇓A,σ B A = B ⊎ C σ(x) = C

pat + x ⇓A,σ A

(RULE)

x̃ = (x1, . . . , xn) σ′ : {x1, . . . , xn} → L injective
patr ⇓A,σ A e2 ⇓A,σ∪σ′ D e1 ⇓A,σ v

patr
e1−→ (νx̃)e2 ⇓A,σ [A] v

=⇒ [D]

(SUB)

S(ṽ,B) ∈ A rule ⇓B,σ [B] v′
=⇒ [C] D = A⊖ {|S(ṽ,B)|} ⊎ {|S(ṽ, C)|}

v = v′ · nA(S(ṽ,B))
rule ⇓A,σ [A] v

=⇒ [D]

We omit the type system for this last incarnation of ML-Rules, as it is largely equal to
the previous one. The most prominent change is the introduction of the type link and
the constraint that the subsolution attribute must be of type sol.

This concludes the definition of the abstract syntax and formal semantics of ML-Rules.
ML-Rules’ most distinctive feature, the modeling of dynamically nested multisets of
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attributes entities, is captured in the evaluation rules of this last incarnation of the
formal language definition. In particular the inference rules (PATTERN) and (SUB)
characterize ML-Rules. (PATTERN) handles patterns with nested entities on the left
rule side, whereas (SUB) makes sure that rules are applied at all nesting levels. This way,
dynamic nesting can be succinctly expressed with reaction rules.

5.5. Discussion

The formal definition of both syntax and semantics allows us to discuss some implementation-
independent properties of ML-Rules.

5.5.1. Example models in the abstract syntax

To illustrate the abstract syntax, we show how it can be employed to encode models
of BRNs. As the abstract syntax focuses on the reaction rules, we only show the rules
of the models. These rules contain references to species and constants, which will be
clear from context. We point out interesting implications regarding the representation of
the underlying models as well as interdependencies between the syntax and semantics.
As a syntactical shortcut, we omit the rest solution at the root level of a rule and the
parentheses of entities without attributes (cf. [176]). We also write solutions in ML-Rules’
abstract syntax instead of writing them explicitly as multisets.

Wnt model

We first take a look at how the Wnt model introduced in Section 4.1 can be expressed
in the abstract syntax. To illustrate how the formal semantics describes how the rules
evaluate to reactions, we look at a few rules and how they are applied to a concrete
solution. The rules 2, 7, and 10 were the ones we already saw in ML-Rules’ concrete
syntax. Rule 2 models the dephosphorylation of Axin stimulated by extracellular Wnt,
rule 7 models the degradation of β-catenin stimulated by phosphorylated Axin, and rule
10 models the shuttling of β-catenin into the nucleus. These rules can be expressed in
the abstract syntax as follows:

Wnt ▷ w + Cell(vol ;Axin(true) ▷ a+ s) ▷ c
k2·#w·#a·#c−−−−−−−−−→Wnt + Cell(vol ;Axin(false) + s) (2)

Cell(vol ;Axin(true) ▷ a+ Bcat ▷ b+ s) ▷ c
k7·#a·#b·#c÷vol−−−−−−−−−−−→ Cell(vol ;Axin(true) + s) (7)

Bcat ▷ b+ Nucleus(; s)
k10·#b−−−−→ Nucleus(;Bcat + s) (10)

Based on these three rules, we can use the formal semantics to determine what reactions
can occur in a given solution with what reaction rates. As an example, we consider the
following solution:
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1000Wnt + Cell(2; 200Axin(true)+

250Axin(false)+

12000Bcat+

Nucleus(; 5000Bcat))

For each rule, there is one way to match the left rule side to the solution; rule 10 can
only be matched in the subsolution of the cell. Thus, there are the following reactions:

• Rule 2 matches with the variable assignment σ = {

w ↦→Wnt ,

#w ↦→ 1000,

vol ↦→ 2,

a ↦→ Axin(true),

#a ↦→ 200,

s ↦→ 199Axin(true) + 250Axin(false) + 12000Bcat +Nucleus(; 5000Bcat),

c ↦→ Cell(2; 200Axin(true) + 250Axin(false) + 12000Bcat + Nucleus(; 5000Bcat)),

#c ↦→ 1}

The successor state is

1000Wnt + Cell(2; 199Axin(true)+

251Axin(false)+

12000Bcat+

Nucleus(; 5000Bcat))

and the rate is k2 ·#w ·#a ·#c = 200000k2.

• Rule 7 matches with the variable assignment σ = {

vol ↦→ 2,

a ↦→ Axin(true),

#a ↦→ 200,

b ↦→ Bcat ,

#b ↦→ 12000,

s ↦→ 199Axin(true) + 250Axin(false) + 11999Bcat +Nucleus(; 5000Bcat),

c ↦→ Cell(2; 200Axin(true) + 250Axin(false) + 12000Bcat + Nucleus(; 5000Bcat)),

#c ↦→ 1}

The successor state is

1000Wnt + Cell(2; 200Axin(true)+

250Axin(false)+

11999Bcat+

Nucleus(; 5000Bcat))
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and the rate is k7 ·#a ·#b ·#c÷ vol = 1200000k7.

• Rule 10 matches with the variable assignment σ = {

b ↦→ Bcat ,

#b ↦→ 12000,

s ↦→ 5000Bcat}.

The successor state is

1000Wnt + Cell(2; 200Axin(true)+

250Axin(false)+

11999Bcat+

Nucleus(; 5001Bcat))

and the rate is k10 ·#b = 12000k10.

The successor states regarding the remaining rules can be determined similarly. As
this model is an adaptation of a reaction-based model, each rule leads to at most one
reaction for the given solution with only one cell. However, the impact of the rule-based
approach with attributed compartments becomes evident if the solution contains several
cells with distinct volumes or subsolutions. Then each rule produces a match for each
cell. A corresponding experiment with a population of 100 cells has been described in the
original publication by Mazemondet et al. [150].

Cell cycle model

As a second example, we express in the abstract syntax a simplified version of Tyson’s
cell cycle model as adapted by Maus et al. [230, 149]. The model includes the molecular
species and intracellular processes that lead to DNA replication and mitosis. The enzyme
maturation promoting factor (MPF) is produced in an inactive state by a reaction of
cyclin (Y ) and cdc2 (D). Whereas cyclin is synthesized in the cell, we assume a fixed
number of cdc2 per cell. Inactive MPF (MI) is then activated in an autocatalytic reaction,
yielding active MPF (MA). Active MPF breaks to cdc2 (which can again be used to
build inactive MPF) and phosphorylated cyclin YP (which degrades rapidly). These five
intracellular reactions can be visualized as a network of reactions (Figure 5.3).

These reactions occur inside a cell (C) whose volume influences the reaction rates.
Conversely, the cell goes through several phases that are controlled by the intracellular
state. We model the volume and phase as attributes of the cell and define reactions on
the cell that depend on the counts of the species in the cell. We distinguish three phases
G1, SG2, and M , and four processes:

• A cell in phase G1 or SG2 can grow (i.e., increase its volume)

• A cell changes from phase G1 to SG2 if it contains more MI than a threshold T7
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MAMI

D YPY

Figure 5.3.: A visualization of the five intracellular reactions of the simple cell cycle model.

• A cell changes from phase SG2 to M if it contains more MA than a threshold T8

• A cell divides if it is in phase M and contains less MA than a threshold T9

In this model, intracellular processes depend on the cell’s volume and the cell growth
and phase transitions depend on the intracellular processes. This shows the importance of
representing dynamic compartments and multiple levels of organization in the modeling
language. The third rule exemplifies how some reaction rates do not follow mass action
kinetics, in this case to model an autocatalytic process.

C(v, p; s) ▷ c
k1·v·#c−−−−→ C(v, p;Y + s)

C(v, p;Y ▷ y +D ▷ d+ s) ▷ c
k2·#c·#y·#d·1/v−−−−−−−−−−→ C(v, p;MI + s)

C(v, p;MI ▷ i+ s) ▷ c
(k′3+(k3·(count(MA, s)/Dtot)2))·#i·#c
−−−−−−−−−−−−−−−−−−−−−−→ C(v, p;MA + s)

C(v, p;MA ▷ a+ s) ▷ c
k4·#a·#c−−−−−−→ C(v, p;YP +D + s)

YP ▷ y
k5·#y−−−→ ∅

C(v, p; s) ▷ c
if p∈{G1,SG2} then k6·#c else 0−−−−−−−−−−−−−−−−−−−−→ C(v + 1/Td, p; s)

C(v,G1; s) ▷ c
if count(MI ,s)>T7 then k7·#c else 0−−−−−−−−−−−−−−−−−−−−−−−→ C(v, SG2; s)

C(v, SG2; s) ▷ c
if count(MA,s)>T8 then k8·#c else 0−−−−−−−−−−−−−−−−−−−−−−−→ C(v,M ; s)

C(v,M ; s) ▷ c
if count(MA,s)<T9 then k9·#c else 0−−−−−−−−−−−−−−−−−−−−−−−→ C(v/2, G1;fill(half l(s)))+

C(v/2, G1;fill(half r(s)))

The functions half l and half r distribute the contents of a cell into two daughter
cells without creating or losing any entities. To restore the total number of contained
entities per cell, the function fill fills up the D population to maintain the sum of
#D +#MI +#MA = Dtot in both daughter cells.

[[half l]]((A,nA)) = (A,nB), where nB(x) = ⌊nA(x)/2⌋ for all x ∈ A

[[half r]]((A,nA)) = (A,nB), where nB(x) = ⌈nA(x)/2⌉ for all x ∈ A

[[fill ]](A) = A ⊎
{︁
DDtot−Dold

⃓⃓}︁
, where Dold = nA(MA) + nA(MI) + nA(D)
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Deeply nested models

We illustrate the effect of nesting on reaction rates in a final example. Consider the
following, deeply nested solution:

10A(; 10A(;B))

The solution contains 10 A entities, each of which contains 10 A entities, each of which
contains 1 B entity. Thus, the solution contains 110 A and 100 B entities. Now we define
a rule that has one B entity as its sole reactant:

B
k−→ 2B

This rule only matches once, in the innermost subsolution. However, when the corre-
sponding reaction occurs, it occurs in only 1 A entity. The inference rule (SUB) lifts the
reaction occurring in the inner A entity’s subsolution to the root solution. The resulting
successor state is

9A(; 10A(;B)) +A(; 9A(;B) +A(; 2B))

and the rate for the reaction is 10 · 10 · k = 100k.

5.5.2. Provability of properties and static analysis

One direct consequence of having formal definitions of syntax and semantics is the
ability to prove properties of the language. For example, it is possible to prove that two
terms (expressed in the abstract syntax) are semantically equivalent. This should not be
underestimated, as it allows simulation algorithms to rewrite a model before executing
it without changing its semantics, similarly to optimizing compilers [17]. For example,
consider a rule of the following form

S(ṽ; v) ▷ s+ S(ṽ; v) + . . .+ S(ṽ; v)
f(#s)−−−−→ e,

where S is some arbitrary species name, ṽ and v are values, f is a function that calculates
a rate, and e is some expression that does not use s. We assume that all expressions are
typed correctly.

Let the number of reactants S(ṽ; v) be n. Then it is equivalent to write the rule as

nS(ṽ; v) ▷ s
f(#s)−−−−→ e.

The equivalence can be shown by evaluating both variants of the rule with the big-step
evaluator ⇓A,σ and the same A and σ. Evaluating one variant leads to the multiset
{|S(ṽ; v)n|} if and only if evaluating the other variant leads to the same multiset.

In a similar fashion, the irrelevance of the reactant’s ordering can be shown by considering
the inference rule (PAT-SUM) in the formal semantics. The terms p1 + p2 and p2 + p1
are equivalent due to the commutativity of the (implicit) logical conjunction in the rule’s
premise as well as the multiset sum on the right side of the big-step evaluator.
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In addition, the formal semantics allows analyzing models statically without executing
them (see Section 2.4.2). Applications include reachability analysis, which answers the
question whether a specific entity (a species with specific values for each attribute) can
be produced during a simulation run. The Kappa Static Analyzer [35] demonstrates the
feasibility of this approach for the κ-calculus. Static analyses in the context of ML-Rules
are discussed further in Section 6.5.3.

5.5.3. Practical issues

The definition of the abstract syntax and formal semantics of ML-Rules happens on a very
abstract level. However, it already allows some observations about the implementation
and use of ML-Rules in practice. Some of these aspects will reappear in Chapter 6.

• Most obviously, the users of the language use a concrete syntax rather than the
abstract syntax. This allows various syntactic shortcuts. We have already started to
make the abstract syntax more readable by omitting the rest solution at the highest
hierarchy level in a rule. The abstract syntax and formal semantics, however, are
simpler to define when they are as explicit as possible.

• By equipping a species with attributes and subsolutions, it becomes less probable that
two entities are equal and can be summarized in a population. Thus, simulation
algorithms might treat some species as individuals instead of populations. See
Chapter 6.6 for a more thorough discussion on this.

• The underlying CTMC might be very hard to handle with analysis tools, as,
for example, the states become very complex with attributed and nested species.
However, it is still a CTMC and the formal semantics unambiguously specifies what
transitions are possible from a specific state. Any simulation algorithm can use this
as guidance. In addition, static analysis of the model (the rules, not the state space)
might reveal that the model does not exploit all possible features of the language
(see Section 6.5.3). For such models with reduced feature sets, specialized, more
efficient algorithms can be developed [101].

• As long as it fits into the type system, any kind of expression language can be
used. An alternative to the n-ary constant functions that we used would be the
lambda-calculus. In practice, some commonly needed functions can be predefined,
and the modeler can define additional functions in some arbitrary syntax. Similarly,
the set of available types can be extended as needed. A let-in or where construct [130]
construct might be helpful, for example to implement the ν-operator. ML-Rules 2
features where expressions (see Section 4.1.2).

Two different implementations of ML-Rules existed already before the abstract syntax
and formal semantics was defined. Internally, these made different decisions about how to
implement ML-Rules, which was only informally defined then. Formal definitions allow
assessing the faithfulness of specific implementation variants. However, more thorough
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considerations about simulator implementation strategies, algorithmic optimizations, or
simulator performance characteristics are not the focus of this thesis.

5.5.4. Comparison with other formally defined languages

ML-Rules is not the first modeling language for biochemical reaction networks for which
formal syntax and semantics have been defined. There are other languages that influenced
the development of ML-Rules and can be related to it in terms of formal expressiveness.

React(C)

The foundation of formal definitions for modeling languages for biochemical reaction
networks is the π-calculus [159] and its descendant, the stochastic π-calculus [192]. The
stochastic π-calculus, in turn, gave rise to the attributed π-calculus [114] and then the
language React(C) [113]. There exist a number of proofs that relate these languages
to each other. These proofs mostly work by showing that every construct of the source
language can be translated to a construct in the target language while retaining the
semantics. This way, it can be shown that the source language is not more expressive
than the target language. For example, John et al. [113] have defined a formal semantics
for React(C) and used it to show that the stochastic π-calculus can be expressed in
React(C). Thus, the stochastic π-calculus is at most as expressive as React(C), but not
more expressive.
React(C) as well as ML-Rules are successors of the attributed π-calculus [114]. The

attributed π-calculus extends the stochastic π-calculus with process attributes, which can
be used to constrain synchronization between processes or calculate the stochastic rate
of synchronization. Due to their common ancestry, React(C) and ML-Rules share many
concepts in syntax and semantics. Consequently, the formal semantics of React(C) was a
significant influence for the definition of ML-Rules’ formal semantics.

We exploit the similarities of React(C) and ML-Rules by relating both to each other
and extending the known and proven properties of React(C) to ML-Rules. However,
we do not give formal proofs here. Instead, we shortly discuss some commonalities and
differences of both languages.

• First, ML-Rules and React(C) use different approaches for formulating expressions,
for example to count entities for reaction rates. Both allow arbitrary constant
functions. React(C) additionally includes the λ-calculus including recursion via a
letrec operator and combines primitive functions such as + (addition of numbers)
or = (comparison of entities). This way, counting entities can be implemented
directly in the syntax of React(C). In contrast, ML-Rules has a built-in function
# for counting entities. Although the syntax of ML-Rules does not allow as many
functions as React(C), we can still describe the semantics of arbitrary function
constants. In practice, commonly needed function would be better provided by the
language implementation (or at least in some kind of standard library) instead of
being implemented as part of a model by language users. Allowing users to define
their own functions can be considered an orthogonal issue.
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• Compartments are supported by ML-Rules and React(C) in different ways. In
React(C), an entity’s compartment is denoted by an attribute of the entity. Thus, a
reaction can be constrained to entities in the same compartment by requiring that
all reactant share a common compartment attribute. In ML-Rules, compartmental
entities have an attribute that holds the subsolution, the multiset of the entities
in the compartment. Note that ML-Rules also enables modeling compartments
with attributes and links, similar to React(C). However, modeling compartments
explicitly is arguably preferable. For example, in ML-Rules by default only entities
localized in the same compartment can react, unless a rule specifies how the reaction
crosses compartment borders. This prohibits unrealistic long-range interactions.

• Both language support models in which compartments can be nested infinitely.
In ML-Rules, a rule A(; s)

r−→ A(; s + A(; ∅s)) allows each A entity to create an-
other A entity in its subsolution. In React(C), an equivalent rule is A(c, p)

r−→
(ν c2)A(c, p), A(c2, c), with A’s attributes standing for hyperedges to children and
to the parent.

• A result of the different handling of compartments is that ML-Rules allows ab-
stracting over the entities in a compartment, whereas the compartment attribute
in React(C) is species-specific. For example, in ML-Rules we can obtain the
number of entities in a subsolution of an entity A(; sol) with a function call like
size(sol). In contrast, React(C) requires summing the count of all species pop-
ulations to obtain the number of entities that share a compartment attribute x:
count A(x) + count B(x) + . . . . Thus, such a function can not be implemented in a
model-agnostic fashion.

Based on these informal considerations, we can not conclude whether there are React(C)
models which can not be expressed with ML-Rules or vice versa. However, it is clear that
the important difference is in the representation of compartments. React(C) relies on
an implicit encoding of compartments, and ML-Rules makes them explicit, while also
allowing, but not encouraging, an implicit representation via links. Thus, ML-Rules
has a strictly larger vocabulary, which is a hint that it is formally more expressive. On
the other hand, there is no obvious example for an ML-Rules model that can not be
expressed in React(C), which hints at ML-Rules being not more expressive than React(C).
Independently of that, ML-Rules allows for a higher degree of abstraction, as the set of
model-independent functions that can be defined in ML-Rules is a strict superset of the
set of functions possible in React(C).

Term rewriting

In addition to the mental framework based on process algebras, rule-based modeling
can also be considered from a term rewriting perspective. To illustrate the connection,
we review the work by Oury and Plotkin on “(coloured) stochastic multilevel multiset
rewriting ” ((C)SMMR) [175, 176].
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Similar as in ML-Rules, solutions are represented as nested multisets. In contrast to
the approaches considered so far, however, the multisets are represented as algebraic
terms for which specific laws hold. In particular, the addition of multisets is associative,
commutative, and has the neutral element ∅ (the empty set). These laws can be expressed
as the equivalence relation ≈AC1 :

(x+ y) + z ≈AC1 x+ (y + z)

x+ y ≈AC1 y + x

x+ ∅ ≈AC1 x

for any multiset x, y, and z6. Oury and Plotkin use a comma symbol , instead of a plus
symbol + to denote multiset addition.

The multisets are made up of atomic terms, which represent biochemical species.
Constants represent species without a subsolution, and unary function symbols represent
compartmental species (with the single argument representing the subsolution). In
addition, constants and function symbols are parameterized with labeled (color) values.
For example, a cell C with a volume of 1 containing 10 A and 5 B entities could be
expressed as

C(1; 10A() + 5B())

in ML-Rules’ abstract syntax. For comparison, in CSMMR we would write the term

Cvol :1(10A(), 5B()).

Given the identification of solutions with algebraic terms, a reaction rule can be expressed
as rewriting a term. This allows reusing the research on term rewriting for modeling
biochemical reaction networks. In particular, the matching of reactant patterns and
binding of variables on the left rule side relies on established term rewriting methods [10,
pp. 262f]. Through appropriate definitions, this can be extended to calculating rates for
state transitions in a CTMC, similar to our formal semantics for ML-Rules. To continue
the example, an elimination reaction of an A and a B in a cell as shown above, which
depends on the cells volume, would be expressed in ML-Rules’ abstract syntax as

C(vol ;A() ▷ a+B() ▷ b+ s) ▷ c
#a·#b·#c·k/vol−−−−−−−−−−→ C(vol ; s),

whereas in CSMMR we would write

Cvol :v(A(), B(), s)
k/v−−→ Cvol :v(s).

Both languages are quite similar syntactically, but there are some differences. ML-Rules
requires explicitly defining the reaction rate in dependence of population sizes, whereas
CSMMR assumes mass action kinetics by implicitly counting occurrences of the rule
in a given solution. Another difference is that ML-Rules identifies attributes by their

6This justifies that we never write parentheses and freely permute the ordering of solutions and patterns.
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position, while CSMMR assigns labels to attributes. However, both languages also have
much in common. Most importantly, both languages support an explicit representation
of dynamic compartments. By separating attributes and subsolution syntactically, the
significance of the nesting structure is emphasized. Functions on attributes can be easily
integrated in CSMMR due to its relation to algebra, but functions on solutions, which
are also supported in ML-Rules, have not been included so far.

In summary, it is interesting to see two languages with similar syntax and feature sets
defined on so different bases. The area of term rewriting offers many concepts that are
reusable for defining a rule-based modeling language for biochemical reaction networks.
As Oury and Plotkin put it, “by working within term rewriting, with its algebraic setting,
one employs a very standard approach; this contrasts with other rule-based approaches
which, while perfectly sound, are, perhaps, somewhat ad hoc” [176]. However, it seems
as if the idea was not further pursued, and no implementation of the language has been
published. Nevertheless, in Section 6.2.1 we will be able to use some insights from term
rewriting for implementing ML-Rules although ML-Rules’ formal definition does not
employ term rewriting.

The κ-calculus and BNGL

The BioNetGen language (BNGL) [25] and the κ-calculus [56], which were already shortly
introduced in the sections 4.2.2 and 4.2.3, respectively, are arguably the most mature
rule-based modeling languages for biochemical reaction networks. Both languages focus
on relatively simple entities that form complexes by building links between the entities’
binding sites (see also Section 4.1.2). As a consequence, complexes are represented
as typed, attributed graphs, and reaction rules are defined using pattern graphs. The
applicability of a reaction rule can be determined by finding a sub-graph isomorphism,
and applying a reaction corresponds to graph rewriting [56, 26]. This way, biochemical
reaction networks can be mapped to well-known concepts.

Similar to ML-Rules’s semantics, the semantics of both BNGL and the κ-calculus
mostly revolve around pattern matching and reaction instantiation. As mentioned above,
pattern matching is reduced to finding a sub-graph isomorphism and reactions to graph
rewriting. Having defined the reaction instantiation, the definition of a CTMC and, thus,
a simulation algorithm for the language is straightforward. In contrast to ML-Rules,
however, the languages’ foundation in graph theory imposes some additional conditions
on what models can be expressed and how. We give a few examples here.

First, patterns in BNGL and the κ-calculus adopt more of a “don’t-care-don’t-write”
attitude than ML-Rules, as they allow to omit all unchanged and noninfluential attributes
and links of the reactants. As a consequence, both languages require in each rule a mapping
between reactants and products. This mapping allows transferring the unchanged values
from matched reactants to the corresponding products. Whereas the mapping can be
often inferred automatically, both BNGL and the κ-calculus allow explicitly mapping
reactants to products [73]. Such explicitness is particularly useful when a reaction removes
or creates an entity, as then the numbers of reactants and products are not equal. For
example, the following rule in the κ-calculus specifies a “hole” . on the right rule side to
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denote that the first reactant is removed [34]:

L(r[1]), R(l[1]) -> ., R(l[.]) @ 'k'

The foundation in graph theory also means that BNGL and the κ-calculus only allow
binary links between entities (or complexes). This excludes hypergraphs, which could be
used to represent compartmental structures7. Extensions to both BNGL and the κ-calculus
have been proposed to include compartments [97, 182]. However, these extensions are
somewhat orthogonal to the original language concepts and, thus, do not allow expressing
changes in the compartments with reaction rules. In contrast, ML-Rules allows expressing
changes in the nesting by specifying differently nested entities on the left and right rule
side. Similarly, abstraction over compartments is limited in comparison to ML-Rules
While ML-Rules allows constraining rules to only be applied in specific compartments,
it also allows writing rules that are independent of their context, if desired8. This way,
rules do not need to refer to concrete compartments, facilitating dynamic compartments,
which are not supported in BNGL or the κ-calculus.

Finally, the graph interpretation leads to some corner cases that need to be handled in
the languages. For example, BNGL allows augmenting reaction rules with a number of
additional directives, such as the keyword DeleteMolecules, which controls how the removal
of a single entity affects other entities linked to it [71]. Faeder, Blinov, and Hlavacek [71,
pp. 135f.] state:

These commands have been introduced to address the need for specific behav-
iors that are difficult or impossible to specify using the semantics of patterns
and transformation rules alone. [. . . ] In the future, we anticipate the develop-
ment of a “pattern logic” that will provide these capabilities in a more general
way.

Similarly, corner cases need to be considered when determining the rate for a reaction
instance based on the pattern matching, not unlike the discussion in Section 3.3.1. For
example, the Kappa manual includes a discussion of so-called “ambiguous molecularity”
that occurs when a reaction rule can lead to a reaction of two complexes and also to a
reaction of a complex with itself [34]. As these correspond to second-order and first-order
reactions, respectively, the surrounding volume factors differently into the rate expression.
In addition, symmetries in the pattern matching may occur, as shortly discussed in
Section 3.3.2. ML-Rules, in contrast, avoids such corner cases by making no assumptions
about the kinetics and requiring rate expressions to explicitly factor in, for example,
population sizes or compartment volumes.

7In fact, one of the motivations for developing React(C) was extending the κ-calculus with hyper-
edges [113].

8Compare the left rule sides C(;A + B + s) and A + B, for example. The first rule can only induce
reactions inside a C, whereas the second rule applies everywhere. In addition, the first rule can be
further constrained using the attributes of C.
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5.6. Summary

The formal definition of the syntax and semantics of ML-Rules is one of the core aspects
of this thesis. In the iterative development of the language, we have seen that higher
expressiveness is bought with more complex semantics rules. Whereas the first iteration
only supported reaction-based modeling, we added attributes, pattern matching, and
rule-based modeling for the second version. The next step was to make expressions more
powerful, for instance by adding functions. Functions can be applied to solutions as well,
which allows for user-defined rate expressions. This made a type system necessary, for
example to ensure that user-defined rate expressions actually yield a numeric value. As
a final step, we included dynamic compartments. This lead to an additional semantics
rule for determining all state transitions. The reason is that with a compartmental
structure that develops while the model is running, reaction rules need to be applied in
all compartments.

Over all these levels, the formal semantics specifies unambiguously how the syntactic
representation of an ML-Rules model gives rise to a CTMC. To do so, it suffices to
define the semantics of the reaction rules and just assume an appropriate state space as
given. As we will see in the next chapter, the reaction rules also dominate the practical
implementation of ML-Rules.

