
Reusing Simulation Experiments for
Model Composition and Extension

Dissertation
zur

Erlangung des akademischen Grades
Doktor-Ingenieur (Dr.-Ing.)

der Fakultät für Informatik und Elektrotechnik
der Universität Rostock

vorgelegt von

Danhua Peng, geb. am 26. 05. 1988 in Hengyang, China

aus Rostock

Rostock, 06. 01. 2017

zef007
Schreibmaschinentext
urn:nbn:de:gbv:28-diss2017-0028-8

Principal Advisor:
Prof. Dr. Adelinde M. Uhrmacher,
Institut für Informatik, Universität Rostock

External Reviewers:
1. Prof. Dr. Jane Hillston,
School of Informatics, University of Edinburgh

2. Prof. Dr. François Fages,
INRIA Saclay Île-de-France Research Center

Date of Submission: January 06, 2017
Date of Defense: February 20, 2017

Abstract

As the number of available models as well as their complexity grows, model reuse
becomes increasingly interesting. However, building new models based on reusing
existing ones poses several challenges, and among others, checking validity of the
newly built model and the model reuse is of paramount importance. The modeling
process is typically accompanied by executing simulation experiments, e.g., for model
validation. Therefore, this thesis aims to employ simulation experiments to support
developing models via model reuse, with a focus on validating the resulting model.

The essential idea presented by this thesis is to reuse simulation experiments
conducted for model validation. Individual models are annotated with their simulation
experiments that have been performed for validating the model. Upon reuse of those
models for building new ones, the associated simulation experiments are also reused
and executed with the new model, to inspect whether the key behavior exhibited
by the original models is preserved or not in the new model. Hence, the changes
of model behavior resulting from the model reuse are revealed, and insights into
validity of the new model are provided.

As a prerequisite, an explicit, declarative experiment specification containing
four aspects is proposed, i.e., model configuration, simulation configuration, data
processing method, and model behavioral property. The embedded domain specific
language SESSL is exploited and extended for specifying experiments. The tool
TAECS is developed to automatically adapt and execute experiments as well as
analyzing the results. To allow an automated evaluation of experiment results,
simulation-based model checking techniques are adopted and integrated.

Two types of model reuse are considered, i.e., model composition and model
extension. Reusing simulation experiments in supporting model development via
composition and extension are investigated individually. The effectiveness of the
developed approach for model composition is demonstrated by two case studies, a
case study of Lotka-Volterra models and a case study based on replaying a realistic
simulation study of Wnt/β-catenin pathway. Moreover, to illustrate the benefits of
the developed approach for model extension, a case study of receptor ligand pathway
is presented.

Zusammenfassung

Mit der zunehmenden Anzahl und Komplexität verfügbarer Modelle wird die
Wiederverwendung von Modellen immer interessanter. Das Erstellen neuer Modelle
durch die Wiederverwendung bereits vorhandener beinhaltet jedoch mehrere Heraus-
forderungen, wobei unter anderem die Validitätsprüfung des neuen Modells sowie die
Modellwiederverwendung von größter Bedeutung sind. Der Modellierungsprozess geht
typischerweise mit Simulationsexperimenten einher, wie etwa zur Modellvalidierung.
Daher beschäftigt sich diese Arbeit mit der Verwendung von Simulationsexperimenten
zur Unterstützung der Modellentwicklung durch Wiederverwendung von Modellen.
Der Fokus dieser Arbeit liegt dabei auf der Validierung der entwickelten Modelle.

Die grundlegende Idee dieser Arbeit ist, Validierungsexperimente wiederzuver-
wenden. Einzelne Modelle sind mit den Simulationsexperimenten annotiert, mit
denen sie validiert wurden. Werden diese Modelle wiederverwendet, werden die
entsprechenden Simulationsexperimente ebenfalls wiederverwendet und auf das neue
Modell angewandt, um festzustellen, ob das zentrale Verhalten der Ausgangsmodelle
in dem neuen Modell erhalten geblieben ist. Somit wird geprüft, ob durch die
Wiederverwendung des Modells Änderungen im Modellverhalten hervorgerufen
wurden, und Erkenntnisse über die Validität des neuen Modells werden ermöglicht.

Als Ausgangspunkt wird eine explizite, deklarative Experimentspezifikation einge-
führt, welche die vier Teilaspekte Modelkonfiguration, Simulationskonfiguration,
Datenverarbeitungsmethode und Modellverhalten enthält. Um Experimente zu spezi-
fizieren, wird die interne domänenspezifische Sprache SESSL verwendet und erweitert.
Das Werkzeug TAECS wurde entwickelt, um automatisch Experimente zu adaptieren
und auszuführen sowie deren Ergebnisse zu analysieren. Um eine automatische
Auswertung von Experimentergebnissen zu ermöglichen, werden simulationsbasierte
Model-Checking Verfahren genutzt und integriert.

Zwei Arten der Modellwiederverwendung werden betrachtet, Modellkomposition
und Modellerweiterung. Die Wiederverwendung von Simulationsexperimenten als
Unterstützung zur Modellentwicklung wird für beide Fälle im einzelnen untersucht.
Die Effektivität des entwickelten Ansatzes zur Modellkomposition wird an zwei
Fallstudien veranschaulicht: eine Fallstudie von Lotka-Volterra Modellen und eine
Fallstudie basierend auf der Wiederholung einer realistischen Simulationsstudie von
Wnt/β-Catenin Signalwegen. Um die Vorteile des entwickelten Ansatzes zur Mo-
dellerweiterung aufzuzeigen, wird eine Fallstudie von Rezeptor-Ligand-Signalwegen
vorgestellt.

Acknowledgements

Yet another journey is coming to the end, which began four years ago when I firstly
arrived in Rostock without knowing anyone in this foreign city. During the last
four years, many people have supported me. I offer my deepest gratitude to my
supervisor Professor Lin Uhrmacher, for giving me the opportunity to do my PhD in
modeling and simulation group at University of Rostock in the first place, and then
guiding and supporting me throughout this journey with her knowledge, patience
and encouragement. I would thank Professor François Fages and Professor Jane
Hillston, who agreed to be the reviewer of this thesis shortly before the submission,
especially given that the schedule for reviewing is rather tight.

I would further thank all my current and former colleagues of the modeling and
simulation group for the creative and friendly atmosphere, and it was great pleasure
to work with you. I thank Roland Ewald, from who I can always learn so much, for
helping me in dealing with SESSL and giving valuable advice in building the first
prototype of this work. I also thank Tom Warnke, for implementing all algorithms
for checking properties in this thesis, helping me with model checking problems,
providing helpful suggestions in our discussions, and also translating the abstract of
this thesis into German. I am thankful to Fiete Haack, who provided assistance in
the modeling part for the last two case studies of this work, and answered my all
kinds of questions regarding the models with great patience. Special thanks go to
Tobias Helms for always being there to help me out and for being not only a great
colleague but also a good friend. I would also like to thank Jan Himmelspach, who
helped me to come to Germany for my PhD study.

I am grateful to all my wonderful friends, those I met in Rostock who made my
staying here full of joy, and those in China who are always there for me no matter
where I am. Also, I would like to acknowledge the China Scholarship Council for the
financial support during the four years.

Last but not least, I deeply thank my family for all the support and understanding
over those years.

Contents

1. Introduction 1
1.1. Context and Background . 1
1.2. Motivation and Problem Statement 4
1.3. Contributions . 6
1.4. Terminology . 9
1.5. Thesis Structure . 10
1.6. Bibliographic Note . 11

2. Simulation Experiments and Their Representation 13
2.1. An Overview on Simulation Experiments 14

2.1.1. Simulation Experiment Categorization 14
2.1.2. Conducting Simulation Experiments 19
2.1.3. Structuring a Simulation Experiment 21
2.1.4. Methods to Support Experimentation 22

2.2. Simulation Experiments as First Class Objects 24
2.3. The Specification of Simulation Experiments 26

2.3.1. Separating Representations of the Experiment and the Model 26
2.3.2. Experiment Specifications for Experimentation Support 27
2.3.3. Guidelines for Representing Simulation Experiments 28
2.3.4. Languages for Experiment Specification 29

2.4. Summary . 33

3. Exploiting Simulation Experiments for Developing Models via
Reuse 35
3.1. Simulation Experiments in Model Development 36

3.1.1. Model Calibration and Validation 36
3.1.2. Model Validation via Simulation Experiments 37

3.2. Simulation Experiments and Model Reuse 39

IX

Contents

3.3. Related Work . 43
3.3.1. Reusing Simulation Experiments 43
3.3.2. Regression Testing in Software Development 44

3.4. Requirement Analysis . 45
3.4.1. Structuring Simulation Experiments for Model Validation . . . 45
3.4.2. Specifying Simulation Experiments with Stochastic Models . . 47
3.4.3. Specifying Expected Behavioral Properties of Models 48
3.4.4. Specifying Data Processing Method 54

3.5. Proposed Approach . 55
3.5.1. Overall Concept . 55
3.5.2. Experiment Specification in SESSL 56
3.5.3. Experiment Adaptation, Generation and Execution 59
3.5.4. Result Analysis . 64
3.5.5. General Architecture . 66

3.6. Summary . 68

4. Model Composition Based on Reusing Simulation Experiments 71
4.1. Introduction on Model Composition 71

4.1.1. Composition and Composability 72
4.1.2. Existing Work to Support Model Composition 73

4.2. A Life Cycle of Developing Composed Models 74
4.3. Reusing Simulation Experiment for Model Composition 81

4.3.1. Overview . 81
4.3.2. Experiment Adaptation and Generation 82

4.4. Case Study I: the Lotka-Volterra Model 86
4.4.1. Background . 86
4.4.2. Ingredients . 87
4.4.3. The basic Lotka-Volterra Model 89
4.4.4. Composing Lotka-Volterra Models 96
4.4.5. Reusing Simulation Experiments of Model Components 98

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway 101
4.5.1. Background . 101
4.5.2. Ingredients . 102
4.5.3. Developing the Wnt/β-catenin Model 105

4.6. Summary . 118

5. Model Extension Based on Reusing Simulation Experiments 121
5.1. Model Reuse for Extension . 121

X

Contents

5.2. Reusing Simulation Experiments for Model Extension 123
5.3. Case Study III: Modeling the Receptor Ligand Pathway 125

5.3.1. Background . 126
5.3.2. Ingredients . 127
5.3.3. The Basic Model — Ternary-Complex Formation (M0) 128
5.3.4. Model Extension — Endocytosis (ME1) 131
5.3.5. Reusing Simulation Experiments of the Ternary-Complex Model133
5.3.6. Model Documentation . 135
5.3.7. Further Model extension — Recycling (ME2) 137

5.4. Summary . 140

6. Conclusions and Outlook 143
6.1. Summary . 143
6.2. Limitations and Future Work . 148

A. An Example of Composing Lotka-Volterra models Based on the
SBML formalism 151

Bibliography 159

XI

Chapter 1

Introduction

1.1. Context and Background

Model Development is an Intricate Process

Modeling and simulation (M&S), as a tool and a discipline, has been widely used
for system analysis and decision making in many areas such as science, engineering
and military. When experimentation on the system itself is not feasible for different
reasons, e.g., it is costly, dangerous, time-consuming or the system is not available
[30, p. 10], building a model and performing simulation experiments with it can
provide knowledge about the system being modeled and answer “what-if” questions.
Whether it is viewed as a science or as an art [216], modeling is the most difficult
and important part of a simulation study [151].

Model development is an intricate process in which the modeler needs an intimate
relationship to the system and phenomena to be modeled, as abstraction and selective
enrichment of models are key issues [224]. Undoubtedly, it requires great effort to
obtain a satisfactory model. The situation is aggravated in developing models for
large complex systems, such as the modeling of brain and climate, which is believed to
pose grand challenges [240]. Therefore, a suitable support for the model development
process is required to reduce the cost, accelerate the process, and enhance the quality.

The modeling and simulation community has demonstrated a longstanding focus
on providing support for the modeling task. A large body of work has been devoted to
advancing the development of models from different aspects. To facilitate describing
diverse complex properties of the system to be modeled, numerous sophisticated
modeling formalisms have been introduced. For example, in the field of systems
biology, various types of modeling languages have been proposed to meet different
requirements for representing biological systems, such as equation-based formalisms,

1

1. Introduction

rule-based formalisms and constrain-based formalisms [145, 146]. Meanwhile, to
accelerate the execution of models, a lot of work exists on how to improve the per-
formance of simulation execution, e.g., efficient simulation algorithms. Furthermore,
as no simulation algorithm presents the best performance in all situations, some
mechanisms are developed for automatic algorithm selection, e.g., [68]. With the
improved data availability, some approaches have been proposed for automated/semi-
automated model generation from existing data, such as defining generic models or
model templates [143, 258].

As the process of building models is highly complex, a plenty of effort has been
dedicated to structure it into different phases, i.e., the modeling and simulation
life cycle. Different modeling and simulation life cycles exist, depending on the
focus of study and the application, e.g., those presented by Sargent [214] and by
Balci [9]. For each identified phase in those life cycles, e.g., verification and validation
of simulation models, a plethora of approaches have been developed. Furthermore,
some effort has been dedicated to the management of the modeling process, such as
integrating workflow systems into this process to provide user guidance and increase
reproducibility, e.g., in [206].

While all those existing approaches have achieved progress from different aspects
in supporting the modeling process, model development remains an intricate process
with many challenges.

Developing Models via Reuse

On the one hand, developing models is non-trivial, which may require a great
deal of time, cost, and effort [199]; on the other hand, more and more models are
developed and become available. Consequently, building new models by reusing
already developed ones comes into play, i.e., model reuse, which represents an
appealing intuition of reducing the required time and cost in modeling [147, 175].

Model reuse has attracted a large amount of discussions, to name but a few, as
presented in [15, 175, 178, 181, 190]. The primary benefits expected from model reuse
include the improvement in model development(i.e., reduced developing time and
cost), higher quality and more cost effective simulation studies [106], and flexibility
of creating reusable objects at different granular levels [201].

Model reuse can refer to different levels, from the reuse of small pieces of code,
through the reuse of model components, up to the reuse of complete models [201]. As
more and more complete models are developed, their reuse becomes more of interest.
Complete models can be reused without modification, for the same purpose or in
a different environment [201]. Besides, a particularly interesting usage of reusing

2

1.1. Context and Background

complete models is to build new models, either by composing them with other models,
i.e., model composition, or by extending them, i.e., model extension. For example, to
understand the complex phenotypes resulting from individual molecules and their
interactions in computational biology, a “whole-cell” model was built by integrating
28 independently developed sub-models, based on over 900 publications [105]. In
this case, several complete models were reused to build a large, comprehensive model
via model composition so that the enormous complexity of modeling a single cell is
divided and becomes manageable. In the analysis of rarefied gas flows, successive
model extensions have been applied in the modeling of gas-surface interaction, i.e.,
the essential Cercignani-Lampis gas-surface scattering model (the C-L model) [31]
was extended to include important uncovered cases in [138], the resulting model of
which was further extended in [139] to allow capturing more phenomena.

Simulation Experiments in Model Development

Once a satisfactory model is built, simulation experiments are undertaken to fulfill
the goals that the model is built for, e.g., to gain understanding of the system
being modeled and to provide results of different scenarios for decision making [213].
However, the role simulation experiments can play is more than that; they are also an
important part of the development of a satisfactory model. Independently whether
the model is developed from scratch or it is developed based on reusing existing
models, simulation experiments can play a key role in the model development process.

For example, during the construction of a model, in order to achieve high accuracy
or fidelity of the model, model parameters are adjusted or tuned so that the model
outputs are in satisfactory agreement to the reference system/model, i.e., parameter
calibration [81, 102, 250, 263]. In this case, simulation experiments can be employed
to generate model outputs for comparison.

Besides, in model validation, a crucial part of the model development process,
simulation experiments are of great importance as well. To determine whether
the model’s output behavior has satisfactory accuracy for the intended purpose,
simulation experiments can be performed with the model to generate output data
for investigation and comparison. Thereby, modelers can gain important insights
into the model behavior, and decide whether a valid model is obtained or further
revision of this model is required. This process is also known as experimental model
validation [132].

Thus, whether it is for model construction or for model validation, simulation
experiments become a key tool for building models, and model development presents

3

1. Introduction

itself as a process in which a model’s successive refinement is interwoven with the
execution of simulation experiments [208].

1.2. Motivation and Problem Statement

Despite the fact that model reuse has received a large amount of attention in modeling
and simulation area and a plethora of efforts have been devoted to this endeavor,
developing models via reusing existing ones is still difficult in practice and far from
being well-established.

Although sharing some similarities with software reuse, model reuse may pose
more difficulties for several reasons [175]. For example, Page and Opper [177] explored
the computational complexity of reusing models for composition, concluding that
some complexity can be introduced, such as in identifying and selecting suitable
models. Due to financial reasons or the lack of contractual incentives, the motivation
for the project manager to develop reusable models could be inhibited [201]. Besides,
the traditional view of keeping the model as simple as possible while meeting the
study objectives might also limit model reuse, e.g., due to a possible contradiction
in identifying the level of abstraction for the two purposes [175, 201]. In addition,
modeling is a process of abstraction and each model is built with specific objectives,
assumptions, and constraints. Different users have different needs even when modeling
the same system, which leads to different objectives, assumptions, and constraints.
However, often this information is difficult to capture and not presented explicitly.
Therefore, locating potential reusable models and recognizing incompatibilities in
objectives, assumptions, and constraints become challenging. More importantly, a
key issue in model reuse, and a prominent challenge as well, lies in the question of
model validity, which needs to be considered as a fundamental part of any reuse
strategy [190]. As mentioned earlier, models are developed with specific objectives
under certain contexts, and are validated regarding those objectives and contexts.
Therefore, it is well understood that due to the abstraction nature of models, no
model is generally and fully valid [30, p. 5]. Consequently, when a model is reused,
either for a different purpose without any modification, or for developing new models
through composition or extension to meet new objectives, it is crucial to assess the
model validity for the new use [190] and all valid reuse must take the objectives of
reused models into account [175]. However, validation of model reuse is a non-trivial
task [181]. Reusing valid models does not necessarily form a valid resulting model.
The difference between the model context and objective of the reused models and that
of the resulting model typically leads to changes in model behavior. Detecting those

4

1.2. Motivation and Problem Statement

changes and analyzing whether they are as intended, are of significant importance in
order to validate the model reuse as well as the resulting model.

A great amount of work has been devoted to model reuse from different aspects, e.g.,
model storage, discovery and selection [56, 191, 235], reuse of generic models [74, 147],
and reuse based on conceptual models [10, 19]. Some requirements in facilitating
model reuse have been identified by Overstreet et al. [175]: “(1) understanding
what information is needed to support reuse and how it should be represented;
(2) developing mechanisms, automated and manual, to collect and record this
information; (3) understanding how to design for reuse; (4) developing analysis
and search tools to locate appropriate exiting components; (5) developing the ability
to determine when model reuse is desirable ”. Among all of these requirements,
identifying the necessary information for reuse and determining its representation is
an essential and also fundamental one.

In existing work for model reuse, the identified information to support reuse
mainly focuses on the information about the model. In those approaches, typically
the general information of the model is presented, which includes model attributes
and behavior, such as model inputs/outputs or reaction rules. Examples include
approaches based on DEVS (Discrete Event System Specification) [270] such as [272],
approaches based on BOM (Base Object Model) [86] such as [166], approaches based
on SBML (Systems Biology Markup Language) [103] such as [229], and the approach
CODES (COmposable Discrete-Event scalable Simulation) [242]. In those approaches
that are based on a specific formalism/standard, i.e., DEVS, BOM, or SBML, the
model information is represented using the respective formalism/standard, while in
the approach CODES, the language COML (COmponent Markup Language) is used.
Furthermore, in order to facilitate that models can be reused meaningfully, semantic
information about the model is increasingly associated. Ontologies are often used to
provide a common understanding, e.g., the ontologies proposed in the BOM-based
approach [167], the SBO (Systems Biology Ontology) in the SBML-based approach
[45], and the COSMO ontology in CODES [242].

As discussed in Section 1.1, model development typically involves the execution of
simulation experiments, and simulation experiments can be a useful tool for developing
a valid model. While most of existing work for supporting model reuse concentrates
on the information of the model, the information of simulation experiments is often
overlooked. A model is a simplification of the real system for specific objectives
and context, which have to be taken into account during the model development,
especially in model validation. While the objectives and context are not directly
accessible from the model definition itself, they can be reflected by simulation

5

1. Introduction

experiments of the model. As pointed out by Cellier “a model is always related to
the tuple system and experiment” [30, p. 5], model validity must be evaluated with
the experiment considered, rather than the system alone; the model can be valid for
one experiment and invalid for another. The importance of experiments to models
has been widely recognized, and one prominent theory is the experimental frame
proposed by Zeigler [270], which is “a specification of the conditions under which
the system is observed or experimented with”. In recent years, annotating models
with their simulation information has received some attention, such as [171]. This
thesis will take a closer look at the role of simulation experiments in the model
development process, and investigate how the information of simulation experiments
can be exploited to support developing models based on reusing existing ones.

Although model reuse has a wide spectrum and can have different forms [165],
in the modeling and simulation area, most work goes into model composition or
component-based modeling, where models are reused to compose with other models
in order to build larger models. However, little attention has been paid to another
form of model reuse — model extension, where a previously validated model is
extended to build a new one. Such extension may arise through the availability of
further data and knowledge about the system under study, or through the increased
understanding on the system from the part of modelers. In addition, to cope with
the complexity of the model to be developed, modelers can start with building a
simple, small model and extend it step by step. Similar to model composition, model
reuse for extension can also help to reduce the modeling time and cost and improve
the model quality, and therefore should be addressed as well.

1.3. Contributions

This work aims to support model development via model reuse, including model
composition and model extension. The first key question to answer is what informa-
tion is needed to support model reuse. While most of the current work focuses on
information about the model, this work underlines the importance of information
about simulation experiments conducted with the model.

To employ simulation experiments for developing models, firstly one needs to
identify where simulation experiments can occur in the modeling process and what
kind of roles they can play. Thereby, this work starts with a general introduction
of simulation experiments with relevant aspects outlined, and explores the role of
simulation experiments in the model development process. Based on the literature,
different types of simulation experiments are discussed, such as experiments for model

6

1.3. Contributions

calibration, experiments for sensitivity analysis, and experiments for optimization.
Effective model reuse requires information of the context and objectives the reused
model is built for. Simulation experiments conducted for model validation can reflect
the model context as well as the desired model behavior, and therefore are of interest.
When models are reused to develop new ones, the new model may possess new
context and objective. However, in order for the model reuse to be meaningful, the
new context and objective should be relevant to that of the reused model. Thereby,
it is interesting to know what is the impact of model reuse on the model behavior
and whether some key behavior exhibited by the original model is still preserved
in the new model. Thus, simulation experiments conducted with the reused model
can be exploited to perform experiments with the newly built model, to provide
insights into the behavior of the new model and further into validity of the model
reuse. Therefore, this thesis particularly focuses on simulation experiments for model
validation.

Furthermore, the question of how to represent simulation experiments is covered,
with a brief discussion of several existing approaches for specifying simulation
experiments. An explicit, unambiguous specification of simulation experiments
that is separated from model definition is a prerequisite for their reuse. Based on a
comparison of different approaches, the domain specific language SESSL (Simulation
Experiment Specification via a Scala Layer) [67] is selected and extended for the
experiment representation. Thereby, models are annotated with the specifications
of their simulation experiments, and when the models are reused, those experiment
specifications can be reused as well.

Next question to answer in this work is how to use the identified information,
i.e., simulation experiments, to support model reuse. Model validation via simu-
lation experiments essentially inspects the simulation results to examine whether
the model output behavior satisfies certain requirements. Inspired by regression
testing from software development area, this work proposes to explicitly express
the desired requirements on simulation results into properties as an integral part
of experiment specifications. Thereby, when the experiment specification is reused
for experimentation with the resulting model, experiment results can be checked
against those properties to illuminate whether the model behavior satisfies desired
requirements or not and whether this is as expected.

With an explicit specification of desired behavioral properties as a prerequisite, a
mechanism is developed to facilitate an automated analysis of experiment results
and simulation-based model checking techniques are adopted, where the expected
model behavioral properties are explicitly expressed and simulation trajectories are

7

1. Introduction

automatically checked using algorithms. According to the type of models and their
simulation methods (e.g., deterministic or stochastic), different techniques can be
integrated. For instance, statistic model checking techniques [128] can be employed
for experiments with stochastic models, with probabilistic statements expressed in
CSL (Continuous Stochastic Logic) [223], and properties of individual trajectories
described in LTL (Linear Temporal Logic) [36] or MITL (Metric Interval Temporal
Logic) [3]. To support the specification of behavioral properties and their checking,
SESSL is extended in this work.

Based on SESSL experiment specifications of individual models, a mechanism
is developed to automatically reuse, adapt, and execute those experiments with
the newly developed model, and analyze simulation results. As a prototypical
implementation of the approaches proposed in this work, TAECS (a Tool for
Adaptation, Execution and Checking of Simulation experiments) is developed.

To apply the proposed approaches in facilitating model development, two types of
model reuse are studied, i.e., model composition and model extension. While model
composition is the focus of a substantial amount of existing work, the other type of
model reuse, i.e., model extension, has received little attention. Thus, to underline
the benefits of developing model through extending existing ones is also one goal of
this thesis.

The main contributions of this thesis can be summarized as follows:

• exploring the role simulation experiments can play in the modeling process;

• proposing to exploit simulation experiments to support model development via
model reuse, with a focus on simulation experiments for model validation;

• suggesting an unambiguous, declarative specification of simulation experiments
as information representation, and proposing to explicitly describe the expected
model behavioral properties as an integral part of experiment specification,
together with the experiment condition to generate this behavior;

• extending the embedded domain specific language SESSL to specify simulation
experiments with four aspects: model configuration, simulation configuration,
data processing method, and expected model behavioral properties;

• developing a mechanism to automatically perform simulation experiments with
the resulting model from model reuse, by reusing experiments of individual
models;

8

1.4. Terminology

• proposing a mechanism to automatically analyze experiment results against
specified behavioral properties, with simulation-based model checking tech-
niques integrated;

• establishing the conceptual architecture of proposed approaches and developing
the tool TAECS as a prototypical implementation;

• investigating reusing simulation experiments to support two types of model
reuse, i.e., model composition and model extension, and highlighting model
reuse for extension;

• conducting three case studies for demonstration, one with the small Lotka-
Volterra model, one based on a realistic simulation study of modeling the
Wnt/β-catenin pathway, and one concerned with the receptor ligand pathway.

1.4. Terminology

In the area of modeling and simulation, there is no widely accepted, unified terminol-
ogy; common terms are often used differently and the same or similar concepts are
defined with different terms. In the following, some basic terms are defined for the
usage of this thesis, and other relevant concepts will be explained when they first
occur.

The focus of this thesis is on model development; therefore, the first key term
is model. In [12, p. 13], a model is defined as “a representation of a system for the
purpose of studying the system”. Furthermore, the author states that a model, on
the one hand, is a simplification of the system to represent only these aspects of the
system that affect the problem under investigation, and on the other hand, should
be sufficiently detailed to draw valid conclusions about the system [12, p. 13]. This
definition emphasizes the abstraction nature of models and that models are developed
with specific objectives and assumptions. Another definition is given in [30, p. 5]
(attributed to [163]) that “a model (M) for a system (S) and an experiment (E) is
anything to which E can be applied in order to answer questions about S”. Besides,
Cellier pointed out that a model is always related to the system and experiment and
addressed that model validity has to take the system and especially the experiment
into account [30, p. 5]. Therefore, as summarized by Leye in [131, p. 3], a model
should possess three key properties, i.e., the model represents a specific system (the
reference property), the model is built for some purpose under certain context that
can be reflected by experiments (the purpose property), and the model only considers
selected aspects of the system for that purpose (the abstraction property).

9

1. Introduction

In addition, models can be categorized into different types, i.e., mathematical
model or physical model [124, pp. 4-5], [12, p. 13], [30, p. 5]. The mathematical
model is defined as “representing a system in terms of logical and quantitative
relationships that are then manipulated and changed to see how the model reacts, and
thus how the system would react if the mathematical model is a valid one” [124, p.
5]. Mathematical models can be studied in different ways, i.e., analytic solution,
if applicable and computationally efficient, or simulation [124, p. 5]. This work is
dedicated to the development of mathematical models that are studied by simulation,
termed as simulation models in [124, p. 5], and henceforth referred to as models in
this thesis.

The second key term in the topic of this thesis is simulation experiment, which
comprises two basic terms simulation and experiment. In [30, pp. 4-6], definitions
are given that “a simulation is an experiment performed on a model” (attributed to
[119]) and “an experiment is the process of extracting data from a system by exerting
it through its inputs”. In [25, p. 2], simulation is characterized as the process of
“driving the model with certain [...] inputs and observing the corresponding outputs”.
In this work, experimentation with the model is referred to as simulation experiments,
which will be used interchangeably with the term experiment, unless otherwise stated.
In addition to being regarded as an experiment on a given model, one common use
of the term simulation is that, as defined in [189], “a simulation is an execution of a
model”, which will be termed as simulation run or simulation execution in this thesis.
Another use of the term simulation is related to simulation study, which refers to
the activities that build a model of a system and conduct experiments on the model
to gain information of the system or improve it. Thereby, in a simulation study,
multiple simulation experiments may be performed, in each of which it may need
one or more simulation runs.

1.5. Thesis Structure

The outline of this thesis is as follows. Chapter 2 presents a general introduction
of simulation experiments, introduces the reproducibility and reuse of simulation
experiments, and discusses the representation of simulation experiments to facilitate
their reuse. Chapter 3 investigates the role simulation experiments can play in
supporting model reuse with the focus laid on experiments for model validation,
and presents the proposed approach with the general concept described. Chapter 4
discusses model reuse for composition and applies the proposed approach to support
model composition, with two case studies presented, the one of Lotka-Volterra

10

1.6. Bibliographic Note

models and the one of Wnt/β-catenin pathway. Chapter 5 addresses model reuse for
extension and illustrates the use of the proposed approach to support developing
model via extension, with a case study of receptor ligand pathway presented. Chapter
6 concludes this thesis with a summary and a brief discussion of future work.

1.6. Bibliographic Note

The discussion of existing approaches for specifying simulation experiments (Section
2.3), and the discussion of existing work for specifying model behavioral properties
(Section 3.4.3), are based on the following publication, which discusses languages for
simulation experiment specification.

J. Schützel, D. Peng, A. M. Uhrmacher, and L. F. Perrone. Perspectives on
Languages for Specifying Simulation Experiments. In Proceedings of the 2014
Winter Simulation Conference, WSC ’14, pages 2836–2847, Piscataway, NJ,
USA, 2014. IEEE Press.

The discussion of specifying simulation experiments with stochastic models in Section
3.4.2 is based on the following publication.

D. Peng, T. Warnke, and A. M. Uhrmacher. Domain-specific languages
for flexibly experimenting with stochastic models. Simulation Notes Europe,
25(2):17–22, 2015.

The requirement analysis that identifies the four aspects for simulation experiment
specifications (Section 3.4), the overall architecture of the proposed approach and
the prototypical tool TAECS (Section 3.5.5), have been presented in the following
publication. Moreover, the idea of using the proposed approach to support model
extension (Chapter 5) as well as the case study of modeling the receptor ligand
pathway (Section 5.3) were also published in this paper. In the case study, the
modeling work was performed by Fiete Haack, and Tom Warnke realized the
implementation for mitl[a,b] checking algorithm, the LOESS smoothing method,
and the method for replication calculation in stochastic model checking.

D. Peng, T. Warnke, F. Haack, and A. M. Uhrmacher. Reusing simulation
experiment specifications to support developing models by successive extension.
Simulation Modelling Practice and Theory, 68:33–53, 2016.

11

1. Introduction

Reusing simulation experiments to support model composition (Chapter 4) was
firstly presented in the following publication, in which the first implementation of
the proposed approach was realized on top of JAMES II as a proof of concept. The
case study of composing Lotka-Volterra models (Section 4.4) was also described in
this paper.

D. Peng, R. Ewald, and A. M. Uhrmacher. Towards Semantic Model Com-
position via Experiments. In Proceedings of the 2Nd ACM SIGSIM/PADS
Conference on Principles of Advanced Discrete Simulation, pages 151–162, New
York, NY, USA, 2014. ACM.

The challenges for composing ML-Rules models and possible methods (Chapter 4)
were presented in the following publication.

D. Peng, A. Steiniger, T. Helms, and A. M. Uhrmacher. Towards Composing
ML-Rules Models. In Proceedings of the 2013 Winter Simulation Conference,
WSC ’13, pages 4010-4011, Washington, D. C., USA, 2013.

Applying the proposed approach to the case study of modeling Wnt/β-catenin
pathway (Section 4.5) is presented in a paper, which has been submitted to a journal.
The simulation study presented in this case study was performed by Fiete Haack,
in [87, 89], where the two composed models of Wnt/β-catenin pathway had already
been developed. In this paper, the model development process was replayed using
the proposed approach and the developed tool TAECS.