Besides guiding the implementation, the formal definition of ML-Rules also allows some
considerations on the abstract level. We were able to define example models in the abstract
syntax and discuss the features of ML-Rules independently of a specific implementation.
The formal definition also enables relating model fragments and determining that, for
example, two formulations of a rule are equivalent. Such deliberations can be valuable
when implementing simulation algorithms, as it allows rewriting a model fragment into a
semantically equivalent, but more computationally efficient version.

Finally, the formal definition allows reasoning about the relation between modeling
languages. For example, we were able to compare ML-Rules and React(C) in terms of
expressiveness by looking beyond the syntax (which is quite different) and seeing how
dynamic compartments, an advanced feature, can be realized in both languages. On the
other hand, we were able to see how ML-Rules relates to CSMMR, which is based on
term rewriting, as well as the κ-calculus and BNGL, which are based on graph rewriting.
These two semantic foundations provide specific perspectives for expressing patterns (on
the left side of reaction rules) and matching them to a concrete solution. In particular,
term rewriting favors tree-like structures (corresponding to compartments), whereas graph
rewriting leads to network structures (corresponding to links). Both areas also offer
algorithms for pattern matching and will continue to provide theoretical grounding for
rule-based modeling languages.

In summary, formally defining the syntax and semantics of a modeling language is an
important aspect of unlocking the potential of using modeling languages in the first place.
It provides the right level of abstraction to expose the idiosyncrasies of a language. These
idiosyncrasies, in turn, give impulses for the further development of modeling languages.
More immediately, they inform the implementation of the language, which is the topic of
the next chapter.
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languages

Based on the formal semantics of ML-Rules, we now turn to ways to implement the
language. First, we review existing simulation modeling paradigms as well as some
existing approaches for simulation modeling with DSLs. Next, we sketch some basics of
implementing ML-Rules, in particular the pattern matching. This is necessary as the
formal semantics only specifies that all matches of a pattern in a current solution must
be considered, but not how they are found. Therefore, we design a pattern matching
algorithm for ML-Rules’ reactant patterns. Using this algorithm, we then present two DSL
implementations of ML-Rules. The first implementation is an internal DSL in Scala that
employs the paradigm of functional programming. The second implementation is based on
object-oriented principles and relies on the language workbench Xtext. We then evaluate
both implementations by relating them to each other and to other DSL implementations
of modeling languages. The chapter closes with an excursus that transfers the ideas
developed for CTMC-based population models to rule-based agent-based modeling.

6.1. Simulation modeling paradigms and languages

So far we have discussed the mathematical and formal reasoning behind the stochastic
simulation of a CTMC and how a CTMC is defined by a rule-based model. Now, we
relate this approach to the general field of simulation methodology. This will illuminate
the range of possible implementations of simulation approaches, and allow us to describe
the implementation options for ML-Rules with more context.

We restrict our discussion to discrete-event simulation and omit continuous and discrete-
stepwise simulation with fixed time steps. We justify this in two ways. First, languages
such as ML-Rules are primarily executed by discrete-event simulation algorithms such as
the SSA family. We have already seen that a continuous approximation of the SSA is
possible (Section 3.2.3), and ODE- or PDE-based models find many uses for biological
applications. Nevertheless, we consider the stochastic discrete-event simulation the ground
truth and focus on it. Second, as argued by Law [133, pp. 78f], discrete-event simulation
is a generalization of discrete-stepwise simulation, as fixed time steps can be emulated
with artificial pseudo-events in a discrete-event simulation. In addition, fixed time steps
lead to problems with ordering of events that occur at the same time, which happens more
often with bigger time steps. Conversely, the computational efficiency suffers increasingly
from smaller time steps [133, pp. 78f].
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6.1.1. World views

There are three different “world views” on discrete-event simulation: event scheduling,
process interaction, and activity scanning [14, p. 114, 178, p. 22, 156].

In the event scheduling approach, events and their timing are in the focus. A model
is specified in terms of causal and temporal dependencies between events. For example,
in a queuing model the arrival of a customer can be modeled as an event that schedules
a future event for the arrival of the next customer after a stochastic delay sampled
from some distribution. Similarly, depending on whether a server is currently free, an
event for finishing service for the customer can be scheduled and the server is marked
as occupied; otherwise, a state variable that holds the number of waiting customers
is updated. These dependencies between events and the current model state can be
expressed with formalisms like event graphs. In the context of simulating biochemical
reaction networks, event scheduling is most closely related to the next reaction method
(Section 3.2.2). However, here the actual algorithm is an additional layer of abstraction
between actual events and the model (which is not concerned with events at all).

The process interaction approach focuses on the key entities in the model and their life
cycles. A process is then the development of an entity during the simulation, consisting
of states, events, or demands for shared resources. This can, for example, be expressed in
a flow chart, where blocks representing the life cycle stages are connected with directed
edges [14, p. 140]. Taking again a queuing model as an example, a customer could be
modeled as an entity whose life cycle consists of stages such as arrival, being served
by a server (for some period of time), and leaving the system. The actual queuing and
competing for the servers would be handled by the simulation engine. Thus, the process
interaction world view allows for a higher-level, more abstract model description than the
event scheduling approach. For simulating biochemical reaction networks some approaches
that take the process interaction world view have been proposed. The most immediate
implementation of this world view can be found in process algebras, for example the
attributed π-calculus [114]. The DEVS framework introduced by Zeigler also uses the
process interaction approach and allows for modeling biological entities (such as cells) as
hierarchical, reactive systems [212, 100, 77].

Finally, in the activity scanning world view [164, 165] a model is specified by a number
of activities that are constrained by preconditions. To find the activities that occur at a
specific simulation time, the preconditions are evaluated on the model state at that time.
The original description of activity scanning used a fixed time increment, but it was later
combined with event scheduling to form the so-called “three-phase” approach. Here, the
preconditions of the activities are only checked at times at which the model state changes
due to unconditional, pre-scheduled events. Petri nets are a typical example of modeling
approach based on activity scanning and have been applied for modeling of biochemical
reaction networks [141].

All three world views have in common that they have a declarative core and even map
to graphical formalisms such as event graphs, flow charts, or Petri nets. The fundamental
difference is where the model’s behavior is specified [212]. It can be part of the description
of the entities as in the process interaction world view, or it can be described as global
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events that affect the entities as in the event scheduling and activity scanning world view.
The rule-based nature of ML-Rules and similar languages is best reflected in the activity

scanning world view. Here, reaction rules are defined globally and affect all entities in the
model, including entities in nested compartments. However, ML-Rules has also been used
to develop individual-based models [190], which is more closely related to the process
interaction world view.

This duality also allows approaching calculation of reaction propensities as discussed in
Section 3.3.2 from another angle. In a global top-down perspective, such as the activity
scanning world view, instantiating a reaction can be thought of as simultaneously selecting
the reactants from the available entities. This leads to counting the distinct unordered
reactant sets (the number of combinations in combinatorics). On the other hand, in an
individual-based perspective like the process interaction world view, the mental picture
might be that the first reactant initiates the reaction by selecting a second entity, then
both selecting the third and so on. In that case, the first reactant is different from the
second one, and the order of reactants matters. This leads to counting permutations of
reactants via the falling factorial.

ML-Rules does not attempt to resolve this ambiguity. Instead, it provides the means
to explicitly specify how the rate is to be computed and, thus, which perspective or world
view the model is considered from (and whether to count combinations or permutations).
This expressive power is part of ML-Rules’ DSL nature. Next we look into concepts for
implementing simulation modeling languages as DSLs.

6.1.2. Simulation modeling with DSLs

Relating simulation modeling paradigms and programming language paradigms allows
us to reason about the pragmatic implementation of simulation applications [79]. For
example, implementing an agent-based model might benefit from using an object-oriented
programming language, as it already contain some of the necessary features: attributed
entities, encapsulation, or message passing. Conversely, models where pipelines of transfor-
mations are in the focus can be implemented using the function composition of functional
programming languages.

One conclusion from this insight might be to extend existing programming languages
with simulation-related constructs, that is, construct internal DSLs for implementing
models. One example for this approach in Python(P)DEVS [227]. Here the abstract,
mathematical syntax of DEVS is mapped to a concrete syntax in Python. For example, an
atomic DEVS model is represented by a class with internal state and methods to implement
DEVS elements like the internal transition δint or the time advance ta. Superclasses for
atomic and coupled models encapsulate reusable code and establish an interface for the
provided simulation algorithms. This way, Python(P)DEVS employs pure object-oriented
programming to specify the relation between the language implementation and the model
as well as between the model components.

Another example is ScalaTion [155]. ScalaTion is a Scala-based internal DSL that
supports writing “simulation programs”. This way, ScalaTion attempts to combine the
domain-specificity of tailored Simulation Programming Languages with the performance,
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expressive power, and library ecosystem of GPLs. However, in contrast to the declarative
formalisms that take the above world views, ScalaTion still requires writing the model
as a program rather than a declarative specification. The model is written in a combi-
nation of functional and object-oriented elements, applying them as appropriate for the
individual world views. Consequently, ScalaTion relies on standard internal DSL design
and implementation techniques, for example class inheritance, operator overloading, and
closures.

ScalaTion and Simulation Programming Languages are tailored to the domain “discrete-
event simulation”. Python(P)DEVS is more specific and focuses on one formalism for
discrete-event simulation. Even more specific are modeling languages that focus on a more
specific application domain to more precisely capture the idiosyncrasies of that domain1.
Such languages often aim for a declarative model specification and, thus, are implemented
as external rather than internal DSLs. This allows adopting declarative syntax that
would be hard to integrate in a GPL. For example, in the QUANTICOL project, the
implementations of the “Process Algebra of Located Markovian Agents” (Paloma) and
the language CARMA (“Collective Adaptive Resource-sharing Markovian Agents”) are
external DSLs based on Xtext [76, 31]. Another example for an Xtext-based simulation
modeling language is the Complex Adaptive Systems language (CASL) [22]. Paloma is
a syntactically very simple language that implements a process algebra approach and
exploits the opportunity to define a standalone syntax for a entirely declarative language
design. CARMA and CASL, on the other hand, follow an object-oriented language design,
which is a common use case for Xtext and well supported. For example, constructing
imperative sequences of statements or scoping rules for nested blocks are part of Xtext’s
standard documentation. Another example for an external DSL for modeling is Modelica,
which is object-oriented and declarative, with declarativity mostly referring to the absence
of assignment statements in favor of equations [83].

ML-Rules and the other rule-based languages reviewed in Section 4.2 are declarative
with the reaction rule concept as the fundamental element. As described by Oury and
Plotkin, this is closely related to stochastic term rewriting [176]. Term rewriting is well
researched and some ideas and techniques can be transferred to rule-based modeling
languages. For example, matching a rule to a solution in the current state of the model
can be solved by unifying the pattern on the left rule side with the solution [10, p. 78].

As a next step, we give an overview of the general design of our implementation of
ML-Rules. The rest of this chapter will explore how ML-Rules can be implemented as
an internal DSL in the functional programming paradigm and as an external DSL on
top of object-oriented concepts. As an excursus, we also investigate how the idea of rule-
based modeling can be translated to an internal DSL for an object-oriented agent-based
simulation framework, which adopts some ideas from the process interaction world view.

1To make this difference more obvious, we could call ScalaTion a “simulation language” in contrast to
“modeling languages” that focus on a particular modeling domain.
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6.2. Implementing ML-Rules

In general, the implementation of ML-Rules has two key players: the model and the
simulator. The clear interface between both is a prerequisite for reusing simulation
algorithms or executing models with different algorithms. The model is written in a DSL
and contains at least the specification of the initial solution and the reaction rules that
govern the model’s behavior. Typically, a model also contains declarations of the species
(with their typed attributes) as well as definitions of constants and functions. To execute
a model, the simulator creates the initial solution as defined by the model and then
repeatedly applies the reaction rules to the solution to obtain all possible reactions [221].
Then, as described in Section 3.1.4, the First Reaction Method or the Direct Method is
used to probabilistically select a reaction to execute as well as a time advance2. This is
repeated until some stopping criterion (for example the maximum simulation time) is
reached. Algorithm 1 shows this procedure in pseudocode.

Input: An initial solution sol init , a set of rules R, and a stop time tstop

1 sol ← sol init
2 t← 0
3 while t < tstop do
4 reacs ← ∅
5 foreach r ∈ R do
6 foreach s ∈ subsols(sol) do
7 foreach reac ∈ match(rule, s) do
8 reac′ ← lift(reac, s)
9 reacs ← reacs ∪ {reac′}

10 end
11 end
12 end
13 (∆t, reac)← select(reacs)
14 t← t+∆t

15 sol ← apply(sol , reac)

16 end
Algorithm 1: The SSA as applied in ML-Rules

The algorithm references five further functions.

subsols obtains all solutions in the current model state. This includes the root solution
as well all as recursively nested solutions.

lift modifies a reaction’s rate and effect to lift it from a subsolution to the root solution
as described in Section 5.4.

2For now, we do not consider other SSA variants such as the Next Reaction Method, where the obtained
reactions and firing times are maintained between simulation steps (see Section 3.2.2). We discuss the
potential for incorporating such modifications later on, in particular in Section 6.6.
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match matches a rule to a solution, returning a set of reactions. Each reaction consists
of a rate (a real) and a description of the changes to apply when the reaction fires.
As we will see, these changes can be expressed in different ways, most directly as a
change vector. Alternatively, the changes caused by a reaction can also be captured
in a closure that mutates the state when executed.

select samples a reaction and a time advance according to the rates of the given reactions,
for example with the First Reaction Method or the Direct Method.

apply executes the reaction and returns a modified solution. This can happen by mutating
the solution in-place or by creating a new immutable solution value with the changes
incorporated. In any case, the reaction must be applied to the (sub)solution in
which it was matched.

Whereas most of this algorithm is standard, the functions subsols and lift are specific to
ML-Rules. They take care of applying rules in every subsolution as defined by ML-Rules’
formal semantics.

We did not include the output of the simulation in the pseudocode algorithm. Ap-
proaches to observe a simulation run differ in when to observe (at each state transition,
at fixed time points, repeatedly after an interval) as well as in what to observe (the whole
state, specific observables, complex queries including aggregation and filtering) [102].
However, this issue is orthogonal to the ones considered in this thesis and we will largely
ignore it.

What is left to discuss independently of specific implementation choices is the realization
of the function match above. In particular, we will specify an algorithm to obtain all
variable substitutions that identify the left side of a given rule with a subset of a given
solution as required by the formal semantics.

6.2.1. Pattern Matching algorithm

To match a rule against a solution, the variables in the rule need to be mapped to
values in such a way that the substitution maps the pattern on the left rule side to the
solution. This can be expressed as an equational unification problem, where the equations
represent associativity and commutativity (AC) laws about the + operation on solutions
and patterns3 [10, pp. 223ff, pp.236ff]. See Section 5.5.4 for a short review of previous
work in this area by Oury and Plotkin.

An equational unification problem in which terms only consist of variables, operators
as specified by the equations, and additional constants can be solved by translating it to
a system of diophantine homogeneous linear equations. There exists an extensive body of
research on solving equational unification problems this way [10, pp. 262f]. However, as
noted by Oury and Plotkin [176, 175], representing attributed entities and compartments
additionally requires unary function symbols and colors. In addition, instead of unifying
two terms which may each contain variables, we always only need to unify a ground term
(the solution contains no variables) with a term that may contain variables. This problem

3Recall that patterns and solutions are mapped to multisets (Section 5.4).
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is called equational matching and can, for example, be solved by compiling the pattern to
a discrimination net [10, p. 229, 11, 128, 127].

Formally, we can describe our pattern matching problem based on the definition of the
abstract syntax in Section 5.4: Given a pattern patr and a solution A we are looking
for all substitutions σ that satisfy patr ⇓A,σ A. It is also important to note that the
patterns in ML-Rules are non-linear, meaning variables can occur multiple times on the
left rule side. It has been shown that AC-matching for non-linear patterns is NP-complete,
whereas linear patterns can be matched in polynomial time [18].

In this thesis, we use a simple recursive backtracking algorithm that traverses a pattern
from left to right in preorder fashion. Before defining the algorithm formally, we give a
short informal explanation. Essentially, applying the algorithm to a pattern and a solution
can be visualized as a pattern matching tree (Figure 6.1). Each tree node corresponds to
an intermediate result obtained by matching a prefix of the pattern. In the root node,
the whole pattern is left to match the whole solution and no substitution for any variable
has been determined. A successful match is a leaf node in which the whole pattern has
been consumed and a substitution for all variables in the pattern has been determined.
Unsuccessful branches do not lead to a leaf with an empty pattern. Thus, each node
contains the remaining parts of the pattern to match, the solution of unmatched entities,
and the substitution obtained so far including counts # for reactant variables.

The relation between a parent and a child node corresponds to consuming one pattern
component and finding consistent substitutions for the variables contained in the pattern
component. Existing substitution for variables that already occurred earlier in the pattern
are obeyed4. For example, when matching an entity pattern to an entity, all attribute
variables in the entity pattern are matched to the corresponding attribute values of the
entity. This results in a substitution for all previously unused variables in the entity
pattern. The tree branches when an entity pattern can be matched to several entities in
the solution. Figure 6.1b shows one successful branch of matching a simple non-linear
pattern. On the other hand, Figure 6.1c shows an unsuccessful branch, in which B(x)
can not be matched to B(1) because x is already bound to 2.

The formal definition of the algorithm is structured into two mutually recursive functions
matchSolution (Algorithm 2) and matchEntity (Algorithm 3). Initially, matchSolution is
called with the complete pattern (i.e., the left rule side), the solution in which to find
rule instantiations, and an empty substitution. matchSolution then calls matchEntity for
each entity pattern and each entity in the solution (line 11). matchEntity in turn calls
matchSolution in line 14 to match the sub-solution pattern of an entity pattern. In the
process, the substitution is extended with newly matched variables, including variables
used for entity attributes, for entities, and for subsolutions, as well as the count values
for entity variables of the form #x. In addition, matched entities are removed from the
solution making them unavailable for subsequent matches. Earlier variable bindings are
obeyed. For example, in algorithm 2 line 4 checks whether the rest solution variable has
already been bound to a value and, if so, the current rest solution is equal to that value.

4This aspect is specific to non-linear pattern matching, in which variables are allowed to occur several
times.
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matchSolution

matchSolution

matchSolution

matchEntity

matchEntity

(a) Schematic match tree for the example. The bold branches are written out in detail in
Figure 6.1b (left branch) and figure 6.1c (right branch).

matchSolution(3A(1) + 5A(2) + 2B(1), A(x) ▷ a+B(x) ▷ b+ s, {})
matchEntity(3A(1), A(x) ▷ a, {})

matchSolution(2A(1) + 5A(2) + 2B(1), B(x) ▷ b+ s, {x ↦→ 1, a ↦→ A(1),#a ↦→ 3})
matchEntity(2B(1), B(x) ▷ b, {x ↦→ 1, a ↦→ A(1),#a ↦→ 3})

matchSolution(2A(1) + 5A(2) + B(1), s, {x ↦→ 1, a ↦→ A(1),#a ↦→ 3, b ↦→ B(1),#b ↦→ 2})

{x ↦→ 1, a ↦→ A(1),#a ↦→ 3, b ↦→ B(1),#b ↦→ 2, s ↦→ 2A(1) + 5A(2) + B(1)}

(b) An example for a successful attempt of matching a pattern to a solution.

matchSolution(3A(1) + 5A(2) + 2B(1), A(x) ▷ a+B(x) ▷ b+ s, {})
matchEntity(5A(2), A(x) ▷ a, {})

matchSolution(3A(1) + 4A(2) + 2B(1), B(x) ▷ b+ s, {x ↦→ 2, a ↦→ A(2),#a ↦→ 5})
matchEntity(2B(1), B(x) ▷ b, {x ↦→ 2, a ↦→ A(2),#a ↦→ 5})

E

(c) An example for an unsuccessful attempt of matching a pattern to a solution.

Figure 6.1.: Matching the pattern A(x) ▷ a+B(x) ▷ b+ s to the solution 3A(1) + 5A(2) +
2B(1).
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If that is not the case, the matching fails and an empty set is returned.

Input: A solution sol , a pattern with rest pr , a substitution σ
Output: A set of substitutions

1 function matchSolution(sol , pr, σ):
2 p1 + · · ·+ pn + x← pr
3 if n = 0 then
4 if x ∈ Dom(σ) ∧ σ(x) ̸= sol then
5 return ∅
6 else
7 return σ ∪ {x ↦→ sol}
8 else
9 result ← ∅

10 foreach e ∈ sol do
11 matches ← matchEntity (e, p1, σ)
12 foreach σ′ ∈ matches do
13 sol ′ ← sol ⊖ p1σ

′

14 result ← result ∪ matchSolution(sol ′, p2 + · · ·+ pn + x, σ′)
15 end
16 end
17 return result

Algorithm 2: The non-linear pattern matching algorithm for solutions.

The algorithm is efficient in that it prunes subtrees that can not lead to a match
anymore due to different values for the same variable. This is different from many existing
algorithms, which first do linear pattern matching and then filter out all results with
conflicting values for a variable [11]. An upper bound of the algorithm’s run time is
O(mn), where m is the number of entity patterns in the pattern and n is the number of
entity populations in the solution and its subsolutions. Note that m is typically small,
whereas n can become very large.

A final point regarding non-linear pattern matching is its generality. Non-linear patterns
allow expressing different types of (spatial) relations between entities. As discussed when
relating ML-Rules and React(C) in Section 5.5.4, nesting can be taken into account via
shared variables. For instance, the non-linear pattern A(p) +A(p) (where the attribute of
A represents the parent compartment) only matches pairs of As in the same compartment.
Similarly, a non-linear pattern like C(vol , p)+A(p)+A(p) makes the parent C entity and
its volume attributes available for calculating a volume-dependent propensity. Through
generating new variable values on the right rule side, dynamic nesting can be expressed
as well (see Section 5.5.4). In addition, when allowing expressions in the patterns other
spatial relations such as being neighbors in a grid can be expressed with non-linear
patterns such as A(x, y) + A(x + 1, y). This makes non-linear patterns an interesting
avenue for future research (see Section 8.3).

A complete Scala implementation of the algorithm presented in this section is given in
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Input: An entity e, an entity pattern p, a substitution σ
Output: A set of substitutions

1 function matchEntity(e, p, σ):
2 ceSe(ae,1, . . . , ae,n; sube)← e
3 cpSp(ap,1, . . . , ap,n; subp) ▷ x← p
4 if Se ̸= Sp ∨ cp > ce then
5 return ∅
6 else if x ∈ Dom(σ) ∧ σ(x) ̸= cpSe(ae,1, . . . , ae,n; sube) then
7 return ∅
8 else
9 result ← ∅

10 σ′ ← σ
11 foreach i ∈ {0, . . . , n} do
12 σ′ ← matchAttribute(ae,i, ap,i, σ

′)
13 end
14 sub ← matchSolution(sube, subp, σ

′)
15 foreach σ′′ ∈ sub do
16 result ← result ∪ {σ′′ ∪ {x ↦→ cpSe(ae,1, . . . , ae,n; sube),#x ↦→ ce}}
17 end
18 return result

Algorithm 3: The non-linear pattern matching algorithm for entities.

Appendix B.1.

6.2.2. Differences between formal semantics and implementation

In Algorithm 3 line 12 refers to a function matchAttribute, which is not shown. This function
deterministically matches an attribute pattern to an attribute value. The abstract syntax
allows arbitrary expressions for each attribute of an entity pattern. For example, given a
species A with one real attribute and a function f : real→ real, the following left rule
side would be valid according to the abstract syntax:

A(f(x); s1) + s→ A(x; s1) + s

The formal semantics now states that for all values of x for which A(f(x); s1) matches
an entity in the current solution, a reaction gets instantiated. Without analyzing (and
possibly inverting) f , a pattern matching algorithm can only find the right values for
x by trying out all possible values in the domain of f . In this case though, this is the
type real, which has an infinite number of values! For this reason, the pattern matching
in all our ML-Rules implementations allows only constants or variables for attributes
in species patterns. Thus, the concrete syntax is smaller than the abstract syntax to
avoid patterns that can not be matched with reasonable computational effort. We allow
this difference between concrete and abstract syntax, as it does not impose limits on the
abstract syntax and also allows to specify it succinctly. Future implementation might
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come closer to including more of the abstract syntax5. In any case, the abstract syntax
gives us a way to precisely say which aspects are implemented and which are not.

Another noteworthy aspect is that # now maps each entity variable to the number
of available entities at the time of matching. This also means a further difference from
the formal semantics. As discussed in Section 3.3.1, this facilitates correctly integrating
mass action kinetics when calculating reaction rates. It is also possible to translate back
and forth between both styles of determining the population sizes [106]. The numerical
difference is the count of the corresponding entity patterns. The cases where the calculation
is more complicated are when a rule can yield homoreactions and heteroreactions, for
example with a left side like A(x) + A(y).

Consider the rule

A(x) ▷ ax +A(y) ▷ ay
r·f(x,y,#ax,#ay)−−−−−−−−−−−→ A(x+ y),

where f shall calculate the correct rate factor according to mass action kinetics (see
Sections 3.3.1 and 5.3). With the definition # as in the formal semantics, the definition
of f would need to be

f(x, y, nx, ny) =

{︄
nx · ny x ̸= y

nx · (nx − 1) x = y.

With the # function as yielded by the pattern matching algorithm, which assigns to #ay
the number of A(y) entities that remain after removing the first reactant A(x), it is just

f(x, y, nx, ny) = nx · ny.

No distinction of cases is necessary. Therefore, we argue that the version of the # function
as yielded by the pattern matching algorithm is more practical than the one in the formal
semantics. Again, allowing this difference between the formal semantics and the practical
implementation enables succinctness in both worlds. At the same time, we can precisely
define the difference and, if necessary, translate between both worlds.

Implementing pattern matching is a big part of any implementation ML-Rules (or other
sufficiently expressive rule-based languages). The precise definition of abstract syntax and
formal semantics allows us to precisely describe how a concrete implementation relates to
the formal semantics. We saw a few examples of differences between the presented pattern
matching algorithm and the formal semantics. The reason is that the formal definition of
the language and the implementation have different goals. Whereas the formal definition
gives an unambiguous description of the capabilities of the language, the implementation
aims at being usable in practical applications. To be succinct in both worlds, slightly
different approaches can be taken.

Allowing differences between formal definition and implementation does not mean that
one of those is wrong. On the contrary, the formal definition gives us a vocabulary to

5Chromar [106], for example, allows patterns such as A(x) +A(f(x)). The pattern is transformed to
A(x) +A(y) with a constraint y = f(x), which is evaluated after values for x and y have been found.
As noted below, this is a usual approach for translating a non-linear pattern to a linear one [11].
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precisely describe how the implementation differs. In some cases we can even define a
bidirectional translation between a concrete implementation and the formal semantics.
For example, for the count function # a case distinction as shown above can handle this
translation. Of course, at some point the difference can get too big to still claim that
an implementation corresponds to a formal semantics. In our case, however, the core
aspects of ML-Rules are maintained: reaction rules on attributed, nested entities with
custom rate functions. Nevertheless, some of the properties that can be proved based on
the formal semantics may not hold anymore in the practical implementation, for example
the irrelevance of reactant order.