D. Peng, T. Warnke, F. Haack, and A. M. Uhrmacher. Reusing simulation
experiment specifications in developing models by successive Composition.
Submitted to the journal SIMULATION in July, 2016, and currently under
second review.

12

Chapter 2

Simulation Experiments and Their
Representation

With the advance in computer technology such as increased computational power
and the wide use of modeling and simulation in different fields, performing simulation
experiments for system analysis and decision making has become prevalent. A great
many efforts have been devoted to supporting performing simulation experiments,
such as experimental design and the development of efficient simulation algorithms.

In order to exploit simulation experiments for developing models, first of all,
one has to identify the stages in the model development process where simulation
experiments can play a role, and identify what kind of role they play. Further, the
important aspects in conducting simulation experiments need to be identified so
that this information can be represented and then used. Therefore, this chapter
starts with an overview of simulation experiments, where the most relevant topics
are discussed. As simulation experiments are increasingly receiving attention in the
M&S community, a brief introduction is given on current efforts toward putting
simulation experiments into a more prominent level in modeling and simulation.
Finally, the representation of simulation experiments is discussed and the importance
of an explicit, declarative specification of simulation experiments is underlined, which
lays the foundation for the following chapter.

Section 2.1 describes the basic aspects of simulation experiments based on the
literature, including the categorization of simulation experiments in Section 2.1.1, the
issues that need to be considered for conducting a simulation experiment in Section
2.1.2, the structure of simulation experiments in Section 2.1.3, and the methods
to support experimentation in Section 2.1.4. Furthermore, Section 2.2 discusses
the idea of treating simulation experiments as first class objects, with the focus on

13

2. Simulation Experiments and Their Representation

reproducible and reusable simulation experiments. Lastly, Section 2.3 is dedicated
to the specification of simulation experiments.

2.1. An Overview on Simulation Experiments

2.1.1. Simulation Experiment Categorization

As described in Section 1.4, a simulation experiment is the process of extracting
data from a model by exerting it through its inputs. Different types of simulation
experiments exist, depending on how to exert the model and what kind of data are
extracted. The categorization of simulation experiments can be investigated from
several perspectives.

One viewpoint to categorize simulation experiments is based on the object
of the experiment. Even though simulation experiments are always performed
through executing the models, the object of performing experiments can be different:
experimentation with the focus on studying models (hereafter termed as experiments
with models) or experimentation with the focus on evaluating simulation algorithms
(hereafter termed as experiments with simulation algorithms). On the one hand,
simulation experiments can be performed to study the model and further to study
the system (an existing one or to be designed), such as understanding the behavior of
the model (system). This type of simulation experiments focuses on the model, and
usually one single model is under investigation at one time to inspect the input and
output relation of the model. On the other hand, simulation experiments can also be
exploited for performance analysis, where simulation algorithms (implementations)
are evaluated, e.g., the execution speed of the simulation algorithm, the memory
consumption and the accuracy of the results [66]. Benchmark models are often used
for running the experiment, and multiple models or model setups may be necessary
to analyze the overall performance of a simulation algorithm [66, 80].

For the simulation experiment with models, further distinction can be made
based on the stage when the simulation experiment is undertaken in the modeling
and simulation process. To illustrate the roles of simulation experiments, the life
cycle of modeling and simulation is employed. Figure 2.1 presents a simplified life
cycle of a simulation study proposed by Balci [6]. In this life cycle, the model
development phase evolves from system and objectives definition, through conceptual
model, communicative model, and programmed model, and ends up with experimental
model. The conceptual model is the formulation of the questions to investigate about
the system; the communicative model is a representation of the conceptual model

14

2.1. An Overview on Simulation Experiments

System and Objective

Definition

Conceptual Model

Experimental Model

Communicative Model

Programmed Model

Simulation Results

Integrated Decision

Support

Design of Experiments

Experimentation

Presentation of
Simulation Results

Model Validation

Figure 2.1.: A simplified version of the life cycle of a simulation study proposed by
Balci [6]. Simulation experiments play a role both during the model
development phase and after a satisfactory model is obtained.

and can be communicated with other humans, which is also identified as simulation
model by the author in [6]; the programmed model is an executable simulation model
and the experimental model is a programmed model incorporating an experiment
plan. During the creation of models, simulation experiments can be performed
for building an accurate and appropriate representation of the system. After the
model development phase, i.e., a valid model has been obtained, experimentation is
carried out to generate simulation results for specific purposes, such as understanding
the modeled system and supporting decision making. In this phase, the built
model becomes a tool, which is used to fulfill those purposes. Thereby, two types
of experiments can be distinguished in the M&S life cycle, i.e., experiments for
model creation such as model calibration and validation, which is during the model
development phase, and experiments for answering the questions that a model is
built for, which is after a satisfactory model has been developed.

In the literature, most of the work that is concerned with simulation experiments
for studying models, deals with the phase when a valid model has already been
attained; less emphasis is laid on simulation experiments that are conducted during

15

2. Simulation Experiments and Their Representation

the model development phase. A discussion is presented by Kleijnen et al. [116],
which illustrates that designing and performing simulation experiments during the
model development process is of benefit in different ways. Performing simulation
experiments can uncover some important information about the model behavior,
which can provoke discussions in the modeling team over the implications of different
model assumptions. Also, the gained information about the model behavior from
simulation experiments can assist the modeler in forming questions, which may be
difficult to capture in advance. Besides, the experiment results can rapidly reveal
problems in the modeling logic and therefore provide useful insights into the direction
of the model creation. What’s more, conducting simulation experiments can confirm
or challenge the prior expectations on the model behavior from the modeler, which
is a key part of the face validation of the model.

Therefore, experiments with models can be categorized as experiments during the
model development phase and experiments after a satisfactory model is built, which
are also denoted as configuration experiments and interpretation experiments in [98,
p. 18], respectively. While the experiments after model development are performed
with a satisfactory model in order to answer the questions that the model is built
for, the experiments during model development are performed with the purpose of
creating a model that exhibits satisfactory behavior for the M&S objectives.

This categorization can be further looked into from another point of view, namely
the goal of simulation experiments. It is of high significance to define the experiment
goal, as it influences the way the experiment should be conducted [213]. According
to Kleijnen et al. [116], three basic goals can be recognized in a simulation study:
“(i) developing a basic understanding of a particular simulation model or system, (ii)
finding robust decisions or policies, and (iii) comparing the merits of various decisions
or policies”. The goal of the simulation study is reflected on the goal of the simulation
experiments performed in the study. For the first type of simulation studies, i.e.,
developing a basic understanding of the model or system, it covers different situations,
from gaining insights into the mechanisms that are not well understood, to analyzing
a validated model. In this type of simulation study, simulation experiments are
conducted to explore or analyze the behavior of the model (system) after a satisfactory
model is developed. To fulfill the goal of finding robust decisions or policies in a
simulation study, simulation experiments can be performed for sensitivity analysis.
For comparing the merits of various decisions or policies, the model is executed with
different configurations in the simulation experiment and the experiment results are
compared to find the optimal one.

16

2.1. An Overview on Simulation Experiments

Sacks et al. [209] identify three goals of simulation experiments: predication, opti-
mization and calibration, and Kleijnen [115] also discusses three types of simulation
experiments, i.e., for sensitivity analysis, optimization and validation of models. A
classification on experiment goals is presented by Barton [16], based on the stage of
modeling and simulation process as follows:

(1) early goal: validation

(2) early goal: screening variables

(3) middle goal: sensitivity analysis, understanding

(4) middle goal: predictive models

(5) middle goal: selecting the best configuration

(6) late goal: optimization, robust design

In this classification, at the early stage, simulation experiments are performed to
check whether a valid model is developed, and the important variables that influence
the model behavior are determined by screening. At the middle stage, simulation
experiments can be conducted to quantitatively analyze and understand the model
(system), such as how sensitive the model is against parameter changes, and further
to provide answers to what-if questions. In the next level, some optimization of the
model (system) can be achieved through performing experiments.

Based on the classification described above, Leye proposes four principal exper-
imental goals in [131, pp. 15-16], which consist of validation, sensitivity analysis,
exploratory analysis, and optimization. Validation experiments are performed to
compare the model behavior to that of a reference model or system, and sensitivity
analysis contains screening variables and investigates the model output with different
input configurations. Whereas exploratory analysis includes conducting simulation
experiments for understanding the model and providing predictions to gain insights
into the modeled system, experiments for optimization execute the model with
different configurations to search for the optimal one so that the model or the
modeled system can be improved. Among the four types of simulation experiments,
the validation experiments are undertaken during the model development phase and
others occur after the development phase.

In addition, those simulation experiments that are conducted for model calibration
are worth discussion. A simple definition is presented by Trucano et al. [250] that
calibration is “to adjust a set of parameters [...] so that the model agreement is
maximized with respect to a set of experimental data.” Calibration and validation

17

2. Simulation Experiments and Their Representation

bear some similarities, i.e., both depend on comparison with data. However, the goal
is different: while validation is to quantify the confidence in the predictive capability
of the model, calibration is to determine the configuration of model parameters. A
calibrated model needs to be further validated, for which different data should be
used. Simulation experiments can be a helpful tool for model calibration, e.g., the use
of experimental design approaches allows one to automatically perform experiments
with systematic change of model parameter configurations. Similar to the experiment
for model validation, simulation experiments for model calibration are undertaken in
the phase where the model is still under development.

Based on the discussion above, a general view of categorizing simulation ex-
periments is presented, as depicted in Figure 2.2. Simulation experiments can
be categorized from three perspectives, i.e., the experimentation object (with the
focus on models or simulation algorithms), the phase in the M&S process (during
the model development or after the achievement of a satisfactory model), and the
experiment goal (for model calibration, model validation, sensitivity analysis of the
system, what-if exploratory of the system, or optimization of the system). As model
development is the target of this work, only simulation experiments for studying
models are discussed in detail and no further distinction is made among experiments
for studying simulation algorithms.

It should be noted that the modeling and simulation process is cyclic and iterative,
which means the whole process can go back and forth. Due to the abstraction
and purpose property of models (as discussed in Section 1.4), the problem and
objective definition can be revisited and reformulated, which may lead to a previously
validated model becoming invalid, meaning a revision of the model is required.
Besides, a validated model can be reused to build larger models through extension
or composition, which requires going back to the model development phase again,
indicated by the reference property of models. Therefore, there may not exist an
absolute and exact point which separates the model development phase and the
phase after that, i.e., the model development phase may not end. However, as stated
by Box [24] that “all models are wrong but some are useful”, in a certain context and
with certain questions in mind, a satisfactory model can be obtained after a careful
assessment and then can be used to fulfill the purposes that the model is built for,
such as understanding the modeled system and supporting decision making. Thus,
the phase in which a satisfactory model is used for those purposes is referred to as
after model development.

Additionally, for some simulation experiments, the goals cannot be strictly
distinguished. For instance, sensitivity analysis also plays a role in the process

18

2.1. An Overview on Simulation Experiments

Simulation Experiments

Experiment with

Simulation Algorithms

Experiment with

Simulation Models

Experiment during

Model Development

Experiment after Model

Development

Experiment for

Model Validation

Experiment for

Sensitivity Analysis

of the System

Experiment for

“what-if” Exploratory

of the System

Experiment for

Optimization of the

System

Experimentation

Object

Phase in the

M&S Process

Experiment

Goal

Experiment for

Model Calibration

Creation of a Satisfactory Model
Exploitation of the Created Model

to Study the Modeled System

Figure 2.2.: Categorization of simulation experiments. Experiments are categorized
based on three viewpoints: the experimentation object, the phase in the
M&S process where simulation experiments occur, and the experiment
goal.

of model calibration and validation, as it identifies the input variables that are
sensitive and could cause significant changes in model behavior, and underlies the
importance and priorities of those variables for calibrating and validating the model
[8, 215, 250]. Moreover, the methods for optimization might also be employed for
model calibration.

The categorization depicted in Figure 2.2 demonstrates that simulation experi-
ments can play an important role not only in the phase where a validated model is
obtained, to fulfill the aim of simulation study, but also during the model development
phase, to assist the modeler in building valid models and accelerating the modeling
process.

2.1.2. Conducting Simulation Experiments

Independent of the type of a simulation experiment, certain questions must be
answered for conducting the experiment. As presented by Kelton and Barton [111],
those questions include:

• What model configuration should you run?

• How long should the runs be?

19

2. Simulation Experiments and Their Representation

• How many runs should you make?

• How should you interpret and analyze the output?

• What’s the most efficient way to make the runs?

In addition, other questions exist, such as which simulation software (algorithm)
to use, how to generate random numbers, and which results of a simulation run to
record and how to record [69, 124].

Design of Experiments (DOE) for simulation is a well developed field, whose major
goal is to determine the important factors using the least amount of simulating [125],
with numerous work existing, [59, 110, 116, 125], to name but a few. The issue of
experimental design for simulation contains two aspects, tactical issues and strategic
issues [59], [113, p. 9]. According to Donohue [59], tactical issues include:

• whether to perform a terminating or steady-state simulation,

• estimating the distributions of stochastic model components,

• selecting the initial conditions or the duration of the warm-up period,

• choosing the final conditions such as run time or number of events completed,
and

• deciding on an appropriate balance between run length and the number of
replications (or batches);

strategic issues include:

• choosing a method for the assignment of random number streams to design
points, and

• deciding whether to use an appropriate variance reduction technique.

In [113, p. 9], Kleijnen also lists some issues in the Design and Analysis of
Simulation Experiments (DASE), tactical issues such as the run-length of a steady-
state simulation, the number of runs of a terminating simulation, and Variance
Reduction Techniques (VRTs), and strategic issues such as which factor combinations
to simulate and how to analyze the resulting data. There seems to be no general
agreement on what the tactical issues and strategic issues comprise respectively, e.g.,
as presented above, the issue concerning variance reduction techniques is categorized
differently by Donohue [59] (identified as strategic issue) and Kleijnen [113] (identified
as tactical issue). This work does not aim to give a definitive categorization of what

20

2.1. An Overview on Simulation Experiments

are tactical issues or strategic issues. Instead, the problems that have to be considered
in conducting a simulation experiment need to be identified, which can be summarized
into four parts, i.e., model configuration, simulation configuration, data processing,
and result analysis. To effectively and efficiently conduct simulation experiments,
how to deal with those problems is of great importance.

2.1.3. Structuring a Simulation Experiment

Although simulation experiments can be performed for different goals and different
methods can be used to deal with the issues described in Section 2.1.2, some general
tasks exist that have to be considered when executing a simulation experiment.

Leye [131] identifies a common structure for simulation experiments, which
comprises six tasks:

• specification, defining the experimental goals into a description so that it can
be used for executing the experiments;

• model configuration, generating model parameter settings;

• model execution, executing simulation runs;

• data collection, collecting data during simulation runs for further processing;

• analysis, analyzing the results of simulation runs, which usually consists of two
stages: single-run analysis and multi-run analysis.

• result evaluation, using analysis result to either provide feedback for creating
additional interesting parameter settings, or generate final experiment results.

Accordingly, a top-bottom layered view of the structure of a simulation experiment
is presented by Leye, as depicted in Figure 2.3, based on the work in [207] and [131,
p. 35]. The specification of experiments, which is an essential task that has an
impact on all other tasks, constitutes the topmost layer. The second layer is the
multi-configuration layer, which focuses on configuring and executing the model with
different parameter settings. In this layer, it starts from the model configuration
task, and afterwards the model execution task, which is followed by the evaluation
task. As described above, one purpose of evaluation is to create feedback for
generating additional parameter settings when necessary, in which case, it goes
back to configuration again, resulting in a loop; when no extra configuration is
needed, final experiment results are returned. As the third layer, the multi-run layer
deals with replicating simulation runs for one specific parameter setting. After the

21

2. Simulation Experiments and Their Representation

Multi-ConfigurationSpecification

Configuration Evaluation

Multi-Run Analysis

Single-Run

Analysis
ObservationModel Execution

Multi-Run

Single-Run

Figure 2.3.: Layered view on a common structure of a simulation experiment proposed
by Leye, adapted from [207] and [131, p. 35].

scheduled replications are executed, results are analyzed to determine whether more
replications are needed. The loop of replication execution and analysis is finished
when sufficient data is obtained, and the results of multi-run analysis are returned
to the multi-configuration layer. The single-run layer is the bottom one, where a
single simulation run is executed, data is observed and collected accordingly, and the
single-run analysis is performed.

2.1.4. Methods to Support Experimentation

Undoubtedly, conducting simulation experiments is a non-trivial task that may
need the combination of diverse techniques. To effectively and efficiently conduct
simulation experiments, knowledge about experimental methods, their use, and inter-
pretation is needed. The benefits of providing intelligent assistance for experiments
are widely recognized and have led to a variety of approaches from different aspects
of the experimentation process.

Some methods provide guidance in specific application areas, often in close relation
to specific simulation tools. For example, SAFE (Simulation Automation Framework
for Experiments) [187], designed to be used together with ns-3, relies on typical
experimental set-ups defined by experts to help novices in executing experiments
with network models. AssistSim [122] aims at supporting simulation studies in
manufacturing and logistics systems by exploiting domain-specific knowledge bases

22

2.1. An Overview on Simulation Experiments

to generate check lists for variables to be observed and storing experiments in a
database. Also in the area of systems biology, early efforts can be found to facilitate
setting up experiments, particularly for novices, e.g., COPASI (COmplex PAthway
SImulator) [210], which is a platform-independent simulation tool to support different
tasks of conducting simulation experiments with biochemical models.

To obviate the need to specify the entire experiment set-up in detail, some
approaches support the user in selecting and configuring methods to be applied
during simulation. Thereby, they often focus on specific tasks of the experimentation
process, e.g., the execution of a simulation run or its analysis. MEG (MITRE
Elastic Goal-Directed Simulation Framework)[179] aims to support users in executing
large-scale distributed experiments on the grid, managing experiments with advanced
DOE methods, and providing access to third-party tools for data processing and
visualization. AutoSimOA (Automated Simulation Output Analyser) [101] is designed
to provide assistance in identifying the warm-up period, estimating the number of
required replications, and output analysis. A platform to execute parameter scans in
the cloud is proposed by Kacsuk [104]. Helms et al. provide means to automatically,
dynamically select and configure execution algorithms during a simulation run by
exploiting machine learning methods [93]. In [133], Leye et al. propose a general
scheme to automatically select and compose several experiment methods for a given
task, such as steady state estimation.

Some tools are developed to cover the whole simulation experiment process. For
instance, the tool Arena [109] is developed for discrete event modeling and simulation
in applications such as manufacturing and logistics. It provides features for different
experiment tasks including configuration of model parameters, model execution,
data collection and analysis, and results evaluation. Various types of simulation
experiments are supported, such as optimization and sensitivity analysis. MATLAB
Simulink aims at the modeling and simulation of continuous and hybrid systems,
and also supports various experiment tasks for different experiment goals.

All of those tools and methods provide support in the experimentation with
simulation models in different manners: some of them focus on the user guidance
through the experiment process, to alleviate the burden of users with well-designed
graphical user interface (such as Arena and Simulink), and some aim to improve
the efficiency and effectiveness of experiment execution (such as adaptive simulation
[95]). However, simulation experiments performed using those methods are often
not documented, at least not documented automatically within the method. The
information of conducted simulation experiments is kept implicit and requires extra

23

2. Simulation Experiments and Their Representation

efforts to extract and record, which therefore introduces difficulties in exploiting
those experiments to develop models.

2.2. Simulation Experiments as First Class
Objects

In modeling and simulation area, some attention has been paid to treating simulation
experiments as first class objects [219]. The first class object is a concept from
programming language design, defined as entities that can be passed as an argument,
returned from a function, and assigned to a variable [220, p. 155]. In a simulation
study, typically a large amount of efforts are dedicated to building simulation
models. When simulation experiments are treated as first class objects, the process
of conducting simulation experiments is put to a level as important as the process of
developing models, and model developments and simulation experiments are jointly
carried out within a simulation study. In particular, simulation experiments are
managed as something solid and persisting over time, which can be reproduced,
shared, and reused by third parties, rather than an implicit, fleeting process.

Reproducible Simulation Experiments

In recent years, there is an increasing emphasis on the credibility of simulation results
in the modeling and simulation area. A number of work from various application
fields exists, e.g., [121, 182], aiming to raise the awareness of the lack of credibility
in simulation studies, i.e., the “crisis of credibility”. Therefore, more and more
stress is laid on the reproducibility of simulation studies, which is considered as
the fundamental to obtain credible results. Pawlikowski et al. [182] state that
to achieve credibility of a simulation study, the first step is to develop a valid
simulation model, and the next step is to ensure that the valid model is used in valid
simulation experiments. Thus, there is a rising call for publishing models together
with reproducible simulation experiments, such as the guideline MIRIAM (Minimum
Information Requested in the Annotation of Models) [171].

In spite of various definitions and interpretations regarding the reproducibility
of simulation experiments, ranging from re-running exactly the same experiment
with the same artifacts to conducting the experiment independently based only
on clear statements (several additional terms are related such as repeatability and
replicability), e.g., [47, 49, 126, 130, 159], an unambiguous, complete representation
of simulation experiments is required to facilitate their reproducibility.

24

2.2. Simulation Experiments as First Class Objects

Reusable Simulation Experiments

Whereas much effort is dedicated to design and perform simulation experiments
for specific purposes (as discussed in Section 2.1.1), once the designated purposes
are fulfilled, those experiments are often either discarded or presented only for the
publication of relevant research results. Simulation experiments are usually conducted
from scratch, and are seldom reused for further study.

Whereas growing attention is paid to reproducible simulation experiments, the
idea of reusing simulation experiments still stays obscure and only limited work
exists. Cooper et al. [42] call for the reuse of simulation experiments (termed as
“virtual experiments”), arguing that it would improve the usefulness and relevance
of simulation models. The authors propose to separate experiment descriptions
from model descriptions and use ontological annotations to provide semantic link
between them, so that the same experiment description can be reused for multiple
models and a model can be executed with different experiment descriptions. This
approach is adopted in other publications of the authors [41, 43] for understanding
and evaluating the functional capabilities of models, termed as “functional curation”.

As identified in [42], reusable simulation experiments can be beneficial in several
ways. First of all, reusable simulation experiments facilitate reproducing and sharing
simulation studies. Besides, by applying different reusable experiments to a given
model, it provides assistance in analysis of the model behavior under various
experimental conditions. In addition, reusing the same experiment on different
models supports the comparison of the behavior of those models under the same
experimental condition. Further, reusable simulation experiments can also facilitate
model development. For instance, when a model is developed based on simplifying
a detailed one to reduce model complexity, e.g., as presented in [241], relevant
experiments conducted with the detailed model can be reused to check whether the
simplified model still exhibits desired behavior under corresponding experimental
conditions. More importantly, model reuse can benefit from reusable simulation
experiments as well. Simulation experiments are capable of carrying the information
about model context and model behavior, which is of utmost importance for effective
model reuse.

To facilitate a reusable simulation experiment, not only should all essential steps of
the experimentation process be completely recorded in an unambiguous manner, but
also the recorded experiment information needs to be easily accessible and exploited
for experiment execution.

25

2. Simulation Experiments and Their Representation

An Explicit Experiment Specification is the Prerequisite

As illustrated previously in Section 2.1.4, a great many tools and software are
developed to provide assistance in the process of experimentation to make users’ lives
easier. However, this type of assistance usually means a certain simplification in the
execution of simulation experiments, with some important parameter configuration
and experimental design details hidden. These hidden details are often omitted in
the published description of experiments, which therefore makes it difficult for third
parties to reproduce those experiments with other simulation software and to reuse
them.

Therefore, in order to manage simulation experiments as first class objects, i.e., to
flexibly store, exchange, reproduce, and reuse simulation experiments, only intelligent
support and guidance in the experimentation process is not sufficient; a clear and
explicit specification of simulation experiments is a prerequisite.

2.3. The Specification of Simulation Experiments

2.3.1. Separating Representations of the Experiment and
the Model

The idea of specifying simulation experiments separately from the description of
the model, is not new and could date back to the experimental frame theory, which
was firstly presented in the year of 1976 [270]. According to Zeigler et al. [273], an
experimental frame is a specification of the conditions within which the system is
experimented. Each experimental frame specification comprises four major parts:

• input stimuli: specification of the class of allowed input schedule, from which
the concrete individual input samples are drawn.

• control: specification of the conditions under which the model will be initialized,
executed, and terminated.

• metrics: specification of the data collection methods and the metrics for
measuring the model input/output behavior, such as performance indices,
goodness-of-fit criteria, and error accuracy bound.

• analysis: specification of the methods to analyze the collected data to draw
conclusions.

The model and simulation specification language GEST presented by Ören [174]
is another early work that proposes to separate experiment specification from model

26

2.3. The Specification of Simulation Experiments

definition. Defined in Backus-Naur Form (BNF), each GEST program consists of
three parts, i.e., the model specification, the experiment specification and the output
specification.

In a simulation study, multiple simulation experiments can be performed to
the same model to accomplish different study objectives; also, the same simulation
experiment may be performed in different simulation studies that share some common
objectives. Therefore, separating the representation of simulation experiments from
models becomes natural. With model description and experiment specification
represented separately, the representation of both models and simulation experiments
become more succinct and focused, which further facilitate more efficient reuse
of models and reuse of simulation experiments. Thereby, standalone simulation
experiment specifications are the key starting point for reusable experiments.

2.3.2. Experiment Specifications for Experimentation
Support

Since performing simulation experiments is a complex task, numerous approaches exist
for specifying and setting up simulation experiments to facilitate the experimentation
process with models. For example, the Experimenter, the core of the Integrated Mod-
eling Support Environment (IMSE), was a graphical tool to support experimentation
with performance models [97]. Experiments are represented in experimental plans
by the user, each of which may use one or multiple models, with one or multiple
executions for each model. For each experimental plan, the Experimenter allows
the specification of three types of parameters, i.e., input parameters, the control
parameters and desired output parameters, and requires at least one specification for
analysis to describe how to generate results from model outputs. Model execution is
invoked via the Experimenter and multiple modeling paradigms are supported via
embedding modeling tools. The focus of the work is on the enhancement of model
exploitation.

Furthermore, a framework is presented in [228] to support performance model
interoperability, which combines interchange formats for performance model, experi-
ment specifications to allow automatic execution of experiments on the model, and
the specification of outputs as well as their transformation into useful results. The
Experiment Schema Extension (Ex-SE) [227] is used for experiment specification to
support multiple runs of models with desired output, e.g., different model parameter
configuration for different runs, the control of model execution such as iteration and
alternation, and specifying desired output metrics. The Output Schema Extension

27

2. Simulation Experiments and Their Representation

(Output-SE) and Results-SE are used to specify the format of the output metrics
and the transformation from output to desired results. In [168], the general purpose
language Layered Queueing eXperimenter (LQX) was proposed to define experiments
for the analytic layered queueing (LQ) performance models, which supports several
types of experiments such as traversal experiments, full/partial factorial experiments
and sensitivity experiments.

In addition, an approach is proposed in [243, 244] to support the design and
execution of simulation experiments. A tool is developed with a web-based interface
to guide the user in specifying simulation experiments, which mainly comprises
the specification of experiment objectives, configuration of model variables, and
methods for result analysis. Intelligent support is provided to assist users in setting
up experiments with DoE (Design of Experiment) principles, based on the usage
of ontologies. An XML description is generated for the configured experiment and
can be transformed into executable script and exported for other uses, such as
reproducing and sharing the experiment.

As those approaches aim to provide support in the experimentation with models,
the focus of experiment specifications is more on how to allow the specification of
simulation experiment design methods so that more complex and effective simulation
experiments can be performed with models.

2.3.3. Guidelines for Representing Simulation Experiments

In recent years, with the increasing call for reproducible simulation studies, many
efforts have been devoted to defining standards for specifying simulation experiments.

Based on the assumption that the description of the experiment and the model
are separated, the Minimum Information About a Simulation Experiment (MIASE)
[255] describes the minimal requested information of a simulation experiment that
needs to be provided in order for the experiment to be reproducible. According to
MIASE, the record of a simulation experiment needs to conform to the following
rules:

• “All models used in the experiment must be identified, accessible, and fully
described”. The information about the models to be included in the experiment
such as the model name and location, together with the parameter configuration,
must be provided.

• “A precise description of the simulation steps and other procedures used by
the experiment must be provided.”. The information about the used simulation
methods, such as simulation algorithms and simulation termination conditions,

28

2.3. The Specification of Simulation Experiments

must be unambiguously described with sufficient details. Besides, the tasks
performed in the experiment need to be described.

• “All information necessary to obtain the desired numerical results must be
provided.” The methods for data collection and the post-processing to generate
desired final results must be defined.

Rahmandad and Sterman [193] propose a set of guidelines separately for reporting
models, reporting simulation experiments, and reporting optimization results. Those
guidelines are further divided into two categories, i.e., minimum requirements and
preferred requirements. The Minimum Simulation Reporting Requirements (MSRR)
refers to a detailed necessary description of simulation experiments, based on which
the experiment can be repeated and reproduced to generate results that are consistent
with the reported result. The MSRR includes the description of the exploited software
and hardware platforms, the simulation algorithm used, the pre-processing needed on
the model such as the generation of model input, the required parameter settings, the
number of iterations for each scenario, and the post-processing used to produce desired
results from raw output data. The Preferred Simulation Reporting Requirements
(PSRR), beyond the minimum requirements, asks for the information that facilitates
the assessment of experiment results. The information required by PSRR includes
specification of sensitivity analysis, information on computational costs, information
on random number generation, information on uncertainty measurement such as
confidence intervals, and statistical information for experiments with stochastic
models.

2.3.4. Languages for Experiment Specification

Following the efforts toward reproducibility of simulation studies and the guidelines
for representing simulation experiments (as described in Section 2.3.3), various
languages for simulation experiment specification have emerged during the last few
years.

While domain specific languages (DSLs) are widely exploited for describing models,
several domain specific languages have been developed to specify different aspects
of a simulation experiment [219]. In contrast to general-purpose languages, which
can be applied across different domains, a domain specific language is a computer
language specialized to a particular problem that “speaks” the language of a specific
domain [77, 251]. From the perspective of language type, domain specific languages
can be divided into domain specific markup languages, domain specific modeling
languages, and domain specific programming languages. In addition, two types of

29

2. Simulation Experiments and Their Representation

domain specific languages can be distinguished: the internal (embedded) DSL and
the external DSL. Whereas internal domain specific languages are implemented based
on a general-purpose programming language, also called the host language, external
domain specific languages are developed ground-up as independent languages and
therefore require new interpreter or compilers. The key benefit of external domain
specific languages is that they have their own custom syntax that is only determined
by its use without constraints from the host language, while the drawback is a
reduced flexibility as any new feature requires revising the syntax and corresponding
parser. In contrast, internal domain specific languages inherit the constructs of their
host languages and therefore require less implementation efforts from the designer.
More importantly, internal domain specific languages can be easily extended by users.

The Simulation Experiment Description Markup Language (SED-ML) [256] is
an XML-based markup language to encode and document simulation experiments
with the information required by the guideline MIASE, to facilitate exchanging and
reproducing experiments in systems biology. The SED-ML document allows the
description of time-course simulation experiments and mainly contains five elements:
(1) the models; (2) the simulation algorithms; (3) the tasks of the experiment; (4) the
post-process of raw simulation results; (5) the output of desired results. Specifying
experiments in SED-ML is independent of concrete model representation formats
and simulation systems, and the Kinetic Simulation Algorithm Ontology (KiSAO) is
used to provide information on simulation algorithms. However, only models that are
described in XML-based languages can be supported by SED-ML. Also, simulation
experiment specifications encoded in SED-ML are based on XML Schema, which
makes it more machine-readable and less human-readable, and therefore requires
assistance from additional tools in order to be easily used by modelers, e.g., SED-ED
[1].

The ns-3 Experiment Description Language (NEDL) [90] and the SAFE Language
for Experiment Description (SLED) [219] are two external domain specific languages
for experiment description in network simulation. The information contained in
a NEDL file allows the set-up of factorial experiments with constraints on certain
parameter combination, which aims to relieve users from uninteresting design points.
However, NEDL is based on XML, which leads to verbose documents that are
complex to process. This motivated the replacement language SLED, which is based
on JSON format.

The Simulation Experiment Specification via a Scala Layer (SESSL) is an embed-
ded domain specific programming language for simulation experiments [67]. Based
on the features of its host language Scala [172] such as meta-programming, SESSL

30

2.3. The Specification of Simulation Experiments

allows flexible experiment set-ups. By using syntactic constructs of Scala, SESSL
provides the “feeling” of a simulation specification language. Serving as an additional
layer between the simulation system and the user, SESSL is independent of any
specific simulation system; instead, different simulation systems can be supported
and integrated by creating a binding in SESSL. Through importing the binding of a
simulation system, users can specify simulation experiments without interacting with
the simulation system, whereas the specified simulation experiments are actually
executed by this simulation system. Currently, various bindings to simulation systems
exist in SESSL, for instance the binding to the modeling and simulation framework
JAMES II [99]. Additional bindings can be developed without much effort.

A SESSL experiment specification can include all the information required by those
guidelines for reproducible simulation experiments (as described in Section 2.3.3), such
as the model location, configuration of model parameters, the simulation algorithm,
the simulation stopping conditions, replication conditions, parallel execution, and
data collection. Besides, SESSL provides several bindings for analysis, e.g., simulation-
based optimization. In addition to its expressiveness, SESSL allows users to specify
simulation experiments in a declarative style, which is more straightforward to
understand and use.

A simple example of SESSL experiment is depicted in Figure 2.4. Through
importing the binding denoted by sessl.james._ (line 2), a simulation experiment
is specified and executed for the modeling and simulation framework JAMES II [99].
By replacing the binding importing in the second line, the experiment specification
can be switched to alternative simulation systems. As indicated by line 3, in
SESSL an experiment is defined by instantiating an anonymous sub-class of the class
Experiment. The cake pattern is exploited to compose the simulation experiment
with different aspects, through mixing in different traits, each of which provide
a specific functionality [67]. For example, to facilitate the specification for data
collection and result processing such as how to record experiment output, the trait
Observation can be added; to exploit the parallel resources available for experiment
execution, the trait ParallelExecution is needed. Due to the features of the host
language Scala, the concrete definition of an experiment is realized in the constructor
of the anonymous class (line 4-12), in which each line is a function invocation, but
may appear like an assignment (e.g., lines 4, 7, 11 and 12). In Line 4, the model
to be used for experimentation is specified, by assigning the SESSL keyword model

with the model location “file-mlrj:/./SimpleModel.mlrj”, referring to a model
named as “SimpleModel” and formalized in ML-Rules [153]. The configuration of
model parameters is specified in Lines 5-6. Line 5 sets the value of model parameter

31

2. Simulation Experiments and Their Representation

1 import sessl._

2 import sessl.james._

3 val exp = new Experiment with Observation with ParallelExecution {

4 model = "file-mlrj:/./SimpleModel.mlrj"

5 set("A" <∼ 50, "B" <∼ 500)

6 scan("C" <∼ range(10, 1, 20))

7 simulator = SimpleSimulator()

8 stopCondition = AfterWallClockTime(seconds=1) or AfterSimTime(500)

9 observe("A")

10 observeAt(range(0, 1, 500))

11 replications = 10

12 parallelThreads = -2

13 }

14 execute(exp)

Figure 2.4.: A simple example of SESSL experiment specification.

A and B to 50 and 500, respectively. In addition to configuring parameters with fixed
values, SESSL allows parameter scan as well, as indicated in line 6, where the model
parameter C is iterated over the range 10 to 20 with step size 1. The specification
of the simulation algorithm to use is determined by assigning the SESSL keyword
“simulator” with the simulator name, which is a defined case class in SESSL (see [67]
for more detail). As depicted in line 7, the simulation algorithm implemented in
the case class “SimpleSimulator” is exploited for experiments. Line 8 specifies the
simulation stop conditions, i.e., the simulation stops when the wall clock time is 1
second or the simulation time is 500. To allow the specification of data collection,
the functionalities provided by the trait Observation are needed. As shown in
Lines 9-10, during the simulation, the variable A is observed and recorded at every
time unit from time point 0 to 500. Line 11 describes the replication condition of
the experiment, i.e., 10 simulation runs are carried out for each set-up. Supported
by the trait ParallelExecution, all except 2 of available cores should be used for
the experiment execution (line 12). Finally, the defined experiment is executed, as
indicated by Line 14.

From the discussion above, one can see that an explicit, declarative experiment
specification that is separated from model description, is able to meet the requirement
of expressing all needed aspects in a simulation experiment. Not only can it support
the different functionalities needed for experimentation, but can conform to the
experiment representation standards outlined by existing guidelines such as MIASE.
More importantly, an unambiguous specification of simulation experiments allows
them to be reproduced and reused.

32

2.4. Summary

2.4. Summary

This chapter presented an introduction of simulation experiments based on literature,
with several aspects discussed. By illustrating the categorization of simulation
experiments from three perspectives, i.e., the experimentation object, the phase in
the M&S process, and the experiment goal, the role that simulation experiments
can play in a simulation study has been explored in Section 2.1.1. In addition
to being performed with a satisfactory model to answer questions the model is
built for, simulation experiments can be used to support developing the model,
such as model calibration and validation. The tasks for conducting a simulation
experiment have been identified, through a discussion on the issues that need to be
considered in performing experiments (Section 2.1.2) and a common structure of a
simulation experiment (Section 2.1.3). Following a description of existing methods
to support the conduction of simulation experiments in Section 2.1.4, the idea of
treating simulation experiments as first class objects was presented in Section 2.2.
Specifically, reproducible and reusable simulation experiments were discussed, with a
conclusion that an explicit experiment representation is prerequisite, which thereby
leads to a discussion on the specification of simulation experiments in Section 2.3.

Based on a brief review of existing work on specifying simulation experiments, it
has been shown that an explicit, declarative experiment specification that is sepa-
rated from model description facilitates the reproducibility and reuse of simulation
experiments. In particular, the domain specific language SESSL is a promising
method for experiment specification.

33

Chapter 3

Exploiting Simulation Experiments
for Developing Models via Reuse

In order to facilitate model reuse, a good understanding of the model is required,
which includes not only the model definition but also the underlying context and
purpose that the model is built for. In a model description that is separated
from model execution, usually only the information of model structure and initial
parameter configuration are presented. By solely looking at the model description, it
is difficult to gain the information such as model context and assumptions. However,
this information is critical for understanding and reusing the model. As discussed
in Section 1.2, in current work for supporting model reuse, the focus is mainly on
providing the information of model definition. In some approaches, apart from model
representation in a specific formalism or language, additional information about the
model semantic is provided, such as using ontologies. While it is acknowledged that
simulation experiments are able to provide information about model context, making
use of simulation experiments to support model reuse has not been studied in detail
yet. The aim of this work is to address the exploitation of simulation experiments in
developing models via reuse.

Chapter 2 has already illustrated that simulation experiments can contribute to
the development of models, i.e., for model calibration and validation. Moreover, it
has been demonstrated that an explicit and declarative representation of simulation
experiments is a key point to facilitate reproducible and reusable experiments. Based
on the discussion in the previous chapter, this chapter will present the central idea
of this thesis, i.e., exploiting simulation experiments to support model development
by reuse, and tackle the different aspects in realizing this idea.

35

3. Exploiting Simulation Experiments for Developing Models via Reuse

3.1. Simulation Experiments in Model
Development

3.1.1. Model Calibration and Validation

As discussed in Section 2.1.1, two types of simulation experiments for model devel-
opment can be distinguished, i.e., those for model calibration and those for model
validation (see Figure 2.2).

Model calibration is a process in which, given a set of conditions, model parameters
are adjusted so that the model output closely matches the reference data (typically
observed experimental data, if available) [102, 250]. When a model can produce
output that is within some subjectively adequate level of precision with respect to
the reference data for comparison, the model is considered successfully calibrated
[118, 226]. During model calibration, the value of model parameters are optimized
in order to increase the agreement between model output and reference data, and
typically an objective function is selected to measure the agreement. Through
minimizing the objective function, the best set(s) of parameter configuration can
be obtained. Model calibration can be used to not only tune parameters, which
have default or initial values, but also optimize unknown parameter values in the
model, and therefore this process is also called parameter optimization or parameter
estimation [226]. The first step in model calibration is to determine the selection
of model parameters to calibrate, where usually sensitivity analysis is performed
[4, 250]. Thereby, simulation experiments conducted for model calibration are aimed
to find optimal parameter configuration, typically involving methods for optimization
and sensitivity analysis.

When a model is constructed and parametrized, it has to be validated before
being used to study the modeled system. A definition is presented by Trucano
et al. [250], attributed to [173], that model validation “is the process of determining
the degree to which a model is an accurate representation of the real world from the
perspective of the intended uses of the model”. Model validation is closely related to
model verification. According to Balci [7], model validation is “substantiating that
the model, within its domain of applicability, behaves with satisfactory accuracy
consistent with the M&S objectives”, and model verification is “substantiating that
the model is transformed from one form into anther, as intended, with sufficient
accuracy”. Therefore, model validation is concerned with building the “right” model,
while model verification is concerned with building the model “right” [7]. One
interpretation of model validation is to quantify the confidence in the predictive

36

3.1. Simulation Experiments in Model Development

capability of the model for given applications and objectives through comparison
with a reference model or the system under investigation [250].

A great deal of work can be found on model validation, e.g., see detailed surveys
and discussions in [7, 112, 114, 215]. Different types of model validity have been
introduced. For example, three levels of validity are distinguished by Zeigler et al.
[271, pp. 31, 387], i.e., replicative validity, which assesses whether the model can
reproduce observed behavior from the system, predictive validity, which assesses
whether the model can predict unseen system behavior, and structural validity, which
assesses whether the model can represent the structural relation of the system. A wide
variety of validation techniques exist, and a taxonomy of more than 77 techniques
classified into four main categories is presented by Balci [7], which includes informal
techniques such as inspections and walkthroughs, static techniques such as cause-
effect graphing and structural analysis, dynamic techniques such as comparison
testing and execution monitoring, and formal techniques such as induction and proof
of correctness. Among all those techniques, one category of methods depends on
executing simulation experiments with the model, i.e., experimental model validation
[132].

Model validation is a critical step in a simulation study, as answering the questions
about the modeled system through the model, such as decision making and insight
gaining, is highly influenced by whether the model is valid with respect to the system
and the questions. As discussed in Section 1.2, when models are developed by reusing
other models, assessing the validity of model reuse is a challenging endeavor. Also,
to facilitate model reuse, it is beneficial to provide information about the context
in which the model is validated. While simulation experiments are useful methods
for model validation and capable of providing model context information, this work
particularly targets exploiting simulation experiments that are conducted to validate
models.

3.1.2. Model Validation via Simulation Experiments

As indicated by the definition of model validation (as described in previous section),
the validity of models is related to the domain of applicability, which is determined
by the underlying assumptions of modeling, and to the objectives of the simulation
study, i.e., the questions of interest to be answered by the model. The assumptions
and objectives can be reflected by experimental conditions. A set of experimental
conditions incorporates the configuration of the variables that define the domain of
applicability, and a model may be valid for one set of experimental conditions and
invalid for another [215]. Thereby, as stated by Cellier [30, p. 5], model validation

37

3. Exploiting Simulation Experiments for Developing Models via Reuse

always relates to experiments to be performed on a system as well, rather than the
system alone.

Model validation via simulation experiments examines model validity by perform-
ing simulation experiments with the model. Through inspecting simulation outputs
of the model, model validity at the behavioral level can be checked, which is also
termed as operational validity by Sargent [215]. Depending on whether the real
system is observable, i.e., whether data on the operational behavior from the system is
available, different methods can be used. Based on the data availability, Sargent [215]
categorizes validation techniques into comparison methods and exploration methods.
Whereas in comparison methods the output behavior of the model are compared to
that of the system or a reference model, exploration methods check model validity by
exploring the output behavior of the model, such as parameter sensitivity analysis
and graphical display. Leye et al. [132] present a list of validation techniques classified
based on the tasks of conducting a simulation experiment, as shown in Table 3.1.

Experimental Validation

Aims/Requirements Configuration Evaluation Simulation Observation Testing

-model comparison -metrics -engine -black-box -statistical test

-degenerative tests -factorial designs -event queues -gray-box -simulation-based

-historical data -randomized block designs -RNG -white -box model-checking

-predictive data -covariance designs -simulation traces

-extreme conditions -hybrid designs

-Turing-test -sensitivity analysis

-event validity -internal validity

-visual analytics

Table 3.1.: Examples for different experimental validation techniques based on the
specific tasks of conducting a simulation experiment, adapted from Leye
et al. [132].

The output behavior of models can be examined both qualitatively, where the
trends or directions of the model output behavior are examined, and quantitatively,
where the magnitudes of model behavior are examined as well in addition to trends
[271, pp. 370-373], [215]. Model validity can be assessed in a subjective manner, e.g.,
face validation, where the model behavior is checked by individuals, and turing test,
which checks whether individuals can distinguish between the system and model
outputs [215]. Also, statistical techniques can be employed to provide objective
assessment on model validity, such as hypothesis tests and confidence intervals.

38

3.2. Simulation Experiments and Model Reuse

In recent years, some efforts have been devoted to bringing together model valida-
tion and formal verification techniques, which are concerned with the correctness of a
system with respect to a certain formal specification or property using mathematical
and logical methods, e.g., [17]. Simulation-based model checking methods have been
successfully employed for model validation, in which the desired model properties
are explicitly described and simulation experiments are performed to check whether
the model behavior fulfills those properties, e.g., [70, 180].

Although each of those approaches checks whether the output behavior of a model
meets certain requirements, the accessibility of these requirements varies, from being
elusive and difficult to retrieve as they depend on interactive explorations (e.g., face
validation and visual analytics [142]), through being implicitly part of the method
(e.g., sensitivity analysis [60]), up to being explicitly and declaratively specified as
properties in a formal language, as in the case of simulation-based model checking
(e.g., in [70]).

With the focus having been laid on simulation experiments for model validation
and an introduction of experimental model validation presented, subsequently the
key question will be answered of how those simulation experiments can be employed
to support model reuse.

3.2. Simulation Experiments and Model Reuse

It can hardly be overstated that model development is a challenging endeavor.
Thereby, developing models by reusing existing ones came into play, as it carries the
intuition of decreasing the required time and cost for model development. However,
model reuse proves to be more difficult in practice than initially envisaged, and the
validation of the resulting model as well as the model reuse pose big challenges, as
discussed in Section 1.2.

Information of Model Context and Expected Behavior is Necessary

To facilitate reuse of existing developed models, providing information of those
models is a prerequisite. First of all, the information of the model definition must be
provided, such as in a file where the model is defined using a specific language or
formalism, e.g., DEVS [270], ML-Rules [153] and SBML [103]. Secondly, in the model
representation, various terms may be used to describe the same concept and the
same term is often used differently, which leads to misunderstanding and increases
the difficulties of reuse. For instance, both the term “NaCI” and the term “sodium
chloride” can be used to refer to the salt in a model definition; however, while

39

3. Exploiting Simulation Experiments for Developing Models via Reuse

interpreting the model representation, the machine will not recognize the two as the
same without additional information. Thus, a common understanding and a unified
terminology become a key step toward successful model reuse. Thereby, semantic
information needs to be provided alongside model representation. Ontologies, which
are a description of terminologies and define the concepts, relationships, and other
distinctions that are relevant for the modeling domain [85, 167], are often exploited
to help create a common understanding and providing an agreement on meanings of
entities.

As most of current work in supporting model reuse focus on providing information
of those two aspects above (also see discussion in Section 1.2, p. 5), model represen-
tation and associated semantic information only contain the information of model
definition such as model structure and variables. Due to the abstract and purpose
property of a model (see Section 1.4, p. 10), the context in which a model is developed
and the objectives that the model is built for, have to be considered while reusing
this model [175, 230]. Without knowing the context information of individual models
and their expected behavior, effective model reuse is hard to achieve. However, the
information of model context and expected behavior is not directly accessible from
model representation and its semantic annotation. Therefore, to achieve progress in
supporting model reuse, methods to provide means for representing and retrieving
the context information are required.

Simulation Experiments as Context Representation

One way to capture model context is the experimental frame. The experimental frame
theory was proposed by Zeigler [270] to establish the experiment conditions under
which a model is valid. As described in Section 2.3, mainly four types of information
are contained, i.e., model inputs, model initialization conditions, variables to observe,
and data collection and analysis [50]. An experimental frame is the formulation of
the objectives that motivate the development of models [271, p. 27]. The relations
between model, simulator, and experimental frame are described by Zeigler et al. [271],
as depicted in Figure 3.1. As one can see, the experimental frame focuses on the
modeling layer, i.e., it defines what kind of experiments to execute with the model;
however, the question of how the experiments should be executed also has an impact
on the validation process, as illustrated by different techniques for experimental
model validation (see Section 3.1.2), and therefore should be considered as well [132].

In experimental model validation, simulation experiments are performed to check
the model validity. In order to conduct a simulation experiment that conforms to an
experimental frame of a model, first of all, the model needs to be accessible. Besides,

40

3.2. Simulation Experiments and Model Reuse

Experimental Frame

Source System

Model

Simulator

Modeling Relation

Simulation Relation

Figure 3.1.: The relations between model, simulator, and experimental frame [271, p.
26].

all experiment conditions specified by the experimental frame must be realized in the
set-up of the simulation experiment, such as the configuration of model variables and
variables for observation. In addition, an applicable simulation method is required for
executing the experiment. What’s more, the simulation output needs to be analyzed
in order to check whether the model exhibits a specific behavior as desired. Thereby,
a simulation experiment brings together the model, model configuration, simulation
method, data to output, and result analysis. The model context and corresponding
desired model behavior are reflected by the simulation experiment. Thus, simulation
experiments are feasible means to represent model context and behavior information,
in a more concrete and pragmatic manner than the experimental frame.

Reusing Simulation Experiments to Support Model Reuse

As illustrated in previous sections, simulation experiments performed for model
validation can reflect the context information under which a model is validated and
the expected model behavior. Therefore, those simulation experiments that are
conducted for validating the model can be employed to support the reuse of this
model.

On the one hand, by providing information of model context and behavior,
simulation experiments can help the modeler determine whether an existing model
is applicable to be reused for building a new model. On the other hand, when a
model is reused to build a new model, the simulation experiments performed for
validating the reused model can be conducted with the newly built model to check
its behavior, i.e., under the same or similar experimental conditions whether the
new model behaves the same as the reused model, and whether this is as expected.

41

3. Exploiting Simulation Experiments for Developing Models via Reuse

Semantic

Annotations

Simulation

Experiments

Common

Understanding of

Terminology

Model context and

Desired Behavior

Model

Representation

Model Definition

Model Reuse

Figure 3.2.: The information needed to support model reuse.

Furthermore, when models are developed by reusing existing ones and further reused
for building larger models, the history of how models are successively reused and
how the model behavior evolves, is of interest and importance for the validity of
the newly built models. This history can be represented by simulation experiments
that are performed to validate each reused model. Thus, in complement to model
representation and related semantic annotations, simulation experiments present
themselves as an additional useful tool to support model reuse, as depicted in Figure
3.2.

Hence, this thesis proposes to annotate models with simulation experiments that
have been executed for model validation. When a model is reused to develop new
models, its simulation experiments can also be reused to perform experiments with
the new models. Thereby, the behavior of the original model and the new model
can be compared under the same or similar experiment conditions, to check whether
the expected behavior exhibited by the original model is preserved or not in the
new model and whether this is as intended. As a result, the impact of model reuse
on model behavior is revealed and insights can be gained in the validity of the new
model, as well as the validity of the model reuse.

42

3.3. Related Work

3.3. Related Work

3.3.1. Reusing Simulation Experiments

Although a large body of work exists on simulation experiments, limited attention
has been paid to their reuse. There exist only a few approaches that address the
reuse of simulation experiments.

In the application of cellular electrophysiology modeling, an approach is presented
by Cooper et al. [41], aiming to support evaluation of a mathematical model’s behavior
in response to multiple user-defined simulation experiment scenarios, which are
termed simulation protocols by the authors. In this approach, simulation experiment
specifications are designed to be independent of specific models and some commonly-
used electrophysiology experiment protocols are defined. As functional curation of
models is the goal of this approach, simulation experiments are reused to assess
model behavior, e.g., applying the same experiment to different models or applying
different experiments to the same model, and experiment results are compared. The
complex post-processing of simulation outputs and modifications of model variable
configuration are key points in the specification of simulation experiments.

Based on the approach proposed in [41], in [43] the authors present an on-line
resource, the Cardiac Electrophysiology Web Lab, which provides a web interface
that allows the characterization and comparison of electrophysiological models in
a variety of experiment scenarios. The tool supports models that are in the form
of ordinary differential equations and described in CellML format [136], and an
extension of SED-ML presented in [41] is used for describing experiment protocols.
The model description, the experiment protocol description, and the results of
simulation experiments, are recorded into individual files using the COMBINE
Archive format [20]. The central concept is depicted in Figure 3.3, where models and
simulation experiments (protocols) are encoded separately. A simulation experiment
protocol can be reused for multiple models. The focus is on analyzing and comparing
behavior of different models under different experimental conditions.

Some other approaches exist to document models and simulation experiments.
For example, Henkel et al. [96] propose to associate models with their semantic
annotations and simulation experiments in graph databases, which aims to provide
assistance in model storage and retrieval. This approach supports models that
are represented in SBML and CellML formats, simulation experiments that are
described in SED-ML format, and semantic annotations based on bio-ontologies.
The connections between the model description, the simulation description, and the

43

3. Exploiting Simulation Experiments for Developing Models via Reuse

Model

Model

Model

Model

Experiment

ProtocolExperiment

ProtocolExperiment

ProtocolExperiment

Protocol

Simulator

Experimental Data

Figure 3.3.: The concept of reusing simulation experiments in the Cardiac Elec-
trophysiology Web Lab presented by Cooper et al. [43]. Experiment
protocols are described separately from model representation and may
be applied to multiple models. The simulation results of applying a
given experiment protocol to a model can be compared to experimental
data.

semantic annotations are explicitly stored. Another approach is presented by Chreyh
and Wainer [32], where the CD++ repository is designed to store models in DEVS
format and their experimental frames.

In contrast to those approaches above, where simulation experiments are reused
either for model curation or for model storage and sharing, in this thesis, simulation
experiments are reused to support reusing existing models to develop new ones.

3.3.2. Regression Testing in Software Development

In software development, regression testing is used to verify that previously developed
and tested software still performs correctly after some changes are made, such as
software enhancements and patches [129]. When a bug is located and fixed, or a
functionality is tested, it is considered good practice to record the testing procedure
into a test case, which is a set of conditions under which a tester will determine
whether a software is working as it was originally established to do. As the software
is modified or fixed subsequently, new faults may be introduced or old faults that
previously had been fixed might reoccur. Therefore, the modified software can be
tested with previously created test cases to re-establish the confidence in the software
[129]. Regression testing is to make sure the new change in the software has not
affected any existing functionality and previously eradicated bugs remain fixed.

According to Leung and White [129], software modifications can be grouped into
different types: corrective modifications, which correct or fix failures in the software
so that it can work properly, and adaptive or perfective modifications, in which the

44

3.4. Requirement Analysis

software is adapted or improved for new requirements. In adaptive or perfective
modifications, usually new functionalities are introduced and the specification of
the software is modified for required adaptation or improvement. Based on the
modification type of software, two types of regression testing are distinguished:
progressive regression testing, where the specification of the software is changed due
to new requirements or new features added to the software, and corrective regression
testing, where only design decisions and instructions of the software are involved
and the specification remains unmodified [129]. A variety of methods have been
presented to facilitate regression testing, e.g., the selection of test cases [65]. In
existing work, corrective regression testing has mainly been the focus [265].

The proposed idea in this thesis bears similarities to the concept of regression
testing, with model development corresponding to software development, model
behavior corresponding to software functionalities, and simulation experiments
corresponding to test cases. In regression testing, upon a modification of the software
under development, previously created software test cases are reused to ensure that
the modification does not introduce any new faults; in the approach proposed in
this thesis, when a model is reused to develop new models, simulation experiments
conducted with the original model are reused to inspect the behavior of the newly
built model. Typically, reusing models to develop new ones may result in the change
of model context and model behavior, so that some behavioral properties that used
to hold for the original model would be violated in the new model. Therefore, the
progressive regression testing, where both the software and its specification are
modified, is more related to the proposed approach of this thesis, where a new model
is developed and behavioral properties are updated.

3.4. Requirement Analysis

The essential idea of this thesis is to reuse simulation experiments of models so that
when those models are reused to develop a new model, the simulation experiments of
the reused models can be employed to perform experiments on the new model. To this
end, an explicit, unambiguous description of simulation experiments is required, and
the information that should be included in the specification of simulation experiments
for model validation needs to be identified.

45

3. Exploiting Simulation Experiments for Developing Models via Reuse

3.4.1. Structuring Simulation Experiments for Model
Validation

In order to reproduce and reuse a simulation experiment, an unambiguous and
complete experiment description is necessary. As presented in Section 2.3.3, a
number of standards have been proposed for describing simulation experiments,
e.g., the MIASE (Minimum Information About a Simulation Experiment) [255] and
the MSRR (Minimum Simulation Reporting Requirements) [193], each comprising
several aspects that should be included in the experiment specification. Moreover,
in the previous chapter, the tasks that have to be considered when conducting a
simulation experiment have been discussed in Section 2.1.2, and a common structure
for simulation experiments was presented in Section 2.1.3. Furthermore, as illustrated
in Section 3.1.2, in spite of various techniques for experimental model validation, in
each of those approaches the output results of simulation experiments are analyzed
to check whether the model behavior exhibits certain properties. In order to capture
the information of model context and validity (see discussion in Section 3.2), the
specification of simulation experiments should also incorporate the behavior properties
that the model is expected to satisfy, along with the experiment conditions to generate
this behavior.

Based on previous discussions and following those guidelines for experiment
description, four important aspects for specifying simulation experiments are distin-
guished in this thesis: model configuration, simulation configuration, data processing
method and model behavioral property.

• Model configuration: defining the information of the model used for the simu-
lation experiment, including which model to experiment and how to configure
the model, such as the model location, the initial state, and configuration of
model parameters.

• Simulation configuration: defining the set-up of the simulation experiment,
including how to execute the model, for how long and how many runs, and
what data to output, e.g., simulation algorithm and stopping rules.

• Data processing method: defining the method needed to process the raw data
generated by the simulation experiment, such as a smoothing method.

• Model behavioral property: defining the desired properties a model’s behavior
has to satisfy, which are reflected in the generated simulation trajectories. For
instance, for experiments with a cell model, one property could be that the

46

3.4. Requirement Analysis

concentration of a protein should reach a certain amount after some given
simulation time.

Whereas the model configuration, simulation configuration, and model behavioral
property are mandatory, the data processing method is specified only when data
processing is required.

Although a common structure of simulation experiments for model validation can
be derived for their specification, specifying experiments need to take into account
different problems that arise from different types of simulation experiments. The
problems in specifying experiments with stochastic models are of particular interest,
and are discussed in the next sub-section.

3.4.2. Specifying Simulation Experiments with Stochastic
Models

Depending on whether it contains random elements, a simulation model can be
categorized into two types, deterministic or stochastic [124, p. 6]. Stochasticity
plays an important role in many systems, e.g., in the area of systems biology.
Stochastic models, such as those based on Continuous-Time Markov Chains (CTMC),
are powerful means for the representation and analysis of those systems. When
performing experiments with stochastic models for validation, certain issues have to
be considered, as described in the following.

Probability Estimation

Due to the random factors in the model, simulation outputs of a stochastic model may
differ from one simulation run to another, and therefore the simulation experiment
must be replicated multiple times to gain the confidence on experiment results. As
a result, the specification of multiple replications is required. Moreover, in the
analysis and evaluation of the experiment results, a typical question occurs: what
is the probability that the model shows a certain behavior? Thus, when specifying
simulation experiments with stochastic models, the expression of probabilistic state-
ments is necessary, as well as methods to analyze experiments results for probability
estimation.

Stochastic Noise Toleration

Apart from the uncertainty of results among different simulation replications, stochas-
ticity exists in the simulation result from a single replication as well. In each

47

3. Exploiting Simulation Experiments for Developing Models via Reuse

trajectory generated in the simulation experiment, there may exist some stochastic
noise, as depicted in Figure 3.4. In the simulation trajectory shown in Figure 3.4(a),
the observed model variable ‘x’ shows an oscillation property but with stochastic
fluctuations; in the simulation trajectory shown in Figure 3.4(b), the variable ‘x’
evolves over time, exhibiting a trend of increase, however, not strictly increasing all
the time due to the stochastic noise. To effectively analyze simulation results, data
preprocessing may be necessary so that the impact of the stochastic noise can be
reduced.

Thus, in the specification of simulation experiments with stochastic models, the
stochasticity has an impact on three of the aforementioned four aspects of a simulation
experiment, including simulation configuration, data processing method, and model
behavioral property. First of all, multiple replications are needed in specifying
experiments with stochastic models. A typical way is to fix the replication number
with a constant. Alternatively, determining the replication number in a dynamic and
flexible manner might be necessary. This requires that the specification of simulation
configuration should support different types of replication conditions. Secondly,
to deal with the stochastic noise in the simulation trajectory, the specification of
data processing method should support mechanisms for noise elimination, and also
properties for describing individual trajectories needs to consider the noise, e.g., to
support methods for specifying noise-tolerant properties. Moreover, the specification
of model behavioral property needs to allow the expression of probability estimation.

3.4.3. Specifying Expected Behavioral Properties of Models

As discussed in Section 3.4.1, to reuse simulation experiments for model validation,
besides the experiment conditions, i.e., the model configuration and simulation
configuration, the desired model behavioral properties that should be observed
through the experiments need to be specified as well.

What to Express

In experimental model validation, the evaluation of behavioral properties exhibited
by a model is based on the analysis of the trajectories produced in simulation
experiments. In the layered view of the simulation experiment structure (see Section
2.1.3), single-run, multi-run, and multi-configuration are distinguished. As discussed
in Section 3.4.2, simulation experiments with stochastic models require multiple
replications to facilitate sound output data analysis. The questions that the model is
built to answer, influence whether multiple configurations of simulation experiments

48

3.4. Requirement Analysis

(a) An example of simulation trajectory generated from ex-
periments with a stochastic model, where the variable ‘x’
oscillates along the time with noise.

(b) An example of simulation trajectory generated from experi-
ments with a stochastic model, where the variable ‘x’ shows
a trend of increasing with noise.

Figure 3.4.: Examples of simulation trajectories generated from experiments with
stochastic models. (From [185].)

49

3. Exploiting Simulation Experiments for Developing Models via Reuse

are needed. Accordingly, properties that are of interest for model validation and
data analysis may also involve analyzing results from a single replication, multiple
replications for the same configuration, or multiple configurations.

In the case of analyzing results from one replication, one or multiple variables may
be interesting for property expression, as in the example of a prey-predator model:
the prey species should either not become extinct or its population should be larger than
that of its predators. This type of properties forms the basic properties, based upon
which more complex temporal properties can be expressed by relating the basic ones
over time, e.g., in the property from simulation time 0.0 to simulation time 100.0,
the concentration of beta catenin should always be larger than 0, the basic property
that beta catenin concentration is larger than 0 is explicitly related to simulation
time points. A temporal property may refer to not only the dynamics of one model
variable, but also the temporal relation between multiple model variables, as in the
example of the prey-predator model: the number of predator starts increasing only
after the number of prey grows beyond a certain threshold. Furthermore, properties
that describe a model exhibiting cyclic behavior are of interest, e.g., a model variable
oscillates with a specific amplitude and period, which motivated the study of specific
algorithms for detecting cycles in time series, e.g., [63]. Moreover, another common
type of properties is to relate a basic property with a time period or a bounded
time interval. For instance, in the property relatively short stimulations (5 minutes
or less) by tumor necrosis factor α can trigger sustained activation (60 minutes)
of the NF-κB pathway in IκB-NF-κB signaling model [192], two basic properties,
i.e., stimulation by tumor necrosis factor and activation of the NF-κB pathway, are
related with the time period no more than 5 minutes and 60 minutes, respectively.

When experimenting with stochastic models, as stated in Section 3.4.2, multiple
replications are required for analyzing model behavior and simulation results may
vary among different replications. Thus, it is crucial to quantitatively represent
the probability that a certain property is satisfied by experiment results. In this
case, multiple replications, rather than one specific replication, should be considered
for expressing properties. The definition of the probability can refer to a property
holding at discrete time points or time intervals within one trajectory, e.g., a given
property holds at least 80% of the time in a certain interval of a trajectory. In
addition, it is also of interest to define the probability of properties holding across
different replications of the same configuration, e.g., a given property holds in more
than 8 replications out of 10. More complex properties could relate properties with
nested probabilities, such as in more than 8 replications out of 10, a given property
holds at least 80% of the time in a certain interval of a trajectory.

50

3.4. Requirement Analysis

Furthermore, expressing properties that span multiple experiment configurations
would be interesting as well. For instance, the so-called “ratio-dependent theory” in
the area of ecology states that if an ecosystem has richer resources, there should be
higher equilibrium abundances on all trophic levels, in comparison to an ecosystem
with less resources [79]. If the resources of the ecosystem are part of the initial
state of the simulation experiment, then comparison of variables for more than
one configuration is required. Besides, simulation experiments with the focus on
sensitivity analysis and robustness also depend on comparing the results of different
configurations, in which case experiments with solely a single configuration are not
sufficient to provide adequate information about a model’s behavior. For example, in
the cell biological modeling, kinetic models with parameters can be used to describe
cell dynamics. All numerical parameters need to be instantiated to a specific value
before executing simulation experiments of the model. However, it may be difficult
to assign a certain value to the parameters, as it may be unknown, or known without
accuracy. Experiment results with single instantiation of parameters may not present
adequate information about model behaviors. Thus, it is inevitable to consider
uncertainties for analyzing model behavior, such as conducting robustness analysis
or sensitivity analysis [26, 157]. Therefore, how to express properties for the analysis
depending on multiple sets of model configuration becomes important.