By not requiring a complete match between formal definition and implementation we
also allow for several implementations with different coverage of the semantics. This
can be useful in two ways. First, this allows providing specialized algorithms tailored
to models that do not exploit all language features [101]. Second, it facilitates the
evolution of simulation algorithms, gradually increasing the coverage of the semantics. In
both cases, implementations can be assessed and compared precisely using the formal
semantics. Performance-wise, this means that we can precisely say which aspect of a
modeling language makes our simulator slow (e.g, non-linear pattern matching, unbounded
domains for attributes). This enables assessing the trade-off between expressive power
and performance (cf. Section 2.5.3).

6.2.3. Network-based simulation

The simulation algorithm as presented in algorithm 1 is not the only way to execute
models defined in ML-Rules or similar languages. In this section, we give a short overview
over an alternative way to execute rule-based models.

Our approach is a so-called network-free simulation algorithm [218]. Here, the reactions
that are possible in the current state are generated “on-the-fly” by pattern matching
the reaction rules against the current state. In contrast, the so-called network-based
simulation algorithms use the rules only once to construct a reaction network before
running the actual simulation, which is then purely based on the static network [94].
This essentially reduces the rule-based model to a reaction-based one. However, reaction
networks can be too large (or even infinite) to be exhaustively generated (for example,
because of attributed species, cf. Section 4.1.2).

Often, it makes sense to provide both network-based and network-free simulation
algorithms for a language. For example, the original BioNetGen6 simulator for BNGL
was network-based, and only later the network-free simulator NFSim was developed [218].
The generation of the network also relies on applying the rules to a solution. Starting
with some seed species, the generation of all reactions is repeated until a fixpoint or some
termination criterion is reached [73]. Thus, the pattern matching algorithm as shown in
the previous section are also needed for network-based simulators.

In the remainder of this chapter, we will focus on network-free simulation. To illustrate
how different implementations of ML-Rules and, in particular, the proposed pattern

6The (originally) network-based nature of BioNetGen is evident from its full name “Biological Network
Generator” [71, p. 117]
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matching algorithm are possible, we now present two variants that follow opposite
approaches in many ways. First, a purely functional, Scala-based internal DSL, and
second an external DSL that relies on generating object-oriented Java code.

6.3. ML-Rules as an internal DSL in Scala

Scala is a GPL that allows programming in the functional and in the object-oriented
paradigm. As a consequence, it offers many programming concepts that can be used
to implement internal DSLs. In particular, Scala provides powerful pattern matching
capabilities as typical for functional programming languages. The main idea of the
approach described in this section is to implement ML-Rules as an internal DSL in Scala,
which allows reusing Scala’s built-in pattern matching. Based on a short introduction to
the available pattern matching features in Scala we focus on the implementation of the
pattern matching algorithm as described in Section 6.2.1.

6.3.1. Pattern Matching in Scala

Scala offers a succinct syntax for matching patterns with variables to values [171, p. 273].
For example, the following code snippets matches three variables in a tuple pattern to
according values from a given tuple:

val (x, y, z) = (1, "a", true) // x == 1, y == "a", z == true

The same is possible for algebraic data types, which are implemented in Scala as case
classes for product types and sealed traits and subtyping for sum types [170]. match-case

expressions can be used to distinguish between sum types. In the following snippet, the
sealed trait Animal is a sum type with the subtypes Cat and Dog, both of which have an
attribute name.

sealed trait Animal

case class Cat(name: String) extends Animal

case class Dog(name: String) extends Animal

def speak(a: Animal) = a match {

case Cat(n) => n + " says Meow"

case Dog(n) => n + " says Woof"

}

Patterns can also include the wildcard pattern _, types, or variable bindings, include
guards, or be nested. This makes pattern matching very powerful in functional languages
such as Scala, particularly in combination with algebraic data types. In addition, case
classes are automatically augmented with generated code by the Scala compiler, for
example for constructing and comparing instances. All attributes of a case class are
immutable by default.
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We can leverage Scala’s powerful pattern matching to help implementing the pattern
matching required for ML-Rules. This allows for a very succinct implementation that relies
on established functional programming patterns. We first describe an implementation
without nesting, and then extend it to include nesting.

6.3.2. Unnested multisets

As a first step, we define some types that will represent solutions and entities, similarly
as in the formal semantics. Solutions will be represented as multisets. A multiset of As
is a map of As to the count of occurrences. Operations such as adding and subtracting
multisets can be easily implemented based on this type alias.

type MultiSet[A] = Map[A, Int]

trait Entity

We also define a trait Entity, which is the supertype for the user-defined case classes that
represent biochemical entities. In a model with entity types A and B, where A has one
attribute and B has two, a solution could look like this:

case class A(x: Int) extends Entity

case class B(x: Int, y: Boolean) extends Entity

val solution: MultiSet[Entity] = Map(

A(1) -> 2,

A(2) -> 2,

B(0, true) -> 1

)

This translation from the abstract syntax to Scala is pretty straightforward, and we
will later improve it further by adding syntactic sugar for constructing multisets. Note,
however, that Scala requires naming attributes in contrast to ML-Rules. As we do not
use the attribute names in the following, they can be chosen at will (cf. 4.1.2).

The final ingredient for defining a first approximation of a reaction rule are for-
comprehensions. Among other things, Scala’s for-comprehensions allow iterating over
collections. By applying this to the entities in a multiset and combining it with the
pattern matching on case classes, we obtain a first attempt of expressing a reaction rule:

for {

A(x) <- solution.keys

A(y) <- solution.keys

} yield A(x + y)

Each line between the braces {} corresponds to one reactant, and the variables x and y are
vanilla Scala variables. Left of the arrow <- a Scala pattern makes sure that we only match
A entities; the B entities in the solution are ignored. For each successful match of both
reactants, the yield expression is evaluated and the evaluation results are accumulated.
In the yield expression the variables x and y matched in the reactants are available. Thus,
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some aspects of the pattern matching algorithm from Section 6.2.1 are already available
at this stage (without any non-trivial implementation). However, some other aspects
are missing and will be addressed in the remainder of this section, before we go on to
integrate nested entities.

• In addition to the variables for attributes of entities, we also want to obtain variables
for the reactants themselves and the number of their available occurrences (for the
# operator). Currently, the number of occurrences is even ignored completely.

• Currently, several reactants can match the same entity. We will make entities that
have already been matched by a reactant unavailable for later reactants.

• In addition to the pattern matching on the left rule side, the rate expression and
the right rule side need to represented.

• Scala’s built-in pattern matching does not support non-linear patterns. We will
discuss how ML-Rules’ non-linear patterns can be expressed in our Scala implemen-
tation.

Reactant variables

Scala’s built-in pattern matching supports assigning a variable to the value matched with
@. For example, we can modify the snippet above to bind the variables ax and ay to the
reactants:

for {

ax@A(x) <- /* omitted */

ay@A(y) <- /* omitted */

} yield /* omitted */

However, ax and ay are of the type A and it is not possible to augment them with additional
information, in particular the count of available entities at the time of matching. To allow
storing such additional information about a matched reactant we introduce the Reactant

class. In addition, we add an extractor object [171, ch. 26] |> to allow an infix operator
corresponding to the binding operator ▷ in the abstract syntax.

case class Reactant(entity: Entity,

count: Int)

object |> {

def unapply(reactant: Reactant): Option[(_ <: Entity, Reactant)] =

Some((reactant.entity, reactant))

}

This way, we can augment Scala’s pattern matching to allow binding a variable of the
type Reactant with the following syntax:
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for {

A(x) |> ax <- /* omitted */

A(y) |> ay <- /* omitted */

} yield /* omitted */

Now ax and ay are of the type Reactant. The expression ax.count then evaluates to the
count of available entities at the time of matching, and, thus, corresponds to the abstract
syntax expression #ax 7. The creation of the Reactant objects happens to the right of the
binding arrow <-, where the code we discuss next is evaluated.

Avoiding repeatedly matching an entity

To avoid matching the same entity several times we need to maintain information about
which entities have already been matched. More precisely, as we are in a multiset setting,
we need to record how many occurrences of every entity have been matched. Then we can
ignore the already matched entities in each subsequent matching step. The observation
that pattern matching is a computation where earlier steps affect later steps is a strong
hint that such a pattern matching computation is monadic. The idiomatic way to express
monadic computations in Scala are for-comprehensions, which is similar to Haskell’s
do-notation.

Our for-comprehension above is essentially using the list monad, but, as we already
noticed, this may result in using an entity for several reactants. Therefore, we apply the
state monad transformer to the list monad. This way, we can express computations that
are simultaneously stateful and nondeterministic. The resulting monad can be captured
in a case class (Appendix B.2 shows a complete implementation)8:

case class NonDetState[S, +A](run: S => List[(S, A)]) {

// omitted

}

Thus, NonDetState wraps a function that takes a state and returns a list of pairs, with
each pair representing a possible successor state with a corresponding intermediate result.
For matching entities in multisets, the state contains the available entities and also
accumulates the entities that have already been matched. Omitting nested entities for
now, both these components are just multisets of entities:

case class MatchingState(available: MultiSet[Entity],

taken: MultiSet[Entity] = Map.empty)

Now we can express the core part of the pattern matching algorithm as a NonDetState

value. For each population of entities that is available and not already completely taken,

7As shown below, this yields the count at the time of matching. Note, however, that it would be trivial
to also make the total count available. This is an example for the extensibility of internal DSLs.

8Functional programming libraries such as cats (typelevel.org/cats/) offer more featureful implemen-
tations of monads and monad transformers. For example, these implementations typically employ
trampolining for stack-safe recursion. Using such a library, the definition of NonDetState becomes simply
type NonDetState[S, +A] = StateT[List, S, A].
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one pair of the state with the additional taken entity and the entity itself wrapped in a
reactant is returned:

val solution: NonDetState[MatchingState, Reactant] = NonDetState { s =>

for {

(e, availableCount) <- s.available.toList

takenCount = s.taken.getOrElse(e, 0)

count = availableCount - takenCount

if count > 0

} yield (

MatchingState(s.available, s.taken.updated(e, takenCount + 1)),

new Reactant(e, count)

)

}

This way, we can express matching several reactants for a rule with a monadic for-
comprehension. Continuing our example from above, we can now fill in the gaps on the
right of the arrows <- as follows:

for {

A(x) |> ax <- solution

A(y) |> ay <- solution

} yield /* omitted */

This implements the pattern matching on the left rule side. Each line in the for-
comprehension corresponds to one level in the tree in Figure 6.1 on page 94. In particular,
the MatchingState contains the information about the remaining solution, whereas the
variable substitution is represented by the Scala variables and their values. Next we take
a look at how the rate expression and the right rule side can be implemented to express a
complete reaction rule.

Instantiating reactions

Rules not only define the reactants, but also the rate and the products of the resulting
reaction. We represent a reaction as a case class with a rate and a change vector and
define a NonDetState value react that produces a Reaction.

case class Reaction(rate: Double,

changeVector: Map[Entity, Int])

def react(

rate: Double,

products: MultiSet[Entity]

): NonDetState[MatchingState, Reaction] = NonDetState { state =>

List((state, Reaction(rate, diff(products, state.taken))))

}
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Then, we can express a reaction rule as a monadic sequence of matching reactants followed
by instantiating the reaction. The rule in the following snippet corresponds to the abstract
syntax A(x) ▷ ax +A(y) ▷ ay

k·#ax ·#ay−−−−−−−→ A(x+ y):

for {

A(x) |> ax <- solution

A(y) |> ay <- solution

r <- react(rate = k * ax.count * ay.count, products = Map(A(x + y) -> 1))

} yield r

Note that in the arguments for react all variables from the pattern matching as well as
the .count expressions for the reactant counts are available. The products of the reactions
are specified as a map and, therefor, somewhat verbose. We will introduce some syntactic
sugar for reaction products later.

Non-linear patterns

ML-Rules requires nonlinear pattern matching, that is pattern matching with multiple
occurrences of the same variable (see Section 6.2.1). Scala and Haskell do not support
nonlinear pattern matching9, other languages such as Prolog or Erlang do. For example,
the following snippet causes a compile error in Scala:

val (x, x) = (1, 1)

In general, it is an error in Scala to use the same pattern variable several times in
one line in a for-comprehension. The most direct way to work around this limitation
is to use different variables and add a guard that requires both variable values to be
equal. Nevertheless, it is possible to use a pattern variable from an earlier line in a
for-comprehension as a constraint. To distinguish a reference to an earlier variable from a
newly defined variable, references need to be enclosed in back ticks [171, p. 281].

case class A(x: Int, y: Int) extends Entity

for {

A(x, x) |> _ <- solution // compile error, x is used twice

} yield /* ... */

for {

A(x1, x2) |> _ <- solution

if x1 == x2 // this works

} yield /* ... */

for {

9One of the reasons is that to implement it, it must be possible to compare the attributes of
algebraic data types, which is not always possible in these languages (for example, functions
are not generally comparable). The topic has been discussed on the Haskell-cafe mailing list
(mail-archive.com/haskell-cafe@haskell.org/msg59617.html).
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A(x, y) |> _ <- solution

A(x, y) |> _ <- solution // x and y are new variables that shadow the earlier ones

} yield /* ... */

for {

A(x, y) |> _ <- solution

A(`x`, `y`) |> _ <- solution // x and y refer to the already matched occurrences

} yield /* ... */

Discussion

This completes the implementation for flat, unnested multisets. From a DSL perspec-
tive, there is not much syntax or semantics on top of regular Scala. However, the
for-comprehensions allow reading a rule as “for the entity . . . and the entity . . . the reaction
. . . is possible”. This emphasizes the stepwise selection of reactants in the pattern matching
algorithm, rather than being declarative like the left rule side in the abstract syntax.
Before extending this approach to allow for nesting, we discuss some properties of this
style of rule formulation.

First, the nondeterministic state monad has been presented before, for example to
solve constraint satisfaction problems [9]. Similarly, sampling without replacement can be
realized this way, for example for drawing poker cards from a deck [134]. By adapting
those approaches for working with multisets rather than lists, we arrive at the solution
presented above.

Second, functions that operate on the monadic values defined above can be used to
quickly add features. For example, the abstract syntax of ML-Rules includes reactants
with a count greater than one. On way to implement matching n similar entities is is to
repeat the matching step n times and check that all n matched entities are equal.

Third, Scala’s for-comprehensions give very powerful syntactic support for rule formula-
tions with very little implementation effort. All expressions are typechecked by the Scala
compiler, IDEs provide editing support, and generally Scala features can be seamlessly
integrated with rule definitions.

As a preliminary conclusion, we can state that Scala’s pattern matching relieves us of
a large part of implementing the matching of the left side of a rule against the current
state. The built-in limitations can be worked around in a straightforward manner. Thus,
the main work consists in translating the matching to the nondeterministic state monad,
which also required only few lines of code. As a next step, we extend the approach to
include nested multisets and implement the full semantics of ML-Rules.

6.3.3. Pattern matching in nested multisets

To extend the implementation to nested multisets, two aspects need to be revised. First,
the representation of model states must account for nesting. Second, rules must be able
to specify the nesting of reactants.

105



6. Implementation of rule-based modeling languages

Using algebraic data types (and case classes in particular), we can model the nested
multisets that make up an ML-Rules state as follows:

case class Solution(contents: Map[Compartment, Int])

case class Compartment(entity: Entity, subSolution: Solution)

case class Path(steps: List[Int])

Multisets are wrapped in a Solution type and now contain Compartment instances. One
Compartment consists of an entity and a subsolution which is again a Solution. There is
always one root solution, and all nested solutions are identified unambiguously by a path
of Compartments starting at the root solution10. In particular, the root solution corresponds
to the empty path.

This representation of states corresponds exactly to the specification of model states
in the formal semantics. There we defined that the multiset elements have the general
form S(ṽ; v), where ṽ are the attributes of the entity and v is the subsolution. The Scala
equivalent is Compartment(S(att1, att2, ..., attn), Solution(...)), where S is a case class
and a subtype of Entity.

Furthermore, we also need to adapt the MatchingState, which now, in addition to the
root solution, maintains a map of the solution of already taken entities per path starting
at the root solution. The starting point for defining a rule is still a NonDetState value
solution that produces a Reactant. Reactants are now parameterized with the path to the
(possibly nested) solution in which they were matched. To allow accessing the entities in
a subsolution of a reactant as well as the rest solution in that subsolution, we extend the
Reactant type with methods subSol and rest.

case class MatchingState(root: Solution, taken: Map[Path, Solution])

def solution: NonDetState[MatchingState, Reactant]

case class Reactant(compartment: Compartment, count: Int, location: Path) {

def subSol: NonDetState[MatchingState, Reactant]

def rest: NonDetState[MatchingState, Solution]

}

The implementations of these functions are similar to the ones for the unnested case, but
additionally need to handle the paths to the individual solutions. The method subSol

allows iterating the subsolution of a compartmental entity. The method rest yields the
rest solution in a compartment and makes it unavailable for future matches. Therefore,
it should be used last in a sequence of matches in a solution, as also specified by the
abstract syntax in Section 5.4.

As an illustration of how a reaction rule from a nested model can be expressed in this
approach, the following listing shows a rule for the reaction number 2 from the Wnt
model (see Section 4.1). The definition of the rate and of the reaction result has been
factored out into individual lines. We also introduced some syntactic sugar to facilitate
the creation of solution values as reaction products, for example with the infix operator +

(cf. Section 2.5.2).

10Note that this assumes a stable enumeration of key-value pairs in the contents of a Solution.
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for {

Wnt() |> w <- solution

Cell(phase, vol) |> c <- solution

Axin("p") |> a <- c.subSol

s <- c.rest

rate = c.count * ((kApA_act * w.count * a.count) / vol)

products = Wnt() + Cell(phase, vol).withSubSol(Axin("u") + s)

r <- react(rate, products)

} yield r

6.3.4. Links

As a final ingredient, we show how links can be realized in this approach. First, we define
a simple sum type for link values. A link is either free or linked with an identifying ID,
which is randomly generated for new link values.

sealed trait Link

case object Free extends Link

case class Linked(id: UUID = UUID.randomUUID()) extends Link

Then we can define an entity type that has a link attribute and define rules that link free
entities and break up linked entities. Note that only one new Link is created, saved in a
val, and then used as an attribute value in both entities. This is idiomatic Scala for a
let-in expression and implements the ν operator from the formal definition of ML-Rules.
In the second rule, a non-linear pattern is used to match entities with the same link value.

case class B(x: Int, l: Link) extends Entity

val linkRule = for {

B(x1, Free) |> b1 <- solution

B(x2, Free) |> b2 <- solution

r <- react(1, { val link = Linked(); B(x1, link) + B(x2, link) })

} yield r

val breakUpRule = for {

B(x1, l@Linked(_)) |> b1 <- solution

B(x2, `l`) |> b2 <- solution

r <- react(1, B(x1, Free) + B(x2, Free))

} yield r

6.3.5. Discussion

This first implementation of ML-Rules is based on expressing the pattern matching
algorithm as described in Section 6.2.1 with pure functional programming. The non-
deterministic state monad allows a direct formulation of several consecutive steps of
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matching reactants. By employing Scala’s syntactic support for monadic programming
through for-comprehensions as well as established libraries for functional programming,
the implementation is relatively succinct. On the other hand, the concrete syntax for
reaction rules is noisier than the abstract syntax of ML-Rules. In particular, the focus on
stepwise matching of reactants leads to less declarativity.

Another important point is the limited computational efficiency. For example, matching
several reactants at once (in other words, matching a reactant with a count > 1) is, in the
monadic framework, most directly expressed by repeatedly matching a single reactant.
However, this requires filtering the resulting lists of reactants for those where all reactants
are actually equal. With more control over the matching process, this could be significantly
simplified by selecting all required equal reactants at once. More generally, rule definitions
can not be inspected for optimizations.

The underlying issue is that the data in each line of the form pattern <- solution only
flows in the direction of the arrow, from right to left. Thus, the iteration of the available
entities on the right side of the arrow has no access to the pattern. Therefore, the selection
of potential reactants can not be tuned to the entities described by the pattern, for example
a given reactant count. This is similar in the Haskell embedding of Chromar [106] (also
see Section 4.2.5), which also reuses the pattern matching capabilities of its functional
host language. The difference to Chromar is the semantics of the expression to the right of
the arrow <-. Whereas Chromar uses the list monad and calculates reaction multiplicities
as discussed in Section 3.3.2, our implementation relies on the nondeterministic state
monad to keep track of which entities are no longer available for matching. This way,
ML-Rules gives access to the counts of the reactants at the time of matching, allowing
to express custom rate functions based on these counts (as discussed Section 6.2.1). In
addition, Chromar provides an additional syntactic layer to mimic the rule syntax, whereas
ML-Rules directly exposes the monadic sequencing of steps. Thus, ML-Rules is more
verbose, but direct access to the monad allows factoring out recurring steps or applying
library functions.

In summary, this implementation of ML-Rules shows the typical trade-off of internal
DSLs. It is easy to reuse features of the host language, as we did for defining species as
case classes, or by reusing the built-in arithmetic operators. Also, Scala’s type system
and established IDEs are available, and it is possible to integrate user-defined functions or
third-party libraries. On the other hand, the potential for inspecting and analyzing models
is limited. By reusing features of the host language and delegating specific language
aspects to it, our implementation gives up the opportunity to influence the evaluation of
these language aspects. For example, by expressing rates as plain Scala expressions it
is not possible to infer how the rate depends on the reactant’s population sizes, which
would be necessary to apply a partial-propensity SSA [174]. As such, this implementation
works, but offers little potential for more sophisticated execution algorithms.

To address these issues, we now present an implementation of ML-Rules as an external
DSL. This allows fine-grained inspection of all syntactic elements and, therefore, does
not constrain the choice of evaluation or execution strategies. It does, however, require
more effort for the actual implementation.
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6.4. ML-Rules as an external DSL

The second approach to implementing ML-Rules relies on the language workbench Xtext
and the associated techniques as described in Bettini’s textbook [21]. In particular, the
pattern matching for a given reaction rule is implemented by generating according code.
As arbitrary code can be generated, we can employ the pattern matching algorithm almost
exactly as presented in Section 6.2.1. However, before we discuss the code generation, a
few other aspects of the language implementation must be handled, most of which we
got “for free” in our previous implementation. Whereas Xtext provides support for many
of these aspects, ML-Rules’ idiosyncrasies, in particular the non-linear patterns, require
some adaptations of Xtext’s defaults.

First, we create an annotated grammar, which is the foundation of an Xtext-based
language. Xtext uses this grammar to generate a parser for the concrete syntax as well as
a metamodel of Java classes that represent the abstract syntax. In the second step we
manually adapt the generated metamodel to ML-Rules’ non-linear patterns. Third, we
discuss how a model is type-checked, which is again non-standard because of ML-Rules’
pattern-based reaction rules. Based on a type-checked model, we then turn to generating
code. The idea here is that a the code generated for a type-checked model should always
be error-free. In addition to the generation of the actual pattern matching code, we
also consider the interface between generated and hand-written code, such as simulation
algorithms.

These implementations are integrated into the framework provided by Xtext, following
the “hollywood principle” (Don’t call us, we’ll call you). As a result, Xtext can generate
an Eclipse plug-in that seamlessly integrates the editing of ML-Rules models as well as
the generation and compilation of code into Eclipse’s build process. Consequently, the
preferred target language for code generation is Java, the language that is commonly used
with Eclipse.

6.4.1. Concrete Syntax

In contrast to the previous approach, the usage of Xtext allows us to freely design the
concrete syntax without being limited by existing language syntax. On the other hand,
the preexisting implementation ML-Rules 2 already defined a concrete syntax before this
thesis [98]. For compatibility, we largely adopt the existing concrete syntax. Thus, a
model file consists of constants, functions, and species, then an initial solution, and then
the reaction rules.

One diversion from the previous approach is the incorporation of user-defined functions.
In ML-Rules 2, all functions needed to be defined directly in the model in a Haskell-like
syntax. In contrast, we allow such definitions only for simple expressions, for example for
rate expressions. More complex functions that need to iterate solutions, obtain the species
name of an entity, or access its attributes are now implemented in Java in a separate file
against a generated interface. This is based on the observation that such functions on
solutions were very hard to implement directly in ML-Rules, as little support (e.g., for
debugging) is available.
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As in the previous section, we focus mainly on the definition and implementation of
rules and the matching of the left rule side to the model state. Our implementation with
Xtext follows the approach presented in Section 2.5.1. The following is a simplified version
of the Xtext (grammar) rule that specifies the concrete syntax of (reaction) rules:

Rule:

(reactants+=SpeciesPattern ('+' reactants+=SpeciesPattern)*)?

'->' products=Expression? '@' rate=Expression ';';

When Xtext processes this grammar rule, two things happen. First, in the metamodel
a class11 Rule representing rules is generated with three attributes reactants, products,
and rate of the types List<SpeciesPattern>, Expression, and Expression. Second, the parsing
machinery for rules is generated. Part of that machinery are links to the code that was
generated for other grammar rules (List<SpeciesPattern> and Expression) as well as checking
for syntax elements such as ->, @, or ;. Then, parsing a rule like

Sheep:s + Wolf:w -> Wolf + Wolf @ #s * #w * wolfGrowth;

results in the instantiation of an object of the type Rule with attributes that hold the
information about the patterns, reactants, and rate expression of the rule as parsed
according to the corresponding grammar rules. Overall, about 40 grammar rules define
the concrete syntax of ML-Rules as well as the generated metamodel.

Most of the grammar rules are either adapted from standard programming language
aspects (nested arithmetic expressions are the canonical example) or from the abstract
syntax definition of ML-Rules. However, as Xtext is based on Antlr 3, an LL parser,
left-recursion has to be avoided (see Section 2.2.1). This requires some translation from
left-recursive abstract syntax rules to the grammar rules. For example, among the different
alternatives for defining an expression is eS(ẽ, e), meaning an entity definition with a
count expression in front of it. The direct translation of this rule is left-recursive and not
accepted by Xtext:

Expression:

/* other alternatives */ | count=Expression entity=Entity;

Instead, the grammar rule must be reformulated as follows:

Expression:

(/* other alternatives */) ({EntityExpression.count=current} entity=Entity)?;

This allows all other kinds of expression either on their own or as the count of an entity
definition. The assignment in curly brackets {} assigns the already parsed expression to
the count attribute of an EntityExpression (a metamodel class) if and only if an entity is
parsed after the expression. This way, an Xtext grammar can be expressed without left
recursion and at the same time the resulting metamodel represents exactly the elements
defined in ML-Rules’ abstract syntax.