Approaches to Express Properties

In the area of verification and model checking, properties that a model needs to
satisfy are formally expressed and then automatically verified or checked with model
checking algorithms. Generally, three approaches are used to express properties: the
logic-based approach, the automata-based approach and the hybrid approach of logic
and automata [23].

The logic-based approach employs logic languages to specify properties. For time
related properties, a variety of temporal logics are used as specification formalisms,
such as Linear Temporal Logic(LTL), Computational Tree Logic(CTL) and their
extensions [36]. In addition to the standard logic operators such as “not” (¬) and “or”
(∨), LTL provides the temporal modal operator “next” (X) and “until” (U), based
on which the temporal operator to describe “sometimes” (F) and “always” (G) in
the future can be derived. As a branching-time logic, CTL allows the expression of
behavior with non-determinism, i.e., there exist different paths in the future, like a
tree, and any one of those paths could be the actual path that is realized. Two path
qualifers: “existential” (E, there exists a path such that) and “universal” ((A), for
all paths) are incorporated in CTL, in addition to the temporal operators from LTL.

51

3. Exploiting Simulation Experiments for Developing Models via Reuse

To quantitatively express probabilities, the Probabilistic Computation Tree Logic
(PCTL) [34, 92] and Continuous Stochastic Logic (CSL) [223] are proposed as an
extension of CTL to support discrete-time and continuous-time stochastic models,
respectively. In PCTL and CSL, the probabilistic path quantifier P is introduced as
the replacement of the universal path quantifier A and the existential path quantifier
E [248].

As an alternative to temporal logic, automata present themselves as another means
for expressing properties, e.g., Büchi automata [2]. While logic-based formalisms
provide high-level, concise, and expressive description languages, automata-based
formalisms are more direct in modeling the dynamics of a system [23]. To combine
the benefits, logics and automata are integrated together into a hybrid approach
[11, 22]. Besides, regular expressions and their extensions are also used to express
properties [14]. Even though automata and regular expressions have at least the
same power of expressiveness as temporal logics, in general, they are perceived as too
procedural and possibly low-level to be attractive formalisms for property expression
[54].

Therefore, logic-based approaches are widely exploited in specifying properties
for (statistical) model checking. For instance, in [152], to ensure the robustness of a
synthetic genetic network, one desired property is that the fluorescence denoted as
X remains below 103 for at least 150 min, exceeds 105 after at most 450 min, and
needs at most 150 min for switching from low to high levels. LTL is used to express
this property as:

φ(t1,t2) = G(t < t1 → X < 103)∧G(t > t2 → X > 105)

∧ (t1 > 150) ∧ (t2 < 450) ∧ (t2 − t1 < 150).

For stochastic models, CSL is often exploited to express properties with probabilities.
One example is that in [221], a desired property is the probability of the queuing
network becoming full within T time units is less than 0.5, which is formulated in
CSL as:

P<0.5(true U≤T full).

In addition, to meet different requirements of property expression, a great many
variants of temporal logics have been proposed based on LTL and CTL, e.g.,
QFTL(R) (Quantifier-Free First-Order LTL over the Reals) [71], MITL (Metric
Interval Temporal Logic) [3], and BLTL (Bounded Linear Temporal Logic) [37]. In
these approaches, modal operators are employed to enrich logical formulas regarding
temporal aspects, e.g., in BLTL the operator U t is defined to express that the

52

3.4. Requirement Analysis

left argument should remain true until the right argument becomes true, which is
required to happen within t time units.

While the utilization of modal operators may lower the complexity of the property
expression, it also constrains the expressiveness and the possibilities to express
properties with complex temporal characteristics. For example, temporal logic
such as LTL and its extensions usually contains the operator “always” G, e.g.,
G[0,t](d[v]/dt > 0) might be used to specify the property that the variable v increases
from time point 0 for t time units (cf. [149] and [70]). However, as discussed in
Section 3.4.2, in a trajectory produced by experiments with a stochastic model,
stochastic noise exists so that during the time interval [0, t] the variable v shows
a trend of increase but is not strictly increasing (e.g., as in Figure 3.4(b)), which
indicates the first order derivative of the variable d[v]/dt > 0 cannot capture this
increasing property and therefore the formula above is not applicable. This type of
property definition with noise tolerance, such as the increasing trend of a variable, is
common for stochastic models. Since they are not able to deal with fluctuations in
the simulation trajectories that obscure the relevant properties, temporal logics are
not capable of fully describing such properties of stochastic trajectories. Moreover,
to deal with probability estimation, probabilistic variants such as CSL can be used
to express that v increases during the interval with a probability of at least p% in
terms of replications. However, to express that v increases during at least p% of the
interval would be problematic.

As an alternative to modal operators, augmenting first-order logic can be used,
which incorporates temporal characteristics into logical expressions with temporal
arguments [225]. Two types of approaches can be distinguished: reified temporal
logics and Non-reified temporal logics. While reified temporal logics rely on truth
predicates that connect a non-temporal statement with time points or intervals [144]
(e.g., HOLDS[t1,t2,incr(v)]), non-reified temporal logics define predicates with non-
temporal and temporal arguments simultaneously [5] (e.g., incr(t1, t2, v)). In both
approaches, evaluating predicates on model variables is always related to the time
axis, either time points or time intervals, which facilitates an explicit and precise
specification of temporal properties. Further logical connectives can be applied
to model variables, time points, and time intervals. Augmenting first-order logics
possess more expressive power regarding the definition of noise-tolerant descriptions,
by defining predicates that allow different interpretations, e.g., incr(t1, t2, v) can be
interpreted as this predicate holds as long as the value of variable v is larger at time
point t2 than that at time point t1, which allows the existence of stochastic noise in
the trajectory. However, the complexity of first-order logic is carried over as well.

53

3. Exploiting Simulation Experiments for Developing Models via Reuse

Besides, in current work model checking is typically performed against properties
expressed in propositional logic; the first-order model checking problem in general
has been shown to be intractable, with very little work existing on algorithms for
specifications in first-order logic [84].

In recent years, with the increasing interest in annotating models along with
additional information, ontologies are employed for the description of model behavior,
e.g., the TEDDY (TErminology for the Description of DYnamics) [45]. TEDDY
provides a more machine-readable classification of model behavior through defining
vocabularies, and focuses on the most critical features of experiment results, such
as increasing or oscillation. While TEDDY aims at providing semantic information
of models, the property expression aims to sketchily present typical characteristics
of model behavior, e.g., using the defined term period for characterizing a periodic
oscillation and the term limit for the steady state behavior. Hence, in many cases,
TEDDY is not able to be sufficiently precise for capturing a certain model behavior
while setting it apart from irrelevant ones, especially in the case of experiments with
stochastic models. Another method involving describing model behavior through
representing results data is SBRML [46], which associates the model, the process
applied to the model, and the data resulting from this process, based on defining
ontologies in XML.

The advantages and disadvantages of these approaches are difficult to judge
without knowledge of the type of properties to be described. Therefore, determining
which approach to use for specifying properties is highly dependent of the specific
application.

3.4.4. Specifying Data Processing Method

During the execution of simulation experiments, output data is generated and
collected. However, the produced raw data may not to be directly usable for analysis,
and need to be processed at first. Thereby, the specification of data processing
method defines how to transform raw output data generated in the simulation
experiment into the desired form for analysis, i.e., checking simulation results against
the specified behavior properties.

For example, in simulation experiments with stochastic models, the raw output
trajectories may contain noise; high frequency fluctuations may create difficulties for
algorithms to detect patterns in the trajectory, e.g., as shown in Figure 3.4(a), or
may overlay longer-term trends, e.g., as shown in Figure 3.4(b). In order to make
such patterns or trends prominent also at short intervals and to allow automatic
detection by algorithms, those fluctuations need to be filtered out, leading to a

54

3.5. Proposed Approach

smoothing process of the raw trajectories. The resulting smoothed trajectories can
be evaluated against properties expressed in temporal logics without being disrupted.
Other situations exist where pre-processing the raw data is necessary, e.g., the output
might need to be scaled or standardized, data from different replications may need
to be averaged, and also the numerical relation among different output variables
could be interesting. Therefore, to meet all kinds of requirements on data processing
for result analysis, the ability to integrate and specify different processing methods
is required.

3.5. Proposed Approach

3.5.1. Overall Concept

The central idea of the proposed approach in this thesis is to reuse simulation
experiments of individual models to support the reuse of those models for developing
new models.

Model development is an intricate process, which may involve numerous simulation
experiments conducted. One particular type of simulation experiments is those that
are performed to gain information on the model validity. When a model is reused to
develop new models, checking the validity of the new model is a crucial task, which
indicates whether the original model is applicable for this reuse. Several questions
arise from validating a model built through reusing other models: how the behavior
of the new model is different from the reused ones; whether some key observations
in the behavior of the reused models are expected to be preserved or violated in
the new model, as pointed out in [231, p.4]: “Are the key behaviors of the original
models still intact? Does it matter if they are not?”.

According to the definition of model validation (see Section 3.1.1, pp. 36-37),
model behavior and the experiment conditions, under which this behavior is exhibited,
are two significant aspects for evaluating model validity. Simulation experiments not
only can produce observation of the model behavior, but also carry the information
of the conditions for the model to produce the behavior. Although the new model
might be developed with new purposes and new context, it shares some common
characteristics with the reused model; otherwise the reuse of the original model
becomes irrelevant and meaningless for the development of the new one. Consequently,
some behavior exhibited by the reused model should be preserved in the new model,
and some may be expected to be violated. Thus, the simulation experiments that
have been performed to observe the interesting behavior of the original model can be

55

3. Exploiting Simulation Experiments for Developing Models via Reuse

reused to inspect the behavior of the new model, and to detect the impact of model
reuse on the model behavior.

The overall concept of the approach is depicted in Figure 3.5. During the
development of a model, simulation experiments are conducted for model validation.
When a valid model is obtained, those simulation experiments should be described
and annotated together with the model. More importantly, the specification of
simulation experiments should not only include the experiment condition, but also
the desired model behavioral properties, i.e., the four aspects identified in Section 3.4
(pp. 45-46): model configuration, simulation configuration, data processing method,
and model behavioral property. Once this model is reused to build a new model, the
specifications of simulation experiments annotated with the reused model can be
reused as well. Based on those experiment specifications, simulation experiments
can be performed with the newly built model. Through analyzing the simulation
results against the specified behavioral properties, the impact on the model behavior
of model reuse can be revealed. Hence, insights into the behavior of the new model
as well as the information on the validity of the model reuse can be gained and
provided to the modeler.

Therefore, an explicit specification of simulation experiments is required. In
addition, a mechanism is needed to facilitate automatically reusing simulation
experiment specifications of individual models, to conduct simulation experiments
with the newly built model. Furthermore, a mechanism to perform automatic result
analysis, i.e., checking experiment results against described behavioral properties,
is needed as well. The three aspects are illustrated individually in the following
sub-sections.

3.5.2. Experiment Specification in SESSL

According to the discussion presented in Section 2.3, an explicit, declarative descrip-
tions of simulation experiments is beneficial for reproducing and reusing experiments.
As illustrated in Section 3.4.1, the proposed approach in this thesis requires an
explicit specification of behavioral properties, in addition to corresponding experiment
conditions. Despite the fact that a number of approaches have been proposed for
specifying simulation experiments, e.g., SED-ML (see Section 2.3.4, p. 30), none of
them was designed to explicitly describe expected model behavioral properties that
are observed from the specified simulation experiment.

SESSL is an internal domain specific language to specify simulation experiments
in a declarative style, as described in Section 2.3.4 (pp. 31-32). As SESSL was
initially designed to support users in setting up and executing simulation experiments,

56

3.5. Proposed Approach

experiment specifications in SESSL are unambiguous and executable. Apart from
all the features SESSL provides, e.g., the ability to specify model configuration
and simulation configuration and to support analysis such as optimization, a more
important aspect for this thesis is that, as an embedded domain specific language,
SESSL can be easily extended with new features. Therefore, SESSL is selected for
experiment specification in this work.

As identified in Section 3.4.1, the specification of a simulation experiment should
incorporate four aspects, i.e., model configuration, simulation configuration, data
processing method and model behavioral property. SESSL originally supports
specifying the first two aspects, i.e., model configuration and simulation configuration,
and thus additional extensions are needed to allow specifying data processing methods,
model behavioral properties, and those methods required to facilitate automatic
property checking. Thereby, SESSL was extended with a new trait Hypothesis

implemented. This trait can be integrated into the class Experiment as a mix-in to
provide corresponding features (see discussion in Section 2.3.4, pp. 31-32).

For illustration, a simple example is depicted in Figure 3.6, based on the experiment
presented in Figure 2.4, which specifies a simulation experiment for the modeling and
simulation framework JAMES II by importing the corresponding binding (line 2). In
line 3, an experiment is defined that supports observation, parallel execution, as well
as property specification and checking. Lines 5-7 depict the model configuration, i.e.,
the model used for experimentation (a ML-Rules model named SimpleModel) and
the assignment of three model parameters (A, B, and C). The simulation configuration
is shown in lines 9-14, which includes the simulator to use (line 9), the simulation
stop condition (line 10), the variable to observe during simulation (line 11) and how
to observe (line 12), the number of replication for each configuration (line 13), and
the computer resource to use for parallel execution (line 14). Line 16 specifies the
data processing method, where the method named SimpleDataProcessor is used.
Lines 18-19 are the specification of model behavioral property, starting with the
SESSL keyword assume (line 18). As depicted in line 19, a property based on LTL
is defined to state that the variable A should be always larger than zero, using the
operator “Always” G.

In this example, for the purpose of illustration, the constructed data process-
ing method SimpleDataProcessor is used in the experiment specification, and a
straightforward property expressed in LTL is specified. However, the proposed
approach is open to various methods for data processing and behavioral property
specification, which can be integrated into SESSL without much effort. The selection

57

3. Exploiting Simulation Experiments for Developing Models via Reuse

Modeler

Model Construction Experimental Model Validation

Annotating the Model with
Simulation Experiments

Model Reuse Reusing Simulation Experiments for
Experimentation with the New Model

Model

New
Model

Checking Specified Properties and
Revealing the Impact of Model Reuse

Modeler

New
Model

Providing Insights into Validity of the New
Model and the Model Reuse

Model
Simulation
Experiment

Specifying Simulation Experiments

New
Model

Model

Simulation
Experiment

· Model Configuration

· Simulation Configuration

· Data Processing Method

· Model Behavioral Property

Model

Simulation
Experiment

Figure 3.5.: The overall concept of the proposed Approach. Models are annotated
with their simulation experiments. When models are reused to develop
new models, those simulation experiments are reused for experimentation
with the newly built model. Simulation results are analyzed to check
whether the specified behavioral properties that used to hold for the
reused model, are satisfied by the new model, and whether this is as
intended. Thus, some insights can be provided into the behavior of the
new model as well as the validity of the model reuse.

58

3.5. Proposed Approach

1 import sessl._

2 import sessl.james._

3 val exp = new Experiment extends Observation with ParallelExecution with Hypothesis {

4 //model configuration

5 model = "file-mlrj:/./SimpleModel.mlrj"

6 set("A" <∼ 50, "B" <∼ 500)

7 scan("C" <∼ range(10, 1, 20))

8 //simulation configuration

9 simulator = SimpleSimulator()

10 stopCondition = AfterWallClockTime(seconds=1) or AfterSimTime(500)

11 observe("A")

12 observeAt(range(0, 1, 500))

13 replications = 10

14 parallelThreads = -2

15 //data processing method

16 dataProcessor = SimpleDataProcessor()

17 //model behavioral property

18 assume(

19 G(variable("A") > 0))

20 }

Figure 3.6.: An illustrative example of SESSL experiment specification with four
aspects: model configuration, simulation configuration, data processing
method and model behavioral property.

of methods to use depends on concrete applications, which will be illustrated in later
chapters within case studies in more detail.

It is notable that in a SESSL experiment specification, once specified by the user,
the configuration of model parameters is completely determined, and the simulation
experiment is executed with this configuration. In addition, in the model file a full
configuration of model parameters should be provided, with default values assigned
to each model parameter. When some assignments of model parameters are explicitly
configured in the experiment specification, which could be different from the default
values in the model file, those assignments are used for the experiment execution;
otherwise, the experiment is executed with the default values provided in the model
file.

3.5.3. Experiment Adaptation, Generation and Execution

When the experiment specifications of individual models are reused, those specifica-
tions may not be directly usable for performing experiments with the newly built
model and certain adaptations are necessary.

First of all, seeing that the experiment generation for the new model is based
on the experiment specifications of individual models, to reuse those experiment

59

3. Exploiting Simulation Experiments for Developing Models via Reuse

specifications, configuration of the model needs to be adapted. In other work that
generates simulation experiments from description scripts (e.g., SED-ML and NEDL),
typically only one model is involved, i.e., the model that experiments are generated
and executed with is the same as the one documented in the experiment description
[90, 256]. However, when experiment specifications of individual models are reused
and applied to the newly built model, experiments are generated for a different
model (i.e., the new model), rather than the model described in the experiment
specification (i.e., the reused model). Thus, the model location needs to be updated
from the original model to the new one. Besides, configuration of model parameters
may also need to be adapted. For instance, when new parameters are added in
the newly built model, configuration of their assignments is required for executing
the experiment; however, those parameters are not part of the original model and
no configuration is included in the experiment specification of the original model
as well. Therefore, additional information is needed for the configuration of new
parameters, either by providing assignments in the new model file or by specifying it
through experiment specifications, which requires an update in the reused experiment
specifications of the original model. In addition, the configuration of some existing
parameters might need to be changed, possible reasons including updated knowledge
from the modeler’s side, requirements from the context or objectives of the new
model, incompatibility resulting from the model reuse, and so forth. Furthermore,
adaptation in the model behavioral properties of the experiment specification may be
necessary as well, e.g., some model variables are renamed during the construction of
the new model, in which case the variables specified in the observation conditions also
need to be renamed accordingly. All the information that are required for adapting
experiment specifications should be defined in the adaptation information.

An example of adapting experiment specification is presented in the following,
based on the previously described example shown in Figure 3.6. The model named
as SimpleModel is annotated with its experiment, and this model is reused by the
modeler to build a more complex model, named as NewSimpleModel, which contains
a new model variable D. Therefore, the newly built model has three variable from
the original model, i.e., A, B, C, and the newly introduced variable D. During the
construction of the new model, in order to resolve the name conflict between variable
A and another model variable, which may be from a second reused model and shares
the same variable name, the modeler renames the variable A from the SimpleModel

into newA. In addition, the assignment of some parameters is adjusted, e.g., decreasing
B from 500 to 200. Meanwhile, the initial value of the new model variable needs to

60

3.5. Proposed Approach

1 import sessl._

2 import sessl.james._

3 val exp = new Experiment extends Observation with ParallelExecution with Hypothesis {

4 //model configuration

5 model = "file-mlrj:/./NewSimpleModel.mlrj" /** "file-mlrj:/./SimpleModel.mlrj" */

6 set("newA" <∼ 50, /** "A" <∼ 50 */

7 "B" <∼ 200, /** "B" <∼ 500 */

8 "D" <∼ 30) /** not included in the original specification*/

9 scan("C" <∼ range(10, 1, 20))

10 //simulation configuration

11 simulator = SimpleSimulator()

12 stopCondition = AfterWallClockTime(seconds=1) or AfterSimTime(500)

13 observe("newA") /** observe("A") */

14 observeAt(range(0, 1, 500))

15 replications = 10

16 parallelThreads = -2

17 //data processing method

18 dataProcessor = SimpleDataProcessor()

19 //model behavioral property

20 assume(

21 G(variable("newA") > 0) /** G(variable("A") > 0) */

22)}

Figure 3.7.: The adapted SESSL experiment based on the experiment described
in Figure 3.6. The adapted information is followed by the original
specification in the same line (comments in gray).

be configured, e.g., setting D to 30. All those changes are recorded in the adaptation
information.

Thereby, in order to perform experiments with the new model by reusing the
experiment of the original model, i.e., the one presented in Figure 3.6, an adaptation of
this experiment specification is required. Based on the defined adaptation information,
the adapted experiment specification, which can be executed with the new model, is
as shown in Figure 3.7. The model location is updated from the original model to the
new model file-mlrj:/./NewSimpleModel.mlrj (line 5). The model parameter
A needs to be renamed as newA, which leads to an update in model configuration
(line 6), observation condition (line 13) and property (line 21). The assignment of
parameter B is updated to 200 (line 7) and the configuration of new parameter D is
added (line 8). In the experiment specification, the rest of model configuration as
well as simulation configuration stays unchanged, and the data processing method is
reused as it is.

Various ways exist to obtain the information needed for adapting the experiment.
For example, adaptation information can be automatically generated by monitoring
and analyzing changes in model files, in which case the work on model transformations

61

3. Exploiting Simulation Experiments for Developing Models via Reuse

(e.g., [161]) and on model version control (e.g., [257]) are of relevance. Currently, in
the prototypical implementation of this work, all the information needed for adapting
the experiment is specified by the user. Since experiments specified in SESSL are
executable, once experiment specifications of the original model are adapted, they
can be directly applied to the new model and experiments can be executed.

Assume that a new model m′ is created by reusing existing models. E is a set
of experiments that have been executed with the original models. Each experiment
e ∈ E contains a model configuration including model location em and parameter
assignment ea, a simulation configuration including observation conditions eo, a data
processing method ed, a model behavioral property ep and the replication condition
erep. Taking the experiment presented in Figure 3.6 as example, em denotes the
model file-mlrj:/./SimpleModel.mlrj (line 5) and ea refers to the configuration
of three parameters A, B and C (line 6-8). Lines 12-13 constitute observation condition
eo, which includes the variable to be observed (i.e., A) and how to observe (i.e., at
each time point from time 0 to 500). The method denoted as SimpleDataProcessor

is the data processing method ed (line 17) and behavioral property ep is depicted in
lines 19-21. The replication condition erep is configured as 10 (line 14).

In the adaptation information κ, users can specify the change of parameter
configuration κa and the change of model variables κnames. In the example of
adapting experiment described in Figure 3.7, κa includes assigning parameter B to
200 and D to 30, and κnames is a mapping from variable name A to newA. Additionally,
users can specify the expected result of checking the property on the new model
m′ in the result expectation r, which defines that for each experiment e in E the
property ep will hold or not.

The procedure of adapting, generating and executing experiments is depicted in
Algorithm 1. The algorithm iterates all experiments of reused models. For each
experiment e ∈ E, first of all, the experiment is adapted based on the adaptation
information κ (lines 9-16). The model location em is updated to the new model
(line 10). The configuration of model parameters ea is updated as well, including
the assignment of parameter values and parameter names (line 12). Besides, the
variables in the property ep and in observation conditions eo are renamed accordingly
(line 14). Apart from necessary adaptation, all the other aspects of the experiment,
e.g., the simulator, simulation stop time and the data processing method ed, remain
the same. Subsequently, a new experiment e′ is generated (line 16).

In stochastic simulation, replication numbers have an important impact on simula-
tion results, and therefore influence the evaluation of properties. To gain confidence
in checking the probabilistic properties of the extended model, a certain strategy for

62

3.5. Proposed Approach

Algorithm 1 Algorithm for reusing experiment specifications.
m′: the new model built by reusing other models.
E: all experiments executed for reused models.
κ: adaptation information.
r: result expectation.

1 // Test result

2 res← true

3 // Return set for successful experiments

4 E+ ← ∅
5 // Return set for failed experiments

6 E− ← ∅
7 for each experiment e ∈ E

8 /*** Experiment adaptation */

9 // Update model location to the new model

10 em′ ← updateModel(em, m′)

11 // Update model configuration, including parameter assignment and renaming

12 ea′ ← updateParameterConfig(e, E, κa, κnames)

13 // Rename variables in property and observation variables

14 eo′ , ep′ ← renameVariables(e, κnames)

15 // Generate experiment for the new model

16 e′ ← generateExperiment(em′ , ea′ , eo′ , ep′ , e)

17 /*** Experiment execution */

18 // Determine replication number

19 e′
rep ← calculateReplicationNumber()

20 // Execute experiment

21 Y ← run(e′)

22 /*** Data Processing */

23 Y ′ ← processData(Y , e′
d)

24 /*** Property checking */

25 result← check(e′
p, Y ′)

26 /*** Result return */

27 // Add successful experiment

28 if(result is true)

29 E+ ← E+ ∪ {e′}
30 // Add failed experiment

31 else

32 E− ← E− ∪ {e′}
33 // Compare and aggregate adherence to result expectation

34 res← res ∧ (result equal getExpectation(r, e))

35 end for

36 return res, E+, E−

63

3. Exploiting Simulation Experiments for Developing Models via Reuse

determining the required replication number of experiments is necessary, which is
implemented in the function calculateReplicationNumber (line 19). Afterwards,
the new experiment is executed, resulting in output trajectories Y (line 21). New
trajectories Y ′ are obtained by applying the data processing method e′d on the
trajectories Y (line 23). The new trajectories Y ′ are checked against the property
e′p(line 25) and the checking result result is either true or false. Independent of
whether the property is checked successfully or not, the experiment specification is
recorded accordingly (lines 27-32). Further, the checking result is compared with
the result expectation result′ specified by the user, and based on aggregating the
comparison outcome, the test result res is formed with a value of true or false (line
34).

When all experiment specifications are adapted, executed and checked, two types
of information are returned to the user. On the one hand, the result expectation
specified by the user is tested against the checking result for each experiment
specification, and the test result is returned to the user, which corresponds to the res.
When the checking results of all experiments are as expected, the test result is true;
if the checking result of one experiment does not match the expectation, false will
be returned (as depicted in line 34). Since the result expectation is derived by the
user based on how the new model is created, with this type of information, the user
can find out whether the new model actually behaves as expected, and if not, the
reuse of the original models may need to be revised. On the other hand, regardless of
result expectations, each experiment specification along with its checking result are
recorded and returned, corresponding to E+ and E− (lines 27-32). Those experiment
specifications that have been checked successfully are returned, which are annotated
with this model for further reuse; those whose checking result is false are returned to
the user, either to be revised or discarded.

The procedure of adapting experiment specifications may vary depending on the
type of model reuse, especially regarding parameter configuration. For instance, in
model composition, when two models are composed together, typically the composed
model has a higher parameter dimension than the reused models, i.e., it contains all
the model parameters from both models. The two reused models may share common
model parameters but with different configurations, and therefore a certain strategy is
needed to resolve the conflict in the configuration of those common model parameters.
But this conflict resolution is not required in the case of model extension, as only
one model is reused. The adaptation of experiment specifications will be studied
in more detail in combination with specific type of model reuse in the following

64

3.5. Proposed Approach

chapters, where reusing models for model composition and extension are investigated,
respectively.

3.5.4. Result Analysis

In the field of verification and model checking, desired properties are formally
expressed using languages such as temporal logic, and further algorithms are used
to automatically check whether those properties are satisfied. Model checking is a
well-established technique with a large body of work existing and a variety of tools
developed, e.g., BIOCHAM (the BIOCHemical Abstract Machine) [28], PRISM (a
probabilistic model checker) [100], MARCIE (the Markov Reward Model Checker)
[108]. More information can be found in textbooks and detailed surveys such as
[27, 29, 36, 128].

As model checking techniques evolved in recent decades, simulation-based ap-
proaches have been employed for checking specified properties, in addition to
numerical and symbolic analysis approaches. A typical use of simulation-based model
checking techniques is to solve the probability model checking problem, which is
“given a property φ, checking whether a stochastic system satisfies φ with a probability
greater than or equal to a certain threshold θ” [35]. Numerical approaches for solving
this problem compute the exact probability for all the executions of the system, which
are memory intensive and may not scale up for systems with large state spaces [37].
In contrast, simulation-based approaches for probability model checking problem,
also known as statistical model checking (SMC), rely on executing simulation to
generate finite samples from the system, evaluating each sampled trajectory against
the given property, and answering the question whether the samples provide statistical
evidence to show the system satisfies the given property with a certain probability
[35, 107, 128]. Thereby, in those approaches, apart from mechanisms for estimating
probability, methods for checking individual simulation trajectories against a given
property specification are also needed [35, 266]. Hence, the work concerned with
property monitoring or runtime verification is relevant, where individual simulation
trajectories are analyzed [18, 150, 170]. Moreover, in the literature, many algorithms
have been developed for analyzing produced simulation trajectories against properties
specified with formal languages such as LTL, e.g., [71].

Following the concept of model checking techniques, this work aims to support an
automatic result analysis as well, i.e., by making use of algorithms to automatically
check experiment results against the specified model behavioral properties. As
discussed in Section 3.4.3, the presented approach in this thesis is independent
of specific methods for specifying model behavioral properties. With simulation

65

3. Exploiting Simulation Experiments for Developing Models via Reuse

experiments specified in SESSL, which allows easy extension, different methods
for property checking can be supported and integrated. When languages such as
widely used temporal logics are used for property specification, the existing checking
algorithms can be exploited and integrated in the proposed approach, as well as newly
developed algorithms. In addition, other than existing techniques, new methods such
as a new language for specifying properties can also be supported by integrating into
SESSL, e.g., [260].

Furthermore, as stated earlier, based on how the new model is created from
reusing others, the modeler can specify the result expectation of checking behavioral
properties on the new model, i.e., which properties are expected to still hold and
which should be violated. Thereby, after experiment specifications are adapted and
executed for the newly built model, experiment results are checked by property
checking algorithms, and the checking results are automatically compared to given
result expectations.

3.5.5. General Architecture

The overall conceptual structure of the presented approach is depicted in Figure 3.8,
which is divided into three layers based on the three main elements of the approach,
i.e., reusable experiment specifications, experiment generation from specifications,
and result analysis.

To reuse simulation experiments of individual models for conducting experiments
with the model built by reusing those models, at first the model to experiment
on (i.e., the newly built model) and the simulation experiments to reuse must be
accessible. Thereby, in the topmost layer, a user interface should be provided,
where users can specify the model to experiment on and the simulation experiment
specifications to use. Also, users should be allowed to define necessary information
for experiment adaptation when experiment specifications need to be adapted, and
the result expectation for property checking. All of this information is handed over
to the second layer. Different types of user interface are possible, such as a graphical
user interface, where users are able to load the model and experiment specifications,
and also to specify adaptation information and result expectation via the interface.

The second layer deals with the experimentation. Based on the information passed
over by the first layer, the second layer performs experiments with the model based
on given experiment specifications. Those experiment specifications are adapted
first when necessary. After the experiment execution, corresponding data process
methods in the experiment specification are applied to the raw simulation output.
When the simulation output is applicable for analysis, the second layer triggers the

66

3.5. Proposed Approach

+ Output data

+ Property
+ Checking result (true ˅ false)

User Interface

Result Analysis

Experimentation

+ Model

+ Experiment specification(s)

(+) Adaptation information

(+) Result expectation

+ Checking result

+ Failed experiment specification

Experiment
execution

Data processing

Statistical model
checking

User specification

• Adaptation information

• Result expectation

Experiment
specificationModel

Experiment
adaptation

Trajectory analysis

Figure 3.8.: The overall architecture of the proposed approach. As the user interface,
a SESSL extension is used in the upper layer where the user can specify
the model, experiment specifications, adaptation information and result
expectation. The middle layer conducts experiments and performs
data processing, with two types of input, either the model, experiment
specifications, adaptation information and result expectation, or only the
model with the experiment specification. With output data and property
passed by the second layer, the bottom layer checks the property and
returns checking results. [Adapted from [186]]

third layer to perform property checking, with the formalized properties and output
data handed over.

The bottom layer is concerned with analyzing results. In this layer, the output
data is checked against the desired properties. The checking results are returned
to the second layer, where further analysis may be performed, e.g., in the case of
statistical model checking, to see whether more replications are required. When
no additional experiments are needed and the evaluation of experiment outputs is
finished, the results are compared with result expectation if available. Finally, the
overall results are returned to the user.

The prototypical implementation of the proposed approach has been designed
and realized. For the first layer, the extended SESSL with the Hypothesis trait (see
Section 3.5.2) is used as the user interface. Besides, a graphical user interface is
under development (see [205]).

67

3. Exploiting Simulation Experiments for Developing Models via Reuse

As a proof of concept, the first implementation was realized on top of the modeling
and simulation framework JAMES II, where SESSL is the user interface, experiment
generation and execution rely on the experimentation layer of JAMES II, and check-
ing algorithms for result analysis are integrated into JAMES II. Although JAMES II
provides the approach with the applicability to various modeling formalisms and
the flexibility for further extensions, experiment adaptation and execution are
realized by transforming SESSL specifications into JAMES II experiments, and the
adapted experiments are internally generated within JAMES II and not accessible.
Consequently, those adapted experiments, which are actually executed with the new
model, need to be manually specified by the user into SESSL specifications, and then
to be annotated with the new model if checked successfully.