11Technically, an interface (Rule) and an according implementation (RuleImpl)
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6.4.2. Metamodel customizations

Xtext generates a metamodel based on the grammar that also defines the concrete syntax.
Therefore, the generated metamodel contains precisely the elements that are represented
in the concrete syntax. For typical programming language constructs this is often the
desirable behavior. For example, the metamodel generation supports declaring variables
and referring to them:

VariableDef:

name=ID;

VariableRef:

var=[VariableDef];

Here, the grammar states that variable definition consist of an ID literal, whereas variable
references link to a variable definition via brackets []. As a consequence, when parsing a
VariableRef Xtext expects to parse an ID literal that is the name of some VariableDef, as
links with [] refer to the name attribute of the target by default. Thus, in the concrete
syntax variable definitions as well as variable references consist of an ID literal. In the
abstract syntax, however, a variable reference contains a link to a variable definition
instead of an ID literal.

For ML-Rules, this automatic generation of references is useful, for example, for defining
and referring to constants or functions, which works similarly as in GPLs. The DSL
aspect of ML-Rules, however, shows in the patterns on the left side of the reaction rules.
Here, there is not necessarily a clear distinction between defining a variable and referring
to it. For example, consider the following rule with a non-linear pattern on its left side:

A(x):a + B(x):b -> C(x) @ #a * #b;

Whereas the variables a and b occur only once on the left side, the variable x occurs twice.
There is no clear way to state which of the two x occurrences defines the variable. At first
glance, it might seem sensible to make the left-most occurrence the defining occurrence.
However, this leads to two problems. First, this would implicitly define an order for the
reactants and make it impossible to rearrange them later on, for example for more efficient
matching. The second (and maybe more immediate) problem is that there is no way to
syntactically distinguish between definition and reference occurrences in a context-free
parser. In fact, having access to the information whether a variable x has already occurred
or not would make the parser context-sensitive12.

In cases like this where the metamodel cannot be automatically inferred, Xtext allows
disabling the automatic inference and working with a manually curated metamodel [21,
pp. 358ff]. We used this feature to adapt the generated metamodel. In particular, we
added the list of used variables as a new attribute variables to the reaction rule element,
as well as a new metamodel class Variable. All variable occurrences anywhere in the

12This is comparable to the infamous context-sensitive C fragment T * x;, which can either be a
pointer declaration or a multiplication, depending on whether T is a type or a variable. Also
see en.wikipedia.org/wiki/Lexer_hack
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rule are then references to a Variable. The variables are never explicitly declared in the
concrete syntax. However, they could have been added to the abstract syntax, as it is
done, for example, in React(C) [113]. The abstract and concrete syntax of ML-Rules
leave the list of variables used in a rule implicit.

As the list of variables has no corresponding element in the concrete syntax, it can
not be populated by the parser. Instead, the value has to be obtained after parsing.
Xtext provides an extension point called IDerivedStateComputer that can be used for such
post-processing. We use this extension point to collect all variable names used in variable
references on the left rule side, eliminate duplicates, instantiate a Variable object for each
of them, and point all corresponding references to them. The Variable objects are then
assigned to the variable attribute of the reaction rule.

As a result, each variable is linked to all its occurrences and vice versa. The downstream
code for type checking and code generation can work with a metamodel that contains a
true representation of the rule.

6.4.3. Type checking

After defining the grammar rules and generating the metamodel and the parser from
it, further code that relies on the metamodel can be written. One very important
feature to implement is a type system, which consists of two different components: one for
determining the type of a syntactical construct, and one for checking that the subconstructs
of a syntactical construct have the correct type. The type checker can be implemented
as a set of validation methods. These are invoked automatically when the user writes
into the text editor, providing immediate feedback when entering expressions with type
errors, for example as red “squiggly lines” [21, pp. 179ff.]. For example, the rate expression
in ML-Rules must be of a numeric type. In the following rule, the rate results from
multiplying a constant, an expression for the entity count, and a variable that was matched
on the left rule side:

k: 1.0;

A(num);

A(x):a -> A(x - 1) @ k * (#a * x);

To make sure that the type of the rate expression is correct, the following steps need to
be taken:

• The rate expression is a multiplication, which we defined as an operation that yields
a numeric value. Thus, this check passes.

• The first argument of the multiplication is a constant. Constants are defined earlier
in the model and their type can be inferred from their value. Obviously, k is a
numeric constant and, thus, a valid argument for the multiplication.

• The second argument is itself a multiplication. With the same argument as above,
we assume that it yields a numeric value and, thus, has the correct type.
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• The first argument of the nested multiplication is #a, which is an expression that
yields the count of the variable a. Thus, a numeric value and valid.

• The argument for the operator # must be a variable that was bound to a pattern
(i.e., is of the type ent). Looking up a, we see that it occurred once on the left rule
side. We can confirm that it was bound to the first and only pattern on the left
rule side and, thus, is a valid argument for #.

• The second argument for the inner multiplication is the variable x. Again, we look
up the variable and its only occurrence. It was bound as a pattern variable in the
left rule side. To determine its type, we need to look up where it occurred, which
reveals that it was used to match the first argument of an A. In turn, we look up
the definition of the species A and find the type of its first attribute, which is indeed
num, the type of numeric values. Thus, x is a valid attribute for the multiplication.

When one of the checks fails, the term that has the wrong type is underlined in the
text editor generated by Xtext. The type of x - 1, the expression for the value of A’s
attribute on the right rule side, can be checked similarly.

Apart from the patterns on the left rule side, the type checking is simpler than in
GPLs. The language contains only a few simple types and no inheritance, polymorphism,
generics, or other more advanced typing concepts. Due to the explicit types of arguments
and the return value in function declarations, checking types at function call sites is not
complicated as well.

6.4.4. Code generation

An ML-Rules model that is typed into the text editor generated by Xtext is continually
parsed and validated (mainly type checked). If no errors are found and the model file
is saved, Xtext’s code generation component is invoked. The following Java classes are
generated:

• A class Model as the entry point for instantiating a model. This includes all constants,
the creation of the initial solution, as well as references to other classes as needed.

• An abstract class AbstractFunctions containing abstract declaration of each function
declared in the model.

• For each species declaration, a class representing the species.

• For each rule, a class that contains a method for matching the rule to a solution
and yielding the resulting reactions.

Before discussing the actual generation of pattern matching code for the rules, we
shortly consider the integration of the generated code as listed above with handwritten
code.
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IModelIRule ISpeciesBaseFunctions

ICompartmentalSpecies

Model AAA CellCellCellRule0Rule0Rule0AbstractFunctions

Functions

Figure 6.2.: A class diagram contrasting the handwritten and generated code. The
uppermost classes are model-generic handwritten classes or interfaces. Below
are model-specific generated classes. The class Functions is the only model-
specific handwritten class.

Integration of generated code

The separation of generated and handwritten code is necessary because changes to
generated code would be overwritten when the code is regenerated. Martin Fowler
suggests a design pattern called “Generation Gap” to safely separate and combine both
types of code [80, p. 571ff.]. The idea here is to define inheritance relations between
handwritten and generated classes. For example, the generated class can inherit from a
handwritten base class and in turn be the base class for a handwritten subclass. This way,
a clear interface between generated and handwritten code is defined, and the generated
code can be regenerated safely without interfering with the handwritten code (Figure 6.2).

The model-independent handwritten code is contained in a library (called “mlrules3-
common”) 13. If the model contains functions on solutions, the generated class
AbstractFunctions is abstract, and a subclass must be written to implement those functions.
If the model contains only simple arithmetic functions or no functions at all, the generated
class AbstractFunctions is not abstract and no subclass is necessary. The model-dependent
handwritten code should also contain some execution entry point such as a class with
a main method. For example, for a model with no user-defined functions, the following
minimal main method executes the model with a simple simulation algorithm from the
library:

Model model = new Model();

FirstReactionMethodSimulator simulator = new FirstReactionMethodSimulator(model);

simulator.run(10.0, 0.1); // stop time and observation interval

Again, this exemplifies how generated classes (Model) and handwritten classes
(FirstReactionMethodSimulator) are integrated. The key point is the usage of a library
13To automatically include this library in ML-Rules Eclipse projects, we implemented a simple ML-Rules-

specific “New Project” wizard.
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with abstract, model-independent interfaces that abstract over the generated classes for
concrete models. This enables the model-independent implementation of simulation
algorithms that operate on the interfaces only. The library also provides further interfaces
that are used in the abstract method declarations. For example, the interface IRule

contains just one method declaration:

Iterable<IReaction> match(ISolution solution);

The types IReaction and ISolution are part of the library as well. Finally, the library
contains a file with function declarations in ML-Rules syntax. These function definitions
form a kind of standard library of functions, whose implementations are contained in
the class BaseFunctions and inherited and usable for any concrete model. For example,
we implemented the function nu that generates fresh link values in this standard library.
This works without any customization as Xtext uses Java’s class path concept to look
up definitions, and the function declarations as well as their Java implementations are
available via the mlrules3-common library.

Generating pattern matching code

ML-Rules’ species and constants map nicely to Java classes and static final class members,
and code for function declarations and definitions can be generated straightforwardly as
well. In contrast, reaction rules can not be mapped directly to (object-oriented) Java
concepts. Thus, the majority of the generation code is concerned with rules. The idea is
to generate one class per rule, where each of those classes provides an implementation of
the method match that can be applied to a solution and yields the instantiated reactions
for this solution. The match implementation checks for each reactant in the rule and for
each entity in the solution if the entity matches the reactant, while making sure that
entities are not matched several times. Essentially, this is an implementation of pattern
matching as described in Section 6.2.1. Generating this pattern matching code challenging
in two ways. First, the code generation must handle any number of reactants of a rule
and later matching steps depend on earlier ones. The generated code must account for
the propagation of matching state similar to the nondeterministic state monad in the
Scala implementation. Second, the code generates variables, which leads to the task of
maintaining hygiene, that is avoiding name clashes when generating variable names [122].

The first issue is addressed by dividing the code generation works into four steps.
First, the reactants are iterated as described in Section 6.2.1, which results in a list of
code snippets that open blocks with a {.For example, for-statements are generated to
implement the branching points in the tree in Figure 6.1 on page 94. Then, the snippet
list is processed and the snippets are nested to create a indentation cascade of block
openings. As a consequence, each matching step maps to a block of code that has in its
scope the variables instantiated by the earlier, surrounding blocks. By accessing these
variables, the dependence on earlier matching steps can be encoded. For example, when
matching the second occurrence of a variable in a non-linear pattern the value assigned to
the first occurrence is available and can be used for comparison. In the innermost block,
which is entered for every complete match of the pattern, a reaction is created. Then, all
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the blocks are closed with correctly indented }. This way, we generate readable, nicely
nested code.

The issue of naming hygiene can be tackled by exploiting the restrictions of ML-Rules’
concrete syntax. To avoid clashes of generated names with variable names in the ML-Rules
model, we exploit that names in ML-Rules are not allowed to contain the symbol $ and
include that symbol in all generated names. To avoid clashes among generated names, we
exploit the tree structure of the pattern on the left rule side and derive unique variable
names from the corresponding position in the pattern. This way, variable names follow a
predictable naming scheme, which we exploit to refer to earlier variables.

The code generated for pattern matching according to the rule A[B(x):b + B(x) + rest

]:a -> A[rest] @ #b * (#b - 1); is depicted as pseudocode in Figure 4. For each reactant,
the available entities in the solution at hand are iterated in a loop (ll. 2, 8, and 17). This
yields a structure of nested loops. The iteration variable is named after the position of the
reactant on the left rule side: the first reactant becomes $root$0, the second one is $root$1,
the first reactant in the subsolution of the first reactant becomes $root$0$0 and so on. At
each nesting level, these names are used to initialize uniquely named variables that hold
the count of needed and available reactant entities (e.g., ll. 4 and 6). There are also several
checks that lead to terminating an iteration early and starting the next one, for example
if the entity does not belong to the reactant’s species (e.g., l. 3) or if not enough entities
are available (e.g., l. 7). When matching several reactants in one solution, the entities
already matched are taken into account when determining the number of available entities
(ll. 20–25). This realizes the counting of entities at the time of matching as discussed in
Section 6.2.1. Further, for variables used in the model we generate variables that hold the
corresponding values (ll. 14–16) or compare the current value to the one already found
(l. 27).

In the innermost block, after all reactants have been found, the actual reaction object
is instantiated and added to the list of reactions (l. 29). It consists of two closures that
calculate the rate and execute the reaction effect, respectively. The code for these two
methods can be generated straightforwardly by reusing the generated variable names. For
example, for the rate expression #b * (#b - 1) the following expression is generated:

(available$b * (available$b - 1))

The variable available$b has been defined in an enclosing block (l. 15) and holds the count
of b entities available in the solution b was matched in.

A more technical description of the generated code and the process of generating it is
given in the Appendix B.3.

6.4.5. Discussion

Implementing ML-Rules as an external DSL allows freely designing the language’s concrete
syntax. In particular, this enabled implementing the language in a backwards compatible
way referring to the existing ML-Rules 2 as presented in Section 4.1. Some of the choices
for the concrete syntax would not be possible in most GPLs (and, therefore, internal
DSLs). For example, ML-Rules 2 uses parentheses for plain attributes of entities, but
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Input: a multiset solution$ with the contents of the solution
Output: a list rs$ of reactions

1 rs$ ← ∅
2 foreach $root$0 ∈ solution$ do
3 if $root$0 does not belong to species A then continue
4 needed$root$0 ← 1
5 alreadyTaken$root$0 ← 0
6 available$root$0 ← solution$.count($root$0) - alreadyTaken$root$0

7 if available$root$0 < needed$root$0 then continue
8 foreach $root$0$0 ∈ $root$0.subSol do
9 if $root$0$0 does not belong to species B then continue

10 needed$root$0$0 ← 1
11 alreadyTaken$root$0$0 ← 0
12 available$root$0$0 ← $root$0.subSol.count($root$0$0) - alreadyTaken$root$0$0

13 if available$root$0$0 < needed$root$0$0 then continue
14 b ← $root$0$0

15 available$b ← available$root$0$0

16 x ← $root$0$0.attribute_0

17 foreach $root$0$1 ∈ $root$0.subSol do
18 if $root$0$1 does not belong to species B then continue
19 needed$root$0$1 ← 1
20 if $root$0$0 = $root$0$1 then
21 alreadyTaken$root$0$1 ← needed$root$0$0

22 else
23 alreadyTaken$root$0$1 ← 0
24 end
25 available$root$0$1 ← $root$0.subSol.count($root$0$1) -

alreadyTaken$root$0$1

26 if available$root$0$0 < needed$root$0$0 then continue
27 if x ̸= $root$0$1.attribute_0 then continue
28 rest ← $root$0.subSol - $root$0$0 - $root$0$1

29 rs$ ← rs$ ∪ create new Reaction
30 end
31 end
32 end

Algorithm 4: The code generated to implement the rule
A[B(x):b + B(x) + rest]:a -> A[rest] @ #b * (#b - 1); in pseudocode.
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square brackets for encoding the subsolution. Similarly, the arrow symbol -> and the @

symbol can be used to separate reactants, products, and the rate expression14. More
fundamentally, the semantics of binding variables in a pattern on the left rule side and
using them on the right side and in the rate is a pattern that is not typically realizable in
mainstream imperative or object-oriented GPLs15. The exemplifies how external DSLs
allow integrating domain notations into the concrete syntax to a higher degree than
internal DSLs.

In addition to the concrete syntax, we also defined a metamodel that represents the
abstract syntax of ML-Rules. The explicitness of this abstraction is very useful in at least
two ways. First, it facilitates checking the correctness of models beyond syntactical checks.
For example, type checking or resolving references to variables benefit from the richness
of the metamodel. Second, models can be manipulated more easily and safely on the
metamodel level than on the concrete syntax level. Such manipulations can include simple
refactorings in the editor, such as renaming a species or variable, but also conceptually
challenging operations like model composition. An important prerequisite is the ability
to generate the concrete syntax for a metamodel instance. Xtext provides this feature by
default.

Using a language workbench like Xtext is a crucial ingredient to our implementation
of ML-Rules as an external DSL. Xtext provides many editing features “for free” with
minimal configuration or code. These features include undo/redo, syntax highlighting,
and jump-to-definition. As ML-Rules 2 was not implemented with a language workbench,
it either lacks these features or they had to be implemented manually. However, such
features are an important ingredient for the user experience, in particular if users are used
to IDEs. Nevertheless, the integration into the Eclipse ecosystem is a double-edged sword.
On the one hand, users that are familiar with Eclipse will feel at home quickly and, for
example, intuitively understand how the editor marks type errors. On the other hand,
the Eclipse-based editor is a much heavier piece of software when compared to ML-Rules
2, for example considering the start-up time.

Another aspect that benefits from Xtext’s defaults is the integrated generation of
code. Each time a syntactically and semantically correct ML-Rules model is saved in the
editor, Java code for the model is generated and immediately compiled. If necessary, the
generated code can be inspected and, for example, break points can be set to debug the
model behavior. The interaction with user-written code is exemplified by our handling
of functions. Whereas functions that only wrap arithmetic expressions can be defined
directly in the model, more complex functions on solutions that operate on entities and
their attributes can be written in Java. Here, the generated Java classes for each species
are available as well, allowing powerful functions that would be hard to implement with
ML-Rules’ syntax. The interface between generated and user-written code is expressed
with inheritance relations. A particularly interesting consequence of this handling of
functions is the possibility to ship a standard library of functions with the language.

14Some GPLs are quite flexible when it comes to integrating such symbolic syntax. C++, for example,
allows overloading the semantics of parentheses, square brackets, and the arrow symbol ->.

15A notable exception is Rust, which supports (linear) pattern matching.
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Instead of encoding predefined functions in the syntax and semantics of the language,
they can be implemented in plain Java. The machinery for making the standard library
available in the language is again provided by Xtext.

6.5. Evaluation

Evaluating different avenues for DSL development is not trivial [206]. There are different
criteria to consider when assessing a DSL implementation, including ease of implementa-
tion, ease of usage, computational efficiency, or extensibility. Quantitative data about
usability can be obtained in user studies (which has been done for ML-Rules [123]).
Instead of using a fixed scheme with weighted evaluation categories, we evaluate our
implementations by comparing them to each other, to the preexisting implementation ML-
Rules 2, as well as to implementations of other modeling languages, which we introduced
in Section 4.2. To keep this section focused, we concentrate on a few core aspects.

6.5.1. Concrete syntax

The ability to freely design the concrete syntax is one of the main strengths of external
DSLs, whereas the syntactical constraints are one of the main drawbacks of internal DSLs.
Our implementations exemplify these respective characteristics. In particular, with the
external DSL implementation we were able to replicate the syntax of ML-Rules 2 and get
reasonably close to the abstract syntax. The less succinct internal DSL, on the other hand,
combines Scala’s for-comprehensions with domain-specific syntax for matching reactants.

The difference in syntactical design freedom is most notable in rule definitions and,
to a lesser extent, in species declarations. Other aspects of the language, for example
the definition of constants, is comparable in both implementations. Regarding function
definitions the internal DSL even offers more powerful syntax as all features of Scala are
available, including imperative and functional programming patterns. In the external
DSL, the full power of Java is available, but only outside the actual model file.

One noteworthy aspect is that our internal DSL implementation does not require any
syntactical escaping of expressions or quoting of names. This is often necessary in internal
DSLs that do not directly reuse their host language for expressions or types. For example,
in Chromar expressions for attribute values as well as rates must be enclosed in single
quotation marks ''16:

let r = [rule| A{x=x} --> A{x='x+1'} @'x' |]

Similarly, in PySB the names of species and attributes must be quoted when first used17:

Monomer('L', ['s'])

In contrast, our internal DSL implementation reuses Scala’s expressions for attributes
and rates as well as Scala’s case classes for species. Therefore, no quoting or escaping is

16Snippet taken from github.com/azardilis/Chromar
17Snippet taken from pysb.org/
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required. This allows better integration with existing editors, which often provide live
detection of type errors or typos.

6.5.2. Editor support

All languages discussed in this thesis are textual and can be used with any text editor.
However, the user experience in code editors is a crucial aspect of language engineering.
Recent developments like the language server protocol (LSP) facilitate the implementation
of powerful language support in editors, including support for DSLs [40]. Nevertheless,
mainstream GPLs typically offer more sophisticated editor features than DSLs. The
reason is, of course, that domain-specific languages also require domain-specific rather
than off-the-shelf editor features. Implementing those features is sometimes not justified
for short-lived DSLs with a small target audience.

Projects like language workbenches or, more recently, the LSP provide support for editor
features when implementing external DSLs. With Xtext’s default settings, for example,
many editor features are added automatically. Therefore, the Xtext editor generated from
the grammar without any customizations already surpasses the editor for ML-Rules 2
(called the “Sandbox”) in terms of editor features. Xtext also provides extension points for
more advanced features, for example auto-formatting the syntax. On the other hand, the
ML-Rules 2 Sandbox also provides graphical interfaces for configuring and executing a
simulation run with the opened model as well as displaying and exploring the results. Due
to Xtext’s integration into the Eclipse framework, these are not as straightforward to add
in our Xtext-based implementation. It is possible, however, as shown by the BioNetGen
GUI RuleBender18. RuleBender is an Eclipse-integrated rule-based modeling editor with
additional graphical interfaces [216]. As it uses ANTLR instead of Xtext for parsing,
editor features such as auto-completion are not available.

For internal DSLs the host language’s editor can be reused, and all its features should to
some degree be usable for working with the DSL. For example, species in our Scala DSL
are encoded by case classes, which can be safely renamed by namespace-aware editors
like IntelliJ IDEA. Mouse-over type hints, or jump-to-definition are supported as well.

In summary, both our external DSL implementations provide editor support in different
ways. In the internal DSL all editor support is provided by editors for the host language
“for free”, but the support is not easy to modify or extend. External DSL editors that are
implemented as standalone applications (like the ML-Rules 2 Sandbox) have the problem
that editor features have to be implemented by hand, which is cumbersome. This problem
is alleviated when using language workbenches like Xtext.

6.5.3. Computational efficiency

Computational efficiency is always an important topic for simulation applications. How
long a simulation run takes depends, of course, mainly on the simulation algorithm, and
different algorithms for ML-Rules have been proposed [101]. Therefore, the language
implementation’s impact on efficiency can be considered under two aspects. First, how

18github.com/RuleWorld/rulebender
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does the language implementation affect the ability to select an algorithm? And sec-
ond, how does the language implementation affect the efficiency of a given algorithm
implementation?

Selecting a simulation algorithm

In Section 6.2.3 we shortly discussed network-based simulation as an alternative to the
network-free simulation algorithms that we mainly use in this thesis. Network-based
simulation is not applicable to all rule-based models. When applicable, however, network-
based simulation is often more efficient than network-free simulation. To determine
whether a network-based approach is feasible, it can be helpful to inspect the rule-based
model via static analysis. Does it contain species with unbounded attributes? Does it
contain rules that create new compartments? A positive answer to one of these questions
indicates that the reaction network might be infinite and that a network-based simulation
algorithm is contraindicated. In our Scala-based internal DSL, however, these questions
can not be easily answered. The required information is not available, as the corresponding
language elements are handled by the host language. In our external DSL, on the other
hand, the needed information can be easily obtained from the metamodel after parsing
by static analysis.

Another example is the application of partial propensity variants of the SSA [194,
174]. These efficient algorithms pose specific requirements on the form of all reactions.
In particular, partial propensity algorithms only support rate expressions in which the
population size of each reactant is a factor. However, ML-Rules also allows other types
of rate expressions. Therefore, the reactions and rate expressions of a given ML-Rules
model must be checked for adherence to the requirements of partial propensity algorithms
before such an algorithm can be applied. Again, this is easy in the external DSL and
impossible19 in the internal DSL. A third example is the automated derivation of a
dependency graph for the next reaction method (Section 3.2.2). To generate such a
dependency graph, reaction rules need to be analyzed to infer which information they use
to generate reactions.

It should not be concluded from the above points that model analysis is only possible in
external DSLs. For example, PySB is an deeply embedded internal DSL and compatible
with BioNetGen and its network-based simulation algorithm. The decisive point is the
type of embedding that a given language uses (see Section 2.3.3). Our internal DSL
relies on a shallow embedding to directly expose the pattern matching algorithm as a
monadic computation, without an explicit representation of the abstract syntax as in
deeply embedded internal DSLs. In contrast, the external DSL creates an intermediate
representation (metamodel) of a ML-Rules model that corresponds to the abstract syntax
of ML-Rules. This metamodel is then used to generate code that implements the pattern
matching.

The ML-Rules 2 implementation is an external DSL as well, but does not use a dedicated
metamodel or an explicit AST. Instead, it operates directly on the parse tree. This makes

19Impossible at least without fundamentally changing the language or relying on metaprogramming.
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analyses of the model like the examples above harder than in a metamodel because, for
example, different occurrences of the same variable are not linked to each other.

In summary, inferring what simulation algorithm is applicable for a given model requires
insights into the model definition. Deeply embedded languages allow making an explicit
model definition available, preferably in a metamodel. In contrast, shallow embeddings,
in particular when reusing the host languages’ syntax, tend to lose information about the
model, making the choice of the simulation algorithm harder.

Efficient implementation of simulation algorithms

Even when the same algorithm is used, different approaches for implementing a language
can lead to vastly different performance. Much of the difference is caused by the difference
between compilation and interpretation, as described in Section 2.4.1. In the context of
DSLs, compilation almost always means generating GPL code (see [140] for an example
of directly generating assembly code). Whereas the code generation method relies on
compiling a hard-coded model-specific algorithm implementation, the interpretation
approach uses a generic algorithm that interprets the model as part of its input. In
particular in the context of simulation applications, the compilation approach has the
opportunity “to eliminate all interpretive overhead” and, thus, increase performance
significantly [117]. Similar results have been obtained regarding internal DSLs [36].
Kameyama et al. even claim that “code generation is the leading approach to making
high-performance software reusable” [115].

Nevertheless, interpretation is often the simpler implementation strategy. In particular,
all code is executed in a single execution state, which is easier to reason about than
multi-stage programs. This is the approach taken by ML-Rules 2. Here, the program
parses a model file into an in-memory parse tree and then traverses this parse tree each
time it matches a rule against a solution, calculates a reaction rate, or evaluates a function.
In other words, the source code is completely generic and model-specific source code never
exists.

Both of our two new implementations take a different approach. In the internal DSL, the
model is written in Scala and co-exists with the generic code, for example for simulation
algorithms. Consequently, there is only one execution stage and model and simulator can
interact directly. The model-specific source code in the external DSL, on the other hand,
is generated automatically. Therefore, the implementation is split into two execution
stages: code generation and, after the generated code is compiled, execution. As described
in Section 6.4.4, generating error-free code and integrating it with handwritten code is
not trivial—in particular compared to the internal language implementation, in which
model-specific and generic code is compiled in one stage.

One way to reap the benefits of code generation without needing to adapt the software
architecture is runtime code generation. In particular for languages that run on a virtual
machine, adding code for execution is often possible even at runtime. For example,
ML-Rules 2 includes a feature that allows replacing subtrees of the parse tree with
tailored nodes compiled at runtime [154]. This can be applied easily to rate expressions,
where instead of interpreting a subtree with one node for each arithmetic expression,
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Simulator Run time

Java Reaction-based generic 0.396 s
Java Reaction-based specialized 0.234 s
Java Reaction-based specialized without objects 0.153 s
C Reaction-based specialized 0.121 s

Table 6.1.: Runtime of the Wnt model in different implementations

some Java code that directly uses Java’s built-in arithmetic operators is compiled. By
avoiding indirections, for example due to following object pointers, the evaluation time
for arithmetic expressions could be reduced by over 80%, and overall simulation time by
up to 40%.