To alleviate this problem and provide further user assistance, the TAECS (a Tool
for Adaptation, Execution and Checking of Simulation Experiments) was developed
based on SESSL, which consists of the middle layer and the lower layer of the general
architecture in Figure 3.8, while SESSL is the user interface as well. As SESSL allows
specifying simulation experiments for different simulation systems through creating
bindings, exchanging modeling formalisms and simulation methods are implicitly
supported by the approach. Similarly, the approach is open to different languages
for property specification and their checking algorithms, which should be integrated
into SESSL.

In addition to performing automatic experimentation by reusing experiment spec-
ifications, the tool TAECS can also allow the user to directly executing experiments
on models, or revise the experiments that fail in the checking. In both situations,
an experiment specification and the related model are passed to TAECS, without
adaptation on the experiment specification. Thereby, two working processes are
distinguished in TAECS, as shown in Figure 3.9. In case A, experiment specifications
are adapted firstly, based on the specified adaptation information. This case
corresponds to reusing experiment specifications for developing new model, i.e.,
the core concept of this work, and the procedure is as presented in Algorithm 1.
In case B, TAECS provides assistance in conducting experiments with models and
documentation of experiments, where no experiment adaptation is needed. Taking
only the experiment specification and the model as input, the algorithm for the
procedure in case B is similar to Algorithm 1, without the experiment adaptation
and comparison to result expectation.

For each of the three case studies in this work, which will be presented in Section
4.4, Section 4.5, and Section 5.3, both working processes were used. Before being
annotated to individual models, all experiment specifications were tested with the

68

3.6. Summary

Experiment adaptation

Data processing

Property checking

Result return

Experiment execution

Case A

· Model

· Experiment specifications

· Adaptation information

· Result expectation

Case B

· Model

· Experiment specification

Figure 3.9.: The working process of TAECS with two cases. In both case A and B,
TAECS executes experiments based on experiment specifications. And
then corresponding data processing is performed on the raw experiment
results. Afterwards, the processed data are checked against specified
properties. In case A, TAECS takes experiment specifications, the
model, adaptation information and result expectation as input, and
the experiment specifications are first adapted, while in case B it only
takes the experiment specifications and the model as input, and the
experiment specifications are directly executed and checked without
adaptation. (From [186])

model using the working process in Case B. When experiment specifications of
individual models were reused, the working process in Case A was used to test
experiment specifications on the new model.

3.6. Summary

This chapter presented the general concept of employing simulation experiments to
support model development by reuse. At first, through a discussion on the different
types of simulation experiments that are performed during model development,
Section 3.1 narrowed the focus of this thesis to the experiments for model validation,
and further described different techniques for validation via simulation experiments.

69

3. Exploiting Simulation Experiments for Developing Models via Reuse

Subsequently, Section 3.2 introduced the idea of reusing simulation experiments
to support model reuse, as simulation experiments for validation are capable of
representing information of model context and the corresponding desired model
behavior, which is essential to effective model reuse. Section 3.3 was devoted to
discussing related work: some other work that promotes the concept of reusing
simulation experiments, and the regression testing in software development, which
shares some similarities of the presented idea.

Afterwards, the requirements of reusing simulation experiments for model reuse
were analyzed in Section 3.5.4. A central requirement is an explicit specification of
simulation experiments. In the experiment specification, the experiment conditions,
including model configuration and simulation set-up, are unambiguously described.
Besides, to represent the validity information of the model, the expected behavioral
properties the model exhibits in the experiment should be explicitly defined as well.
In addition, the data processing methods needed for analyzing experiment results
also need to be specified.

Lastly, Section 3.5 described the proposed approach, and outlined three key
elements of the approach: a method for reusable simulation experiment specification,
a mechanism to automatically generate experiments with the new model based on
specifications of reused models, and a mechanism to automatically analyze results.
Furthermore, the conceptual architecture of the approach was described, which
consists of three layers, each corresponding to one key element. In the prototypical
implementation, while SESSL was selected for experiment specification, the tool
TAECS has been developed to adapt, execute, and check experiment specifications.

The presented approach will be applied to two types of model reuse, model
composition in Chapter 4 and model extension in Chapter 5.

70

Chapter 4

Model Composition Based on Reusing
Simulation Experiments

The previous chapter has illustrated how simulation experiments can be exploited to
support model reuse and the general idea has been introduced. This chapter will
look into a specific type of model reuse, i.e., model composition, and study the reuse
of simulation experiments for developing composed models.

First of all, an introduction of model composition is presented in Section 4.1,
and the processing of developing models by composition is discussed based on a life
cycle in Section 4.2. Next, the approach of reusing simulation experiments for model
reuse is studied in the context of model composition and problems that need to be
considered for this type of model reuse are tackled (Section 4.3). Finally, to illustrate
how the developed approach can be applied to support the development of composed
models, two case studies are presented: the composition of Lotka-Volterra models
(Section 4.4) and the development of a Wnt/β-catenin signaling pathway model by
successive composition (Section 4.5).

4.1. Introduction on Model Composition

The more models are developed and available, the more reusing existing models as a
basis to develop new ones becomes interesting. One common way to reuse models is
model composition, where individual models are reused and composed together to
create larger models. Models that are selected for composition may be developed for
different purposes, in different contexts, and by different groups. In this case, models
are developed for the intention of being reused by third parties in a “plug-and-play”
fashion [51], which is often referred to by the modeling and simulation community
when speaking of model composition. Alternatively, models can be developed and

71

4. Model Composition Based on Reusing Simulation Experiments

reused within one group or community, i.e., firstly building small or simple models
individually, and then composing them into a larger, more complex model. In this
situation, models are developed in a “divide-and-conquer” manner, which facilitates
the modeling of complex systems.

According to [158], models with the same level of abstraction can be composed to
build models that cover larger modeling scope, i.e., horizontal composition; also, mod-
els with different levels of abstraction can be composed to capture the phenomenon
in more detail, i.e., vertical composition. Thereby, building models by composing
and integrating existing ones not only holds the promise of reducing the required
time and effort for the model development, but also facilitates the development of
more realistic, complex models to represent a wider range of phenomena.

4.1.1. Composition and Composability

Typically, model composition refers to building complex models from pre-existing
“components”. In the traditional component-based modeling, model components are
viewed as portable building blocks [238], with interfaces defined to provide necessary
information for reuse of components [53], and a composed model is created by
connecting the inputs and outputs of components [21]. Developed independently as
a replaceable part of a system, a model component should be stored in a library, and
reused in unforeseen contexts and for different purposes [238]; a new model can be
built by selecting needed components from the library and composing them together,
i.e., the ideal of “plug-and-play” model development. In many technical areas (e.g.,
mechanical systems), libraries of such model components exist and have been proven
highly effective for a rapid modeling of different systems [64].

In addition to the building-block model components (also termed as modules in
some work, e.g., in [51]), other types of components are used for model composition
as well. Depending on what is to be composed and what is the resulting composite,
nine types of composition are distinguished in [188], with the component type varying
from Application to Behavior.

In some non-technical areas, building-block components with clear and static
interfaces are difficult to identify. For example, in the field of computational biology,
although cells can be viewed as reactive systems with a clear boundary to their
environment [73], which thus creates the impression that they can be treated as
building blocks, cell biological modeling mainly focuses on intra-cellular dynamics
and describing signaling or metabolic pathways as reaction networks [13]. Also, in
those areas no libraries of building-block model components has been established yet;
instead, public libraries of complete models can be found, such as the BioModels

72

4.1. Introduction on Model Composition

Database [134] and the Physiome Model Repository 2 (PMR2) [269], which facilitates
model exchange and often serve as starting points for model reuse. Thereby, complete
models can also be reused for model composition. In this thesis, the term “model
component” refers to not only model building blocks, but also complete models, each
of which can be reused as part of another larger model.

Regardless of the type of model components (model building blocks or complete
models) and the means of achieving the composition (“plug-and-play” or “divide-
and-conquer”), the resulting composed model must be coherent and meaningful.
Composability is defined as “the capability to select and assemble components in
various combinations to satisfy specific user requirements meaningfully” [51]. Often
composability is divided into different levels, such as the syntactic and semantic
composability [15, 188]. Syntactic composability is concerned with component
connections and their communication, i.e., whether the components can be connected
compatibly with respect to the model definition and implementation such as pa-
rameter passing. In contrast, semantic composability focuses on whether the model
components can be composed in a meaningful way and the composed model is valid.
In addition to syntactic and semantic composability, another level of composability is
distinguished by del Milagro Gutierrez and Leone [57], i.e., pragmatic composability,
which focuses on whether the model components are aware of the simulation context.
Similarly, Medjahed and Bouguettaya [158] identify four levels of composability:
the syntactic, static semantic, dynamic semantic, and qualitative level. Whereas
static semantic composability refers to the meaningful interactions between model
components that are not related to the execution, dynamic semantic composability
is concerned with the dynamical behavior of the composed model and qualitative
composability assesses qualitative properties of the composed model with predefined
quality metrics. Based on several efforts on composability and interoperability, the
Levels of Conceptual Interoperability Model (LCIM) was developed, which comprises
six levels, i.e., the technical, syntactic, semantic, pragmatic, dynamic and conceptual
level [246]. Despite different ways to define composability levels, in general it can be
summarized into two levels: the syntactic and semantic composability.

4.1.2. Existing Work to Support Model Composition

It has been widely recognized that composing models to form a new one is non-trivial
and poses many challenges [51, 177]. Therefore, a great deal of effort has been put
into facilitating model composition and coping with the diverse challenges.

Page and Opper [177] identified the complexity introduced by model composition,
such as the possible challenges posed by composing models with different level of

73

4. Model Composition Based on Reusing Simulation Experiments

abstraction, the difficulties in identifying suitable candidates from possibly massive
component repositories, and the complexities of determining whether the composition
satisfies modeling objectives. Based on a conceptual framework for composable
simulations, Kasputis and Ng [106] from a system’s perspective addressed the issues
that should be considered to achieve composability and showed that such a framework
is beneficial for model composition. Also, the authors outlined several challenges
and needed research directions, and concluded that “unless models are designed
to work together, they don’t (at least not easily and cost effectively)”. Petty and
Weisel [188] discussed the lexicon of composability, including its definition and
different composability levels. In the context of DoD (Department of Defense)
applications, Davis and Anderson [51] identified the factors that affect composability
and provided some suggestions to improve model composability. Moreover, Davis
and Tolk [52] discussed how composability and multi-resolution modeling are related
and how ontologies can be used to improve both.

In addition to the work with the focus on the conceptual and theoretical level
as described above, a variety of approaches can be found in facilitating model
development via composition from different aspects such as component selection
[259] and composability check [148], and in different application domains such as
systems biology [160] and electrical systems [58]. Also, several general-purpose
frameworks exist to support model composition, such as the DEVS (Discrete Event
System Specification) [272], the OSA (Open Simulation Architecture) [48], the BOM
(Base Object Model) [166], and the CODES (COmposable Discrete-Event scalable
Simulation) [242].

The diversity of approaches reflects the complexities and requirements of model
composition. One way to structure those approaches and deal with the complexities
is to examine the process of developing a model by composition. The M&S life cycle
has been proposed to organize the traditional modeling process, e.g., [9, 215]. This
can serve as a basis to structure the process of developing models via composition
and identify crucial steps, i.e., the life cycle of developing composed models.

4.2. A Life Cycle of Developing Composed
Models

Based on the focus of the study, the modeling process can be structured into
different modeling and simulation life cycles, e.g., [6, 9]. In general, the process of
traditional model development can be summarized into five stages, which include
problem identification, conceptual model development and validation, simulation

74

4.2. A Life Cycle of Developing Composed Models

model development, simulation model verification, and simulation model validation,
as presented in the life cycle from Sargent [215]. When models are developed through
composing existing ones, the model development process shows some differences
from the traditional one, e.g., the simulation model development stage needs to be
examined in more detail for the model composition process, such as dividing it into
two stages: the selection of model components and the construction of the composed
model.

Depending on how model composition is supported, the process of developing
the composed model can be structured from different perspectives. For example, in
[106], the presented conceptual composable simulation framework contains six main
stages, i.e., identifying user requirements, translating user requirements into model
requirements, selecting components, developing possible candidates for the composed
model, selecting the best candidate, and system evaluations. In the framework for
composing models proposed by Röhl et al. [203], the composition process is divided
into four stages, i.e., instantiating model components, customizing model components,
composing components, and transforming into simulation model. Szabo et al. [235]
proposed a component-based model development life cycle, which consists of four
main stages, i.e., conceptual model definition, syntactic verification, model discovery
and selection, and semantic validation.

In this thesis, the process of model development via composition is structured
into a life cycle of six phases, as depicted in Figure 4.1. This life cycle starts with
the stage of building the conceptual model. Deriving a satisfactory conceptual
model is a non-trivial task that may require multiple subtasks, which however is
beyond the scope of this thesis and thus simplified into one phase. Based on the
work presented in [9, 215], the first phase of the life cycle incorporates the problem
formulation, requirements engineering and conceptual modeling, which is denoted
as the PRC phase. The conceptual model is developed at the end of the PRC
phase. Subsequently, the simulation model is constructed from components, after
the two phases model selection and model composition. The two phases syntactic
verification and semantic validation ensure that the composed model is correctly
defined and meaningful. Once validated, the composed model can further serve as
a starting point for building larger models, i.e., models can be developed through
successive composition. To allow further reuse, documentation of the composed
model is required, which is fulfilled in the phase model documentation and storage.
Similar to all other modeling life cycles, although six phases are distinguished, the
whole modeling process can be iterative.

75

4. Model Composition Based on Reusing Simulation Experiments

Candidate

Models

Conceptual

Model

Verified

Model

Valid Model

PRC

Model Selection

Composed

Model

Model

Composition

Syntactic

Verification

Semantic

Validation

Model

Repository

Model

Documentation

and Storage

Proposed approach

Starting a

simulation study

Figure 4.1.: A life cycle of modeling based on composition. PRC stands for Problem
Formulation, Requirements Engineering and Conceptual Modeling, which
are merged into one phase in this life cycle with a conceptual model
developed. Usually a simulation study starts with the PRC phase.

Problem Formulation, Requirements Engineering and Conceptual
Modeling

Developing the conceptual model often involves analyzing the problem entity and
defining the objectives and requirements of the simulation study. A variety of work
has been dedicated to the development of conceptual models; however, no general,
wide agreement has been achieved on what is a conceptual model and what belongs
to the conceptual modeling [33, 202]. A definition is given by Robinson [200] that the
conceptual model is a non-software-specific description of the computer simulation
model (that will be, is or has been developed), describing the objectives, inputs, outputs,
content, assumptions, and simplifications of the model. Despite different views and
terms used, it is widely agreed that the conceptual model is one of the first products
in a simulation study and is independent from the simulation language or simulator
[33]. To achieve effective model composition, the importance of the conceptual layer
needs to be addressed, as indicated by the Levels of Conceptual Interoperability
Model (LCIM) [246] (see Section 4.1.1), and efforts towards conceptual modeling are
needed [247]. It has been pointed out by Tolk et al. [247] that the representation
of conceptual models to support composition need to be formally specified in a
machine-understandable language, and possible approaches include ontologies, Petri
nets, and UML [33, 167, 242, 247].

76

4.2. A Life Cycle of Developing Composed Models

Model Selection

When repositories of models are available, modelers can search the repository and
select suitable components, based on the defined conceptual model. Typically, the
selection of models for composition is realized based on matching between user queries
and model repositories. Thus, the representation of user queries and models becomes
essential. Often ontology and XML related techniques are exploited for representing
model components, e.g., [167, 242]. Other work proposes to annotate models with
additional information about the model. For example, to allow formalism-independent
model retrieval and selection, model meta-information is provided using the Resource
Description Framework (RDF) in [117], and to facilitate semantic-based model
selection, an XML Model Description with semantics information represented in
tag-based ontologies is proposed in [259]. Moreover, some mechanisms are developed
to quantitatively measure similarity and rank model candidates, such as calculating
a matching index regarding attributes and behavior [235].

Model Composition

When suitable model components are selected, they need to be composed together.
Various methods exist to generate composed models from components, as discussed
in [169]. One common way is the black-box composition, where the composed model
is generated by connecting the inputs and outputs of model components [51, 106,
188, 242]. In this type of composition, model components are viewed as building
blocks with predefined interfaces, and the internal structure and implementation
of model components are hidden from the users. For many technical areas, this
type of composition is widely used, as models for composition can be defined as
such building blocks. For instance, a vehicle model can be generated by connecting
interfaces of components such as vehicle framework and steering system [198].

In contrast, as discussed in Section 4.1.1, in some cases, representing models as
portable building blocks is difficult to achieve, such as in computational biological
modeling. Thus, the traditional black-box connection is not applicable to compose
this type of models. Instead, a white-box integration method that merges variables,
structures, and reactions of different models to be composed is required. Several
approaches have been presented to compose such models, e.g., fusion, which merges
model components into a single unified model without redundancies and the identities
of the original models are lost, and composition, which describes the “glue” that
holds the models together, as described in [194, 195]. Similarly, for reaction-based
models with hierarchically nested structures in cell biology area, model composition

77

4. Model Composition Based on Reusing Simulation Experiments

in a white-box manner is needed [183]. Additionally, other types of composition are
identified, such as glass-box, where the internal structure of model components can
be accessed but not modified [232, p. 5].

Syntactic Verification

Independent of whether the composed model is built from model building blocks or
from complete models, through connection of model inputs and outputs or through
merging of model internal structures, the resulting composition needs to be consistent
and coherent. First of all, the consistency on the syntactic level is required, i.e.,
syntactic verification. In this phase, the syntactic composability of model components
needs to be checked to ensure the components can be connected correctly.

In the traditional model composition that is realized by connecting model building
blocks, syntactic verification is mainly concerned with the interaction between model
components, e.g., whether the data exchanging is compatible. In this case, checking
syntactic composability is often based on the model representation provided by the
composition framework, e.g., in [203] model components and their composition are
represented in XML and syntactic verification relies on syntax checking of XML
documents, and in [233] model components and their composition are specified using
regular grammars and syntax checking is realized through predefined composition
grammar rules. When components are composed in a white-box manner, the internal
structures of components are merged. In this case, syntactic verification involves the
consistency of the whole model definition, e.g., matching variables and compartments
of different models. Possible conflicts are typically checked by the user, and some
tools have been developed to provide additional assistance. For example, the
semanticSBML [120] and SBMLmerge [218] can assist in identifying biologically
equivalent reactions and species among the models to be merged, by making use of
SBML annotations. JigCell [252], which supports different approaches to compose
models, i.e., fusion, composition, aggregation and flattening [194, 195], allows users
to define models as spreadsheets so that models can be fused and composed via
“mapping tables”, or models can be defined as graphical box diagrams and then be
aggregated by linking input and output ports. In [44], a web-based tool is presented
to compose SBML models, which supports merging models by a semi-automatic
algorithm based on matching names and annotations.

Semantic Validation

Syntactic verification only ensures a consistent composition at the syntax level, i.e.,
the definition of the composed model. To obtain a meaningful composition, the

78

4.2. A Life Cycle of Developing Composed Models

behavior of the composed model is of significant importance for the overall coherency
as well, i.e., the validity of the composed model.

However, the semantic validation of the composed model remains a grand challenge
in modeling and simulation [236]. First of all, valid model components do not
guarantee a valid composition. Secondly, model components may be developed for
different purposes and in different contexts, which could lead to conflicts during
the composition and emergent properties may arise in the composed model. Also,
the context in which the composed model is developed might be different from the
components, and thus the behavior of the composed model may diverge from its
components, e.g., certain behavior of model components is expected to be violated
in the composed model. The problem is further complicated when complete models
are reused as components. In contrast to model building blocks that are designed to
be used in “unforeseen” context [238], complete models are created to answer certain
questions under specific contexts, and therefore are not able to be easily composed
with other models in an arbitrary context [51, 175]. Thus, in order to check whether
the components are suitable for the composition in the semantic level, comparing
the behavior of the composed model and its components is necessary. Last but not
least, the composed model needs to be valid with respect to the modeled system and
the according context.

Although a great deal of effort has been devoted to facilitating model composition,
research on semantic validation of the composed model is limited and still under
development. A formal theory for semantic composability is presented in [189,
262]. By defining models as mathematical computable functions, and simulation
as the sequential execution of a model and represented by an Labeled Transition
System (LTS), model composition can be viewed as compositions of mathematical
functions. Thus, semantic composability is evaluated by comparing the simulation
of the composed model and the simulation of a perfect model based on LTS theory.
Szabo and Teo [234] propose a three-layered approach to validate the composed
model. Other work on semantic composability exist, e.g., formal method based on Z
specification for DEVS models [249] and semantic information comparison and state
machine execution for composition of BOMs [167].

Model Documentation and Storage

Model documentation and storage has increasingly attracted attention, as suitable
documentation and accessible storage is crucial to facilitate model exchange and
reuse [175]. Also, the documentation and storage of models has a significant impact
on other phases in the life cycle, such as model selection.

79

4. Model Composition Based on Reusing Simulation Experiments

Some work has been presented aiming at the design of reusable models. In order
to improve the model reusability, several guidelines have been presented by Verbraeck
and Valentin [253] to design simulation building blocks, involving different aspects
such as self-containment and interoperability. In the project SPICOSA (Science and
Policy Integration for COastal System Assessment), efforts have been made toward
designing high-quality reusable model components to allow developing new models
for different contexts, with component design guidelines proposed [55]. Besides, some
work focuses on defining models in a manner that supports model composition, such
as the definition of coupled models in DEVS and the specification of hierarchical
model definition in SBML [229].

However, efforts only on the design and representation of models may not be
sufficient for effective reuse, e.g., models are usually represented in a specific modeling
formalism or language, which could be ambitious or difficult to understand for third-
party users. Thus, additional information about the model is necessary, such as the
context in which the model is developed and the data used for the model development.
The Minimum Information Requested In the Annotation of biochemical Models
(MIRIAM) was proposed to define a standard for encoding models of biological
systems [171], and contains two parts, i.e., a standard for reference correspondence
to provide information on the syntax and semantics of the model, and an annotation
scheme for specifying the attribution annotation and external data resources. The
ODD (Overview, Design concepts, and Details) protocol has been introduced as a
standard format for describing individual-based and agent-based models with the
objective of facilitating understandable and complete model descriptions and to
address the problem of reproducibility and reuse [82, 83]. Ontologies are often used
to annotate models with semantic information, and some tools have been developed
to annotate and compose models based on ontologies such as SemGen [76].

Meanwhile, as the number of developed models increases, so does the number of
model repositories, e.g., the BioModels database [134], the CD++ repository [32]
and the CoMSES Net Computational Model Library [204]. With the size of models
and repositories growing, model retrieval and selection might face certain challenges,
e.g., how to efficiently identify and retrieve suitable candidates, and approaches on
the design and organization of model repositories are needed, e.g., as presented in
[96, 141, 259].

80

4.3. Reusing Simulation Experiment for Model Composition

4.3. Reusing Simulation Experiment for Model
Composition

In general, most of the current work on model composition aims at properly defining
a composed model and focuses on specific steps in the life cycle, such as composing
model candidates and checking the composition at the syntactic level. As discussed
in Section 4.2 (pp. 78-79), checking semantic composability of models is a challenging
endeavor with limited work existing, this thesis aims to support the semantic
validation of the life cycle, as shown in Figure 4.1.

Existing approaches on semantic composability typically focus on situations where
model components are connected via inputs and outputs. For instance, approaches
presented in [234, 262] are based on viewing models as commutable functions with
inputs and outputs, and thus cannot be used for cases where identifying model
inputs/outputs is difficult and models are composed in a white-box merging manner.
Besides, in those approaches, the validation of the composed model relies on analyzing
the execution sequence of the composed model and comparing it to a reference (a
perfect model [237] or a pre-specified scenario [167]), either by transforming model
executions into Labeled Transition Systems [237, 262] or based on state-machine
execution [167].

This thesis takes another perspective and employs simulation experiments that
are performed with individual models to check the model validity. In the previous
chapter, the approach has been presented, which exploits simulation experiments of
the reused models to automatically generate experiments for the new model, so that
information on the validity of the model reuse is provided. With the general concept
described in Section 3.5, in the following the proposed approach will be discussed
and applied in the context of model composition.

4.3.1. Overview

An overview of reusing simulation experiments to support model composition is given
in Figure 4.2. As presented in the previous chapter, the approach relies on explicit
specifications of simulation experiments. First of all, models are annotated with
the specifications of simulation experiments that have been executed for validation,
corresponding to step 1 in Figure 4.2. In the specification of experiments, the desired
model behavioral properties that indicate the validity of this model are explicitly
defined, as well as the experiment conditions to generate this key behavior, including
model configuration and simulation configuration. Afterwards, as shown in step

81

4. Model Composition Based on Reusing Simulation Experiments

2, individual models are reused for model composition. Based on how models are
composed, the user can optionally specify information for experiment adaptation
when necessary, such as renaming and reassignment of model parameters. Besides,
result expectations can be defined by the user to indicate, when checked on the
composed model, which properties of the individual reused models are expected
to hold and which not. Subsequently, the annotated experiment specifications of
individual models are reused and adapted for the composed model, corresponding
to step 3. Afterwards, the adapted experiment specifications are executed with
the composed model and the experiment results are checked, to test whether the
behavioral properties, which are defined in the experiment specifications of the reused
models and have been successfully checked, still hold for the composed model, and
whether this result meets the expectation, corresponding to step 4. The developed
tool TAECS is used to automatically adapt and execute experiment specification,
and check experiment results against properties, corresponding to the working case
A (Figure 3.9) and the Algorithm 1 (Section 3.5.3, p. 63). The main goal is to
gain insights into semantic composability of models by reusing their validation
experiments.

As illustrated in Section 3.5 (p. 56 and 66), three main elements are needed for this
approach: reusable specifications of simulation experiments, experiment generation
from specifications, and result analysis based on explicit property specification and
checking algorithms. While experiment specification relies on SESSL and property
specification depends on characteristics of the modeled system, generating simulation
experiments based on experiment specifications of reused models needs to take into
account the type of model reuse, as discussed in Section 3.5.3 (p. 64). The next
section will be dedicated to experiment generation for the composed model by reusing
experiment specifications of model components.

4.3.2. Experiment Adaptation and Generation

As discussed in Section 3.5.3, while generating simulation experiments for the
composed model based on experiment specifications of model components, those
reused experiment specifications may require adaptation.

In addition to an update in model location (i.e., from the model component to the
composed model) and possible parameter renaming, special attention needs to be
paid to the adaptation of model parameter configuration, which results from the fact
that the composed model contains all the parameters from model components and
model components may share some parameters. Thus, model parameter assignments
in each experiment specification need to be refined in order to suit the composed

82

4.3. Reusing Simulation Experiment for Model Composition

Model 1 Model 2

Model

Composition

Adaptation

Information

Composed

Model

Result

Expectation

Experiment

Adaptation

Experiment

Execution & Check

User

Experiment

specification

Exp’

Prop’

Experiment

specification

Exp

Prop

Experiment

specification

Exp

Prop

2

3 4

information on semantic

composability

User

Experiment Specification Language

· SESSL

Model Description Language

· ML-Rules

· SBML

· DEVS

· ...

Model

Experiment

specification

Exp

Prop

Model

Documentation
1

User

Property Specification Language

· LTL

· MITL

· CSL

· ...

TAECS

Figure 4.2.: The overview of reusing simulation experiments for model composition.
Models are annotated with explicit specifications of the simulation
experiment executed for validation, and each experiment specification
contains the expected behavioral property and the experiment conditions
used to produce the property. When two models are composed, their
experiment specifications are reused and adapted to automatically gener-
ate experiments for the composed model. The behavioral properties that
hold for the individual reused model are checked against the experiment
results to inspect whether the composed model exhibits the behavior or
not and whether this is in agreement with user expectations, therefore
to provide insights on the validity of the composition.

83

4. Model Composition Based on Reusing Simulation Experiments

model. A specific strategy is required to determine the configuration of those model
parameters that only exist in the other model and those that exist in both models but
are configured differently. This is handled in the function updateParameterConfig,
which is called by Algorithm 1 (Section 3.5.3, p. 63).

Different ways can be used to adapt model parameter configuration in the
experiment specification of model components in order to generate experiments
for the composed model. One solution is to define a set of default configurations for
all model parameters in the composed model file, and for those parameters which
should be limited to a specific configuration, their configuration is defined as part of
the adaptation information. When those parameters are explicitly specified in an
experiment specification of model components, their configuration will be updated
to be the one contained in the adaptation information. In this case, parameter
configuration in the composed model and possible conflict resolution completely rely
on the user.

Some algorithms can be employed to provide assistance in adapting model param-
eter configuration. Currently, one method is implemented in the prototype, which
generates a possible assignment range for each parameter that appears in experiment
specifications of model components. First of all, for each model component, its
associated experiment specifications are iterated over to obtain all model parameters
that are explicitly configured in those experiment specifications. For each specified
model parameter, the minimum and maximum value of its configuration in all
experiment specifications are calculated, respectively. A boundary is constructed
using this minimal and maximal value, which constitute a possible assignment range
for this parameter. For model parameters that are not contained in any experiment
specification of the model component, their configuration must have been given
in the model file and it is likely that those parameters should be limited to this
configuration for the purpose this model component is built for. Therefore, for
those model parameters, the configuration in the model file is used to execute all
experiment specifications. If a parameter is defined in both model components,
the overall minimum and maximum value of its configuration in the experiment
specifications from two components, are used to construct the parameter range. In
this way, possible valid parameter ranges for the composed model can be defined
without the users’ intervention. When new model parameters are introduced in the
composed model, which do not exist in any model components, their configuration
should be provided either in the model file or in the adaptation information. Still, the
modeler can explicitly set one parameter to a constant value during the composition,
defined as part of adaptation information, which will update the assignment range

84

4.3. Reusing Simulation Experiment for Model Composition

of this parameter from the one calculated based on experiment specifications to the
constant value. Further, for each parameter in the experiment specification to be
adapted, the intersection between the configuration in the experiment specification
and the obtained assignment range is calculated and used.

This method is implemented as a proof of concept, and there are other ways
to generate possible assignments, e.g., for each parameter that is configured in
experiment specifications, an assignment range can be constructed by computing an
intersection of all intervals specified in experiment specifications, in which case, the
calculated assignment range could be empty.

Therefore, after the adaptation described above, the value of model parameters
may be assigned to a range, which could be large. To perform experiments efficiently,
sampling over the range is used to generate parameter assignments. As a proof
of concept, the current implementation of the prototype samples uniformly from
the given range; other sampling methods can also be used, such as orthogonal
latin hypercubes (e.g., [212]). A default sampling size of 10 is configured in the
implementation. It is expected that the sampling size and the quality of the sampling
method will have a large impact on the overall performance. Users can also adjust
the sampling procedure to their requirements, e.g., to generate more samples if
the available hardware is sufficiently powerful. This can be expressed via the user
preferences. Similarly, more sophisticated sampling methods may require additional
information on the actual model composition, e.g., to generate more samples for
parameters shared by both model components.

Using the sampled assignments, the simulation experiment is executed with the
composed model and results are checked against the specified property. If the property
checking fails for the experiment, it will return a (set of) counterexample(s), i.e.,
the parameter configuration with which the experiment result does not satisfy the
defined property. It is easy to re-check these counterexamples on the model for which
they have been originally defined. This is important, because the experiment may
have been checked insufficiently for the model components, i.e., the property may not
even hold for the original models with those parameter configurations. Depending
on the outcome of testing the corresponding model component, the user can find out
whether there is a problem with the composition (i.e., the counterexample is true for
model component, but not for the composed model) or a problem with the original
model component (i.e., the counterexample is true for neither model components nor
the composed model).

The two methods for model parameter adaptation discussed above, i.e., the method
relying on parameter configuration in the model file and adaptation information

85

4. Model Composition Based on Reusing Simulation Experiments

provided by the user, and the method based on automatically calculating parameter
assignment ranges, are applicable for different scenarios. When the assignment of
model parameters is limited to individual values (especially only a few variants)
instead of a range, the first method is more suitable and a sampling of the range
constructed from those values could offer little help, as only those individual as-
signments are of interest. However, when model parameters are configured as value
ranges, the second method is more helpful and able to provide more information. In
the prototype implementation, users can choose which method to use.

4.4. Case Study I: the Lotka-Volterra Model

In this case study, the proposed approach has been applied to the composition of
Lotka-Volterra models and the main purpose is to demonstrate how to use the
proposed approach for semantic validation of the composed model.

4.4.1. Background

The Lotka-Volterra model, described in [196] and attributed to [140, 254], is one of
the classic predator-prey models and also a well-known example of a mathematical
model of population biology. It describes the interaction between predators and prey
in an abstract manner. In this case study, a specific variant of the Lotka-Volterra
model was used, where one predator species hunts one prey species and the prey
depends on an unlimited supply of food. To avoid an exponential growth of the prey
population in the absence of predators, competition among prey was considered. Let
N1 denote the prey population size and N2 denote the predator population size, and
the deterministic equations are as follows (cf. [196, p. 176]):

dN1/dt = N1 ∗ (b − k ∗ N1 − a ∗ N2) (prey)

dN2/dt = N2 ∗ (−d + c ∗ N1) (predator)

where b is the birth rate of the prey, d is the mortality rate of the predator, a and
c are the interaction coefficients, and k is the competition coefficient.

Different questions can drive the modeling and simulation of prey and predator
systems. For example, one may be interested in the stationary states of the system,
e.g., the “coexisting state”, where both prey and predator populations exist, the “prey
state”, where the predators die out and only prey survive, or the “empty state”, where
predators die out after the prey population is extinguished [61]. Similarly, it may also
be interesting to compare the difference in the predator and prey populations, e.g.,
the “recovery comparison”, which states that the prey population will recover faster

86

4.4. Case Study I: the Lotka-Volterra Model

than the predator population if both populations have been disturbed significantly,
i.e., both populations are quite small. These questions can be reflected in simulation
experiments with the model, i.e., under which circumstance (such as parameter
values and initial state), the model behavior satisfies corresponding properties. For
demonstration, three properties were chosen in this case study, i.e., the “coexisting
state”, the “empty state”, and the “recovery comparison”.

When two basic Lotka-Volterra models are composed together, certain questions
arise: what behavioral properties will show in the composed model? will those
properties that have been checked successfully in the two model components still
be preserved in the composed model? What insight does a violation tell us about
the semantic validity of this composition? In the following, the developed approach,
i.e., reusing simulation experiments of model components to automatically generate
experiments with the composed model, is used to provide assistance in answering
those questions.

4.4.2. Ingredients

First of all, a modeling formalism and the corresponding simulation algorithm are
needed for performing simulation experiments. As discussed in Section 3.5.5, to
apply the proposed approach for model composition, three elements are required:
a method for experiment specification, a mechanism for experiment adaptation
and generation, and a mechanism for automatic result analysis. SESSL is used for
experiment specification throughout this work. For illustration, the method based on
calculating parameter assignment ranges has been used for experiment adaptation
and generation in this case study. The M&S method and result analysis will be
described as follows.

Modeling and Simulation Method

ML-Rules was selected to describe the Lotka-Volterra models, which is a rule-
based, multi-level language for modeling cell biological systems [94, 153, 261]. It
allows the description of dynamic hierarchical structure with nested species and the
assignment of attributes and solutions to species at each hierarchy level. Also, it
supports downward and upward causation across different levels of the hierarchy.
To facilitate a concise description of complex models, rule schemata are used in
ML-Rules. Besides, for each rule, a flexible definition of reaction rate kinetics using
any kind of mathematical expression and constraints is allowed.

87

4. Model Composition Based on Reusing Simulation Experiments

For the execution of ML-Rules models, the reference stochastic simulation algo-
rithm from [153] was used, which is based on Gillespie’s approach [78], and referred
as the case class named MLRulesReference in SESSL. The modeling and simulation
framework JAMES II was exploited as the simulation system to actually execute
the experiments specified in SESSL.

Property Specification and Checking Algorithms

As discussed in Section 3.4.3 (pp 51-54), various approaches can be employed for
specifying model behavioral properties. Linear Temporal Logic (LTL) is widely used
to check the properties of individual trajectories [70, 274], and allows to express
a broad range of dynamic model properties. For two of the interesting behavioral
properties in this case study, the “coexisting state” and “empty state”, LTL can be
used for property specification. To check an individual trajectory against a property
specified in LTL, the model-checking algorithm introduced by Fages et al. [70] was
exploited and reimplemented as part of JAMES II. The original algorithm only
covers the following operators of LTL: X (next), G (global), F (finally), and U

(until), and was extended to support the R operator (release) (see [36]).
Since ML-Rules is based on Continuous-Time Markov Chain (CTMC) semantics,

the simulation results of ML-Rules models are stochastic and generated simulation
trajectories contain stochastic noise. Therefore, LTL might not suffice to describe
the third property of interest, i.e., the “recovery comparison”, which involves the
expression of “increase” with noise considered (see Section 3.4.3, pp. 52-53). As
discussed in Section 3.5.4 (p. 65), due to the extensibility of SESSL, the presented
approach is open to new property specification methods. Thus, a custom predicate
was defined to express the “recovery comparison” property, with the corresponding
algorithm provided to check the trajectory.

For experiments with stochastic models, multiple replications are required for
analysis. Due to the stochasticity, with the same simulation set-up, a property may
hold for some replications and not for others. Thus, the expression of probability
regarding replications is necessary. The Continuous Stochastic Logic (CSL) [222, 268],
which has been proposed as a formalism for expressing properties of CTMC, was
exploited to support the definition of probabilistic statements as Pronp(φ), where on∈
{< , ≤ , > , ≥}, p ∈ [0,1], and φ could be an LTL formula or a predefined predicate.
In contrast to [222, 268], however, currently the prototypical implementation does
not support nested probabilities.

Statistical model checking techniques are frequently applied to determine whether
a stochastic model satisfies a specification in the form Pronp(φ), e.g., Pr≥p(φ) [128]

88

4.4. Case Study I: the Lotka-Volterra Model

(see discussion in Section 3.5.4, p. 65). Based on checking sampled traces of the state
space, i.e., the individual simulation trajectories, such techniques can decide whether
the probability p′ that a randomly selected simulation run satisfies the property φ
is not smaller than a threshold p, and hypothesis testing is employed to make this
decision [266].

Whether p′ = Pr(φ) is at least p can be expressed with two competing hypotheses:
the null hypothesis H0 : p′ < p states that Pr≥p(φ) does not hold; the alternative
hypothesis H1 : p′ ≥ p states that Pr≥p(φ) holds. By rejecting H0, some evidence can
be gained in H1,i.e., Pr≥p(φ) holds; if it fails to reject H0, some evidence can be gained
against Pr≥p(φ). Hypothesis testing cannot guarantee that the result is correct;
however, one can improve the confidence of testing by limiting the probabilities of
type I error (rejecting H0 although it is true, false positive) and type II error (failing
to reject H0 although it is false, false negative), termed as α and β, respectively.
Smaller values for α and β correspond to more confidence in the test result; however,
a low probability for both error types is difficult to achieve (see [267] for detail). To
make a small value for both α and β possible, typically an indifference region of width
δ around p is introduced. Thus, the hypotheses H0 : p′ < p− δ and H1 : p′ ≥ p+ δ

are used instead.
Various methods exist to determine which hypothesis to accept, such as acceptance

sampling with fixed-size samples and sequential acceptance sampling [267]. The
approach presented by Sen et al. [223] has been adopted and implemented in the
prototypical implementation of this work: the hypothesis H0 is rejected when after
executing n simulation runs, more than p× n runs satisfy φ. The minimal number
of needed replications n can be found based on given p, δ, α, and β, by increasing n
until the type I error probability a ≤ α and the type II error probability b ≤ β, as
depicted in Algorithm 2. The error probabilities can be computed by assuming real
probabilities p′ = p ± δ for given p, n, and δ [223]. Currently, in the prototypical
implementation TAECS, α, β, δ are all configured with default value 0.05; however,
they can be specified by the user as well.

4.4.3. The basic Lotka-Volterra Model

Based on the description in Section 4.4.1, the basic Lotka-Volterra model can be
expressed in ML-Rules as shown in Figure 4.3, which depicts the definition of model
parameters, species, initial state, and reaction rules. In ML-Rules, predators and
prey are modeled as populations whose individuals encounter the events of death or
reproduction in a stochastic manner. In the original Lotka-Volterra model equations,
seven parameters are distinguished, i.e., a, b, c, d and k, as well as the initial predator

89

4. Model Composition Based on Reusing Simulation Experiments

Algorithm 2 Algorithm for determining the number of replications needed to check
a property. The number X of simulation runs satisfying the temporal logic formula
is binomially distributed, with F being the cumulative distribution function.

1 calculateReplicationNumber(p, δ, α, β)

2 n ← 1

3 sufficient ← False

4 while(not sufficient)

5 n ← n + 1

6 a← P (X > p× n | X ∼ Bin(n, p− δ)) = 1− F (n× p; n, p− δ)
7 b← P (X ≤ p× n | X ∼ Bin(n, p + δ)) = F (n× p; n, p + δ)
8 sufficient ← a ≤ α ∧ b ≤ β

9 return n

and prey population sizes (see Section 4.4.1), and the value of all those parameters
can be set by modelers. For simplicity, in the model used for this case study, no
distinction was made between the interaction coefficients so that both have the same
value (a = c) and the competition coefficient was set to constant k = 0.002.

With the model defined, simulation experiments can be performed. A model with
foxes being the predator and rabbits being the prey should illuminate the experiments.
As stated above, three properties are of interest. The property “coexisting state”,
which states both prey and predator populations exist, can be expressed in LTL as:

G(#Rabbit > 0 ∧ #Fox > 0)

Assume that for a randomly selected simulation run, the probability that both
predators and prey will survive is larger than 0.8, and this can be expressed with
the combination of CSL and LTL as:

Pr≥0.8(G(#Rabbit > 0 ∧ #Fox > 0))

The expression of probability property based on CSL (denoted as Pronp(φ)) has been
integrated into SESSL, and the above property can be expressed as:

1 assume{ (Probability >= 0.8)(

2 G(variable("Rabbit") > 0 and variable("Fox") > 0)

3)}

For simplicity, the probability p was set to 0.8 throughout this case study. To make
the model’s behavior satisfy this property, the initial values of prey (nRabbit) and
predators (nFox) were set to 100 and 10, respectively, and the rest of the parameters
were fitted through parameter scanning against desired properties. The modeling
and simulation framework JAMES II was employed for experiment execution and
the simulator MLRulesReference was used. Each run stops after 10 simulation time
units or after wall clock time 2 minutes. The configuration of model parameters for

90

4.4. Case Study I: the Lotka-Volterra Model

1 a: 0.014;

2 b: 0.6;

3 d: 0.7;

4 k: 0.002;

5 nFood:100;

6 nPredator:10;

7 nPrey:100;

8 Food();

9 Predator();

10 Prey();

11 >>INIT[(nFood) Food +

12 (nPredator) Predator +

13 (nPrey) Prey];

14 // Prey reproduces

15 Food:f + Prey:x -> Food + 2 Prey @b*#x;

16 // Prey dies by competition

17 Prey:x + Prey:z -> Prey @k*#z*#x;

18 // Predator reproduces based on successful hunting

19 Predator:y + Prey:x -> 2 Predator @a*#y*#x;

20 // Predator dies

21 Predator:y -> @d*#y;

Figure 4.3.: A Lotka-Volterra model described in ML-Rules. [From [184]]

which the simulation output satisfies the “coexisting state” property is shown as
follows:

a : 0.010 − 0.015, b : 0.6 − 0.7, d : 0.5 − 1.0

nRabbit = 100, nFox = 10

During the simulation, the number of rabbits (prey) and foxes (predator) were
observed. An example of simulation results is shown in Figure 4.4, where model
parameter configuration is a = 0.01, b = 0.6, d = 0.5, nRabbit = 100, nFox = 10.
The experiment is specified in SESSL, as depicted in Figure 4.5.

Similarly, for the properties “empty state” and “recovery comparison”, the same
simulation experiment set-up was used and parameters were fitted to produce desired
model behavior. For the “empty state” (i.e., the prey dies out first, then the predators
die out), the property φ can be expressed in LTL as:

((#Rabbit = 0) R (#Fox > 0)) ∧ F (#Fox = 0).

Taking the probability into account, the property is denoted as Pr≥0.8(φ), and can
be expressed SESSL as:

1 assume{ (Probability >= 0.8)(

2 (variable("Rabbit") == 0) R (variable("Fox") > 0) and

3 F(variable("Fox") == 0))

4)}

91

4. Model Composition Based on Reusing Simulation Experiments

Time (simulation time unit)
0 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f S
pe

ci
es

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Rabbit
Fox

Figure 4.4.: Simulation results of the basic Lotka-Volterra model of the prey rabbit
and predator fox regarding the “coexisting state” property, where model
parameter configuration is a = 0.010, b = 0.6, d = 0.5, nRabbit =
100, nFox = 10. The mean trajectories with the standard error (in
gray error bars) are shown.

1 import sessl._

2 import sessl.james._

3 val exp = new Experiment with Observation with Hypotheses {

4 model = "file-mlrj:/./LotkaVolteraFoxRabbit.mlrj"

5 scan("a" <∼ range(0.010, 0.001, 0.015), "b" <∼ range(0.6, 0.1, 0.7),

6 "d" <∼ range(0.1, 0.1, 1.0))

7 set("nRabbit" <∼ 100, "nFox" <∼ 10)

8 simulator = MLRuleReference()

9 stopCondition = AfterWallClockTime(minutes=2) or AfterSimTime(10)

10 observe("Rabbit","Fox")

11 observeAt(range(0.0, 0.1, 10))

12 assume{ (Probability >= 0.8)(

13 G(variable("Rabbit") > 0 and variable("Fox") > 0)

14)}

15 }

Figure 4.5.: SESSL experiment specification regarding the “coexisting state” property
for a basic Lotka-Volterra model of the prey rabbit and the predator fox.

The configuration of model parameters for which the simulation output fulfills
the “empty state” property is shown as follows:

a : 0.050 − 0.070, b : 0.1 − 0.4, d : 0.7 − 1.0

nRabbit = 100, nFox = 30

92

4.4. Case Study I: the Lotka-Volterra Model

An example of simulation results is shown in Figure 4.6, where the model parameter
configuration is a = 0.050, b = 0.1, d = 0.7, nRabbit = 100, nFox = 30. The
experiment is specified in SESSL, as depicted in Figure 4.7.

Time (simulation time unit)
0 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f S
pe

ci
es

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Rabbit
Fox

Figure 4.6.: Simulation results of the basic Lotka-Volterra model of the prey rabbit
and predator fox regarding the “empty state” property, where the model
parameter configuration is a = 0.050, b = 0.1, d = 0.7, nRabbit =
100, nFox = 30. The mean trajectories with the standard error (in
gray error bars) are shown.

1 import sessl._

2 import sessl.james._

3 val exp = new Experiment with Observation with Hypotheses {

4 model = "file-mlrj:/./LotkaVolteraFoxRabbit.mlrj"

5 scan("a" <∼ range(0.050, 0.001, 0.070), "b" <∼ range(0.1, 0.1, 0.4),

6 "d" <∼ range(0.7, 0.1, 1.0))

7 set("nRabbit" <∼ 100, "nFox" <∼ 30)

8 simulator = MLRuleReference()

9 stopCondition = AfterWallClockTime(minutes=2) or AfterSimTime(10)

10 observe("Rabbit","Fox")

11 observeAt(range(0.0, 0.1, 10))

12 assume{ (Probability >= 0.8)(

13 (variable("Rabbit") == 0) R (variable("Fox") > 0) and

14 F(variable("Fox") == 0))

15)}

16 }

Figure 4.7.: SESSL experiment specification regarding the “empty state” property
for a basic Lotka-Volterra model of the prey rabbit and the predator fox.

93

4. Model Composition Based on Reusing Simulation Experiments

The “recovery comparison” property states that if both populations are disturbed
at the beginning to have the same small size, the prey population will recover
faster. This property involves the expression of increasing and comparison of the
increasing rate for simulation trajectories with stochastic noise, which is difficult to
specify in LTL. Therefore, this property is expressed with a predefined predicate
(see Section 4.4.2). Detecting the increasing trend of trajectories with noise is a
non-trivial task; quantitatively measuring and comparing increasing rate is even more
challenging. One way to evaluate this predicate is to compare the time points where
the first peak occurs in each population. The earlier the first peak occurs, the faster
the population has recovered. Many sophisticated methods have been developed
to find the optima in time series with noise (e.g., [62, 217]). For the purpose of
illustration, a simple approach has been used: a certain time point is selected for
checking and only observed time points between the initial and the selected time
point are considered. Among those time points, the one with the maximum species
number is identified, and the recovery rate is calculated as the slope between the
initial value and this maximum. If the initial point has the maximum value, which
means the species number does not increase within this time period, then the recovery
rate is calculated as the slope between initial and selected time point. The number of
selected observation points should not be too large, to avoid the case where species
populations have already finished the recovery phase and may start to decrease.
This approach may not be rigorous but appears to be sufficient for the purpose. In
this case study, the fifth observed time point is selected for checking, which means
only the first 5 observation points are considered for comparing the recovery rate of
species. Although such a manual implementation of predicates is not too difficult in
JAMES II, it is not acceptable for all users. Therefore, a language, which is able to
specify properties with noise tolerance, would be preferable.

The predefined predicate for the property “recovery comparison” is named as
RecoveryComparison. The initial number of both the prey and predator were set to
10, and the rest of the parameters were fitted so that the model behavior satisfies
the “recovery comparison” property, as shown in the following:

a : 0.010 − 0.028, b : 0.6 − 1.0, d : 0.5 − 1.0

nRabbit : 10, nFox : 10

An example of simulation results is shown in Figure 4.8, where the model pa-
rameter configuration is a = 0.010, b = 0.6, d = 0.5, nRabbit = 10, nFox = 10. The
experiment is specified in SESSL, as depicted in Figure 4.9.

All the three experiment specifications, i.e., Figure 4.5, Figure 4.7, and Figure
4.9, were tested on the model of rabbits and foxes (Figure 4.3), corresponding to the

94

4.4. Case Study I: the Lotka-Volterra Model

Time (simulation time unit)
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r o

f S
pe

ci
es

0

10

20

30

40

50
Rabbit
Fox

Figure 4.8.: Simulation results of the basic Lotka-Volterra model of the prey rabbit
and predator fox regarding the “recovery comparison” property, where the
model parameter configuration is a = 0.010, b = 0.6, d = 0.5, nRabbit =
10, nFox = 10. The mean trajectories with the standard error (in gray
error bars) are shown.

1 import sessl._

2 import sessl.james._

3 val exp = new Experiment with Observation with Hypotheses {

4 model = "file-mlrj:/./LotkaVolteraFoxRabbit.mlrj"

5 scan("a" <∼ range(0.010, 0.001, 0.028), "b" <∼ range(0.6, 0.1, 1.0),

6 "d" <∼ range(0.5, 0.1, 1.0))

7 set("nRabbit" <∼ 10, "nFox" <∼ 10)

8 simulator = MLRuleReference()

9 stopCondition = AfterWallClockTime(minutes=2) or AfterSimTime(10)

10 observe("Rabbit","Fox")

11 observeAt(range(0.0, 0.1, 10))

12 assume{ (Probability >= 0.8)(

13 RecoveryComparison("Rabbit","Fox")

14)}}

Figure 4.9.: SESSL experiment specification regarding the “recovery comparison”
property for a basic Lotka-Volterra model of the prey rabbit and the
predator fox.

case B (Figure 3.9). For all experiments, the method described in Section 4.4.2 was
used to check whether for a randomly selected simulation run, a property holds with
probability being no less than 0.8, and the determination of replication number relies
on the Algorithm 2. With α = β = δ = 0.05 and p = 0.8, the calculated necessary
replication number is 181. The three experiment specifications have been checked

95

4. Model Composition Based on Reusing Simulation Experiments

successfully, and therefore the basic Lotka-Volterra model with rabbits as the prey
and foxes as the predator was annotated with those experiment specifications.

4.4.4. Composing Lotka-Volterra Models

Given two basic Lotka-Volterra models, each of which has one prey and one predator,
as shown in Figure 4.3, it is possible to compose them in several ways.

For example, two model components, which have the same prey but different
predators, can be composed in a way so that in the composed model all three species
exist and the two predators from both model components hunt on the same prey,
namely the “same prey” composition. Similarly, when two model components have
the same predator but different preys, the composed model could contain three
species and the predator hunts on both prey species, namely the “same predator”
composition. Besides, two model components may share a common species, which
has different roles in the two models: as the prey in one model but predator in
another model. The two components can be composed so that a food chain is formed
in the composed model, where the shared species functions as both prey and predator,
namely the “food chain” composition.

To illustrate the three types of composition, four basic Lotka-Volterra models
have been created. In addition to the model with foxes and rabbits, as described
in the previous section, three other models were defined, each having one predator
and one prey, which are wolves and rabbits, wolves and foxes, and wolves and sheep,
respectively. The model definition of these models are similar to the model in Figure
4.3, except for the names of the prey and predator species. Like the model with
foxes and rabbits, each of the other three models has been annotated with three
experiment specifications, regarding the three properties “coexisting state”, “empty
state”, and “recovery comparison”, as shown in Figures 4.5, 4.7, and 4.9.

With the four basic Lotka-Volterra models, three composed models were created,
one for each type of composition. Models were composed in a white-box integration
manner; as how to generate composed models from components is not the focus of this
thesis, no further discussion will be presented here. For the same prey composition,
the model with foxes and rabbits was composed with the model with wolves and
rabbits, and in the composed model both wolves and foxes hunt rabbits. Meanwhile,
the model with wolves and sheep was composed with the model with wolves and
rabbits for the same predator composition, and in the composed model wolves hunt
both sheep and rabbits. Similarly, in the food chain composition, the model with
wolves and foxes was composed with the model with foxes and rabbits, resulting in a
composed model where wolves hunt foxes and foxes hunt rabbits. The reaction rules

96

4.4. Case Study I: the Lotka-Volterra Model

1 Food:f + Rabbit:x -> Food + 2 Rabbit @b*#x;

2 Rabbit:x + Rabbit:z -> Rabbit @k*#z*#x;

3 Wolf:y + Rabbit:x -> 2 Wolf @a*#y*#x;

4 Wolf:y -> @d*#y;

5

6 Fox:y + Rabbit:x -> 2 Fox @a*#y*#x;

7 Fox:y -> @d*#y;

(a) Reaction rules of the composed model from the same prey composition. [From [184]]

1 Food:f + Rabbit:x -> Food + 2 Rabbit @b*#x;

2 Rabbit:x + Rabbit:z -> Rabbit @k*#z*#x;

3 Wolf:y + Rabbit:x -> 2 Wolf @a*#y*#x;

4 Wolf:y -> @d*#y;

5

6 Food:f + Sheep:x -> Food + 2 Sheep @b*#x;

7 Sheep:x + Sheep:z -> Sheep @k*#z*#x;

8 Wolf:y + Sheep:x -> 2 Wolf @a*#y*#x;

(b) Reaction rules of the composed model from the same predator composition.

1 Food:f + Rabbit:x -> Food + 2 Rabbit @b*#x;

2 Rabbit:x + Rabbit:z -> Rabbit @k*#z*#x;

3 Fox:y + Rabbit:x -> 2 Fox @a*#y*#x;

4 Fox:f -> @d*#f;

5

6 Wolf:w + Fox:y -> 2 Wolf @a*#y*#w;

7 Wolf:w -> @d*#w;

(c) Reaction rules of the composed model from the food chain composition. [From [184]]

Figure 4.10.: Reaction rules of composed Lotka-Volterra models.

of the three composed models are shown as follows: the same prey composition in
Figure 4.10(a), the same predator composition in Figure 4.10(b), and the food chain
composition in Figure 4.10(c).

As discussed in [183], to compose ML-Rules models, the modeler needs to decide
whether variables from different model components but with the same name, refer to
the same variable and should be merged in the composed model, or refer to different
ones and thus should be renamed. In addition to renaming species, the modeler
might also change the configuration of parameters during composition. For example,
in the food chain composition, the initial population size of the species that is now
both prey and predator, may need adjustment in the composed model. All this
information goes into the adaptation information, which is needed for generating
experiments for the composed model based on experiment specifications of model
components. In this case study, no adaptation on parameter names was needed and
for the food chain composition, the initial population size of the species fox was
configured to 30.

97

4. Model Composition Based on Reusing Simulation Experiments

Same Prey Same Predator Food Chain

Coexisting state
√

/
√

⊘ / ⊘
√

/ ⊘

Empty state
√

/
√ √

/
√

⊘ /
√

Recovery comparison
√

/
√

⊘ /
√ √

/ ⊘

Table 4.1.: Results overview for the case study of Lotka-Volterra models. For each
composition type, the experiment specifications of the two model compo-
nents are checked. Each cell contains the results of checking experiment
specifications from both components that refer to the same property. The
symbol

√
represents that the property holds for the composed model,

whereas the symbol ⊘ indicates that the property does not hold. [From
[184]]

4.4.5. Reusing Simulation Experiments of Model
Components

As a result of three types of composition, three composed models have been created,
i.e., the same prey composition, the same predator composition, and the food chain
composition. In each composition, two basic Lotka-Volterra models were reused and
each model was annotated with three experiment specifications, corresponding to
three properties, i.e., the “coexisting state”, the “empty state”, and the “recovery
comparison”. Thereby, for each composed model, altogether six experiment specifica-
tions from both model components were reused to generate experiments and check
the corresponding property.

As all properties specified in experiment specifications involve probability estima-
tion, the method described in Algorithm 2 (Section 4.4.2, pp. 89-90) was used to
determine the number of necessary replications. The adaptation method based on
generating parameter assignment ranges (see Section 4.3.2, pp. 84-85) has been used
to generate new experiments, and for each generated parameter assignment range,
10 values uniformly sampled from the range were used for experiment execution.
Thereby, all experiment specifications of model components were reused, adapted
and executed for the composed model, and the experiment results were checked
against specified properties.

An overview of the checking results is given in Table 4.1, where
√

means that
the property holds in the composed model, and ⊘ that it does not hold (at least not
with the expected probability p ≥ 0.8). For each type of composition, the properties
of the two reused models are checked for the composed model.

98

4.4. Case Study I: the Lotka-Volterra Model

Looking at the results, one can see that the same prey composition, where two
predators feeding on the same prey, is unproblematic. This is as expected, as the
prey controls the behavior of the predator(s) in the model. The situation is different
for the same predator composition, where a predator feeds on two prey species, as
the weaker prey is likely to become extinct, which can be reflected by the fact that in
the composed model the property “coexisting state” does not hold and “empty state”
holds. In the case of food chain composition, for each property, only experiment
specifications of one model component can be checked successfully in the composed
model, i.e., in each cell from the last column of Table 4.1 only one

√
exists. This

indicates that this composition type might not be valid. Actually, in the given
example it would be possible that the wolves to also feed on rabbits as soon as
rabbits are around, and not only on foxes (cf. Figure 4.10(c)).

Table 4.2 shows the results in more detail. Here, an interesting observation is
that the property “Recovery comparison” for the same predator composition holds
for 9 out of 10 tested assignments in the composed model, in which case the test
result is false. It would be difficult to find the counterexample, if the properties
were checked manually. This illustrates the potential of the presented approach in
preventing users from coming to incorrect conclusions, by automatically generating
simulation experiments for the composed model and evaluating experiment results
against the properties.

99

4. Model Composition Based on Reusing Simulation Experiments

Original statement Composition Type Adaptation
Information

|A+| |A−| Counterexample

Coexisting State(Rabbit, Fox) The Same Prey – 10 0 –

Coexisting State(Rabbit, Wolf) The Same Prey – 10 0 –

Coexisting State(Rabbit, Wolf) The Same Predator – 3 7 a:0.015;b:0.7;d:0.5;
nRabbit:100;nWolf:10;nSheep:100

Coexisting State(Sheep, Wolf) The Same Predator – 1 9 a:0.012;b:0.9;d:0.5;
nRabbit:100;nWolf:10;nSheep:100

Coexisting State(Rabbit, Fox) The Food Chain nFox:30 10 0 –

Coexisting State(Fox, Wolf) The Food Chain nFox:30 5 5 a:0.014;b:0.7;d:0.9;
nRabbit:100;nWolf:10;nFox:30

Recovery Comparison(Rabbit, Fox) The Same Prey – 10 0 –

Recovery Comparison(Rabbit, Wolf) The Same Prey – 10 0 –

Recovery Comparison(Rabbit, Wolf) The Same Predator – 9 1 a:0.024;b:0.9;d:0.5;
nRabbit:10;nWolf:10;nSheep:10

Recovery Comparison(Sheep, Wolf) The Same Predator – 10 0 –

Recovery Comparison(Rabbit, Fox) The Food Chain – 10 0 –

Recovery Comparison(Fox, Wolf) The Food Chain – 10 0 –

Empty State(Rabbit, Fox) The Same Prey – 10 0 –

Empty State(Rabbit, Wolf) The Same Prey – 10 0 –

Empty State(Rabbit, Wolf) The Same Predator – 10 0 –

Empty State(Sheep, Wolf) The Same Predator – 10 0 –

Empty State(Rabbit, Fox) The Food Chain nFox:30 0 10 a:0.055;b:0.3;d:0.8;
nRabbit:100;nWolf:30;nFox:30

Empty State(Fox, Wolf) The Food Chain nFox:30 10 0 –

Table 4.2.: Detailed results for the case study of Lotka-Volterra models. The column
“Original statement” shows the properties and the related species. All
properties are checked regarding their probability (p ≥ 0.8), which is
omitted for simplicity. |A+| and |A−| are the number of assignments for
which the property holds and does not hold, respectively. The sampling
number for each parameter assignment range is set to 10, thus |A+| +
|A−| = 10. Only when experiment results for all 10 sampled assignments
are checked successfully, the test result is true. For each experiment
specification where the specified property is not checked successfully for
the composed model, a counterexample of parameter assignment is given
(see rows with gray background). [Adapted From [184]]

100

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

4.5. Case Study II: Modeling the Wnt/β-catenin
Pathway

While the previous case study based on a small model of Lotka-Volterra mainly
serves as a demonstration of how the proposed approach is used to support model
composition, in this case study, the proposed approach was applied to build a realistic
model the Wnt/β-catenin pathway by successively composing three individual models.
By following the life cycle of model composition (Figure 4.1), this case study also
aims to illustrate where the presented approach is located in this process and how
the approach can be combined with other existing work on model composition.

The simulation study described in this case study had been performed by
Haack [87], with two models of Wnt/β-catenin pathway already developed (see
[89]). To demonstrate the applicability of the proposed approach, this case study
replayed the simulation study and reconstructed the model development process
explicitly in a composition way.

4.5.1. Background

Wnt/β-catenin signaling is involved in central cellular processes, such as differentia-
tion, proliferation, and migration of cells. Its deregulated form leads to developmental
disorders and various diseases, including several forms of cancer and Alzheimer’s
disease [39]. A better understanding of this pathway and its regulation of human
neural progenitor cells (hNPCs) differentiating into neurons, astrocytes and oligo-
dendrocyte cells allows more effective replacement therapies of neuro-degenerative
diseases, such as Parkinson’s or Huntington’s disease. Consequently, the analysis of
the Wnt/β-catenin signaling pathway has been the subject of a series of simulation
studies and quantitative models [137]. Thus, modeling efforts often start with an
existing model being revised, extended, or composed with other models, e.g., [89].

The key component of Wnt/β-catenin signaling is a protein termed β-catenin.
In the inactive state of Wnt/β-catenin signaling, β-catenin is constantly produced,
but immediately targeted for degradation by a large protein complex termed the
destruction complex. Upon Wnt stimulation, a reaction cascade is triggered, which
leads to the inhibition of major components of the destruction complex, such as Axin.
As a result, β-catenin accumulates inside the cytosole and subsequently shuttles into
the nucleus. Once shuttled into the nucleus, β-catenin associates with the Lef/Tcf
transcription factors and triggers a pathway-specific gene response relevant for the

101

4. Model Composition Based on Reusing Simulation Experiments

�����

���	 ���	

��� ���

���

���	 ���

	�����

	��

�����������
����� �����������

�����

����� �����

�����

�����

�
���

���

�

���

���

��

��!������

���������

��"�����#

������

��!������

��#����!� ��������"

��

�!�����!�

�

��$���
��%�����&�'	('	('	(

'	(

$��)*��
��*+,���

-.��/ -.��/

$$

��*+,���������

���	

������

������" ������"

�#������

���

$

������� �!�����

���
�

$$

���

���
�

���

���

Figure 4.11.: The Wnt pathway model that contains three individual models: the
membrane model, the Axin/β-cat model and the ROS model [89].

regulation of various physiological and developmental processes [39]. The relocation of
β-catenin into the nucleus is therefore the main indicator for the pathway activation.

To study the regulation of β-catenin levels in response to various stimuli, a
computational stochastic model of Wnt/β-catenin pathway has been developed by
Haack et al. [89]. In this case study, the development of this model was replayed, and
the process of developing models by composition and the role of reusing simulation
experiments in this process were made explicit. Three individual models have been
reused and successively composed: a membrane model (M1), an Axin/β-catenin
model (M2) and a Reactive Oxygen Species (ROS) model (M3), as shown in Figure
4.11. Firstly, the membrane model is composed with the Axin/β-catenin model, which
results into the first composed model (M12). Afterwards, the resulting composed
model is further composed with the ROS model (M3), leading to the second composed
model (M123), which consists of all three models.