Another source of indirection is the mapping of species and entities to code. In model-
specific source code, species map naturally to types and entities to values of these types.
This mapping allows seamlessly working with entities. For example, in the internal DSL
this enabled us to use Scala’s pattern matching; in the external DSL we exploited Java’s
object-oriented concepts like inheritance. Also, the attributes of an entity and their types
are represented directly in the language. In contrast, the source code of an interpreter
typically contains a type that represents all species and each actual species in the model
is represented by a value of this type. The attributes of an entity and their types are
handcoded, and typechecking must be implemented manually. Thus, model-specific source
code allows reusing more host language concepts than interpreters, which can also give
the host language compiler more opportunities to optimize the program.

To illustrate the potential of partial evaluation and code generation, we conducted a
simple performance experiment with the Wnt model, implemented in handwritten code
with different levels of specialization (Table 6.1). All implementations use the same SSA
variant (the optimized direct method [42], also see Section 3.2.2) for a reaction-based
formulation of the model as shown in Section 4.1. The model is executed for 720 time units.
Starting with a generic simulation algorithm in Java that receives the model as input,
we first specialized the algorithm to the model and then streamlined the code further
by eliminating all object allocations, leaving only stack-local primitive variables. This
last version could be easily ported to plain C, which was then compiled with maximum
optimizations (the -O3 flag for gcc). The results show that by partial evaluation, without
changing the simulation algorithm or programming language, speed-up factors of more
than 2 can be achieved. This speed-up is achieved purely by specializing the simulation
algorithm to the model. Switching from Java, a VM-based language with a just-in-
time-compiler to the ahead-of-time-compiled C gave another speed boost20. This shows
that optimizing compilers can be a valuable tool when model-specific source code is
available [124].

To summarize this section on performance implications of DSL implementation tech-
niques, we can state that deeply rather than shallowly embedded languages enable
computational efficiency. First, they allow statically analyzing the model in-depth and

20This speed-up could also be caused by the switch to another PRNG.
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selecting a simulation algorithm based on the analysis results. Second, deep embeddings
like the metamodels in Xtext are well-suited for generating efficient model-specific code.
Model-specific and generic code is then compiled together, allowing whole-program opti-
mization, which is an avenue to highly efficient programs (see Shivkumar, Murphy, and
Ziarek [211] for a recent example).

6.5.4. Extensibility and interoperability

As a last point of comparison we take a look at how well the language implementations
can be extended or combined with other software. Both aspects are important. The
extensibility of a language is crucial to react to changing requirements. In particular
in scientific research, simulation modeling languages are constantly challenged by the
application domain to increase their expressive power or execute more complex models
faster. Interoperability is crucial to integrate simulation runs into a simulation study.
This can range from using a plotting tool to visualize the results of a single run to complex
simulation experiments (see also Section 7.1).

The internal DSL has the big advantage that the model and the simulation algorithm
are written in Scala. Therefore, plain Scala code can be used to add new features directly
to the modeling language, even while working on a specific model. For example, if a
specific piece of code occurs multiple times in a model, it may be factored out into a
function definition. This way, the internal DSL allows rapid prototyping by editing a
model, the pattern matching, and the simulation algorithm simultaneously. Being based
on Scala, the internal DSL also facilitates integration with libraries from the Scala and
Java ecosystem. Calls to these libraries can be easily integrated into the model itself
(for example, to calculate reaction rates based on library functions or constants) as well
as into code around the individual simulation runs, for example to analyze the model
outputs. PySB is another example for an internal DSL that allows exploiting the library
ecosystem of its host language, in this case Python.

The integration of simulation runs into other software is easy in the external DSL as well.
After all, a simulation run is executed by hand-written Java code, and other Java libraries
can be naturally invoked here. However, it is not that easy to use libraries in the model,
as the model itself is not written in Java. For the same reason, it is much more difficult
to develop new language features in the Xtext-based implementation, especially when (as
in our case) the metamodel can not be automatically generated from the grammar. A
change in the language now includes adapting the metamodel, the grammar, the code
generator, and (potentially) the type checker, interspersed with generating code. Thus,
development of an external DSL such as our Xtext-based language happens much slower.

As an example for the different degrees of extensibility in both implementations, consider
modifying the pattern matching algorithm in such a way that count expressions #x now
yield the total count of x entities instead of the count at the time of matching. In the
internal DSL, the modeler can redefine the value solution (see page 103) directly in the
model file to implement this change. In the external DSL, however, this modification can
not be done in the model. Instead, the code generator in the Xtext project needs to be
adapted and the modeling environment must be restarted.

124



6.6. Excursus: Continuous-time agent-based modeling in social science

6.5.5. Summary

One way to summarize this evaluation is saying that our deeply embedded, external
DSL has more potential as a modeling language than the internal, shallowly embedded
DSL, but also requires more implementation effort. It allows more freedom in designing
the language syntax, more efficient simulation algorithms, and more domain-specific
tooling. Language workbenches like Xtext support the implementation of external DSLs,
for example by making the abstract syntax explicitly available as a metamodel. But
even then, many language aspects have to be implemented manually. The shallowly
embedded internal DSL, on the other hand, reuses the syntax of the host language and
omits representing the abstract syntax. This makes the language implementation very
succinct and easy to modify, but also limits its possibilities, for example in terms of static
analysis of models.

6.6. Excursus: Continuous-time agent-based modeling in
social science

So far we have seen how population-based processes can be modeled as Markov Population
Models (see Section 3.2), a class of CTMCs. To express models succinctly, we employed
the modeling paradigm of rule-based modeling. Now we transfer the idea of CTMC-based
modeling to another modeling paradigm, the area of agent-based modeling. Our main
contribution here is integrating principled continuous-time discrete-event simulation into
an existing software framework for agent-based modeling and simulation. Those well-
established frameworks provide many practical features for running simulations, which
can then naturally be combined with the CTMC modeling approach.

Some processes in social science can not be modeled in a population-based manner.
Here, the paradigm of microsimulation has emerged, which considers each member of the
population on its own, having an individual state and an individual view of the world [121].
Traditionally, microsimulation models contain a very abstract representation of decisions
and “are not very explicit and detailed about the path the [. . . ] subjects follow to reach a
decision” [121, p. 33]. Agent-based modeling (ABM) is a subdiscipline of microsimulation
that models the internal processes of individuals in more detail.

Diverse software packages support scientists in developing and using agent-based
models [193]. Some notable examples for such software are Repast Simphony [168],
MASON [145], and NetLogo [251]. These simulation tools typically offer a simple way to
schedule events repeatedly at equidistant time points. Thus, they encourage the simulation
paradigm of discrete time step simulation, where the model changes its state at fixed
points in time. Additionally, events can also be manually scheduled at arbitrary points
in continuous time, allowing for discrete event simulation (in NetLogo, this requires an
extension [210]).

The step-wise schedule, however, is used by the vast majority of agent-based models
that are implemented in these frameworks [193]. For example, the influential “Wedding
Doughnut” model [213] implemented in Repast Simphony and the MASON RebeLand
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model [51] use a step-wise approach. This observation is in stark contrast with inclinations
in social science to use models with continuous time-bases. For example, demographers
consider continuous-time models superior to discrete-time models, as they are more precise
and allow for the integration of established domain-specific analysis methods [253].

A possible explanation for the divergence between the step-wise and the event-based
approach might be the easier mapping of available data to a step-wise model. For example,
a typical data set in demography might contain the percentage of deaths in each age
cohort per year. Then an agent’s death probability can be directly inferred from its
age in a simulation with a step size of one year. Similarly, the probabilities for other
demographic events such as marriage and childbirth can be estimated from data. However,
such a step-wise approach effectively models the data set. To instead build a model of
the underlying, data-generating processes, a discrete-event approach is more adequate, as
individual decisions and events can not be assumed to happen equidistantly in time [253].

Thus, in modeling processes in social science, the waiting time in between events is
of central interest. If these waiting times are exponentially distributed, the model is a
CTMC. For some processes in social science, population-based CTMC as presented in
Section 3.2 models suffice. Those can be modeled similarly as the biochemical systems
we already saw by identifying populations and defining state transitions that modify
the populations sizes. An example for modeling population dynamics with CTMCs in
social science are SIR epidemic models, where individuals change between susceptible (S),
infectious (I), and recovered (R) sub-populations [4]. Then, a state can be represented by
a triple (S, I,R) of the sub-population sizes.

To represent the individuals in the model in more detail, they can be distributed
into more sub-populations. For example, additionally distinguishing individuals by sex
yields 6 populations (SF , IF ,RF ,SM , IM ,RM ). Adding, for example, 10 different age
cohorts means that every state must track 60 sub-populations. Obviously, increasing the
number of attributes leads to a combinatorial explosion of the number of distinguishable
populations. This is the same effect that motivated the introduction of rule-based modeling
in Section 4.1.2. And similarly, individuals equipped with at least one continuous attribute
lead to an infinite number of populations in a single model state. It is reasonable to
assume that agent-based models in social science require even more attributes than in
this example. Thus, sorting agents into populations is futile.

In addition, the assumptions of a “well-stirred solution” is often not justifiable. Instead
of modeling individuals as indistinguishably equal entities in a population, they are
represented as nodes in a graph, with edges representing social ties. This leads to the
metaphor of individuals having “linked lives”, where the decisions of each individual agent
in the model depend on its attributes as well as its unique locations in a graph of social
links. Of course, this makes the model’s state space even more complex. But such a
system can still be formulated as a CTMC, by letting the different possible behaviors
of the agents compete in a stochastic race. This way, complex agent behavior such as
decision processes can be modeled [244, 118].

To describe such a model, the ideas discussed in Section 3.2.1 can be reused. We
can provide a succinct, finite description of a potentially infinite model by using an
appropriate modeling formalism/DSL. In particular, concepts of rule-based modeling
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languages for population-based CTMCs can be transferred to the agent-based setting.
Each rule specifies a potentially infinite class of state transitions. However, to apply the
ideas of rule-based modeling to agent-based models, some of the concepts have to be
adapted. In the following, we describe how a rule-based DSL can be integrated into an
existing framework for agent-based modeling, exemplified by Repast Simphony [168].

6.6.1. Adapting the simulation algorithm

First we consider the effect of agent-based models on the stochastic simulation algorithms
as presented in Section 3.1.4. In comparison to population-based models with a small
number of populations, each state in an agent-based model has a large number of possible
transitions21 to a successor state. The reason is that, as each individual can be distin-
guished in the current state, we also have to distinguish which individuals are actually
changed by the state transition, as that leads to distinguishable successor states. Thus,
the number of state transitions is large, which affects the efficiency of the First Reaction
Method and the Direct Method. These algorithms have to recalculate the rate for every
possible transition at every step, which takes more time if more transitions have to be
considered.

As an alternative, we can adopt the idea of the Next Reaction Method (Section 3.2.2).
Here, a dependency graph is used to avoid updating rates that are unchanged. With agents
placed in a graph, transition can be expected to have only local effects and leave many
rates unaffected. Thus, the efficiency of the simulation algorithm does not linearly increase
with the number of agents anymore, but more slowly (depending on the connectivity of
the graph) [196].

The Next Reaction Method relies on managing events in a priority queue where the
priority of an event is its time stamp [38]. Event queues are employed by many other
simulation paradigms (see Section 6.1.1), where events are added to the queue or retracted
from the queue. In addition, the time stamp of an event may be modified and the
event rescheduled accordingly. This operation is used, for example, by DEVS simulation
algorithms, where the overall number of events is constant, as one event is associated
with each model component. The encapsulation of DEVS model components leads to
locality of state, which can be exploited by only rescheduling events if necessary. The
Next Reaction Method uses the same idea. In conclusion, the fundamental idea of efficient
simulation for rule-based agent-based models is exploiting locality.

6.6.2. Implementing continuous-time simulation in frameworks for
agent-based modeling

In the previous section we have established that continuous-time agent-based models can
be implemented by keeping future events in an event queue. Before presenting a rule-based
approach to specify such models, we investigate how scheduling events in continuous time

21In contrast to the biochemical population-based case, we can not call these state transitions “reactions”
anymore.
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is supported in state-of-the-art ABM frameworks. We focus on Repast Simphony here,
but similar points can be made for MASON and NetLogo.

In Repast Simphony, which is implemented in an object-oriented manner in Java, the
event queue is represented as an explicit schedule object. This schedule object allows
explicitly scheduling and retracting events. More frequently, Repast models use methods
of the schedule that cause calls to methods on agent objects at fixed time points or a
fixed interval. Alternatively, agent methods can be equipped with Java annotations that
have the same effect. This enables a very succinct implementation of simulation with
fixed time steps.

To implement discrete-event simulation with ABM frameworks, events have to be
scheduled manually. Essentially, this corresponds to the event-scheduling world view
described in Section 6.1.1. However, little work exists that shows how to do this for expo-
nentially distributed waiting times. There is a tutorial that walks through implementing
a discrete-event queuing system in Repast Simphony [223]. For NetLogo, an extension
exists that allows for manual event scheduling [210]. To illustrate the necessary steps, we
present an implementation of an agent-based SIR model in Repast Simphony.

The model contains a network of agents, with each agent having its infection state as
an attribute. Following the SIR approach, the possible values for the infection state are
susceptible, infectious, and recovered. The network links between agents represent social
contacts and do not change during the simulation. To initialize the model, a number
of agents is created and the agents are randomly linked. A proportion of the agents is
initially infectious, the remaining ones are susceptible.

Two types of events are considered.

Infection A susceptible agent as becomes infectious with a rate
a · |{i|i ∈ neighbors(as), i is infectious}|, where a is a rate constant. For an agent
without infectious neighbors, this rate is zero and no infection event will be scheduled.

Recovery An infectious agent recovers with a constant rate b.

Besides the rate constants a and b, the model is parameterized with the total number of
agents in the model, the number or proportion of initially infectious agents, and a method
the generate the random network.

At most one event is scheduled per agent. For susceptible agents without infectious
neighbors or recovered agents no event is scheduled. The recovery of infectious agents does
not depend on their network neighbors and, thus, must never be rescheduled. In contrast,
the rate of the infection of a susceptible agent depends on the number of infectious network
neighbors. Thus, infection events need to be rescheduled when the number of infectious
network neighbors changes due to a neighbor getting infected or recovering. This leads to
the event scheduling logic shown in Figure 6.3. An agent that gets infected or recovers
informs its neighbors, which reschedule their infection event, if present. All other events
in the schedule remain unchanged. This way, locality is exploited to avoid all unnecessary
rescheduling.
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1 public class Agent {

2

3 /* ... */

4

5 private ISchedulableAction scheduledEvent;

6

7 public void getInfected() {

8 this.infectionState = InfectionState.INFECTIOUS;

9 scheduleRecovery();

10 informNeighbours();

11 }

12

13 private void informNeighbours() {

14 for (Agent agent : network.getAdjacent(this)) {

15 agent.rescheduleInfectionEventIfPresent();

16 }

17 }

18

19 public void rescheduleInfectionEventIfPresent() {

20 if (infectionState == InfectionState.SUSCEPTIBLE) {

21 if(scheduledEvent != null) {

22 schedule.removeAction(scheduledEvent);

23 }

24 scheduleInfection();

25 }

26 }

27

28 private void scheduleInfection() {

29 double currentTime = schedule.getTickCount();

30 double infectiousNeighbors = getInfectiousNeighbors();

31 if (infectiousNeighbors == 0.0) {

32 scheduledEvent = null;

33 } else {

34 double rate = infectionRate * infectiousNeighbors;

35 double waitingTime = RandomHelper.createExponential(rate).nextDouble();

36 scheduledEvent = schedule.schedule(

37 ScheduleParameters.createOneTime(currentTime + waitingTime), this, "getInfected");

38 }

39 }

40 }

Figure 6.3.: Java snippet from an agent-based SIR model implemented in Repast Simphony.
Agents keep track of their next event (line 5). Upon infection, an agent informs
its neighbors (line 10). The susceptible neighbors then retract the existing
infection event (line 22), reevaluate the infection rate (line 34), sample a new
waiting time (line 35), and schedule a new infection event (line 36). Figure
taken from Warnke, Reinhardt, and Uhrmacher [241]. 129
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6.6.3. Rule-based modeling

Whereas the manual scheduling as shown in the previous section is a valid approach
to implementing agent-based models, it has the problem of interleaving model and
simulation code. This conflicts with striving for a separation of concerns between these
two components. One way to factor out the model description is designing a DSL in
which the behavior of the agents is specified in a rule-based manner. A single generic
simulation algorithm can then be used to execute models described in this DSL. Thus,
the idea is the same as for ML-Rules and similar languages.

To apply this idea to ABM frameworks, we must address two key challenges.

• We need to integrate the DSL into the ABM framework Repast Simphony. This
way, the existing features of ABM frameworks can be applied to models defined in
a rule-based manner. These features include the GUI, visualizations, or analysis
tools.

• As discussed in Section 6.6.1, it is important to exploit locality of event effects. Thus,
the simulation algorithm must be able to make assumptions about the dependencies
between events. This should lead to a simulation scheme similar to the manually
designed one in Section 6.6.2

The challenge of integrating a DSL into Repast Simphony can be addressed by defining
an internal DSL in Java. We rely on a few concepts of the object-oriented programming
paradigm to define an interface between reusable and model-specific components. The
simulation layer contains the reusable part including simulation algorithms and utility
functions (see Figure 6.4). It also exposes abstract Java classes and interfaces that are
inherited from when specifying a model with the DSL. First, the abstract class Agent is the
base class for all agents in the model. For each agent type in a model, an Agent subclass
is implemented that contains the agent type’s attributes as members. Additionally, the
Agent interface allows adding instances of the Rule interface. A Rule object implements
three methods that specify guards (which agents does this rule apply to), the waiting
time (potentially stochastic), and the effect of executing the rule. These methods can be
succinctly implemented as lambda expressions as introduced by Java 8 directly in the
agent class and, thus, access the agent’s attributes.

Using the DSL exposed by the simulation layer, the behavior of the agents in the SIR
model from Section 6.6.2 can be expressed as follows:

public class SIRAgent extends Agent {

/* ... */

addRule( () -> this.isInfectious(),

() -> exp(recoverRate),

() -> this.infectionState = InfectionState.RECOVERED);

addRule( () -> this.isSusceptible(),
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Repast Simphony

Event Queue

Agent DefinitionAgent DefinitionAgent
Scheduling

Repast Simphony

Event Queue

Agent DefinitionAgent DefinitionAgent

Simulation Layer
Scheduling

Interface

Figure 6.4.: Defining a Repast Simphony model with manual scheduling (left) and with
the simulation layer (right). When scheduling manually, each agent class
accessed the event queue directly to schedule and retract events. With the
simulation layer, agent classes do not reference the event queue directly, but
implement an interface that allows the simulation layer to query them. All
scheduling is then done by the simulation layer.

() -> exp(infectionRate * neighbours(this).

filter((SIRAgent agent) -> agent.isInfectious()).size()),

() -> this.infectionState = InfectionState.INFECTIOUS);

}

The addRule method is part of the abstract class Agent. It takes three arguments for
the guards, the waiting time, and the effect. The first rule represents the recovery of an
infectious agent, while the second rule models the infection of a susceptible agent. In the
rule definitions all attributes and methods of the agent are accessible. Note that these
rules do not express dependencies between events or talk about the machinery of when
and how events are rescheduled.

We implemented the First Reaction Method and the Next Reaction Method in the
simulation layer. Both algorithms can use the same agent definitions as their input,
demonstrating the independence of model and simulator. The algorithms initially query
all agents for their rules, evaluate them, and schedule events accordingly (see Figure 6.5).
However, the simulation layer does not schedule the execution of the actual rule effect,
but instead schedules a call to its own executeEvent method with the agent and the rule
effect as arguments. Thus, executeEvent gets executed for each scheduled effect. Besides
executing the effect, both algorithms handle events in this method. The First Reaction
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Schedule
(Repast Simphony) Simulation Layer Agent 1 Agent 2

get rules

rules

schedule event e1

evaluate rules of Agent 1

get rules

rules

evaluate rules of Agent 2

schedule event e2

execute event e2

execute rule effect contained in event e2

Figure 6.5.: Sequence diagram illustrating the communication between the Repast Sim-
phony core, the simulation layer and the agents in the Next Reaction Method.
The agents and the schedule are not directly communicating.

Method queries all agents again for their rules, evaluate the resulting state transitions,
and selects the state transition with the shortest waiting time as the next event to execute
(stochastic race). In contrast, the Next Reaction Method queries only the agents that are
affected by the effect and reschedules only these events accordingly.

To determine which agents are affected, the dependencies between the executed effect
and the conditions and rate expressions of all rules need to be considered. In our
implementation of the Next Reaction Method, we assume that the execution of an
effect affects all immediate network neighbors and the acting agent itself. This way, we
overestimate the dependencies in the SIR model. For example, recovery events (which are
completely independent of network neighbors) are rescheduled as well. In other models,
however, events can affect other agents over more than one network hop. A precise
analysis of the range of effects would be necessary to fully exploit locality. Some work in
that area exists already.

One example for an approach that exploits locality and dependency information is the
Next Subvolume Method for biological reaction-diffusion systems [65]. Here, space is
partitioned into connected subvolumes. Each subvolume contains populations of entities,
which can react with each other. Such a reaction inside a subvolume only affects the
populations in that subvolume, and reactions of populations in other subvolumes are
unaffected. The other type of event is a diffusion of an entity from one subvolume to
another, which then affects only the populations of the source and the target subvolume.
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This way, a global schedule containing events of all subvolumes can be maintained and
updates be kept to a minimum by exploiting locality.

Exploiting locality in agent-based simulation has been suggested in the context of
distributed simulation [229]. Here, “spheres of influence” represent the part of the system
state that is affected by the execution of an event. To minimize communication between
computing nodes and, thus, increase performance, highly interdependent agents can then
be clustered on one node. The Global-Scale Agent Model is another example for exploiting
locality in agent-based modeling [179]. In this epidemiological model only an active subset
of the overall population of agents is considered by the simulation. With infectious agents
being active, new agents can only become active (= infectious) due to contact with an
active agent. Thus, inactive agents that are not close to active ones can be disregarded
by the simulation algorithm.

Integrating a more precise way to determine dependencies into the simulation layer, for
example by static analysis, is subject to future work (see Section 8.3).

6.6.4. Discussion

In this section, we have shown how the techniques to model and simulation CTMCs of
population processes can be applied to agent-based models. As all agents are distin-
guishable individuals, the number of state variables and state transitions grows much
quicker than in population-based models. One way to still be able to execute agent-based
models efficiently is exploiting that state transitions only change a small part of the state.
Consequently, most state transitions that were possible before can remain unchanged.

The language in which the model is expressed is different from ML-Rules. In particular,
there is no pattern matching and not even a left rule side. Instead, the rules in our
agent-based DSL are inspired by stochastic guarded commands [103], as they have also
been adopted by the agent-based modeling language ML3 [244]. Here, rules are assigned
to agent types and define constraints and a rate expression based on the agent’s individual
attributes and neighborhood. The rule effect is then a sequence of mutations of the model
state from the perspective of the acting agent, allowing it to change its own attributes
and local surroundings.

It is valid to ask whether this style of modeling can still be called “rule-based”. There is no
declarative before-after transition as in ML-Rules and similar languages with reaction rules.
More technically, there is also no binding of variables on the left side over which expressions
can be formed. Instead, the presented DSL follows an object-oriented, individual-centric
approach where attributes and network neighbors are retrieved by operations on the this

reference to the acting agent itself. As such, it can be seen as an adaptation of rule-based
modeling for individual-based modeling. Thus, the contribution of this DSL is lifting
continuous-time agent-based modeling from the event-scheduling to the more abstract
process-interact world view (cf. Section 6.1.1).

The more abstract level of model description allows us to express precisely the model
behavior. In particular, we do not need to handle scheduling manually, which heavily
obscured the actual model in our initial implementation with manual event scheduling.
This is another instance of the separation of concerns between model and simulator. Again,
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the key to this separation is a DSL that acts as an interface to a reusable algorithm. By
reusing the existing ABM framework Repast Simphony, the algorithm itself is only a
thin layer that translates between the model and the framework. For the framework, the
model behaves like any other model and, thus, all further features of the framework are
applicable to visualize or analyze the model.

We can also draw conclusions in the other direction. One takeaway for implementing
biochemical reaction networks could be to discard the population-based aggregation in favor
of individual-based handling of entities. For instance, species with many possible attributes
can be more efficiently simulated as individuals [105]. In particular compartmental species,
which need to contain exactly the same subsolution to be aggregated in populations,
would benefit from being handled individually. It is important to mention that this must
be a purely algorithmic optimization and should not change the syntax or semantics of a
language.

6.7. Summary

In this section we have presented two implementations of ML-Rules’s semantics as proposed
in Chapter 5, as well as one adaptation of CTMC semantics to agent-based modeling.

Our first implementation is based on functional programming and uses the internal DSL
approach frequently found in functional programming. The DSL reuses the expressive
host language Scala with its algebraic data types and associated pattern matching. It
also employs monadic chaining to express the matching of subsequent patterns in the
functional paradigm. As a consequence, the language implementation is very succinct,
whereas models are comparatively verbose.

Whereas the first implementation adopts functional idioms, the second implementation
follows object-oriented principles to create an external DSL with the language workbench
Xtext. The core of the implementation is a metamodel, which is an object-oriented
representation of the abstract syntax. Based on that metamodel, we wrote a Java code
generator that allows executing a simulation run of an ML-Rules model. The generated
code and the model-independent generic code interface via object-oriented inheritance
relations.

The third implementation injects an internal DSL into the Java-based agent-based
modeling framework Repast Simphony. This DSL has object-oriented and functional
elements, as it operates on agents (which are Java objects), but encodes their behavior
through Java’s lambda expressions (a functional idiom). The utility of this DSL, however,
is that it frees the agent-based model from execution-specific code and instead supplies
an execution semantics based on the agents’ behavior specification.

A few common aspects emerged in these three implementations. It appears reasonable to
assume that these aspects are generally associated with DSLs for CTMC-based simulation
modeling, in particular with rule-based modeling. We shortly summarize the commonalities
and differences below.

• All three implementations allow expressing the rate of a state transition in depen-
dence of the (re)acting entities. The two ML-Rules implementations make the
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reactant’s attributes and multiplicities available, whereas the agent-based language
gives access to the attributes of the acting agent and its network neighbors. The
implementations differ technically. In the Scala-based internal DSL, we exploited
Scala’s pattern matching to capture values in variables. In the Xtext-based external
DSL, the grammar allows non-linear patterns, which are appropriately encoded in
the metamodel, and used to generate code. In the generated code, Java variables
are defined in nested blocks, and the rate expression is then defined in the innermost
block, closing over the variables. The agent-based language defines rate expressions
as closures in the scope of the agent class, which makes the fields and methods of
the class available. Thus, there are several effective ways to express and evaluate
the dependence of a state transition on its context.

• Similarly to the rate expression, the effect of a reaction or behavior rule has to be
encoded. How this is done also depends on how the state itself is represented. In
the Scala-based internal DSL, the state is a tree structure of entity populations,
and the effect caused by a reaction is encoded as a change vector. The other two
implementations encode the state change as a closure over the determined context
of the (re)action, mutating the state when evaluated.

• One recurring theme in all implementations is the need for static analyses. Especially
the selection and configuration of the simulation algorithm can depend on such
analyses. The agent-based language, for example, requires some kind of analysis to
determine how executing an event affects other already scheduled events. Without
automatic (static or dynamic) analyses, the user needs to provide a limit for the effect
range. Of all three implementations, the Xtext-based internal DSL provides the
most support for static analyses. Due to its explicit metamodel, predicates over the
model code (mainly the reaction rules) can be expressed and evaluated. In addition,
static analyses benefit from the rule-based nature of ML-Rules. Rule-based modeling
languages with their declarative core syntax facilitate analyzing the model code.
For example, the comparatively small syntax of ML-Rules allows inferring whether
a model employs dynamic compartments. However, the presence of functions on
solutions in an ML-Rules model, in particular user-defined functions, potentially
eliminates this benefit. This again illustrates that increasing the expressiveness of a
modeling language is associated with challenges for the simulation algorithm.

This concludes the chapter on implementing the CTMC-based modeling language
ML-Rules as a DSL. We have shown the potential of DSL techniques for this task and
also demonstrated that there are different approaches to DSL development with specific
trade-offs. In the next chapter, we investigate how DSL techniques can also be useful for
simulation experimentation.
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In the previous chapters, we presented DSLs for modeling, which map a textual description
to a mathematical object, for example a CTMC. This allows applying existing methods for
working with CTMCs, such as simulation algorithms, to the modeling language. Thus, we
have a way of obtaining a simulation run from a model. In this chapter, we see how DSL
techniques can also be useful for wrapping complex simulation experiments around single
simulation runs. The challenges here are different, however. Most importantly, there is no
equivalent to CTMCs in the world of simulation experiments. Instead of abstract concepts
like states and state transitions, DSLs for simulation experiments are concerned with
technical issues like executing several simulation runs in parallel or combining different
software artifacts. Therefore, the DSLs in this chapter are interesting from a more
pragmatic perspective, supporting the conduction of simulation-based research. We start
by reviewing some concepts central to simulation experiments as well as existing solutions
to support simulation experiments with DSLs. Then, we present SESSL, a Scala-based
object-oriented DSL for simulation experiments, and describe in what ways it facilitates
experimentation. Based on SESSL, we then present a Scala-based DSL that uses purely
functional programming techniques to express deterministic parallel experiments. We
close with some discussion on the role of DSLs for simulation experiments in the context
of simulation-based research.

7.1. Simulation Experiments

The modeling and simulation community has developed several life cycle models that
structure the individual steps of simulation projects. This ranges from iterative, waterfall-
style models [13] to flexible artifact-based workflows [199]. Here, simulation experiments
are often used to validate the (executable) simulation model, making sure that the model
is sufficiently accurate for its intended purpose [203]. There is a plethora of experimental
validation techniques [139]. After a model is validated, further simulation experiments
are conducted to explore the model behavior and answer questions about the modeled
system.

In this section we review the domain of simulation experiments and the main require-
ments imposed on software for supporting simulation experiments. On the one hand,
the term experiment implies a certain degree of scientific rigor. On the other hand,
obtaining reliable results from stochastic simulation models might require non-trivial
experimental methods. This makes it challenging for software to offer comprehensive
support for simulation experiments.
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Figure 7.1.: The three layers of simulation experiment execution. Figure taken from
Warnke and Uhrmacher [243].

7.1.1. Layered experimentation

Depending on the type of experiment, a variety of steps and methods can be involved,
in particular for stochastic models1. One way to describe the structure of simulation
experiments is to distinguish three hierarchical layers (see Figure 7.1) [201]. This facilitates
abstracting over concrete simulation paradigms and formalisms.

Run The layers are based on the assumption that a single simulation run is a black box
that deterministically produces some output for some inputs. The inputs include
parameters of the model (e.g., rate constants for models of biochemical reaction
networks), parameters of the simulation algorithm (e.g., which SSA variant to
choose), and a source of randomness for the simulator (e.g., a seed or a stream of
random numbers).

Parametrization Usually, several runs for one parametrization need to be executed to
take the stochasticity into account. More precisely, these runs (replications) are
executed with the source of randomness changed while the other parameters are
unchanged. This way, point estimates and confidence intervals for single outputs
can be computed [133, pp. 485ff]. Replication conditions can be used to dynamically
determine how many replications to execute instead of using a predefined number.

Experiment The next level of experimentation arises from the need to understand how the
simulation outputs behave for different parametrizations. Systematically exploring
the parameter space is the goal of design of experiments methods [119, 202]. Typical
applications are sensitivity analysis to quantify how influential different parameters or
parameter combinations are, optimization to find a parametrization that maximizes

1In his textbook, Law says that “a simulation is a computer-based statistical sampling experiment” [133,
p. 485]. Consequently, a lot of research into statistics has been applied to simulation and, in turn,
simulation has motivated methodological development in statistics.
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or minimizes some target function defined on the outputs, or a parameter sweep, for
example for visualizing a response surface.

Decomposing simulation experiments this way allows some separation of concerns. For
example, the specification of stop conditions for single simulation runs is independent
from choosing which parameter combinations to explore. Other, more complex experiment
types, however, may use a less strict separation of these layers [30].

7.1.2. The scientific method and reproducibility

Systematic experimentation is a core component of the scientific method [187]. Experi-
ments are used to confirm, refute, or refine hypotheses as well as give data for formulating
new hypotheses. Thus, experimentation plays a major role in many fields of scientific
research including research that relies on computation.

A central property of experiments in general is reproducibility, that is the possibility to
confirm the results of an experiment by repeating it (roughly speaking; a more precise
definition follows below). Reproducibility is a major factor for the trustworthiness
of experimental results. Nevertheless, news about failing to reproduce results appear
constantly (e.g., [12, 163]). Many scientific disciplines and publications outlets feel
the need to increase the reproducibility of experimental results, including results from
computational experiments. For example, the ACM has initiated a Result and Artifact
Review and Badging program [29]. Here, the participating journals and conferences
introduce a special review stage that checks to what degree the results reported in a
publication can be reproduced. The published paper then receives according badges.

While the reproducibility of real-world experiments is often affected by inputs that are
hard or impossible to control, it should be much easier to make experiments conducted
as computer programs reproducible. However, as the ACM initiative demonstrates,
computational sciences are affected by irreproducibility as well. There has been extensive
research on why that is and how to improve the situation [110, 205]. The situation for
simulation experiments is similar. At the Winter Simulation Conference 2016, a panel
discussion on “Reproducible research in discrete event simulation – A must or rather a
maybe?” was held [231], and the Winter Simulation Conference 2018 offered a track on
“Simulation Standards and Reproducibility”.

We have used reproducibility as an umbrella term for confirmable experimental results
so far. However, there exist more fine-grained terms that describe different levels of this
quality [110, 54, 191].

Repeatability The researcher can repeat the computation using the same software and
hardware and obtain the same results. In a strict sense, this requires deterministic
experiments. A less rigorous interpretation of “same results” could mean that the
results follow the same distribution.

Replicability An independent researcher can repeat the original computation using the
same software and obtain the same results. In some cases (e.g., performance
experiments) it might also be necessary to use the same hardware to replicate the

139



7. DSLs for Specifying Simulation Experiments

original results. In other cases the result might be largely independent from the
hardware2.

Reproducibility The original results can be produced with new, independently developed
artifacts. This can include porting an algorithm to another programming language,
translating a model from one modeling language to another, or running an experiment
on a different kind of hardware.

In particular in modeling and simulation, more terms that are related to reproducibility
can be found. For example, cross-validation refers to different models independently
producing similar results and, thus, supporting each others credibility, which fits the above
definition of reproducibility. Reproducibility is also facilitated by reusable artifacts, for
example when reusing experiments for several related models to compare their results [184,
183]. Proper separation between model and simulator allows reusing the simulator for
other models as well as running the model with another simulator. Based on these
concepts, individual simulation experiments, models, and other artifacts can be related to
each other. Decomposing a simulation study this way allows determining the provenance
of the study’s results [197].

7.1.3. Software support for simulation experiments

Software support for simulation experimentation has received less attention than software
support for simulation modeling. Many modeling tools include only simple experimentation
functions. For example, NetLogo includes the BehaviorSpace module, which allows running
simple parameter sweeps [252]. However, as these tools for experimentation are part
of a specific simulation system, it is not possible to treat experiments as standalone
artifacts. This hampers repeating the same experiment with a model developed in a
different simulation system and, thus, reproducibility.

A more versatile approach is taken by the Simulation Experiment Description Markup
language (SED-ML) in the systems biology domain [237]. Based on the reporting guideline
for “Minimal Information About a Simulation Experiment” (MIASE), SED-ML defines
an XML-based format for specifying simulation experiments [236]. A file representing
an experiment can then be imported or exported by SED-ML-compatible software. This
allows distributing (and replicating as well as reproducing) simulation experiments between
simulation software and between researchers. By design, SED-ML files are intended to
be read or written by software rather than humans. An experiment file in itself is not
executable, but is interpreted by another program. Consequently, SED-ML requires
adding import/export capabilities to the actual simulation system.

A third approach to encoding simulation experiments are scripts in languages like
Python or simply as shell scripts. The advantage of this approach is that the full
expressive power of the underlying language is available. Scripts can compose invocations
to individual software artifacts and, thus, facilitate the implementation of arbitrarily

2In modeling and simulation, this is related to the unambiguity of modeling formalism. If a simulation
algorithm correctly implements the semantics of a modeling language, it must produce the correct
results on any machine. In practice, technical issues often interfere with such assertions [111].
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complex experiments. Interspersed with comments, such scripts can also transport the
underlying idea of the experiment. This can be seen as a variation of Knuth’s literate
programming, sometime called literate computing [157]. A particular variant of scripting
that support communication of experiments are interactive computational notebooks.
However, as a recent survey finds, computational notebooks have weaknesses in several
areas [47]. For example, missing information about the environment setup (such as
installed software packages or customizations) complicates replicating results or reusing
code snippets.

7.2. SESSL

Based on the previous sections, we infer three important aspects for software supporting
simulation experiments:

Replicability The software should enable replicating the results of simulation experiments.
The effort for installing and setting up all software to replicate an experiment should
be minimized.

Flexibility To allow working with models effectively, the software must allow for a wide
range of simulation experiments. This means allowing the implementation of many
experimental methods or interfacing with existing implementations of experimental
methods.

Reuse and Reproducibility Simulation experiments should be reusable across concrete
simulation formalisms and systems to reproduce their results. Ideally, it is also
possible to reuse aspects of simulation experiments.

These requirements have motivated the development of a “Simulation Experiment
Specification on a Scala Layer” (SESSL). SESSL features a library that abstracts over
simulation systems, offering a unified interface for specifying simulation experiments
(reproducibility). Based on this interface, simulation system-agnostic features can be
implemented, possibly by invoking third-party software libraries (flexibility). The interface
can also be accessed via a readable and succinct DSL for experiment specification, and
snippets from that DSL can be reused across experiments (reuse). Finally, SESSL
experiments are directly executable and explicitly declare their dependencies, which can
be obtained automatically. This allows distributing SESSL experiments which can be
executed with a single click (replicability).

The name SESSL refers to the DSL as well as to the underlying implementation and
library. SESSL has been initially developed by Roland Ewald between 2012 and 2014 [70],
after which I took over and extended SESSL further. In the following, we introduce the
fundamental ideas of SESSL and describe the changes after 2014.

7.2.1. Overview of general concepts

SESSL is an internal DSL that is mainly based on object-oriented principles. In partic-
ular, SESSL relies heavily on the cake pattern [172] for composing complex simulation
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1 import sessl._

2 import sessl.mlrules._

3

4 execute {

5 new Experiment with Observation with CSVOutput {

6 model = "./prey-predator.mlrj"

7 simulator = SimpleSimulator()

8 stopTime = 100

9 replications = 5

10 scan("wolfGrowth" <~ (0.0001, 0.0002))

11 observe("s" ~ count("Sheep"))

12 observeAt(range(0, 1, 100))

13 withRunResult(writeCSV)

14 }

15 }

Figure 7.2.: This experiment specification executes 5 replications each of 2 parametriza-
tions of a prey-predator model defined in ML-Rules. Lines 1 and 2 import the
SESSL core and the SESSL binding to ML-Rules. In line 5 the experiment
object is constructed with two mixed in traits for observing outputs and
writing CSV files. The following lines specify the path to the model file, the
simulation algorithm to use, and the stopping and replication conditions.
Two values for the model parameter wolfGrowth are used, and the number of
Sheep entities is observed at the time points 0, 1, . . . , 100. The resulting data
is written to CSV files.

experiments from individual ingredients. These ingredients are captured in traits, Scala’s
version of abstract interfaces, which can contain concrete as well as abstract members. By
mixing in traits when creating an experiment object, the features contained in the trait
become available in the experiment. This can lead to automatic adaptation of defaults.
For example, to make an experiment execute simulation runs in parallel, just mixing
in the corresponding trait can suffice. In most cases, however, mixed in traits enable
additional configuration options for the experiment. For example, an observation trait
usually allows to specify which model outputs to record during the simulation run.

To create a concrete experiment, a simulation system to execute the experiment on must
be chosen. The experiment is then a Scala object of the class Experiment, potentially with
some mixed in traits. The class Experiment is provided by a binding, which is the collection
of the code specific to the selected simulation system. Apart from the experiment base
class, a binding typically also contains some simulation system-specific traits. Simulation
system-agnostic code, on the other hand, is assembled in the SESSL core. Class hierarchies
and self-types for traits constrain how the different pieces of code can be composed and
make sure that invalid combinations are rejected by the Scala compiler. The Figures 7.2
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AbstractExperiment

new Experiment with Observation with CSVOutput {

 model = "./prey-predator.mlrj"

 /* ... */

 observe("s" ~ count("Sheep"))

 withRunResult(writeCSV)

}

AbstractObservation

CSVOutput
model = ...

writeCSV

withRunResult, observe

Experiment Observation
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Figure 7.3.: This diagram shows some classes and traits that are used in the example in
Figure 7.2 as well as some of the methods they contain. Solid arrows show
sub-type relations (“is a sub-type of”), dashed arrows show self-type relations
(“can only be mixed in an instance of”). Thus, for example, the trait CSVOutput

can only be used in experiments that are subtypes of AbstractObservation and
AbstractExperiment, such as the example experiment. These dependencies are
checked by the Scala compiler.

and 7.3 exemplify how a simple experiment is defined in SESSL as well as how it is
composed of classes and traits.

Technically, the individual configuration options for an experiment object are set in
the constructor block of an anonymous class. Which options are available depends on
the experiment class and the mixed in traits. Many of the settings employ a declarative
syntax with statements of the form setting = value. Such statements are transformed
to setting_=(value), which is just a method call on the newly created object. This is an
example for how Scala supports defining internal DSLs. SESSL exploits techniques like
this to increase the readability of the language.

Once an experiment object has been created, it can be run by calling the function
execute (which is part of the SESSL core) with the experiment as an argument3. This
function call can be put in the main method of a Scala object, a Scala script, or any
other entry point for execution. By being directly executable, SESSL experiments do not
depend on third-party tools for interpretation or execution. It is also possible to wrap
the execution of an experiment in a function and, thus, abstract over the experiment
in further Scala code. This approach is used by SESSL to implement, for example,
simulation-based optimization, where an experiment is executed as part of the target
function of a simulation algorithm (see Section 7.2.2). Users can also write arbitrary code

3With only one experiment as the argument, Scala allows using curly braces instead of parentheses to
give execute the look and feel of a control structure rather than a function (see Figure 7.2).
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“inside” experiments to add features to the anonymous class they define. Event handlers
are one feature that exploits this to run user-defined functions (callbacks) on the results
of every simulation run, for example. It is also possible to combine SESSL experiments
with third-party software this way.

7.2.2. Extensions and refinements

User feedback and technical developments motivated some extensions and refinements
based on the fundamental ideas of SESSL as described in the previous section. One
significant set of additions are new bindings for simulation systems, including ML-Rules
2 [238], ML3 [244], and pSSAlib [174]. Moreover, we added implementations for some more
advanced experimental methods. They exploit the fact that, as discussed in Section 7.1.1,
simulation runs are often considered black boxes. This allows us to implement methods
such as statistical model-checking, sensitivity analysis, and bifurcation analysis in SESSL
in a simulation system-agnostic manner. In the following, we give a short overview of
the implementations of those advanced experimental methods as well as other extensions
in the SESSL core. Based on these extensions, we will be able to discuss the utility of
SESSL as an experiment specification tool in more detail.

Statistical model-checking

Statistical model-checking allows deciding whether a random simulation run of a model
satisfies a given formal property with at least a certain probability4 [2]. In comparison
to numerical model-checking, statistical model-checking does impose fewer requirements
on the model under study. It treats the model as a black box and relies on sampling
trajectories via simulation, instead of, for example, exhaustive search of the state space.
The property to check is usually defined as a temporal logic formula to express statements
about the behavior of the model over time.

SESSL includes a trait to support statistical model-checking that adds two configuration
options to an experiment. First, it allows adding a property to check. Properties are
essentially functions of simulation run results to a boolean value; temporal logics are one
way to implement such a function. SESSL offers a simple DSL to express formulas in
Signal Temporal Logic (STL) [146]. It equips the typical LTL operators eventually (F ),
always (G), and until (U) with intervals, enabling to restrict them temporally. The atomic
formulas are predicates on the model outputs. For example, the formula F[10,20]a > b
expresses that the model output a must be greater than the model output b in at least
10, but at most 20 time units. In SESSL, this formula can be written as:

F(10, 20)(OutVar(a) > OutVar(b))

Second, besides the property, a statistical model-checking experiment in SESSL also
requires a test procedure. The test procedure takes a parameter p and decides, based on
some simulation runs, if the real probability θ that a simulation run satisfies the property

4Less frequently, statistical model-checking is used to estimate with which probability a random simulation
run of a model satisfies a given formal property.
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is greater than p. As statistical model-checking is based on hypothesis testing, these
results are probabilistic, but provide bounds for the probability for Type I and Type II
errors. A Type I error occurs when the reported result is θ < p although θ ≥ p, and,
conversely, a Type II error occurs when the reported result is θ ≤ p although θ > p.
SESSL includes the two test procedures most frequently discussed in literature: the single
sampling plan and the sequential probability ratio test [208, 137]. For each test procedure,
the values for p, the maximum Type I and Type II error probabilities α and β, and further
statistical parameters can be given. SESSL then uses this information to automatically
infer how many runs to execute to decide the statistical model-checking question.

Optimization and Analysis

Not only a simulation run, but a whole experiment can be considered as a black box
for statistical analysis. SESSL exploits the power of its host language Scala for such
application scenarios. Essentially, the experiment execution is wrapped in an anonymous
function that takes as arguments the inputs of the black box and uses a callback to write
the outputs to a mutable container.

analyze { (inputs, output) =>

execute {

new Experiment with /* experiment traits */ {

/* experiment setup */

for ((input, value) <- inputs.values)

set(input <~ value)

withExperimentResult { results =>

output <~ /* calculate target function from results */

}

}

}

} using new AnalysisMethod {/* */}

Here, the first and the last line wrap a SESSL experiment in a functions with the arguments
inputs and output. The inputs are a parametrization that is applied in the experiment.
From the result of the experiment, a value is computed and written into output. The
analysis method can then run the function wrapping the experiment as it sees fit. The
concrete analysis method is specified and configured after using, similarly to how SESSL
experiments are created.

This scheme was originally introduced in SESSL by Roland Ewald to implement
simulation-based optimization, where the outer function is a meta-heuristic optimization
algorithm from the Opt4j library [144]. However, it is also applicable for other analysis
methods. In particular, we implemented prototypical support for sensitivity analysis and
bifurcation analysis and were able to factor out the common structure into an abstract
analysis method trait [39].
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Typed observations

Typed observations are an example for a refinement that exploits that SESSL is an internal
DSL. In the original SESSL, observing a model output was specified by relating strings to
each other. For example, in the ML-Rules binding, the following line binds the observable
c to the number of observed Cell entities in the model.

observe("c" ~ "Cell")

Whereas this is succinct, it loses valuable information instead of exposing them for other
parts of the experiment. First, the number of Cell entities is observed, which contains
the information that the observed values will be numbers. The user, however, has no
way of expressing this knowledge. Second, the observable is bound to the string c, which
holds no further information about the observable it refers to. Thus, further functions on
c that depend on numeric values require an explicit type annotation at each call site:

val trajectory = run.trajectory[Double]("c")

If the observable "c" does not exist or does not contain observations of type Double, this
causes a runtime error.

As an alternative, we introduced a new syntax to specify observations:

val c = observe(count("Cell"))

Here, count is a function that transforms a given specification of a species to an
Observable[Double], where Observable[_] is a new type constructor. The observable is
registered in the experiment by the call to observe, which also returns it, storing it in c.
Note that c is now a Scala variable with the informative type Observable[Double] rather than
a String. Consequently, later uses of c can use this type information, and helper functions
can be constrained to only operate on numeric observables. Manual type annotations are
no longer necessary, and the compiler can typecheck all function calls.

val trajectory = run.trajectory(c) // inferred to be Trajectory[Double] by the compiler

Reifying observables as a data type in SESSL is a step in refining the underlying
semantic model of simulation experiments in general. It allows the user to express her
intent when defining the outputs of a simulation, the resulting constraints are propagated
through the experiment, and correctness conditions can be checked by the compiler.

Summary

The extensions outlined above as well as the newly implemented bindings for simulation
systems illustrate three ways in which SESSL contributes to developing software for
supporting simulation experiments.

First, by developing bindings for several simulation systems the commonalities between
them become evident. In particular, simulation experiments typically follow the three
layer structure as described in Section 7.1.1. Consequently, bindings need to manage
simulation runs, aggregate them to parametrizations, check replication conditions etc.,
which leads to duplication of code among bindings. To avoid this, we factored out the
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shared features into a trait called DynamicSimulationRuns, which abstracts over bindings or
simulation systems that are able to issue new simulation runs during the experiment.
This way, the individual bindings only contain the code specific to the targeted simulation
system. The trait DynamicSimulationRuns, on the other hand, represents a generalization of
such bindings.

Second, the same effect can be observed for experiment types. One example is the
common shape of analysis and optimization experiments as outlined above. By ab-
stracting over these experiment types, we were able to factor out shared control flow
logic. The remaining code is specific to the experiment type and, for example, translates
between SESSL and a third-party library for sensitivity analysis. The implementation
of statistical model-checking has another interesting aspect. It directly depends on the
trait DynamicSimulationRuns (via its self-type, see Section 7.2) and exploits it to inject its
hypothesis testing into the evaluation of replication conditions.

Third, we were able to refine many interfaces between different components. The typed
observables discussed above are a good example for this. By capturing information about
the types of observed values, the corresponding code becomes much more expressive.
Similarly, the trait DynamicSimulationRuns defines the type of the method for starting
a simulation run, clearly stating that the inputs are a random seed and the map of
parameters, as described in Section 7.1.1.

With the extensions described above, SESSL expresses more information about simula-
tion experiments. With generalizations of experiments and experimental methods, we can
define the communication between them more precisely on a higher level of abstraction.
This way, the semantic model underlying SESSL (see Section 2.3) has become more
expressive. The structure of the classes and traits in the SESSL core and its bindings
can be considered a metamodel as on object-oriented DSLs. For example, a part of
this structure is visualized in Figure 7.3, not unlike the UML diagrams mentioned in
Section 2.3.2. In Section 7.3 we investigate how similar information can be expressed in
the functional paradigm.

7.2.3. Publishing SESSL experiments

An important aspect of replicability in simulation-based science is the ability to publish
and distribute executable experiments. Again, SESSL exploits that experiments are valid,
executable Scala code. However, to actually run that code, it must be compiled and all
necessary compile-time and run-time dependencies must be available. For replicability, it
is also important that the correct versions of the dependencies are used.

SESSL relies on Apache Maven5 to handle these technical issues. Maven is an industry-
grade software management tool used primarily in the Java ecosystem. As it runs on
the JVM, it can be used on all major operating systems. Many plugins are available
to extend Maven and inject new features, including a plugin for compiling and running
Scala code. In addition, Maven can utilize online artifact repositories in which sources,
documentation, and binaries of diverse libraries and other software projects are available.

5maven.apache.org
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We exploit this to offer a “SESSL quickstart project” with two important files. First,
it contains a Scala file with an executable experiment. Second, it contains a file called
pom.xml, which is the project-specific Maven configuration file. This file mainly consists
of two elements, one specifying the immediate dependencies of the experiment and one
specifying the name of the Scala file that contains the executable experiment. When
started with the command line invocation mvn scala:script Maven automatically runs the
experiment, which includes the following steps:

• The immediate dependencies and their transitive dependencies are determined and,
if they are not present on the system, downloaded from online repositories. The
immediate dependencies are typically the SESSL bindings used in the experiment,
which in turn depend on the SESSL core and other libraries. The version for all
dependencies is fixed.

• The Scala compiler and associated artifacts are downloaded if they are not present
on the system. The Scala version is declared by the SESSL artifacts.

• The experiment file is compiled using the downloaded compiler and dependencies.

• The compiled experiment is executed.

Maven stores the dependencies of the experiment and the Scala compiler on the user’s
computer, where they are also available for future execution of the same experiment
or others. This way, the files are only downloaded once. In addition, the quickstart
project does not need to contain any binaries, and experiments can be distributed as
small archives. All SESSL artifacts are published in the standard online repository Maven
Central via Sonatype’s Open Source Software Repository Hosting program6.

To make distributing and running SESSL experiments even more convenient, we
applied the Maven wrapper7 to the quickstart project. This tool relieves users of manually
installing Maven. All Maven invocations mvn are replaced with mvnw, and the first invocation
downloads a Maven executable and stores it in the same way as project dependencies.
In addition, we provide executable scripts for Windows and Unix that wrap the Maven
wrapper call. Experiments packaged this way can be published as archives of about 50kB.
Once downloaded, they can be compiled and run with a single click (assuming that all
required software is JVM-based). Thus, the only requirements for replicating a SESSL
experiment are an installed JVM and an internet connection.

Packaged experiments can be modified and redistributed in several ways. The experiment
in the Scala file can be adapted, for example to change parameter values. Typically, the
model is defined in a separate file in the package and can be adapted as well. Third, the
technical experiment setup in the pom.xml file can be modified, for example to update the
dependencies’ versions and benefit from bug fixes or performance improvements. This
way, SESSL experiments can be a valuable instrument to document, distribute, and reuse
simulation experiments.

6
https://central.sonatype.org/pages/ossrh-guide.html

7
https://github.com/takari/maven-wrapper
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7.3. Purely Functional Simulation Experiments

SESSL is fundamentally object-oriented, which allows composing experiment aspects by
inheritance and mixing in traits. However, this software design pattern, the so-called “cake
pattern” [172], has recently been criticized8 [85]. One problem is that the dependencies
between the different traits are, in some sense, left implicit. For example, a trait can
access members of its self-type, but those members are only defined in the self-type. Thus,
the individual traits do not define clear interfaces between them, which can complicate
adding new features in traits or in-place in experiments.