4.5.2. Ingredients

Modeling and Simulation Method

A previous study of Wnt/β-catenin signaling pathway of human neural progenitor
cells has already shown that stochastic effects should not be ignored [157]. Moreover,
hierarchical structures exist in the system to be modeled, e.g., the cell includes
nucleus and membrane, which are compartments containing further structures. Thus,
a modeling language, which allows the representation of a formal, stochastic semantics

102

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

and the description of inter- and intra-compartmental dynamics, is needed. Therefore,
ML-Rules was chosen to define models in this case study (see description in Section
4.4.2, pp. 87-88).

A simulation system for ML-Rules models, which has been integrated into SESSL
via the binding sessl.mlrules, was employed to execute experiments, and the
algorithm presented in [261] was used, named as SimpleSimulator in SESSL.

Property Specification and Checking Algorithms

Despite the fact that LTL has been successfully used in many applications, the
temporal operators in the language do not allow for quantitative statements about
time. In this case study, explicitly relating a certain observation with time is required
for expressing the properties of interest. Thus, the Metric Interval Temporal Logic
(mitl[a,b]) [149] was employed, which enriches traditional modal operators of temporal
logics with intervals and defines that the operator is only evaluated in this interval.
For instance, φ U[3,7] ψ states that there exists a time point t′, which is between 3
to 7 time units from the current time point t, so that the property ψ holds from t′

on and φ should hold in [t, t′].
The validation of models in this case study depended on checking simulation

results against properties that are derived from observations in wet-lab experiments
with human neural progenitor cells [89, 156]. The available data refer mostly to
aggregate observations made on heterogeneous populations of thousands up to a
million of cells, and those aggregate observations form the basis for further discussions
and explorations. Given that each developed model in this case study refers to a
single cell and no interaction between different cells is involved, the property checking
also was based on averages of multiple stochastic simulation runs executed with the
same model. This method differs from statistical model checking in its handling
of variance among simulations: averaging over multiple runs instead of hypothesis
testing on individual runs. The later was shown to be less suitable in this case study,
as most of the properties that are of interest could not be verified by statistical model
checking due to the high variance among different simulation runs. The variance can
be reduced by the averaging of individual runs.

Since the wet-lab data used are based on average of observations from thousands up
to a million of cells, to efficiently perform experiments while ensuring the accuracy of
result analysis, a mechanism to determine the minimal number of required simulation
replications is needed. Therefore, a method based on constraining the confidence
interval was used, i.e., at each relevant observation point the confidence interval is
calculated and the interval width is compared to a given threshold. Experiments

103

4. Model Composition Based on Reusing Simulation Experiments

are executed in batches; after each batch, confidence intervals are calculated based
on all executed replications. The same simulation set-up is replicated until at
every observation point the calculated confidence interval has a width less than the
defined threshold; otherwise, another batch of experiments will be scheduled. Once
a sufficient number of runs are executed, a point-wise average of all simulations is
calculated to represent the trajectory of the average cell, and this trajectory is used
for checking properties. The confidence level, interval width, and batch number can
be configured by the user. For experiments in this case study, the 95% confidence
level was used and the width threshold was set to 10, i.e., the 95% confidence interval
is constructed with the average of observed species number plus/minus at most 5,
and one batch of experiments was configured to contain 5 replications.

Averaging across different simulation runs considers the variance between those
runs. However, stochastic fluctuations over time exist in each simulation run and these
fluctuations of single runs are still evident in the average trajectory. Specifications
in mitl[a,b] and the corresponding checking algorithms are not able to tolerate such
fluctuations. For example, an algorithm checking a trajectory for an increase might
reject it because of some short, random episodes of decreasing. To avoid such errors,
a preprocessing of trajectories was employed based on the LOESS smoothing method,
which is a generalization of LOWESS (Locally Weighted Scatterplot Smoothing)
originally proposed by Cleveland [38]. An implementation of the LOESS method
from the Apache Commons Math library [40] was adopted and integrated into
SESSL. The parameters bandwidth and iteration number of the LOESS algorithm
can be configured in the SESSL specification, and the accuracy is set to 10−12 in
the implementation. In this case study, the LOESS method was configured with a
bandwidth of 0.1 and no additional iterations, constituting a minimal smoothing.

The algorithm proposed in [149] was exploited for checking mitl[a,b] formulas. To
obtain the valid intervals for a given formula, the valid intervals for its subformulas are
recursively determined (an example is shown in Figure 4.12). The logical operators
negation, conjunction and disjunction are mapped to inverting, intersecting and
joining the sets of valid intervals. The valid intervals for atomic propositions are
determined directly from the trajectory data. If one of these intervals contains the
time point 0, i.e., the beginning of the trajectory, the formula holds for the observed
simulation run.

Special attention has to be given to the semantics of these intervals. As defined by
Maler and Nickovic, the intervals are interpreted as left-closed right-open, such that
they contain their start point, but not their endpoint [149]. Although this would
mathematically be denoted as [ti,ti+1), here [ti,ti+1] is used following the original

104

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

φ

0 10 20 30 40 50

G[0,10](φ)

0 10 20 30 40 50

F [0,10](φ)

0 10 20 30 40 50

Figure 4.12.: Example for obtaining valid intervals for formulas with temporal opera-
tors. The valid intervals for the formulas G[0,10](φ) (φ holds during the
next ten time units) and F[0,10](φ) (φ holds somewhere in the next ten
time units) should be determined. The formula φ holds in the interval
[30,50]. Then the formula G[0,10](φ) [30, 40], and F[0,10](φ) holds in
[20, 50]. Picture after Maler and Nickovic [149]. [From [186]]

authors. The set of observed time points in the trajectory makes up possible interval
borders. Assuming that the model state does not change between observations
regarding the property to check, a property holds in an atomic interval [ti,ti+1]
if it holds at the observed time point ti. Consequently, the observed trajectory
should contain enough data points to justify this assumption. As “enough” is highly
model-dependent, it is crucial to interweave the configuration of model observation
and mitl[a,b] property checking in the experiment specification, which is provided by
SESSL.

SESSL was extended to support those new features, i.e., determining required
simulation replications based on thresholds for point-wise confidence interval width,
computation of the average trajectory, data preprocessing with LOESS trajectory
smoothing, and model behavioral property specification and checking based on
mitl[a,b]. For experiment adaptation and generation, the first method discussed in
Section 4.3.2 is used, i.e., a set of default configurations for all model parameters
is provided by the user in the composed model file and for those parameters that
should be limited to a specific configuration, their configuration is defined as part of
adaptation information.

4.5.3. Developing the Wnt/β-catenin Model

Problem Formulation, Requirements Engineering, and Conceptual
Modeling

As the starting point of a simulation study, this stage leads to the development of a
conceptual model. According to the definition from Robinson [200], a conceptual

105

4. Model Composition Based on Reusing Simulation Experiments

model typically refers to objectives, inputs, outputs, content, assumptions and
simplifications. Based on this definition, the conceptual model in this case study was
presented as follows.

An involvement of lipid rafts in Wnt/β-catenin signaling has been shown in several
studies [211]. However, the spatio-temporal dynamics and the exact impact of lipid
rafts on Wnt/β-catenin signaling remain unclear. Therefore, the objective of the
simulation study, as presented by Haack et al. [89], was to explore the role lipid rafts
play in the Wnt/β-catenin signal transduction, with the presence/removal of lipid
rafts as the main input and the concentration of nuclear β-catenin as the output.
This motivated the development of a Wnt/β-catenin model with membrane related
dynamics considered as well.

The Wnt/β-catenin signaling starts with Wnt binding to the receptor LRP6 to
form the Wnt receptor complex. The phosphorylation of the complex is restrained
to be inside lipid rafts, and the phosphorylated complex recruits the key component
of the destruction complex Axin, and therefore causes an accumulation of β-catenin
inside the nucleus.

One simplification is that only LRP6 and CK1γ are considered for the receptor
complex. As a matter of fact, the Wnt receptor complex also comprises a sub-variant
of the Frizzled receptor as well as additional membrane-bound adapter proteins.
This simplification is reasonable since for Wnt/β-catenin signaling, all crucial events
mainly depend on the dynamics of LRP6 and CK1γ. In addition, only Axin is
considered as the destruction complex, and the remaining proteins such as GSK3β
are disregarded. Mathematical analyses have shown that such a reduced model is
capable of reproducing the essential dynamics of Wnt-induced β-catenin signaling
[164]. As the wet-lab data refer to the first 12 hours (720 minutes) of differentiation,
simulation experiments of models in this study have also been constrained to this
time period, with 1 minute in the wet-lab experiments corresponding to 1 simulation
time unit.

Based on this conceptual model, the aim was to compose a membrane model that
comprises central key players of membrane related dynamics such as the receptor
complex and its interaction with lipid rafts, and a core model of the Wnt/β-catenin
that is able to predict the β-catenin accumulation within the nucleus depending on
the activity of the destruction complex.

Model Selection — the Membrane Model (M1)

In the ideal situation, a suitable model can be found and retrieved from a model
repository. Unfortunately, it is often the case that experimental studies provide new

106

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

insights or evidence into biochemical or cell-biological processes that are not yet
covered by existing models. Therefore, a new model has to be developed, as was
the case in the simulation study in [89]. A membrane model (M1) was developed to
represent the diffusion-driven shuttling of LRP6 and CK1γ between raft and non-raft
membrane regions, where lipid rafts are modeled as individual compartments within
the membrane, similar to the nucleus being a single compartment within the cell.
Thereby, the fraction of raft-associated LRP6 (LR[Lrp6]) and CK1γ (LR[CK1γ])
molecules are the main behavioral properties for the membrane model.

Throughout this case study, the values for model parameters and initial concentra-
tions were partly fitted, partly taken from literature, and partly directly measured in
wet-lab experiments (see Table 1 in [89] for more detail). The model parameters were
configured as nLR = 5, nLrp6 = 4000, nCK1y = 5000, where nLR, nLrp6, nCK1y

denote the initial number of lipid raft, LRP6, and CK1γ, respectively. Using the
simulation method presented in Section 4.5.2, simulation experiments were performed
with this model, and during the simulation the number of species LR[Lrp6] and
LR[CK1γ] have been observed and recorded. To alleviate stochastic fluctuations,
the LOESS method was used to smooth generated simulation trajectories. The
simulation trajectories are shown in Figure 4.13. The LOESS method may have an
impact on the initial values, peaking values, or valley values in the trajectories, such
as increasing the values (as shown in Figure 4.13). However, this increasing of values
does not affect the model behavioral properties that are of interest. This also applies
to the experiments with other models in this case study, e.g., Figure 4.15, where in
the beginning part of the trajectory the value of the first peak and valley slightly
deviate from original ones.

Based on the findings in wet-lab studies [211] and the simulation results, two
properties were derived: after a warm up phase, the fraction of LRP6 and CK1γ
being associated with lipid rafts are in equilibrium, with around 1/4 of the overall
Lrp6 population and around 3/4 of CK1γ population residing within lipid rafts.
Given the model M1 with its parameters p̃ and the simulation set-up ses1, the above
properties can be specified in mitl[a,b] as follows:

M1p̃ |=ses1 G(60, 720, LRLrp6 >= nLrp6 ∗ 0.25 ∧ LRLrp6 <= nLrp6 ∗ 0.3) (4.1)

M1p̃ |=ses1 G(60, 720, LRCK1γ >= nCK1γ ∗ 0.7 ∧ LRCK1γ <= nCK1γ ∗ 0.75) (4.2)

The experiments were specified in SESSL, including the desired behavioral prop-
erties, as presented in Figure 4.14. Line 10 denotes the specification of replication
conditions that for both species LR[Lrp6] and LR[CK1γ], the average value observed
at every 120 time units from time 0 to 720 should have 95% confidence interval with

107

4. Model Composition Based on Reusing Simulation Experiments

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

0

500

1000

1500

2000

2500

3000

3500

4000

LR[CK1.]

LR[Lrp6]

LR[CK1.] smoothed

LR[Lrp6] smoothed

Figure 4.13.: Simulation results of the Membrane Model (M1), with the average
trajectories with 95% confidence interval (gray error bars) and the
smoothed trajectories. Please note, as a result of the smoothing, the
initial values of trajectories slightly deviate from the original trajectories.
As explained in the text, this deviation does not affect the considered
model behavioral properties, hence does not bias test results.

width less than 10, and 5 replications constitutes one experiment batch. Line 11
configures the data preprocessing method, i.e., the LOESS smoothing method. The
corresponding property states that for the average of all simulated trajectories, from
time 60 to time 720, the amount of LRLrp6 is always between 25% and 30% of the
initial amount of Lrp6 (i.e., 4000), and the amount of LRCK1y is always between 70%
and 75% of the initial amount of CK1γ (i.e., 5000) (lines 12-15).

The experiment specification was successfully tested with the membrane model
using the developed tool TAECS without adaptation, which corresponds to the
working case B in Figure 3.9, and thereby annotated with the membrane model M1.

Model Selection — the Axin/β-Catenin Model (M2)

Several models can be found in public repositories (such as BioModels Database) that
describe the core β-catenin dynamics [137]. However, only one model is of stochastic
nature and had been validated for hNPCs [157], which therefore was selected for
composition.

This intracellular model primarily describes the dynamics of β-catenin, including
its synthesis and its interaction with the destruction complex and the resulting
degradation process, as well as its shuttling between nucleus and cytosol. These
dynamics are triggered by an initial amount of Wnt. The model resembles a reduced

108

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

1 import sessl._

2 import sessl.mlrules._

3 val exp = new Experiment with Observation with Hypothesis {

4 model = "./MembraneModel.mlrj"

5 set("nLR" <∼ 5, "nLrp6" <∼ 4000, "nCK1y" <∼ 5000, "nWnt" <∼ 220)

6 simulator = SimpleSimulator()

7 stopTime = 720.0

8 observe("LRLrp6" ∼ "Cell/Membrane/LR/Lrp6", "LRCK1y" ∼ "Cell/Membrane/LR/CK1y")

9 observeAt(range(0.0, 1.0, 720.0))

10 replicationCondition = PointWiseConfidenceInterval("LRLrp6", 5, 10.0, 0.95, range(0, 120,

720)) and PointWiseConfidenceInterval("LRCK1y", 5, 10.0, 0.95, range(0, 120, 720))

11 dataProcessor = LoessInterpolation(0.1, 0)

12 assume { Average (

13 G(60.0, 720.0, (variable("LRLrp6") >= 4000*0.25) and (variable("LRLrp6") <= 4000*0.3))

14 and G(60.0, 720.0, (variable("LRCK1y")>=5000*0.7) and variable("LRCK1y")<=5000*0.75))

15)}

16 }

Figure 4.14.: Experiment specification of the Membrane model (M1) in SESSL.

version of the Lee model [127] and contains only two proteins (β-catenin and Axin).
Axin is further characterized by a phosphorylation site, which is important for the
degradation of β-catenin. While phosphorylated Axin (AxinP) promotes β-catenin
degradation, its unphosphorylated state (Axin) has no impact on β-catenin. The
model has been validated based on in-vitro data of hNPC [155]. To reproduce the
biphasic behavior observed in the wet-lab, a delayed autocrine mechanism proved to
be essential and had been introduced into the model [157].

The model was originally represented in SBML; as ML-Rules was chosen for
model description (see Section 4.5.2), the model has been converted into ML-Rules.
Since no experiments had been associated with the model, simulation experiments
were reconstructed based on the publication [157]. The simulation results are shown
in Figure 4.15. From the results, one can observe that within the first 2 hours
of differentiation a peak occurs, after which β-catenin increases slightly again and
stabilizes around a 1.4-1.7 fold increase. This biphasic behavior of the nuclear
β-catenin concentration is the main desired property for this model, which can be
expressed based on mitl[a,b] as follows:

M2p̃ |=ses2 (d(βcat)/dt >= 0) U(40, 100, F (0, 10, d(βcat)/dt <= 0)) (4.3)

M2p̃ |=ses2 G(400, 720, βcat >= 1.4 ∗ nβcat ∧ βcat <= 1.7 ∗ nβcat) (4.4)

The experiments have been specified in SESSL and successfully tested, as depicted
in Figure 4.16, with Figure 4.16(a) referring to property in Equation 4.3 and Figure
4.16(b) referring to property in Equation 4.4.

109

4. Model Composition Based on Reusing Simulation Experiments

Time (sim time unit)

1 sim time unit = 1 minute

0 60 120 180 240 300 360 420 480 540 600 660 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

(f
o

ld
 c

h
a

n
g

e
)

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Nuc[Bcat]

Nuc[Bcat] smoothed

Figure 4.15.: Simulation results of the Axin/β-Catenin Model (M2), with the average
trajectories with 95% confidence interval (gray error bars) and the
smoothed trajectories.

1 val exp = new Experiment with Observation with Hypothesis {

2 model = "./AxinBcatModel.mlrj"

3 set("nBcatNuc" <∼ 5282)

4 simulator = SimpleSimulator()

5 stopTime = 720.0

6 observe("NucBcat" ∼ "Cell/Nuc/Bcat")

7 observeAt(range(0.0, 1.0, 720.0))

8 replicationCondition=PointWiseConfidenceInterval("NucBcat", 5, 200.0, 0.95, range(0, 120,

720))

9 dataProcessor = LoessInterpolation(0.1, 0)

10 assume { Average (

11 d("NucBcat") >= 0 U(40.0, 100.0, F(0.0, 10.0, d("NucBcat") <= 0))

12)}

13 }

(a) Experiment specification regarding regarding the fold change of nuclear β-catenin
concentration peaking within first 100 minutes.

1 assume { Average (

2 G(400.0, 720.0, (variable("NucBcat") >= 1.4 * 5282) and (variable("NucBcat") <= 1.7 * 5282))

3)}

(b) Property specification regarding the fold change of nuclear β-catenin concentration
staying in a certain range in the later hours. The experiment set-up is the same as
that in (a).

Figure 4.16.: Experiment specifications of the Axin/β-Catenin model (M2) in SESSL.

110

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

Composing M1 and M2 — the Composed Model (M12)

A white-box integration approach was used to compose the membrane model M1
and the Axin/β-Catenin model M2, where the variables, structures, and rules of
the reused models are merged (see discussion in Section 4.2, pp. 77-78), leading to
the composed model M12. So far, the generation of a composed model from two
ML-Rules models is realized by the user, as it is rather difficult (if not impossible)
to automatically compose two models based on fusion. In the composed model, due
to membrane related processes, the species Wnt no longer directly interacts with
Axin as in the model M2, but is mediated: Wnt-bound and phosphorylated LRP6
(Lrp6PP) recruit and bind Axin at the membrane. Thus, LRP6 interferes with the
function of Axin in the degradation complex, and hence disrupts the degradation of
β-catenin. Besides, the phosphorylation of Wnt-bound Lrp6 is confined to lipid rafts
[176]. Only phosphorylated Lrp6 recruits Axin from the cytosol, and due to its size,
the resulting signalosome is unlikely to leave the lipid raft, thus having an impact on
the diffusion patterns of Lrp6.

Therefore, the rule relating Wnt and Axin had to be removed, and additional rules
were introduced to describe the interaction between Wnt and Lrp6, the phosphoryla-
tion of Lrp6 , and the interaction between Lrp6 and Axin, respectively. Parameters
that are related to Wnt (as Wnt is no longer directly interacting with Axin) or to
newly added rules, were (re-)calibrated based on recent wet-lab data or based on
literature [89], and the rest were inherited from the two composed models.

Syntactic Verification

The previously described two models (M1 and M2) are independent, i.e., they share
neither rules nor do they have common species; therefore, no merging conflicts exist
in model variables. The syntactic checking of the composed model relied on the
user, and an ML-Rules model editor had been developed to provide some assistance
through syntax highlighting, which ensures the composed model is syntactically
correct, and types and variables adhere to the constraints provided.

Semantic Validation

To check validity of the composition with the proposed approach, and the experiment
specifications of M1 and M2 (as shown in Figure 4.14 and 4.16) were reused to conduct
experiments with the composed model M12. No renaming of model parameters was
performed during the composition and the configuration of the newly introduced
model parameters had been provided within the model file by the user. Thus, in the

111

4. Model Composition Based on Reusing Simulation Experiments

reused experiment specifications only the model location needed to be updated, from
model component M1 or M2 to the composed model M12.

As already stated, in the presence of Wnt and the forming of the signalosome, an
equilibrium of Lrp6 within lipid rafts would not be expected; instead, the fraction
of raft-associated LRP6 would increase due to the size and reduced diffusion speed
of the signalosome [88]. Thus, the property regarding the fraction of LRP6 within
lipid rafts, i.e., Equation 4.1, would be expected to not hold for the composed model.
As CK1γ is not influenced in the composition, its dynamics remains the same, i.e.,
Equation 4.2. Moreover, the properties specified in experiment specifications of the
model M2 refer to β-catenin (see Equation 4.3 and 4.4), which were derived based
on validation of M2 against wet-lab data; therefore, they should also hold for M12.

With the developed tool TAECS, the experiment specifications of M1 and M2 were
adapted and executed on the composed model, and the behavioral properties were
checked accordingly. The simulation trajectories are shown in Figure 4.17(a) and
4.17(b). The simulation results show that all properties of the reused models, except
for the one referring to the stable fraction of raft-associated Lrp6 concentration, hold
for the composed model. This was in agreement with the expectation, indicating
that the composed model M12 indeed works as intended with respect to the key
behavioral properties of its two reused models.

Therefore, the composed model M12 possesses the three behavioral properties
from its two model components under corresponding experiment set-ups, i.e., the
properties regarding species CK1γ (Equation 4.2, from M1) and nuclear β-catenin
(Equation 4.3 and 4.4, from M2), which can be expressed based on mitl[a,b] as
Equation 4.6, 4.7 and 4.8. As for the property regarding the species Lrp6, the
composed model M12 behaves differently from the model M2, i.e., the amount of
Lrp6 within lipid rafts accumulates instead of reaching a stable fraction, as illustrated
by the simulation results in Figure 4.17(a) and Figure 4.13. Therefore, this property
was updated, as described in Equation 4.5, while the experiment set-up stays the
same as that in the original model M1.

M12p̃ |=ses1 G(0, 720, d(LRLrp6)/dt >= 0) (4.5)

M12p̃ |=ses1 G(60, 720, LRCK1γ >= nCK1γ ∗ 0.7 ∧ LRCK1γ <= nCK1γ ∗ 0.75) (4.6)

M12p̃ |=ses2 (d(βcat)/dt >= 0) U(40, 100, F (0, 10, d(βcat)/dt <= 0)) (4.7)

M12p̃ |=ses2 G(400, 720, βcat >= 1.4 ∗ nβ ∧ βcat >= 1.7 ∗ nβcat) (4.8)

Additional simulation experiments were executed to further validate the composed
model M12, e.g., to reproduce an independent study in [91], different amounts of

112

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

0

500

1000

1500

2000

2500

3000

3500

4000

LR[CK1.]

LR[Lrp6]

LR[CK1.] smoothed

LR[Lrp6] smoothed

(a) The simulation results regarding the species Lrp6
and CK1γ inside lipid rafts.

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

(f
o

ld
 c

h
a

n
g

e
)

0.8

1

1.2

1.4

1.6

1.8

2

Nuc[Bcat]

Nuc[Bcat] smoothed

(b) The simulation results regarding nuclear β-catenin
with the default model configuration.

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

(f
o

ld
 c

h
a

n
g

e
)

0.9

1

1.1

Nuc[Bcat]

Nuc[Bcat] smoothed

(c) The simulation results regarding nuclear β-catenin
when lipid rafts are removed, i.e., nLR = 0.

Figure 4.17.: Simulation results of the first composed model (M12), with the average
trajectories with 95% confidence interval (gray error bars) and the
smoothed trajectories.

113

4. Model Composition Based on Reusing Simulation Experiments

initial Wnt were applied to the model and the resulting nuclear β-catenin levels
were compared. Subsequently, the question that motivated this simulation study
was examined, namely analyzing the impact of lipid rafts on β catenin based on the
composed model M12. Within the wet-lab experiments, the lipid rafts of the hNPCs
were disrupted by applying methyl-beta-cyclodextrin. Whereas the Wnt-β-catenin
signalling pathway appeared inactive in the later hours as expected (i.e., no β catenin
fold increase), a peak of β-catenin within the first three to four hours were observed.

Two properties were derived based on this observation, which can be expressed
with mitl[a,b] as in Equation 4.10 and 4.9, while the experiment set-up ses12 is similar
to ses2 except for nLR = 0. To reproduce the findings of the wet-lab experiments,
the lipid rafts were accordingly removed from the model M12, by setting nLR = 0.
Simulation experiments were executed and results are presented in Figure 4.17(c),
showing that the property in Equation 4.10 cannot be satisfied by the composed
model M12, only the one in Equation 4.9.

M12p̃ |=ses12(nLR=0) G(400, 720, βcat >= 0.9 ∗ nβcat ∧ βcat <= 1.1 ∗ nβcat) (4.9)

M12p̃ |=ses12(nLR=0) (d(βcat)/dt >= 0 U(40, 200, F (0, 10, d(βcat)/dt <= 0)) (4.10)

Taking a closer look at the composed model M12, one can find the influence
of the Wnt on β-catenin entirely relies on lipid rafts; when completely removing
lipid rafts from the model, the raft-dependent LRP6 phosphorylation by CK1γ in
response to a Wnt stimulus is prevented, and no Axin can be recruited, which results
in no accumulation of β-catenin inside the nucleus. However, this disagrees with the
observation in wet-lab experiments, indicating a missing mechanism in the composed
model M12 that leads to the immediate increase of β-catenin and its peak in raft
deficient cells within the first 3 hours.

Model Documentation and Storage

Despite the fact that the composed model M12 is not able to reproduce all observations
from wet-lab data, it exhibits valid behavior under certain conditions. Therefore,
to facilitate further reuse, M12 was annotated with those experiments that have
been successfully checked, as shown in Figure 4.18, including the experiment from
model M1 with property regarding the species CK1γ, the experiment from model
M1 with an updated property regarding the species Lrp6, the two experiments from
model M2 with properties regarding the nuclear β-catenin, and the experiment with
property regarding the nuclear β-catenin in the later hours under the condition that
lipid rafts are removed.

114

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

1 assume { Average (

2 G(60.0, 720.0, variable("LRCK1y") >= 5000 * 0.7 and (variable("LRCK1y") <= 5000 * 0.75))

3 and G(0.0, 720.0, d("LRLrp6") >= 0)

4)}

(a) Property specification regarding the fraction of LR[Lrp6] and LR[CK1γ]. The first
order derivative is used to describe that a variable increases or decreases, denoted as
d(“variableName”) in SESSL.

1 val exp = new Experiment with Observation with Hypothesis {

2 model = "./FirstComposedModel.mlrj"

3 set("nBcatNuc" <∼ 5282, "nLR" <∼ 0)

4 simulator = SimpleSimulator()

5 stopTime = 720.0

6 observe("NucBcat" ∼ "Cell/Nuc/Bcat")

7 observeAt(range(0.0, 1.0, 720.0))

8 replicationCondition=PointWiseConfidenceInterval("NucBcat", 5, 200.0, 0.95, range(0, 120,

720))

9 dataProcessor = LoessInterpolation(0.1, 0)

10 assume { Average (

11 G(400.0, 720.0, (variable("NucBcat") >= 0.9 * 5282) and (variable("NucBcat") <= 1.1 * 5282))

12)}

13 }

(b) Experiment specification regarding the fold change of nuclear β-catenin concentration
when lipid rafts are removed from the model by configuring nLR = 0.

Figure 4.18.: Experiment specifications of the composed model (M12) in SESSL.
(a) depicts the updated property specification regarding LR[Lrp6] and
LR[CK1γ] while the experiment set-up is similar to Figure 4.14 except
for the model location, and (b) describes the experiment specification
regarding nuclear β-catenin under the condition that lipid rafts are
removed. In addition, the first composed model is annotated with
another two experiment specifications, i.e., the adapted experiment
specifications from M2 as shown in Figure 4.16 by updating model
location.

Further Composition — Integrating ROS/Dvl Model (M3)

In the presence of lipid raft the composed model M12 appears to be valid; in the
absence of lipid rafts only its response referring to the last 8 hours of the experiments
is as expected, at which time autocrine mechanisms are already effective. Thus, the
model underlines the role of lipid rafts particularly in combination with autocrine
mechanisms for the later hours of the early hNPCs’ differentiation. Therefore, a new
round of modeling within the life cycle of model composition was started to explore

115

4. Model Composition Based on Reusing Simulation Experiments

possibilities that could explain the first peak. In the following, this study will be
briefly presented, with a focus on the reuse of simulation experiments for semantic
validation of the composed model.

Hence, a model was needed, which can be composed with the model M12 so
that the resulting model can still exhibit the key properties of model M12 with
corresponding experiments and additionally produce the expected behavior that
under the condition lipid rafts are removed, an increase of nuclear β-catenin can be
observed within the first hours.

A related study was identified, in which during the initiation phase of hNPCs’
differentiation an early spontaneous production of reactive oxygen species (ROS)
had been observed, and the ROS promotes a Dvl-mediated downstream activation of
canonical Wnt signaling [197]. Therefore, the next model component was aimed at the
ROS/DVL model (M3), with which the first composed model M12 would be further
composed. Here the previously described model M12 of Wnt/β-catenin signaling
pathway is complemented by an intracellular signaling mechanism that is completely
independent of extracellular Wnt molecules. β-catenin signaling is initiated by a
spontaneous release of Reactive Oxygen Species (ROS) from mitochondria, which
in turn activates Dvl by releasing the redox-sensitive binding of NRX and DVL.
Subsequently, cytoplasmic DVL binds to Axin and thereby leads to the activation of
downstream β-catenin signal pathway, yielding a transient accumulation of β-catenin
[89, 197].

Only few quantitative experimental data were available, and the model was based
upon and calibrated against the findings of two publications [75, 197] and additional
experimental data [89]. Simulation experiments were performed with the ROS model
(M3) and the dynamics of DVL concentration were observed, and the simulation
results are presented in Figure 4.19. According to the observation of the spontaneous
increase in cytosolic DVL concentration in the wet-lab [197], the main behavioral
property is that the DVL concentration reaches a value between 10000 and 12000
very fast directly at the beginning (assumed within the first 5 minutes). The property
can be expressed based on mitl[a,b] as:

M3p̃ |=ses3 F (0.0, 5.0, Dvl >= 10000 ∧ Dvl <= 12000) (4.11)

As the fast peak of DVL concentration is the main property, an additional smoothing
is not needed. The experiment was specified in SESSL, as shown in Figure 4.20.

By binding Dvl (from model M3) to both LRP6 and Axin (from model M12), the
composed model M123 was created, with four rules introduced, and the kinetics of
these new rules were defined based on wet-lab experiments and literature.

116

4.5. Case Study II: Modeling the Wnt/β-catenin Pathway

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000
Dvl(i)

Figure 4.19.: Simulation results of the ROS model (M3) with the average trajectory
with 95% confidence interval (gray error bars).

1 val exp = new Experiment with Observation and Hypothesis {

2 model = "./RosModel.mlrj"

3 simulator = SimpleSimulator()

4 stopCondition = 720.0

5 observe("Dvl" ∼ "Cell/Dvl(i)")

6 observeAt(range(0.0, 1.0, 720.0))

7 replicationCondition = PointWiseConfidenceInterval("Dvl", 5, 1500.0, 0.95, range(0, 1, 5))

8 assume { Average (

9 F(0.0, 5.0, variable("Dvl") >= 10000 and (variable("Dvl") <= 12000))

10)}

11 }

Figure 4.20.: Experiment specification of the ROS model (M3) in SESSL.

Accordingly, the composed model M123 was evaluated by reusing the experiment
specifications of the ROS/Dvl model component (M3) and the first composed model
M12, assuming that none of the original dynamics are disrupted.

In the models M12 and M2, it was assumed that the peak of nuclear β-catenin
within first hours is Wnt-dependent, i.e., the property described in Equation 4.7 and
4.3, corresponding to the experiment depicted in Figure 4.16(a). But this assumption
appears to not hold according to the contradiction between simulation results and
wet-lab observation when lipid rafts are removed. Therefore, the corresponding
experiment specification of M12 (an adaptation of Figure 4.16(a)) was discarded.
The remaining three experiment specifications were reused, i.e., the one with the
property referring to LRP6 and CK1γ within lipid rafts (Figure 4.18(a) and Equation
4.5 and 4.6), the one with the property referring to nuclear β-catenin reaching a
certain level in the later hours (an adaptation of Figure 4.16(b) and Equation 4.8),

117

4. Model Composition Based on Reusing Simulation Experiments

and the one with the property referring to nuclear β-catenin under the condition
that lipid rafts are removed (Figure 4.18(b) and Equation 4.9), with the expectation
that none of those properties would be violated.