Second, with increasingly complex experiments it is increasingly challenging to keep
SESSL experiments deterministic and, thus, strictly repeatable. As discussed in Sec-
tion 7.1.1, each simulation run must be initialized with a random seed. For simple experi-
ments, such as a parameter scan with a fixed number of replications per parametrization,
the number of needed random seeds can be determined before running the experiment.
This makes it possible to generate the seeds in advance. In more complex experiments,
however, for example when using dynamic replication conditions, the number of needed
random seeds depends on the immediate results of the experiment. If, in addition, simula-
tion runs from multiple parametrizations are executed in parallel, race conditions threaten
the determinism of assigning seeds to the simulation runs.

Whereas it is possible to solve this problem in imperative/object-oriented approaches
such as SESSL, the functional paradigm provides determinism “for free”. Therefore,
we study how deterministic complex simulation experiments can be implemented via
idiomatic functional programming in this section. The basic idea is to express a simulation
experiment as a pure function, that is a function that is deterministic and has no
side effects [171, p. 222]. In the remainder of this section, we show how established
functional programming concepts and libraries can be utilized to implement deterministic,
parallelizable, extendable simulation experiments. We use SESSL as a point of reference
regarding the features and also the surface syntax of this new approach. The code snippets
are kept to a minimum; a more technical description can be found in Appendix B.4.

7.3.1. Simple experiments

As a starting point, we consider a single simulation run. In Section 7.1.1 we discussed that
such a single simulation run needs at least two inputs: a random seed and parameters for
the model and the simulation algorithm. Given the same seed and the same parameters,
repeating a simulation run should yield the same results. Thus, a simulation run can be
represented by a pure function:

def sim(params: Params, seed: Seed): Result

given some types Params (typically a map of parameters to values), Seed (e.g., a number),
and Result (e.g., a map of observables to trajectories). Similarly as SESSL’s bindings, the
function sim generalizes simulation runs. For example, this function could additionally

8Also see the discussion on the Scala mailing list: http://www.scala-archive.org/

The-cake-s-problem-dotty-design-and-the-approach-to-modularity-td4640697.html

149

http://www.scala-archive.org/The-cake-s-problem-dotty-design-and-the-approach-to-modularity-td4640697.html
http://www.scala-archive.org/The-cake-s-problem-dotty-design-and-the-approach-to-modularity-td4640697.html


7. DSLs for Specifying Simulation Experiments

take a model as its input, a stop condition, or information about what outputs of the
simulation run to observe. To integrate these aspects, a higher-order function taking these
additional arguments can be written that returns the function sim with two arguments
as shown above. This way, the functional paradigm helps to separate settings for the
complete experiment from settings for a single simulation run. As a result, we can use
the function sim as an abstraction over different simulation systems that require different
experiment-wide settings. The abstract types Params, Seed, and Result further illustrate
the independence of a specific simulation system.

We continue constructing the next layer from Section 7.1.1. For one parametrization,
that is one value for the argument params, the simulation run shall be started with several
random seeds. The idiomatic way to express a computation that requires several random
values is the state monad (see Appendix B.4.1 for details). Libraries for functional
programming such as cats9 contain code that implements the state monad as well as a
number of associated functions. Using these, we can express one parametrization with
parameters params and n replicated runs as follows:

def replications(params: Params, n: Int) =

rndSeed.map(sim(params, _)).replicateA(n)

where rndSeed draws a random seed in the state monad. The idiomatic combinator
replicateA repeats seeding and running sim n times.

To express a parameter scan, parametrizations need to be further composed by varying
the argument params of replications. The starting point is a list of parameter combinations
paramss to explore.

def scan(paramss: List[Params], n: Int) =

paramss.traverse(p => replications(p, n).map(p -> _)).map(_.toMap)

Here traverse expresses the embedding of the computation in the state monad. The two
calls to map structure the output data as a map of parametrization to a list of results for
that parametrization.

We now have covered many of the SESSL features shown in Figure 7.2. If necessary,
experiment-wide configurations such as selecting the model, the stop condition, and
configuring the observation can be realized by a higher-order function that produces
the function sim, which is then used throughout the experiment. We have seen how the
number of replications and the list of parametrizations are used to invoke sim with varying
arguments. The implementation is considerably simpler than in SESSL. Yet, two minor
aspects of the experiment in Figure 7.2 are still missing.

First, SESSL provides features to succinctly specify parametrizations, for example
as a full factorial design over several input parameters of the model. In our functional
approach, we can achieve the same with Scala’s built-in for-comprehensions. For example,
the following snippet produces a list of maps, where each map assigns a value to the
parameters "x" and "y":

for {

9
https://typelevel.org/cats/
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x <- 1 to 5

y <- 10 to 100 by 10

} yield Map("x" -> x, "y" -> y) // Map(x -> 1, y -> 10), Map(x -> 1, y -> 20), ...

This results in 50 maps, which can be used as the argument paramss in the function scan

above. Similarly, other experimental designs can be created with plain Scala code.
Second, the SESSL listing in Figure 7.2 writes the results of each run to a CSV file. In

SESSL this is implemented with an event handler that is invoked on the runs’ results. In
contrast, the functional paradigm allows expressing this via function composition. For
example, sim can be wrapped in a function that writes the results before returning:

def write(result: Result): Result = { writeCSVFile(result); result }

def simAndWrite(params: Params, seed: Seed) = write(sim(params, seed))

Note that these are not pure functions anymore, as writing a file is a side effect. An
alternative, more idiomatic approach is to run the entire experiment as a pure function
and then write the results of the entire experiment to the disk.

We have seen that many aspects of running simulation experiments can be covered
succinctly with idiomatic functional programming. However, we have only considered very
simple experiments that execute a fixed number of runs sequentially, which is also not hard
to implement deterministically in an imperative program. Next, we extend the approach
to more complex experiments, where the functional paradigm leads to significantly simpler
code than the imperative approach in SESSL.

7.3.2. Parallelism and replication conditions

Parallelizing computations is a natural strength of functional programming [96]. The
idiomatic approach is similar to the code we showed above, where we embedded a sequential
experiment in the state monad to supply random numbers as seeds for each run. But
now, we additionally wrap computations in an effect monad, often called IO, which allows
to represent computations as values and composing them. There are two ways of adding
the IO monad to the state monad, both of which represent different kinds of control
flow. Being able to capture this difference in types is one example for the utility of the
functional paradigm for parallelization. As before, we abstract from technical details
as much as possible and refer the interested reader to the more in-depth description in
Appendix B.4.3

The first variant uses an applicative functor, which expresses computations with a “fixed
structure” [151]. In our case, this fixed structure refers to the fixed number of simulation
runs, which means that the number of needed random seeds is fixed as well. Thus, the
needed seeds can be generated before starting any simulation run. The seeded simulation
runs are then executed in parallel by embedding them in the IO monad. This way, the
sequential experiments with a fixed number of runs as presented in the previous section
can be parallelized.

The second variant uses a monad composed from the IO monad and the state monad to
express computations in which “the value returned by one [sub]computation” is able “to
influence the choice of another” [151]. This is realized by giving the monadic computation
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the ownership of the source of random numbers for its whole duration, enabling it to
generate an arbitrary number of random seeds and, therefore, start an arbitrary number
of simulation runs. Note the difference to the first variant, where random numbers are
only generated in the beginning of the computation. As a consequence, it is not possible
to parallelize such monadic computations10.

We can express experiments that combine the advantages of both variants by composing
them hierarchically. Essentially, the overall experiment is a monadic computation, but its
subcomputations are parallel batches embedded in the applicative functor. This way, we
can express the same control flow that the implementation in SESSL uses. For example,
the simulation runs in an experiment with dynamic replication conditions are executed in
parallelized batches, and the condition is evaluated after all runs of a batch are completed.

7.3.3. Complex simulation experiments

We have covered functions that are concerned with composing overall deterministic
experiments from single simulation runs. To express more complex experiments in
the functional paradigm, we now interleave simulation runs with other functions. We
discuss two examples of complex simulation experiments that are implemented in SESSL:
statistical model-checking and simulation-based optimization.

Statistical model-checking

To implement statistical model-checking, we need to add three elements to the experiments
as discussed above. First, we need to define a property to check, for example in temporal
logic. Second, we need to actually check for each simulation run’s result whether it satisfies
the property. Third, we need to integrate test procedures that control the number of
simulation runs to execute. Particularly the first two elements can be expressed very well
in the functional paradigm.

The property to check is essentially a function Result => Boolean. There are several ways
to define such a function, potentially depending on the concrete Result type. One way
is to directly define a predicate on the simulation results, for example to check whether
some observable has crossed a threshold:

def prop(r: Result): Boolean = values(r, x).exists(_ > 1000)

where values(r, x) yields the observed values for an observable x in the simulation results
r. A more general way to define a property is to write a curried function that takes a
formula in some temporal logic (e.g., STL [146]) in addition to the results.

def stl(f:STLFormula)(r: Result): Boolean = /* check whether r satisfies f */

for some type STLFormula, which represents STL formulas as a mini-DSL similar as in
SESSL (also see Barringer and Havelund [16]). Then, for some concrete simulation
experiment, the expression stl(f) with f being an STL formula yields a function of type
Result => Boolean, which is exactly the type of a property.
10One way to circumvent this is to split the source of randomness to be able to give one to each monadic

computation. However, splitting random number streams might introduce statistical bias [204].
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As a property is represented by a function, evaluating a property on a run’s results
(the second element above) is just function composition. For example, prop(sim(p, s))

determines whether the simulation run with parameters p and seed s satisfies the property
prop.

The third element, controlling the number of replications, can be realized similarly as in
SESSL: by reusing the existing measures for setting replication numbers and replication
conditions. As discussed in the previous section, replications conditions are evaluated on
the results obtained so far. This allows implementing the statistical model-checking test
procedures such as the sequential probability ratio test (see Section 7.2.2).

In summary, statistical model-checking experiments can be expressed very well in the
functional paradigm. The properties to check can be represented and passed around as
plain functions, and property languages such as temporal logics can be integrated via
currying.

Simulation-based optimization

As discussed in Section 7.2.2, optimization experiments in SESSL are already expressed
with functional concepts. In particular, the target function for the optimization algorithm
is implemented by wrapping the execution of a SESSL experiment in a function. This
target function can then be invoked at will by the optimization algorithm for different
parametrizations.

The same approach can be expressed directly in a purely functional approach. In
SESSL, an event handler is used to write the value of the target function to a mutable
container when the experiment finishes. This way, the results of all runs are available
to determine the target function’s value. In other word, the event handler implicitly
expresses a function List[Result] => TValue, where TValue is the result type of the target
function. In the functional paradigm, we can explicitly define such a function. Similarly
as for statistical model-checking, this function can then be composed with a function that
produces the results for a specific parametrization to obtain the complete target function.

The second issue is the determinism of the optimization experiment. In general,
optimization algorithms themselves require a source of randomness, for example to
randomize the mutations in a genetic algorithm. Thus, the optimization algorithm
randomly chooses parametrizations to execute, and (when using dynamic replication
conditions) this influences how many random seeds for simulation runs are required, which
in turn influence the next choice of the optimization algorithm and so on. To keep the
whole process deterministic, we pass the source of randomness between the optimization
algorithm and the simulation runs. This sequence of computations can be expressed in
the monadic approach discussed above.

In comparison to SESSL, optimization experiments benefit from the functional paradigm
by expressing the composition of the outer function (i.e., the optimization algorithm) and
the inner function (i.e., the target function based on simulation runs) directly. This allows
a simpler formulation of the target function and facilitates making the overall experiment
deterministic.
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7.3.4. Expressing experiments in a DSL

As we have seen above, many aspects of simulation experiments are directly expressible
in the functional paradigm. By using appropriate libraries, the control flow in parallel,
complex experiments can often be captured by composing a few idiomatic combinators.
To complete the presentation of this approach, we now illustrate how the implementation
can be wrapped in an internal DSL. As before, we relate this new DSL to SESSL.

The following listing shows a statistical model-checking experiment in SESSL. It uses
a binding that runs simulations of Law’s inventory model11 [133, sec. 1.5] and checks
whether the output variable AverageTotalCost is less than 150. The model is executed with
a specific parametrization and parallel runs are executed in batches of 10. Finally, the
experiment specification includes the statistical parameters for the sequential probability
ratio test.

new Experiment with Observation with ParallelExecution with StatisticalModelChecking {

prop = (_, outputs) => outputs(AverageTotalCost).values.last.asInstanceOf[Double] < 150

set("s" <~ 20, "S" <~ 60)

batchSize = 10

test = SequentialProbabilityRatioTest(

p = 0.9,

alpha = 0.05,

beta = 0.05,

delta = 0.05

)

}

The next listing shows the same experiment in the functional approach. Similarly as in
the SESSL experiment, the individual settings are specified in a declarative style with
setting = value. In contrast to SESSL, where such lines are object-oriented setters, the
functional approach uses named function arguments.

sequentialProbabilityRatioTest(

prop = result => result(AverageTotalCost) < 150,

batch = replications(

params = Map("s" -> 20, "S" -> 60),

n = 10

),

p = 0.9,

alpha = 0.05,

beta = 0.05,

delta = 0.05

)

As the above example shows, the surface syntax of SESSL and the new approach
is quite similar. One notable difference is that the property specification in SESSL is

11The specifics of the model are not relevant here.
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much more verbose than in the functional approach. However, this is not caused by
SESSL’s design principles, but rather an implementation artifact. More importantly, the
way experiments are composed is different. In SESSL, an experiment receives mixed in
traits upon creation, such as ParallelExecution and StatisticalModelChecking above. The
resulting experiment objects combines the features of all these traits. In contrast, the
functional approach composes functions to define the overall experiment. For example,
the statistical model-checking experiment is defined by composing the hypothesis test
(sequentialProbabilityRatioTest) with the function replications, which executes a batch of
simulation runs in parallel.

7.3.5. Summary

We presented a purely functional DSL for experiment specification that builds upon
SESSL in several ways. In particular, we adopted the idea of abstracting over different
simulation systems. Moreover, the replicability techniques for packaging and distributing
experiments detailed in Section 7.2.3 can be adopted without changes in this new language.
Complex experiments are composed from simpler components, although the paradigm of
composition differs: SESSL uses object-oriented concepts, whereas the new approach relies
on functional composition. This difference leads to three advantages. First, in the new
approach it is simpler to specify deterministic experiments, as experiments are defined as
pure functions. Second, the new approach makes it easier to abstract over experiments
by extracting function arguments. For example, the above statistical model-checking
experiment could be modified to allow factoring out the function sim which executes the
actual simulation runs. This would facilitate reusing the experiment specification for
different models or even different simulation systems. Third, the new approach is more
flexible than SESSL. Whereas in SESSL the user was able to inject custom code in event
handlers, the functional experiments can be augmented through function composition at
any stage.

7.4. Adapting and generating experiments

We presented two different Scala-based DSLs for defining executable simulation exper-
iments, employing the object-oriented and functional paradigm, respectively. Defining
experiments in a DSL facilitates considering them as standalone artifacts. This can be
exploited, for example, when capturing simulation studies in artifact-based workflows [199].
Here, experiments have their own life cycle, formalizing the modification and reuse of
experiments.

One idea is to take the simulation experiments associated with a model and reuse them
when the model is extended [184]. Similarly, when composing several models the experi-
ments associated with the individual models can be reapplied to the composed model [183].
Another approach is to generate new experiments based on model documentation [200]. All
these operations on experiments can be done semi-automatically by providing according
algorithms. The implementation of such algorithms relies on an explicit representation of
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simulation experiments, for example with a DSL. In the following, we discuss how DSL
techniques can support adapting and generating experiments.

To design algorithms that operate on experiments, a suitable representation of exper-
iments is required. In the DSL paradigm, there are two main ways to do that. First,
experiments can be processed in their concrete syntax. Second, an abstract syntax
representation can be employed. We illustrate both ways using SESSL.

When operating on the concrete syntax of textual languages, algorithms work on source
code. For example, to adapt a SESSL experiment and make it use a different model file,
it suffices to find a line like

model = "oldModelFileName"

and replace it with

model = "newModelFileName"

The modified experiment can be saved in a new file and be distributed like any other
SESSL experiment. It is also executable. We employed operations on the concrete syntax,
for example, to generate experiments based on templates [200].

The downside of this approach is that such textual modifications essentially rely on
an informally specified concrete syntax. In the example above, the specification of the
model file must not necessarily stand in one line or on its own line. As model = ... is
just a method call, it can also be factored out into another function or supertype of the
experiment and not even be in the same file. The underlying problem is that such a line
in SESSL is not a declarative key-value-assignment (although it has that look-and-feel),
but a mutating method call on an object.

To better capture the true nature of experiment adaptations such as changing the
model path in SESSL, it is possible to work on the abstract syntax level. The operations
are not defined on source code, but on objects. For example, to adapt the model of an
existing experiment object exp it suffices to call a method on that object:

exp.model = "newModelFileName"

We employed this approach12, for example, to modify experiments in a visual analytics
setting [246].

This approach has two disadvantages. First, it is not possible to obtain a textual
description (i.e., source code) for an experiment after it has been adapted. The reason
for that is also the second disadvantage. Not all aspects of an experiment are reified
as fields of objects. SESSL allows and even encourages injecting Scala code for several
experiment aspects. Whereas the model file is just a field with a string, other aspects like
event handlers or result postprocessing are typically expressed with plain Scala code. In
other words, SESSL combines deep embedding and an explicit abstract syntax with a
shallow embedding of plain Scala code. The former is open for analysis, adaptation, and
conversion to text, but the latter is not.

12Note that this in this case, the experiment object is mutated. However, immutable objects could be
handled similarly with a copy-on-write approach, for example with the copy method on Scala’s case
classes: val newExp = exp.copy(model = "newModelFileName")
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Similarly as for modeling languages, the trade-offs of deep and shallow embedding
become evident. Shallow embeddings allow seamless integration of the DSL with its host
language, but the resulting experiment can only be executed, not inspected or modified.
This is also the approach taken by the functional implementation presented in Section 7.3.
As illustrated above, to process (e.g., modify) shallowly embedded experiment descriptions
in the course of a simulation study the source code (concrete syntax) representation is
often the only choice. Deep embeddings, on the other hand, facilitate more fine-grained
management and adaptation of experiments in a simulation study. An abstract syntax
gives a rigid frame for generating, analyzing, or modifying experiments, and the danger
of introducing errors can be minimized. But, as exemplified by SESSL, it is beneficial for
flexibility to let the user deviate from the abstract syntax and inject host language code in
some points. An example for a language strictly following the deep embedding approach
is SED-ML, which uses an XML Schema to specify the abstract syntax of simulation
experiments [237].

One way forward could be to formalize the distinction between deeply and shallowly
embedded language constructs as proposed by Svenningsson and Axelsson [222]. The
decisive step here is to define interfaces in such a way that the shallowly embedded
parts can be evaluated to equivalent deeply embedded ones. In SESSL, for example, this
would mean to design tailored interfaces for describing event handling and other elements
that require more flexibility. Vice versa, the core experiment structure in the functional
approach could be reified in a deep embedding and according interfaces be offered for
extending the structure.

7.5. Summary

In contrast to simulation models, the scope of simulation experiments is much less
constrained. Simulation models can be mapped to CTMCs or similar abstractions,
whereas simulation experiments are so diverse that their greatest common divisor is
arguably “executable program”. However, due to their role in the scientific method and in
statistical analysis of simulation models, there are some recurring elements of experiment
implementations. Here, using a DSL can help to factor out reusable components. This
can be achieved in an object-oriented or functional programming fashion.

We have seen different ways in which the appropriate design and implementation of
DSLs can support important properties of simulation experiments. First, the repeatability
of experiments can be facilitated by expressing them in a purely functional way, which
guarantees their determinism. Second, the replicability of experiments benefits from
being able to publish them as executable packages with minimal installation and setup
requirements. Third, representing experiments as standalone artifacts allows reusing them
for different models to reproduce their results.

In addition, with experiments becoming more complex, statically analyzing them,
generating them, and reusing them in and across simulation studies is increasingly
important. Thus, supporting such operations is becoming a requirement for DSLs for
experiments in addition to “just” allowing execution. For example, analysis of simulation
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experiments might reveal prospective provenance information in the future [152].
Designing an experiment language that allows static analysis, is flexible, and facilitates

repeatability as well as reusability and reproducibility is future work (see Section 8.3).
However, this chapter presented some possible ingredients.
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To conclude this thesis we now summarize the key insights and discuss some directions
for future work.

8.1. Summary

Based on an intuition about the rule-based modeling of biochemical reaction networks,
we developed the abstract syntax and formal semantics of ML-Rules. With attributed
and dynamically nested entities, ML-Rules is a very expressive language. Nevertheless,
we showed that its formal semantics can be expressed in terms of a CTMC, a relatively
simple stochastic process model. This allows executing ML-Rules models with established
CTMC simulation algorithms.

The formal semantics is mostly concerned with determining what successor states are
reachable and with what exit rate based on the current state of a model. In particular,
patterns on the left rule side must be matched to the model state. We presented two
implementations of ML-Rules as a DSL including the required pattern matching. The first
implementation is an internal DSL that employs the functional programming paradigm to
express the pattern matching through monadic composition. The second implementation
uses the language workbench Xtext to provide an external DSL and the associated tooling,
including the generation of object-oriented Java code. We discussed the similarities and
differences of both approaches. One core result is that the external DSL implementation
offers more potential for efficient execution, as it facilitates in-depth analysis of the model,
paving the way for selecting and configuring a simulation algorithm. We also presented
an adaptation of CTMC-based modeling for agent-based modeling with an internal DSL.
This third implementation highlights the potential of DSLs to form a layer of abstraction
between code for model behavior and simulation code. This facilitates succinct model
descriptions and also reusable simulation algorithms.

Lastly, we investigated the utility of DSLs for the specification of simulation experi-
ments. We presented SESSL, an internal DSL that relies on object-orientation to factor
out reusable code. We also present a novel, purely functional approach to experiment
specification. Whereas both of these approaches address requirements that are specific
to simulation experiments, in particular repeatability, replicability, and reproducibility,
neither of them is suited to statically analyze experiments. However, as we illustrate with
some examples, the potential to generate, analyze, and adapt simulation experiments is
increasingly important in the context of simulation studies.
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8.2. Key insights

We now highlight some key insights from this thesis.

8.2.1. Models vs. experiments

We have applied the ideas of DSLs to simulation models as well as simulation experiments.
In both cases the DSL represents a layer of abstraction between language user and language
implementation. Nevertheless, these two use cases are quite different.

In a DSL for modeling, a model is evaluated to a description of a stochastic process.
This description can then be used as input for a simulation algorithm. For example, each
of our two implementations of ML-Rules contain a type that represents a model, and a
concrete model can be represented as a value of this type. Such a model value essentially
defines a CTMC and, thus, can be executed with an SSA or analyzed in other ways. The
mapping from the language to the CTMC is specified by the formal semantics. Thus,
the formal semantics defines an upper limit for the formal expressiveness of ML-Rules.
As every model defined in ML-Rules can be mapped to a CTMC, ML-Rules is not more
expressive than CTMCs. This way, a formal semantics can naturally limit the scope of a
DSL for modeling.

In contrast, DSLs for simulation experiments are not associated with relatively simple
mathematical objects like CTMCs. Their application domain has no natural limits, as
many different types of simulation experiments exist. A language to express the wide range
of experiment types must be extremely flexible and, therefore, arguably not less expressive
than a GPL. Nevertheless, there are recurring elements in simulation experiments. By
wrapping these recurring elements and allowing to combine them with each other as well
as with custom code, DSLs for simulation experiments can provide value. In particular,
they facilitate abstracting over individual experiments. For example, SESSL allows
implementing experimental methods such as statistical model-checking in a simulation
system-agnostic fashion. In addition, we have shown how DSLs for simulation experiments
can facilitate repeatability (e.g., by making experiments deterministic), replicability (e.g.,
by making experiments easy to distribute) or reproducibility (e.g., by making experiments
independent of concrete simulation systems).

DSLs can also be useful in other areas of modeling and simulation. For example,
SESSL includes a sub-DSL to express temporal logics formulas in STL (see Section 7.2.2).
Similar implementations have been proposed before [16]. However, the syntax and
semantics of (temporal) logics are typically less complex than of languages for modeling
or experimentation.

8.2.2. Formal semantics of modeling languages

One of the main contributions of this thesis is the definition of the formal semantics
of ML-Rules. ML-Rules was already proposed in 2011 and implemented twice since
then [149]. However, a formal definition of the language was only published in 2015
(and revised for this thesis) [239]. This is different from many other simulation modeling
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languages, where the semantics are defined first and only proof-of-concept implementations
are provided or even no implementations at all. Retrofitting the formal semantics to the
language revealed gaps between the practical implementation and the formal definition. In
some sense, the formal semantics made it possible to precisely reason about the language
ML-Rules, its idiosyncrasies (such as employing dynamic nesting or non-linear patterns),
and implementation strategies [101]. We also discuss some differences between the formal
semantics and the implementations as presented in this thesis in Section 6.2.2. In addition,
the formal semantics makes sure the definition is complete and does not glance over corner
cases, which is possible in informal, example-driven semantics1. The formal definition of
a language provides the vocabulary for such discussions.

A direct consequence of defining ML-Rules formally and relating practical implemen-
tations to the formal definition is that the trustworthiness of results produced with the
implementation can be assessed. As simulation of CTMCs is well understood, mapping
an ML-Rules model to a CTMC creates a chain of credibility from the model definition
to the simulation output (leaving software bugs aside). This is an important step in
addressing the question of reproducibility in simulation, as it associates the simulation
results with a CTMC instead of a specific modeling language or implementation [232].

8.2.3. Explicit abstract syntax and static analyses

Whereas the formal semantics specifies the evaluation of a model or experiment, the
abstract syntax specifies the form of representation. The abstract syntax can be directly
reflected in the implementation, in particular in external DSLs or in internal DSLs with a
deep embedding. Such an explicit representation of the abstract syntax enables static
analyses in addition to the ability of running a model or experiment. We identified static
analyses as an important ingredient for DSLs for models and experiments.

If a DSL for simulation modeling provides an explicit representation of the abstract
syntax, for example a metamodel as presented in Section 6.4, the model can be analyzed
on the abstract syntax level. This can be exploited to evaluate a model without simulation,
for example by balance analysis for CTMC-based models (see Section 3.1.3). But static
model analyses can also be exploited for executing simulation runs, for example for
selecting and configuring simulation algorithms as discussed in Section 6.5.3. Static
analyses of rule-based simulation models can also be used, for example, for debugging
models [35].

As ML-Rules is very expressive, an explicit abstract syntax is particularly useful. First,
the reaction rules with the nested patterns on the left side are comparably complex.
Operations on these rules are made considerably easier by capturing the syntax in an
expressive form, such as a metamodel. Second, the expressiveness allows constructing
models that violate the assumptions of some efficient simulation algorithms. The ap-
plicability of algorithms can be determined, however, by determining the properties of
a specific given model by static analysis. In the future, automatically detecting which

1For instance, the formal semantics defines that for a reactant cS(ẽ; patr) ▷ x the variable x binds to all
matched reactants even if c > 1, although this occurs rarely.
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algorithms are applicable could inform the automatic selection of a simulation algorithm
for a model [101].

In simulation experiments, an explicit representation of the abstract syntax is helpful
when considering experiments in the wider context of simulation studies. Here, experiments
are created, adapted, or combined. These operations benefit from having a well-defined
structure to work on as opposed to a textual experiment representation. In addition, an
explicit abstract syntax can be used by static analysis to automatically extract provenance
information from experiments without executing them. More generally, our work on
SESSL has shown that using (and growing) a DSL for specifying simulation experiments
exposes commonalities and differences between different types of simulation experiments
as well as different simulation systems. We encoded much of this information in an
object-oriented system of classes and traits, which can be considered an explicit abstract
syntax or metamodel. These classes and traits allow us to add features to SESSL on an
abstract, tool-independent layer.

8.2.4. Rule-based syntax in external and internal DSLs

The above points about abstract syntax apply to external DSLs as well as deeply embedded
internal DSLs. In contrast, internal DSLs with a shallow embedding can be seen as a
layer of syntactic sugar over their host language without an intermediate, DSL-specific
abstract syntax.

Internal DSLs can combine shallow and deep embedding to reuse constructs of their
host language and also define new syntactic constructs. For example, the agent-based
modeling language presented in Section 6.6 makes use of Java’s lambda expressions to
express function literals (shallow embedding), but combines such functions in a rule
object (deep embedding). This exemplifies that internal DSLs have advantages when
there is some syntactic and semantic overlap between the host language and parts of
the application domain. For declarative, rule-based modeling language designs, however,
GPLs offer little built-in syntax. Instead, idioms of the host language can be adapted to
the language domain, as we illustrate with the Scala-based ML-Rules implementation in
Section 6.3 where we expressed the pattern matching as a monadic sequence. However,
the functional language implementations in Sections 6.3 and 7.3 add very little syntax to
their host languages. These languages stretch the definition of DSLs, which is arguably a
frequent occurrence for internal DSLs.

External DSLs, on the other hand, allow designing a syntax independently of any
existing language. Consequently, many simulation modeling languages are implemented
as external DSLs to include language concepts that are not supported by mainstream
GPLs. Our Xtext-based implementation of ML-Rules employs this approach to enable
reaction rules with nonlinear patterns on their left side (Section 6.4). This approach also
means that elements of GPLs must be reimplemented in the DSL, for example expressions
or function definitions and invocations, possibly including type inference and scoping
rules. To avoid this, DSLs can reuse existing (sub)languages. For example, Xbase is a
reusable expression language in the Xtext ecosystem [64].

For other paradigms than rule-based modeling, different implementation strategies can
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yield an appropriate concrete syntax. DEVS and agent-based modeling, for example, map
well to object-oriented programming concepts, as demonstrated by the internal DSLs
Python(P)DEVS [233] and ReLogo [177].

8.3. Future work

There are several promising directions for future work.
The gap between the formal semantics of ML-Rules and the pattern matching algorithm

proposed in this thesis should be investigated. It would be interesting to see how the
algorithm can be formalized in operational semantics. Obviously, pattern matching the
reactants from left to right would play a central role. Having defined such a semantics, the
relation to the order-independent semantics as defined in this thesis could be investigated
in-depth. For example, the question which reactants can still be reordered without
changing the result of pattern matching could be addressed.

The expressive power of non-linear patterns in rule-based languages for modeling should
be studied further. Non-linear patterns can express dynamic nesting as well as the influence
of location in a grid or other kinds of discrete space. Established rule-based modeling
languages like BNGL or the κ-calculus make use of non-linear patterns to encode graph
rewriting. This implies that non-linear patterns could be a common formalism to relate
and potentially unify different rule-based modeling approaches. In addition, non-linear
pattern matching might inform the development of efficient simulation algorithms for a
great variety of models.

Moreover, future work should be directed at static analyses of rule-based modeling
languages. The utility of analyzing a model specification has already been shown, for
example for reachability analysis in the Kappa platform [35]. It would be interesting to
see under what conditions the same methods can be applied to more expressive languages
like ML-Rules. Similarly, an analysis of an ML-Rules model could support the selection
of simulation algorithms. Combined with an algorithm selection method, this could
automatically select the optimal algorithm for a given model [99]. Another example
for how static analysis support efficient simulation is the DSL for agent-based modeling
presented in Section 6.6. Here, static analysis can be useful to estimate the locality of
changes.

Regarding languages for experiment specification, more work is necessary to address
challenges like reproducibility and flexibility. For example, methods from the area of model-
driven engineering might be useful for composition of experiment specification languages
as well as for composition of experiments [104, 125]. The composition of languages
could be used to flexibly combine features in experiment specification languages. A core
language for common experiment features could be combined with sub-languages for specific
simulation systems as well as for specific experiment types. The sub-languages would then
correspond to SESSL’s bindings, but with a more rigid foundation and, potentially, an
abstract syntax that would be open to static analysis. Composing simulation experiments
has been proposed before [183]. The approach could benefit from a more formal definition
of a simulation experiment’s abstract syntax by defining composition on that level. By

163



8. Conclusion

defining an unparsing2 operation for an experimentation DSL, algorithms for generating
experiments could also operate on the abstract syntax. Finally, as already mentioned
in Section 7.5, a proper experiment specification DSL could support the extraction of
provenance information.

2Xtext, for example, generates an unparser (i.e., a method to create the concrete syntax from the
abstract syntax) by default.
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A. Multisets

As there seems to be no commonly agreed upon convention for denoting multisets and
the operations on them, we define the notations used in this thesis below. The definitions
are based on Syropoulos [226], Wildberger [250], and De Nicola et al. [58].

• A multiset A is a pair A = (A,nA), where A holds the distinct elements of the set
and nA : A→ N maps each element to its number of occurrences. We call nA the
multiplicities of A. It is convenient to extend nA to an arbitrary domain by setting
nA(x) = 0 for all x /∈ A1.

• We can also denote a multiset by listing its elements in the form
A =

{︂
a
nA(a1)
1 , a

nA(a2)
2 , . . .

⃓⃓⃓}︂
for a1, a2, . . . ∈ A.

• As a third option, a multiset can be defined in a multiset comprehension of the
form A = {|a|P (a, b), b ∈ B|}, where P ⊆ A×B is a relation of A and some set B.
Note that this notation yields a multiplicity nA(a) > 1 for an a which is related to
several b ∈ B.

• The empty multiset is denoted as ∅.

• An element is contained in a multiset if its multiplicity is positive:
If A = (A,nA) is a multiset, then x ∈ A ⇔ nA(x) > 0

We define some relations and operations on multisets.

• Two multisets A = (A,nA) and B = (B,nB) are equal iff nA(x) = nB(x) for all
x ∈ A ∪B. Then A = B.

• The sum of two multisets A = (A,nA) and B = (B,nB) is a multiset C = (C, nC)
with C = A ∪B and nC(x) = nA(x) + nB(x) for all x ∈ C. Then A ⊎ B = C.

• We can define the difference of two multisets via the sum. C ⊖A = B ⇔ A⊎B = C.

• The submultiset relation ⊆ can also defined via the sum. A ⊆ C ⇔ ∃B : A⊎ B = C.

Finally, we define the sum over a multiset of reals.

• For a multiset A = (A,nA) with A ⊆ R we define
∑︁
A =

∑︁
a∈A nA(a) · a.

1But nA(x) = 0 ⇒ x /∈ A does not hold necessarily. In other words, A may contain elements that are
not contained in the multiset.
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B.1. Non-linear pattern matching algorithm in Scala

This is a Scala implementation of the pattern matching algorithm as described in Sec-
tion 6.2.1.

type Substitution = Map[Variable, Value]

def withBinding(substitution: Substitution, variable: Variable, value: Value): Substitution =

if (!substitution.contains(variable))

substitution.updated(variable, value)

else

substitution

def mergeAssignments(substitution1: Substitution, substitution2: Substitution): Substitution =

if (substitution1.keySet.intersect(substitution2.keySet).nonEmpty) {

throw new IllegalStateException()

} else {

(substitution1.toList ++ substitution2.toList).toMap

}

case class Pattern(entities: List[EntityPattern], rest: Option[RestSolVariable] = None)

case class EntityPattern(

count: Int,

name: String,

attributes: List[AttributePattern],

subSol: Pattern = Pattern(List.empty, None),

variable: Option[EntityVariable] = None)

sealed trait Variable

case class RestSolVariable(name: String) extends Variable

case class EntityVariable(name: String) extends Variable

case class Entity(

count: Int,
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name: String,

attributes: List[Value],

subSol: Solution = Solution(List.empty))

extends Value

sealed trait Value

sealed trait AttributePattern

case class Constant(value: Any) extends AttributePattern with Value

case class AttributeVariable(name: String) extends AttributePattern with Variable

case class Solution(entities: List[Entity]) extends Value

def matchEntityPattern(

entityPattern: EntityPattern,

entity: Entity,

substitution: Substitution

): List[Substitution] =

if (entityPattern.name != entity.name || entityPattern.count > entity.count)

List.empty

else {

// check if entity variable exist and has already been assigned to

val priorMatch = for {

ev <- entityPattern.variable

Entity(_, name, attributes, subSol) <- substitution.get(ev)

} yield {

name == entity.name && attributes == entity.attributes && subSol == entity.subSol

}

val canStillSucceed = priorMatch.getOrElse(true)

if (!canStillSucceed) {

// the pattern variable has already been matched to another entity earlier

List.empty

} else {

// not matched earlier or matched same entity

val attrsPairs = entityPattern.attributes.zip(entity.attributes)

val afterAttributes = attrsPairs.foldLeft[Option[Substitution]](Some(substitution)) {

case (Some(matchResult), (ap, a)) => matchAttributePattern(ap, a, matchResult)

case (None, _) => None

}

val afterSubSol = afterAttributes.toList.flatMap { mr =>
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matchPattern(entityPattern.subSol, entity.subSol, mr)

}

entityPattern.variable.fold(afterSubSol)(ev => afterSubSol.map(withBinding(_, ev, entity)))

}

}

def matchAttributePattern(

attributePattern: AttributePattern,

attribute: Value,

substitution: Substitution

): Option[Substitution] =

(attributePattern, attribute) match {

case (Constant(v), a) if a == v => Some(substitution)

case (v: AttributeVariable, a) if !substitution.contains(v) => Some(withBinding(substitution, v, a))

case (v: AttributeVariable, a) if substitution(v) == a => Some(substitution)

case _ => None

}

def matchPattern(

pattern: Pattern,

solution: Solution,

substitution: Substitution = Map.empty

): List[Substitution] = pattern match {

case Pattern(Nil, None) => List(substitution)

case Pattern(Nil, Some(rest)) =>

if (substitution.contains(rest) && substitution(rest) != solution)

List.empty

else

List(withBinding(substitution, rest, solution))

case Pattern(ep :: tail, restSol) =>

for {

(e, idx) <- solution.entities.zipWithIndex

m <- matchEntityPattern(ep, e, substitution)

newSol = Solution(solution.entities.updated(idx, e.copy(count = e.count - ep.count)))

result <- matchPattern(Pattern(tail, restSol), newSol, m)

} yield result

}

B.2. The nondeterministic state monad in Scala

This is a Scala implementation of the nondeterministic state monad as described in
Section 6.3.2.

case class NonDetState[S, +A](run: S => List[(S, A)]) {
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def map[B](f: A => B): NonDetState[S, B] = NonDetState { s =>

for {

(s1, a) <- run(s)

} yield (s1, f(a))

}

def flatMap[B](f: A => NonDetState[S, B]): NonDetState[S, B] = NonDetState { s =>

for {

(s1, a) <- run(s)

(s2, b) <- f(a).run(s1)

} yield (s2, b)

}

def withFilter(p: A => Boolean): NonDetState[S, A] = NonDetState { s =>

for {

(s1, a) <- run(s)

if p(a)

} yield (s1, a)

}

}

B.3. Code generation in Xtext

Section 6.4 describes an Xtext-based implementation of ML-Rules. This appendix gives
some additional technical background. We first look into the general approach for
generating code for an ML-Rules model, and then give an in-depth explanation of the
code generation for the pattern matching in a reaction rule.7

B.3.1. Generating Java code for an ML-Rules model

In Xtext projects, code is typically written in Xtend, a GPL that is largely similar to (and
compiled to) Java. One of its most useful features of Xtend is the support for multi-line
template expressions, which allows defining readable, indented code templates [21, p. 57f.].
Inside the templates, expressions can be inserted in guillemets «», including conditional
expressions, loops, or calls to other code generation methods.

Using Xtend templates, much of the actual code generation can be simplified. Most of
the code to generate is fixed and only few expressions need to be used in the templates.
For example, to generate the Java class Model, we always use a template like the following:

package «packagePath»;

// omitted: imports
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public class Model implements IModel {

// omitted: contents

}

Here, the package path is inserted in the package declaration of the class, and in the body
of the class all necessary Java code can be generated.

To illustrate how the generated code looks like, we consider the following simple
ML-Rules model.

A()[];

B(num);

aString: 'foo';

aNumber: 3 + 4 * 12 + 2;

>>INIT[A[2 B(aNumber)]];

A[B(x):b + B(x) + rest]:a -> A[rest] @ #b * (#b - 1);

In the following we highlight some noteworthy snippets from the Java code that is
generated for this model. First, for the species A and B, standard Java classes A and B are
generated:

public class A implements ICompartmentalSpecies {

public final ISolution subSol;

public A(ISolution subSol) {

this.subSol = subSol;

}

// hashCode, equals, toString, copy

}

public class B implements ISpecies {

public final double attribute_0;

public B(double attribute_0) {

this.attribute_0 = attribute_0;

}

// hashCode, equals, toString, copy

}

The generated code reflects for each species the declared attributes as well as whether
the species is a compartment. The types of the attributes are the Java equivalents of the
types declared in the ML-Rules model. In the generated Model file, code for the constants
from the ML-Rules model and code to create the initial solution is generated.

public class Model implements IModel {

public static final SolutionFactory solutionFactory$ = new SolutionFactory();
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public static final String aString = "foo";

public static final double aNumber = ((3 + (4 * 12)) + 2);

@Override

public ISolution getInitialSolution() {

return solutionFactory$.create()

.add(1, new A(solutionFactory$.create()

.add((int) 2, new B(aNumber)))

)

;

}

// other members omitted

}

Each constant is represented as a static final member of the class Model. The type of
the constant in Java is inferred from its defining expression in ML-Rules. To create
the initial solution, an empty solution is created by invoking a SolutionFactory (provided
by the mlrules3-common library). Then, the generated code uses the constructors of the
generated species classes to create species instances and add them to the solution. The
same approach is taken for subsolutions of the entities to create. The ISolution offers a
fluent interface, which allows chaining the additions to a solution in one expression.

B.3.2. Generating Java code for an ML-Rules rule

Consider the following ML-Rules model again.

A()[];

B(num);

aString: 'foo';

aNumber: 3 + 4 * 12 + 2;

>>INIT[A[2 B(aNumber)]];

A[B(x):b + B(x) + rest]:a -> A[rest] @ #b * (#b - 1);

The rule in the model above was used as a high-level example for code-generation in
Figure 4. The following listing shows a source code snippet of the code generated for the
rule.

public class Rule0 implements IRule {

@Override

public Iterable<IReaction> match(ISolution solution$) {

List<IReaction> rs$ = new ArrayList<IReaction>();
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for (A $root$0 : solution$.getEntities(A.class)) {

final int needed$root$0 = 1;

final int alreadyTaken$root$0 = 0;

final int available$root$0 =

solution$.getCount($root$0) - alreadyTaken$root$0;

if(available$root$0 < needed$root$0) {

continue;

}

final A a = $root$0;

final int available$a = available$root$0;

for (B $root$0$0 : $root$0.subSol.getEntities(B.class)) {

final int needed$root$0$0 = 1;

final int alreadyTaken$root$0$0 = 0;

final int available$root$0$0 =

$root$0.subSol.getCount($root$0$0) - alreadyTaken$root$0$0;

if(available$root$0$0 < needed$root$0$0) {

continue;

}

final B b = $root$0$0;

final int available$b = available$root$0$0;

final double x = $root$0$0.attribute_0;

for (B $root$0$1 : $root$0.subSol.getEntities(B.class)) {

final int needed$root$0$1 = 1;

final int alreadyTaken$root$0$1 =

0 + (($root$0$0.equals($root$0$1)) ? needed$root$0$0 : 0);

final int available$root$0$1 =

$root$0.subSol.getCount($root$0$1) - alreadyTaken$root$0$1;

if(available$root$0$1 < needed$root$0$1) {

continue;

}

if(x != $root$0$1.attribute_0) {

continue;

}

ISolution rest = $root$0.subSol.copy();

rest.remove(needed$root$0$0, $root$0$0);

rest.remove(needed$root$0$1, $root$0$1);

rs$.add(new IReaction() {

@Override

public double getRate() {

return (available$b * (available$b - 1));

}
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@Override

public void execute() {

solution$.remove(needed$root$0, $root$0);

solution$

.add(1, new A(solutionFactory$.create()

.add(rest))

)

;

}

});

}

}

}

return rs$;

}

}

The code shows the differently indented levels of iteration over the entities in the solution
(or the subsolution of previously matched reactants). In each indentation level, that is for
each reactant, code for the following steps is generated:

• A for-loop iterates all distinct entities of the class of the reactant. The currently
considered entity is bound to a variable named $root$i1$i2$...$in, meaning that the
reactant is the ijth reactant on the jth level. In the following, we refer to this name
as n.

• Next, some variables that hold information about the number of entities are gener-
ated.

needed$n holds the number of entities required by the rule (the reactant count).

alreadyTaken$n holds the number of equal entities that have already been matched
by earlier reactants in the same solution. This number can be computed from
n alone: let n be $root$i1$i2$...$in. Then the value held by the variables n’ =
$root$i1$i2$...$ij with ij < in need to be compared with n. For those n’ where
n’ = n, the needed$n’ add up to alreadyTaken$n.

available$n holds the number of entities available in the solution when matching
the reactant.

• At this point, an if-statement is generated that checks if enough entities are available.
If not, the loop continues with the next entity.

• If a variable v is assigned to the pattern in the model and this is the first occurrence
of the variable v, two additional Java variables are generated.

– v is a alias for n.

– available$v is an alias for available$n.
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• If a variable v is assigned to the pattern in the model and this is not the first
occurrence of the variable v, an if-statement is generated. It compares n and v. If
they are not equal, the loop continues with the next entity.

• Next, each attribute of the reactant pattern is handled.

– If the pattern is a wildcard, no code is generated.

– If the pattern is some constant value, an if-statement that compares the
attribute value of the entity and the constant is generated. If they are not
equal, the loop continues with the next entity.

– If the pattern is a variable and this is the first occurrence of the variable, a
Java variable of the same name is generated and initialized with the attribute
value of the entity.

– If the pattern is a variable and this is not the first occurrence of the variable, an
if-statement that compares the attribute value of the entity and the variable
is generated. If they are not equal, the loop continues with the next entity.

• If the reactant pattern has a subsolution pattern, the pattern matching continues
in the subsolution in the same way.

• Finally, if a list of reactant patterns closes with a rest solution variable, it is handled
after all reactant patterns. Similar to other variables, either a variable definition
and initialization is generated (if the variable is used for the first time), or an
if-statement is generated that short-circuits the loop if the rest solution is not equal
to the value of the variable.

B.4. Functional simulation experiments

This section contains some technical details regarding the specification of simulation
experiments in the functional paradigm in Section 7.3.

B.4.1. Deterministic random number generation

The generation of (pseudo-)random numbers is a frequent textbook example of functional
programming, as it nicely illustrates the difference to imperative programming [48,
p. 78ff][169, p. 349ff] In imperative programming the state of the random number generator
(RNG) is stored in a global variable and implicitly mutated when a random number is
drawn. Therefore, the function to draw a random number is not deterministic and, thus,
not a pure function:

val nextInt: () => Int

nextInt() // 1449894854

nextInt() // -1718236964

As the RNG state is modified as a side effect of calling the method nextInt(), subsequent
calls produce different results.
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In contrast, drawing a random number in pure functional programming is a deterministic
function that explicitly takes the RNG state as an input and outputs the new RNG state
together with the drawn value.

val rng: RNG // created with some seed

val nextInt: RNG => (RNG, Int)

nextInt(rng) // (RNG(-7964744663189004623),-2014421327)

nextInt(rng) // (RNG(-7964744663189004623),-2014421327)

To draw several random numbers during a computation, the RNG must be explicitly
passed between function calls. This quickly becomes unwieldy.

val (r1, rng1) = nextInt(rng) // (RNG(-7964744663189004623),-2014421327)

val (r2, rng2) = nextInt(rng1) // (RNG( 4159066171780167020),-968034964)

To alleviate that, drawing random numbers can be moved into the State[S, A] monad with
the RNG as the state S. A value of the type State[S, A] essentially wraps a computation
of the type S => (S, A). Then, threading the state through the computation is handled by
the internal wiring of the state monad, and Scala’s for-comprehensions can be utilized to
succinctly implement functions that rely on a source of randomness.

val nextInt: State[RNG, Int] = State[RNG, Int](rng => nextInt(rng))

val nextTwoInts: State[RNG, (Int, Int)] = for {

r1 <- nextInt

r2 <- nextInt

} yield (r1, r2)

Scala implementations of the state monad and related functions are available in libraries
for pure functional programming such as cats1.

B.4.2. Simple experiments

Section 7.3.1 shows some code snippets for expressing a parameter scan with a fixed
number of replications per parametrization. These are the functions from these snippets
with complete type annotations:

def rndSeed: State[RNG, Seed]

def sim(params: Params, seed: Seed): Result

def replications(params: Params, n: Int): State[RNG, List[Result]] =

rndSeed.map(sim(params, _)).replicateA(n)

def scan(paramss: List[Params], n: Int): State[RNG, Map[Params, IO[List[Result]]]] =

paramss.traverse(p => replications(p, n).map(p -> _)).map(_.toMap)

1
https://typelevel.org/cats/
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B.4.3. Composing the state monad and the IO monad

To speed up the execution of experiments, we would like to be able to execute simulation
runs in parallel without compromising determinism. One way to parallelize computations
in functional programming is wrapping them in a monadic type constructor F[_]. Then a
value of type F[A] describes a computation that, when finished, produces a value of type
A. Several Scala libraries that provide such an effect monad, for example ZIO2 or Monix
Task3. Here, we use the IO monad from cats-effect4.

There are two ways of adding the IO monad to the state monad wrapped in our Experiment

type. The stateful action can return an IO value, or the state monad transformer can be
used.

State [RNG, IO[A]] // wraps RNG => (RNG, IO[A])

StateT[IO, RNG, A] // wraps RNG => IO[(RNG, A)]

The decisive difference between both types is that the first one is an applicative functor
(Applicative in cats), but not a monad, whereas the second one is a monad (the StateT

monad transformer applied to the IO monad).
To illustrate how State[RNG, IO[_]] supports parallelization, the following listing shows

the definition of the function ap in the Applicative instance for State[RNG, IO[_]].

def ap[A, B](ff: State[S, IO[A => B]])(fa: State[S, IO[A]]): State[S, IO[B]] =

for {

f <- ff

a <- fa

} yield Parallel.parAp(f)(a)

Given two State[RNG, IO[_]] values, we first sequentially produce the IO values f and a.
The IO values are evaluated in parallel and then combined by the library function parAp.
In our experiment setting, we can use this to sequentially generate seeds (which typically
is fast) for the simulation runs and then execute the runs in parallel (which typically
dominates the overall run time).

The functions replications and scan from above can be embedded into the applicative
functor as follows:

type App[T] = State[RNG, IO[T]]

val app: Applicative[App]

def replications(params: Params, n: Int): State[RNG, IO[List[Result]]] =

app.replicateA(n, rndSeed.map(s => IO.delay(sim(params, s))))

def scan(paramss: List[Params], n: Int): State[RNG, IO[Map[Params, List[Result]]]] =

app.map(paramss.traverse[App, (Params, List[Result])](p => app.map(replications(p, n))

(p -> _)))

2
https://zio.dev/

3
https://monix.io/api/3.0/monix/eval/Task.html

4
https://github.com/typelevel/cats-effect
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(_.toMap)

Note that the same combinators (replicateA, traverse) as above are used to express the
structure of the computation. However, we need to explicitly summon the Applicative

instance app and add some type annotations. Otherwise, Scala’s type inference prefers
the Applicative instance for State over our custom Applicative for State[RNG, IO[_]].

To chain computations, the monadic type StateT[IO, RNG, _] can be used. Here, the
wrapped function is of type RNG => IO[(RNG, _)] and produces an IO value that takes
ownership of the RNG until it is finished. Thus, it is not possible to execute multiple
StateT[IO, RNG, _] in parallel. To combine parallelization and chaining, a parallel batch
of runs can be defined as a State[RNG, IO[_]] and then used as subcomputation in a a
StateT[IO, RNG, _]. To do that, it must be converted from the applicative functorial type
to the monadic type, which can be done as follows:

def toStateT[S, A](sfa: State[S, IO[A]]): StateT[IO, S, A] =

StateT[IO, S, A] { s =>

val (s1, fa) = sfa.run(s).value

fa.map((s1, _))

}

Essentially, the random number generator S is used to start the inner computation and
then lifted into it after it finishes.

Using this conversion, dynamic replication conditions can be implemented for the
monadic type StateT[IO, RNG, _] by using the library function iterateUntilM. Starting with
an empty list, batches are executed and concatenated until the replication condition is
true when evaluated on the list of results so far:

def replicationsUntil[A](batch: StateT[IO, RNG, List[A]],

replCond: List[A] => Boolean)

: StateT[IO, RNG, List[A]] =

List.empty[A].iterateUntilM(results => batch.map(_ ++ results))(replCond)

Composing these functions yields the implementation of the statistical model-checking
experiment shown in Section 7.3.5. In the listing below we omitted some of the hypothesis
testing code, which evaluates some mathematical expressions based on the statistical
parameters p, alpha, beta, and delta.

def sequentialProbabilityRatioTest(prop: Result => Boolean,

batch: State[RNG, IO[List[Result]]],

p: Double,

alpha: Double,

beta: Double,

delta: Double

): StateT[RNG, IO, Boolean] = {

def result(completed: List[Boolean]): Option[Boolean] = /* omitted */
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def enoughRuns(completed: List[Boolean]): Boolean =

result(completed).isDefined

val checkedBatch: StateT[IO, RNG, List[Boolean]] = toStateT(batch).map(_.map(prop))

replicationsUntil(checkedBatch, enoughRuns).map(result(_).get)

}

The function result returns the result of the hypothesis test on the simulation runs
completed so far. Three results are possible: None, when more runs are needed, or
Some(true) or Some(false) when the property is satisfied or not satisfied, respectively. Based
on result, enoughRuns determines if more runs are needed and is used as replication condition
in the last line. Before that, checkedBatch represents a batch of runs on which the property
prop has been evaluated to true or false. Such batches are executed until enoughRuns returns
true, and the overall result is returned.
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