The simulation results of experimenting with M123 are presented in Figure 4.21,
and all reused experiment specifications of M12 and M3 were checked successfully
as expected, which shows the composed model preserves the key behavior from its
model components as intended.

In addition, experiments were performed with the model M123 to check the
property that model M12 is unable to produce, as shown in Equation 4.9, which has
been the objective for the development of the model M123. The simulation results
show that in the absence of lipid rafts the composed model M123 indeed reproduces
an early peak of nuclear β-catenin, as presented in Figure 4.21(d).

Besides, further experiments showed that M123 is able to reproduce key observa-
tions from additional wet-lab experiments, e.g., when removing lipid rafts, a peak of
nucleus β-catenin concentration at around 2 hours occurs, without the later increase
[89]. To facilitate further reuse, model M123 has been annotated with all experiment
specifications that were checked successfully.

4.6. Summary

This chapter discussed reusing simulation experiments for developing models through
model composition. Following a brief introduction on model composition and related
work (Section 4.1), a life cycle was presented to structure the process of developing
composed models, as well as different existing approaches for each phase of this
process (Section 4.2). Based on this life cycle, the focus of this work was illustrated,
which is to support semantic validation of the composed model. With the general
approach having been presented in the previous chapter, the concept overview of
reusing simulation experiments to support model composition was depicted in Section
4.3.1. Afterwards, problems in experiment adaptation that arise from this specific
type of model reuse were discussed and two solutions were presented to tackle those
problems (Section 4.3.2).

To demonstrate the applicability of the proposed approach, two case studies
were presented, one based on composing variants of the small Lotka-Volterra model
(Section 4.4) and one based on replaying the simulation study presented in [89]
to develop a realistic model of the Wnt/β-catenin signaling pathway (Section 4.5).
Whereas the case study of Lotka-Volterra models shows how the proposed approach
can be used, the case study of the Wnt/β-catenin model illustrates the capability

118

4.6. Summary

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

0

500

1000

1500

2000

2500

3000

3500

4000

LR[CK1.]

LR[Lrp6]

LR[CK1.] smoothed

LR[Lrp6] smoothed

(a) The simulation results regarding Lrp6 and CK1γ.

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

(f
o

ld
 c

h
a

n
g

e
)

0.8

1

1.2

1.4

1.6

1.8

2

Nuc[Bcat]

Nuc[Bcat] smoothed

(b) The simulation results regarding nuclear β-catenin
with the default model configuration.

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000
Dvl(i)

(c) The simulation results regarding Dvl.

Time (sim time unit)

1 sim time unit = 1 minute

0 120 240 360 480 600 720

N
u

m
b

e
r

o
f

S
p

e
c
ie

s

(f
o

ld
 c

h
a

n
g

e
)

0.9

1

1.1

1.2

1.3

1.4

1.5
Nuc[Bcat]

Nuc[Bcat] smoothed

(d) The simulation results regarding nuclear β-catenin
when lipid rafts are removed, i.e., nLR = 0.

Figure 4.21.: Simulation results of the second composed model (M123), with the
average trajectories with 95% confidence interval (gray error bars) and
smoothed trajectories.

119

4. Model Composition Based on Reusing Simulation Experiments

of the approach in supporting the development of complex models. Moreover, by
following the life cycle of developing composed models, the second case study serves
to give an idea of how the approach can be integrated with other numerous existing
approaches in the area of model composition.

As shown by the case studies, simulation experiments of model components can
be reused to automatically perform experiment with the composed model and check
behavioral properties, to illuminate the impact of model composition on model
behavior and ensure some key behavioral properties are still preserved after the
composition. Also, it has been demonstrated that the proposed approach, together
with the prototypical tool TAECS, can contribute to the semantic validation of the
composed model and facilitate the complex modeling process of successive model
composition.

120

Chapter 5

Model Extension Based on Reusing
Simulation Experiments

In Chapter 3, the general concept of reusing simulation experiments to support
model reuse has been presented, and in Chapter 4, the approach was applied to
a specific type of model reuse, i.e., model composition, where different models are
composed together to build larger ones. In this chapter, another type of model reuse
is considered, i.e., model extension, where existing models are extended to build new
ones, and the proposed approach will be applied to support developing models by
extension. A case study based on developing a model of a receptor ligand pathway
by successively extending existing ones, is employed to illustrate the process of model
extension, and how the proposed approach can contribute to this process.

5.1. Model Reuse for Extension

While a substantial amount of work exists in facilitating model reuse, model com-
position has mainly been the focus of this research area, and reusing models for
extension receives little attention. However, in many application domains, such as in
the field of systems biology [72], acoustics [135] and electrical engineering [239], it is
not uncommon to develop models based on extending existing ones, which is also
termed as model refinement in some cases.

As illustrated by the three properties of models, i.e., the reference, the purpose,
and the abstraction property (see Section 1.4, p. 9), every model is a simplification
of the system under study for a specific purpose, and is valid with respect to
this purpose. Therefore, any validated model can be further extended, e.g., to
capture more phenomena of the modeled system, to represent the already described
phenomena in more detail, or to tailor the model to a specific question.

121

5. Model Extension Based on Reusing Simulation Experiments

Extending a model typically means adding more information so that the extended
model is able to more accurately represent the modeled system. Thereby, model
extension usually leads to increased complexity in the resulting model in comparison
to the original one. However, building new models by extending existing ones allows
dividing the complexity in modeling, as modelers can focus on specific questions of
interest during the modeling and the remaining tasks can be achieved by reusing the
original model. Thus, similar to model composition, model extension helps to reduce
the required effort in the modeling process and facilitates the development of large
and complex models. In model extension, models are built incrementally; once the
model is validated regarding certain questions and purposes, new parts can be added.
Those new parts usually are not sufficient to be abstracted into an independent,
complete model, which is different from model composition, where individual models
are composed together.

Similar to the life cycle of model composition shown in Figure 4.1, a life cycle of
developing models by successive extension is presented in Figure 5.1, where five key
steps are identified. On the one hand, model extension might ask more for exposing
and changing the internal structure of the model than the black-box manner in
model composition, and the creation of the extended model usually is accompanied
by syntactic checking; on the other hand, syntactic verification is not the focus of
this thesis. Therefore, in this life cycle, the syntactic verification step is implicitly
incorporated in the model extension step. Like in the case of model composition, this
thesis aims to support the validation of the extended model, as shown in Figure 5.1.

Some approaches have been developed to support model extension (refinement).
For example, in [162] an approach is proposed to make refinement decision and
answer the question “how much refinement of a simulation model is appropriate
for a particular design problem [...]”, by evaluating the refined model based on
metrics such as economic payoff or utility. In [264], a procedure for refining models of
gene-regulatory pathways is presented, which relies on the automated design of new
wet-lab experiments with the modeled system using a score function, to obtain more
experimental data so that existing models can be refined. Whereas those approaches
are concerned with problems such as to what extent the model should be extended
or how to derive the extended model, corresponding to the model extension step in
the life cycle shown in Figure 5.1, this thesis focuses on validation of the extended
model by employing simulation experiments.

As already stated, developing models is a process that is interwoven with per-
forming simulation experiments. When models are extended, some key behavior of
the original model should be preserved in the extended model and some should be

122

5.2. Reusing Simulation Experiments for Model Extension

violated. Thus, it is of interest to know whether the extended model still behaves
similarly to before and what are the changes in model behavior due to the extension.
Simulation experiments are capable of providing information about model behavior;
therefore, to analyze the impact of the extension on model behavior, often simulation
experiments that have been conducted with the original model are re-conducted with
the extended model and results are analyzed to compare behavior of the two models.

In this work, the idea of re-conducting simulation experiments of the original
model with the extended model is made explicit and simulation experiments of
individual models are reused to provide assistance in validation of the extended
model.

5.2. Reusing Simulation Experiments for Model
Extension

The overall concept of reusing simulation experiments for model extension is depicted
in Figure 5.2. As illustrated in Chapter 3 and Chapter 4, the basis of the proposed
approach is to annotate each model with specifications of simulation experiments
that have been executed with it. In the experiment specification, the expected model
behavioral properties are explicitly defined along with the experiment conditions

Candidate Model

Conceptual

Model
Valid ModelPRC

Model Selection

Extended Model

Model Extension

Model Validation

Model

Repository

Model

Documentation

and Storage Proposed approach

Starting a

simulation study

Figure 5.1.: A life cycle of modeling based on extension. PRC stands for Problem
Formulation, Requirements Engineering and Conceptual Modeling, which
are merged into one phase in this life cycle with a conceptual model
developed. Usually a simulation study starts with the PRC phase.

123

5. Model Extension Based on Reusing Simulation Experiments

under which the model’s behavior can satisfy those properties, corresponding to step
1 in Figure 5.2. The user can take an existing model together with its experiment
specifications, and extend the model, corresponding to step 2. After the model
extension, an extended model is created; also, adaptation information that contains
changes regarding model variables and their configuration is derived when necessary,
and result expectation referring to checking model behavioral properties on the
extended model is specified as well.

Subsequently, based on possible adaptation information, experiment specifications
of the original model are reused, adapted, and executed for the extended model with
the tool TAECS. Experiment results are analyzed to check whether the specified
model behavioral properties are satisfied or not, and whether this is as expected.
This procedure corresponds to the step 3 in Figure 5.2.

Apart from reusing experiment specifications of the original model, users can
additionally design and perform simulation experiments with the extended model, and
the specifications of those experiments are executed and checked as well, corresponding
to step 4. When an experiment specification is reused and executed, and the generated
experiment results cannot be checked successfully against the specified behavioral
properties, it is returned to the user, which can be revised and then checked again,
corresponding to step 5. Each experiment specification that has been checked
successfully is added as an annotation to the extended model, as shown in step 6.

As discussed in the previous two chapters, the experiment specification relies
on SESSL, and the developed tool TAECS is used for automatic adaptation and
execution of simulation experiments as well as result analysis. Experiment adaptation
for model extension is more straightforward than that for model composition, as only
one model is reused. During the extension, when model variables are renamed or
configuration of model parameters is changed, this information should be included in
the adaptation information, either through user specification as the case in the current
implementation, or through automated derivation based on model transformation or
model version control (see discussion in Section 3.5.3, pp. 61 - 62). When new model
parameters are introduced, their configuration can be defined in the model file or
included as part of the adaptation information. In either case, a complete default
model configuration should be provided in the model file. The whole procedure of
adapting, executing, and checking experiments is as presented in Algorithm 1.

By reusing simulation experiments of the original model, automatically performing
experiments with the extended model, and checking the behavior of the extended
model against the properties that are satisfied by the original model, the impact of
model extension on the model behavior can be illuminated and some insights can be

124

5.3. Case Study III: Modeling the Receptor Ligand Pathway

Models & corresponding

experiment specifications

Extend

model

Revise

experiments

Design

experiments

User

Extended

model M’

Adaptation

information

Result

expectation

Adapt

experiment

Execute & check

experiment

Fail

Succeed
TAECS

M
Experiment

specification

Experiment

specification

Experiment

specification

Experiment

specification

Experiment

specification

...

MA

Experiment

specification

MB

Experiment

specification

M’ Experiment

specification

Experiment

specification

1

2

3

4 5

6

Figure 5.2.: The overview of reusing simulation experiments for model extension.
When the user extends an existing model, the corresponding experiment
specifications of the original model, adaptation information, result expec-
tation and the extended model are passed to TAECS, which first adapts
the experiments and then executes and checks them. Besides, TAECS can
directly execute and check experiment specifications, which are created by
the user either through performing new experiments or through revising
experiments that fail in previous checking. When checked successfully,
the model is annotated with the experiment specification.[Adapted from
[186]]

gained on the validity of the extended model. When models are successively extended,
the proposed approach can assist in ensuring that some key characteristics are not
disrupted, and can provide fast feedback to the modeler during model extension.

5.3. Case Study III: Modeling the Receptor
Ligand Pathway

In this case study, the proposed approach was applied to modeling the process of
receptor ligand binding and subsequent signaling events, as shown in Figure 5.3.
Three models at various levels of detail were developed by successive extension. First,
a basic model was developed to describe the formation of a simple receptor ligand

125

5. Model Extension Based on Reusing Simulation Experiments

Figure 5.3.: The receptor ligand pathway. [From [186]]

binding at the membrane. Subsequently, this basic model was successively extended
by adding two additional processes into the model one after another.

5.3.1. Background

The binding of a ligand to a membrane-integral receptor plays a pivotal role in
cell communication. It initiates the cellular signal transduction and provides the
opportunity to transmit signals and information from the outside of the cell into the
inside. Once a ligand-receptor complex is successfully established, an intracellular
signaling cascade is initiated, which eventually leads to the input-specific response of
the cell, such as the specific expression of a target gene. The strength/effectiveness
of the signal response depends, among others, on how many ligands can be bound
and, in particular, how stable the complex is, i.e., how long the binding between
receptor and ligand lasts.

The stability as well as the function of the receptor complex is greatly effected
by other membrane-associated (peripheral) proteins that interact with the ligand-
receptor complex. Therefore, the interaction may eventually lead to the formation of a
ternary complex, which consists of the ligand, the receptor and the peripheral protein.
Common examples for proteins involved in the formation of ternary complexes are
G-proteins, coated pit adaptors, cytoskeletal elements or other receptors [123]. The
impact of such receptor coupling interactions and the formation of a ternary complex
is two-fold. On the one hand, the association and dissociation rates for receptor-ligand
binding can vary significantly between binary and ternary complexes —a fact that
has to be taken into close consideration when analyzing experimental data. Renown

126

5.3. Case Study III: Modeling the Receptor Ligand Pathway

examples for this effect are receptor/G-protein coupling and EGF receptor/adaptor
coupling. On the other hand, the interaction with membrane-associated proteins
induces further signaling events, like internalization (endocytosis) and recycling
processes or receptor accumulation.

Therefore, this case study aimed to capture the essential receptor-ligand binding
kinetics in dependence of the previously described receptor mediated events, i.e.,
receptor-protein coupling, internalization and recycling.

5.3.2. Ingredients

As in previously presented case studies, the multi-level rule-based modeling language
ML-Rules (see Section 4.4.2 for more details, pp. 87-88) was chosen to describe
models in this case study. To perform simulation experiments, the modeling and
simulation framework JAMES II was employed to execute the experiments specified
in SESSL, via the binding sessl.james. Within the experiments, the simulation
algorithm described in [153, 261] was used, named as MLRulesReference in SESSL.

To apply the proposed approach during the model extension, experiments of
individual models were specified in SESSL. As demonstrated by the case study
of the Wnt/β-catenin pathway, mitl[a,b] has been shown to be a suitable method
for describing model behavioral properties, as it allows the expression of property
qualitatively based on traditional operators in LTL and further supports explicitly
relating properties with time intervals. Also, the method described in Section 4.5.2
(pp. 104-105) was used for checking properties expressed in mitl[a,b].

As ML-Rules is based on Continuous-Time Markov Chain semantics, stochasticity
needs be to considered in performing simulation experiments, property specification,
and result analysis. Thus, multiple replications are required. Resembling the case
study of Lotka-Volterra models, this case study also employed CSL to express
probability regarding replications (Section 4.4.2, pp. 88-89), and probabilistic
statements can be defined as Pronp(φ), where on∈ {< , ≤ , > , ≥}, p ∈ [0,1], and φ is
an mitl[a,b] formula. Besides, the method for statistical model checking presented
in Section 4.4.2 (pp. 88-89), which is based on hypothesis testing, was used to
check whether the probability of the given property holding for a randomly selected
simulation run satisfies the specified requirement. The method presented in Algorithm
2 was used to determine the minimal needed replications, as discussed in Section
4.4.2 (pp. 89-90); parameters for this algorithm were configured as α = β = δ =
0.05 throughout this case study. To alleviate the stochasticity within simulation
trajectories of one replication, as in the case study of the Wnt/β-catenin pathway
(Section 4.5.2, p. 104), the LOESS smoothing method was exploited to pre-process

127

5. Model Extension Based on Reusing Simulation Experiments

raw simulation data, with the configuration of the bandwidth parameter being 0.1
and the number of robustness iterations parameter being 0.

Furthermore, the implementation of the proposed approach TAECS was used to
automatically generate simulation experiments by reusing the original ones, execute
these adapted experiments, and perform statistical model checking on the experiment
results.

5.3.3. The Basic Model — Ternary-Complex Formation
(M0)

According to the life cycle of developing models by extension presented in Figure
5.1, firstly a conceptual model should be established, based on which a candidate
model is selected for the model extension. Here, the process of conceptual modeling
is omitted, as this is not the focus of this thesis. Also, this case study started with
the development of the ternary-complex model (M0), which forms the basis for
subsequent model extension.

As the most basic version, this model contains four different species: ligand (L),
receptor (R), adaptor protein (X) and a representation for protein complexes (C),
which can have different states, depending on how many compounds are bound.
As shown in Figure 5.4, two scenarios exist regarding the formation process of the
ternary-complex: one is that the ligand binds the receptor first and then cytosolic
proteins binds the ligand-receptor complex (depicted with solid lines in the figure),
and another is that cytosolic proteins bind the receptor first and afterwards the
ligand is bound (depicted with dashed lines in the figure).

L

C1

X

R

C2C1'

X

L

Figure 5.4.: The two scenarios of the ternary-complex formation.

For simplicity, the second scenario, where the binding of cytosolic proteins and the
receptor is formed first, was disregarded, based on the fact that reaction rate constants
for this scenario are significantly lower, and thus can reasonably be neglected in the

128

5.3. Case Study III: Modeling the Receptor Ligand Pathway

L

C1

X

R C2

Cell

kf1 / kr1

kc1 / ku1

Figure 5.5.: The ternary-complex model (M0). [From [186]]

model. Therefore, in the basic model, the first scenario was captured, where the
formation of the ternary-complex starts with the ligand bound to the receptor, as
depicted in Figure 5.5.

The ternary-complex model is of general nature, but can be parametrized and
fitted to match the dynamics of specific pathways. This case study aimed to reproduce
EGF / EGFR binding kinetics that had been experimentally determined in fibroblasts.
In the wet-lab experiments, cells were stimulated for a certain time with EGF, and
the binding kinetics were observed by measuring the amount of ligand/receptor
complexes at different time points. After a given time, cells were washed and
EGF was completely removed from the system. For this system, all reaction rate
constants are available and were used to parametrize the ternary-complex model (see
supplementary file in [186]). In the model, a concentration of 5 × 10−10 was applied
as EGF stimulus for a time period of 15 minutes, with one second corresponding to
one simulation time unit. All remaining EGF molecules are removed after 15 minutes
(i.e., 900 simulation time units), which is similar to the wet-lab experimental set-up
[154].

To inspect the behavioral properties of the ternary-complex model, the number
of receptor (R), adaptor protein (X) and the number of a representation for protein
complexes (C) were selected as species of interest. Let nR, nL and nX denote the
initial number of R, L and X, respectively, and model parameters were configured as
follows:

nR: 6e04, nL: 1.05e09, nX: 2.4e04,

To perform simulation experiments for exploring model behavior, initially the
simulation stop time was set to 2000 simulation time units and the replication
number for each simulation experiment to 200. During the simulation, the number of
the three species (R, C and X) were observed, denoted as variable Cell/R, Cell/C

and Cell/X in the model, respectively. The simulation trajectories of the observed
variables are shown in Figure 5.6 (a), (b) and (c), which are in good agreement with
wet-lab experimental results [154]. Due to the stochasticity, some noise exists in the

129

5. Model Extension Based on Reusing Simulation Experiments

Figure 5.6.: Simulation results of the ternary-complex model (M0). The mean
trajectories (in red) with the standard error (in gray error bars) are
shown. For all trajectories, the simulation stop time is after 2,000 time
units. (a), (b) and (c) are the original trajectories from simulation
experiments; (d), (e) and (f) are the smoothed trajectories using the
LOESS method on the original ones, respectively. Please note, as a
result of the smoothing the initial values of trajectories (d) and (e)
slightly deviate from the original trajectories (a) and (b). However, this
deviation does not affect the considered model behavioral properties,
hence does not bias test results. [From [186]]

generated simulation trajectories. To diminish the impact of stochastic fluctuations
in those trajectories, the LOESS method was applied, and the trajectories after
smoothing are shown in Figure 5.6 (d), (e) and (f). The LOESS method may influence
the initial values in the trajectories, such as decreasing or increasing the values, e.g.,
in Figure 5.6 (d) and (a), or (e) and (b). However, this decreasing or increasing of
values does not impact the model behavioral properties considered in this case study.
This also applies to the experiments of the two extended models ME1 and ME2,
which will be discussed in Section 5.3.4 and 5.3.7, i.e., Figure 5.9 and 5.13.

According to the simulation results, three model behavioral properties were derived
by the user, each referring to one species of interest, described as follows:

• Species Cell/R: with a probability of no less than 0.75, the species number
remains within the range [57000, 58000] over the time interval [300, 800], and
reaches a steady state over the time interval [1200, 2000] with the amount
being in the range [59750, 59850].

130

5.3. Case Study III: Modeling the Receptor Ligand Pathway

• Species Cell/C: with a probability of no less than 0.95, the species number
remains within the range [2000, 2300] over the time interval [300, 800], and
reaches a steady state over the time interval [1300, 2000] with the amount
being in the range [150, 250].

• Species Cell/X: with a probability of no less than 0.85, the species number
decreases over the time interval [0, 800] and increases over the time interval
[1300, 2000].

Based on the simulation set-up and derived properties, the experiments were
specified in SESSL into three specifications, each referring to one species of interest.
The three experiment specifications are presented in Figure 5.7. All three experiment
specifications have the same model configuration, simulation configuration and data
processing method, but different model behavioral properties. The complete SESSL
experiment specification regarding species Cell/R is shown in Figure 5.7(a), including
the model configuration, simulation configuration, data processing method and model
behavioral property. As for experiments regarding species Cell/C and Cell/X, only
the property specifications are depicted, for simplicity, in Figure 5.7(b) and 5.7(c),
respectively.

To describe properties that a variable increases or decreases, the first order
derivative of the variable is used, specified as d("variableName") in SESSL. For
example, a property that the number of species Cell/X decreases is expressed as
d("Cell/X") < 0 in SESSL, standing for the first order derivative of the number of
Cell/X is less than 0, as shown in Figure 5.7(c). For each variable, the calculation of
its first order derivative is based on the variable value at observed time points and
observation interval. In the prototypical implementation, the first order derivative
value of a variable at time point ti is calculated as the slope to the variable value at
next observed time point ti+1. If no next time point exists, the derivation value from
previous time point is used.

Using the tool TAECS, each of the three experiment specifications was tested
on the ternary-complex model (M0). The calculated minimal replication numbers
needed for checking the properties of Cell/R, Cell/C and Cell/X are 205, 77 and 154,
respectively. All experiment specifications were checked successfully, and therefore the
ternary-complex model M0 was annotated with the three experiment specifications.

5.3.4. Model Extension — Endocytosis (ME1)

The binding of the ligand-receptor complex to adaptor proteins (such as clathrin)
often induces the endocytosis of the complex, which means the receptor complex is

131

5. Model Extension Based on Reusing Simulation Experiments

1 import sessl._

2 import sessl.james._

3 val exp = new Experiment with Observation with Hypothesis {

4 model = "file-mlrj:/./TernaryComplexModel.mlrj"

5 set("nR" <∼ 6e04, "nL" <∼ 1.05e09, "nX" <∼ 2.4e04)

6 simulator = MLRulesReference()

7 stopTime = 2000

8 observe("Cell/R")

9 observeAt(range(0, 1, 2000))

10 dataPreProcessor = LoessInterpolation(0.1, 0)

11 assume{(Probability >= 0.75)(

12 G(300, 800, (variable("Cell/R") >= 57000) and (variable("Cell/R") <= 58000))

13 and G(1200, 2000, ((variable("Cell/R") >= 59750) and variable("Cell/R") <= 59850))

14)}

15 }

(a) Experiment specification regarding species Cell/R.

1 assume{(Probability >= 0.95)(

2 G(300, 800, variable("Cell/C") >= 2000 and variable("Cell/C") <= 2300)

3 and G(1300, 2000, variable("Cell/C") >= 150 and variable("Cell/C") <= 250)

4)}

(b) Specification of model behavioral property regarding species Cell/C.

1 assume{(Probability >= 0.85)(

2 G(0, 800, d("Cell/X") < 0) and G(1300, 2000,d("Cell/X") > 0)

3)}

(c) Specification of model behavioral property regarding species Cell/X. d("Cell/X") <

0 (d("Cell/X") > 0) means the first order derivative of the number of Cell/X is less
(more) than 0, indicating that the number of Cell/X decreases (increases).

Figure 5.7.: Experiment specifications of the ternary-complex model (M0) in SESSL.
[Adapted from [186]]

internalized into the cytosol as part of an endosome. As a result, ligand, receptor
and adaptor proteins are not available at the cell surface anymore.

As the ternary-complex model (M0) describes the formation of the ternary-
complex containing the ligand, the receptor, and adaptor proteins, this basic model
was selected for extension to capture the process of endocytosis. Hence, when
extending the ternary-complex model, all of the existing rules, parameters, and their
configuration remained the same. Additionally, a new species endosome was added,
and a first order reaction was introduced, which describes the internalization of the
ternary complex into a cytoplasmic endosome with a certain rate constant ke1, as
shown in Figure 5.8. The configuration of new parameters was based on literature

132

5.3. Case Study III: Modeling the Receptor Ligand Pathway

(see supplementary file from [186]). No renaming of model variables was involved
and the configuration of all parameters were defined in the model file.

This model extension would have an impact on the observed behavior properties
from the ternary-complex model. On the one hand, the endocytosis leads to a portion
of ternary-complexes encapsulated into endosomes, and therefore the location of
those species are changed, i.e., Cell/C → Cell/Endosome/C. Consequently, it was
assumed that the maximum amount of Cell/C would be lower in the endocytosis
model (ME1) than in the ternary-complex model (M0), as some of the complexes
C are also located within endosomes (Cell/Endosome/C). Therefore, the properties
defined and checked for Cell/C in the ternary-complex model were expected to
be violated for the endocytosis model. On the other hand, in the extended model
ME1, once the ternary-complex is encapsulated into the endosome, they are not
transferred out. As a result, species that make up of those complexes, i.e., Cell/R

and Cell/X, are not available for the backward reactions (kr1, ku1), and hence their
amount should decrease by the number of complexes internalized. Thus, the property
regarding the two species should not hold in the endocytosis model (ME1) as well.

5.3.5. Reusing Simulation Experiments of the
Ternary-Complex Model

To investigate the behavior of the extended model ME1 and gain information on
its validity, the proposed approach was applied and the simulation experiments
associated with the ternary-complex model (M0) were reused. As during the model
extension no changes in model parameters were defined in the adaptation information,
in the reused experiment specifications only the model location needed to be updated
from the original model (M0) to the extended model (ME1).

With the extended model ME1, three experiment specifications depicted in Figure
5.7, the adaptation information containing the new model location, and the result

L

C1

X

R C2

Cell

Endosome

C2

kf1 / kr1

kc1 / ku1

ke1

Figure 5.8.: The endocytosis model (ME1). [From [186]]

133

5. Model Extension Based on Reusing Simulation Experiments

expectation that all the three experiments would fail, the tool TAECS performed
tests on the extended model ME1. Experiments were automatically generated
and executed with the model ME1, and simulation results were checked against
the specified properties. Table 5.1 presents the testing result of the three reused
experiment specifications, for each of which it includes the calculated minimal
replication number for statistical model checking, the expected checking result of
the specified property, and the actual checking result. The simulation results are
shown in Figure 5.9, while the raw trajectories regarding the three species Cell/R,
Cell/C, and Cell/X are depicted in (a), (b) and (c), their smoothed trajectories are
presented in (e), (f), (g).

According to the discussion in Section 5.3.4 about the influence of model extension
on the model behavior, the three behavioral properties from the ternary-complex
model should all be violated in the endocytosis model ME1. However, the testing
results revealed that only the properties regarding Cell/C and Cell/X are violated,
whereas the property regarding Cell/R still holds in the endocytosis model, which is
contradictory to the expectation.

By closely checking the simulation experiments, it was found that this contradiction
results from insufficient simulation run time and can be resolved by executing the
simulation for longer time. As a matter of fact, in the simulation experiments with
the ternary-complex model M0, the number of species Cell/R does not end up with
a steady state after the washing time (900 simulation time units and 15 minutes in
wet-lab experiments, see discussion in Section 5.3.3). Instead, the species number
increases but slowly so that when the simulation stops after 2,000 time units, this
increasing is not noticeable, as shown in Figure 5.6 (a). With a sufficiently long
simulation run time, e.g., 30,000 rather than 2,000 time units, the increasing in the
species number becomes distinct, as shown in Figure 5.10 (a).

However, in the simulation experiment with the endocytosis model ME1, when
the simulation run time is configured as 30,000 units, the number of species Cell/R

reaches a steady state from a certain time after the washing step, with the species

Property Replication number Assumed result Checking result

Cell/R 205 false true

Cell/C 77 false false

Cell/X 154 false false

Table 5.1.: Results of testing on the endocytosis model (ME1) by reusing experiments
of the ternary-complex model (M0). [From [186]]

134

5.3. Case Study III: Modeling the Receptor Ligand Pathway

Figure 5.9.: Simulation results of the endocytosis model (ME1). The mean trajecto-
ries (in red) with the standard error (in gray error bars) are shown. For
all trajectories, the simulation stop time is after 2,000 time units. (a),
(b), (c) and (d) are the original trajectories from simulation experiments;
(e), (f), (g) and (h) are the smoothed trajectories using the LOESS
method on the original ones, respectively. [From [186]]

number being lower than that for the ternary-complex model, as shown in Figure 5.10
(d). Thus, the extended model ME1 indeed exhibits a different behavior from the
original ternary-complex model M0, not only regarding the two species Cell/C and
Cell/X, but also the species Cell/R. This is in agreement with expectation, and
shows that the extension with the endocytosis process does work as intended.

5.3.6. Model Documentation

From the simulation trajectories shown in Figure 5.10 (d), (e) and (f), one can see
that in experiments with the endocytosis model ME1, there is no significant change
in the trajectories after 2,000 time units and the model behavior reaches steady state.
As experiments with simulation run time being 2,000 units are able to reflect the
main behavioral properties of the extended model ME1, for better illustration this
case study stayed with the configuration of simulation stop time being 2,000 time
units for the subsequent simulation experiments.

The experiment specification from the basic model M0 with the property regarding
the species Cell/R was checked successfully on the extended model ME1 after
adaptation. Thus, the adapted experiment specification, as described in Figure
5.11(a), was annotated together with the model ME1. However, the other two
experiment specifications of the ternary-complex model (M0), i.e., regarding species

135

5. Model Extension Based on Reusing Simulation Experiments

Figure 5.10.: Simulation trajectories of the ternary-complex model (M0) and the
endocytosis model (ME1) with long simulation run time (30,000 time
units). The mean trajectories (in red) with the standard error (in gray
error bars) are shown. (a), (b) and (c) are the trajectories from the
ternary-complex model; (d), (e) and (f) are the trajectories from the
endocytosis model. [From [186]]

Cell/C and Cell/X as depicted in Figure 5.7(b) and 5.7(c), failed in the checking
on the model ME1, and therefore required revision. Based on the simulation results
shown in Figure5.9(b), (c), (f), and (g), the properties referring to the species Cell/C

and Cell/X were updated.

In addition, based on how the original model was extended, another species is
of interest for the endocytosis model ME1, namely the receptor complex in the
endocytosis denoted as Cell/Endosome/C. Therefore, additional simulation experi-
ments were performed with the model ME1, to observe the species Cell/Endosome/C.
The simulation trajectories are shown in Figure5.9 (d) and (h), based on which the
property regarding the species Cell/Endosome/C was acquired.

The two updated properties and one newly derived property for the model ME1
are described as below:

• Species Cell/C: with a probability of no less than 0.75, the species number
reaches a steady state over the time interval [300, 800] with the amount being
in the range [1900, 2200], and also reaches a steady state over the time interval
[1600, 2000] with the amount being 0.

136

5.3. Case Study III: Modeling the Receptor Ligand Pathway

• Species Cell/X: with a probability of no less than 0.75, the species number
decreases over the time interval [0, 900] and reaches a steady state over the
time interval [1200, 2000] with the amount being in the range [23700, 23800].

• Species Cell/Endosome/C: with a probability of no less than 0.75, the species
number increases over the time interval [0, 900] and reaches a steady state over
the time interval [1200, 2000] with the amount being in the range [200, 250].

For all of the three properties above, in their corresponding simulation experiment
the model configuration, the simulation configuration and the data processing method
are the same as that in the experiment specification regarding species Cell/R, as
shown in Figure 5.11(a). The three experiments were specified in SESSL as well, and
the property specifications are represented in Figure 5.11(b), 5.11(c), and 5.11(d).

Furthermore, all the four experiment specifications were checked with TAECS using
the procedure of case B shown in Figure 3.9, each of which succeeded. Hence, the en-
docytosis model (ME1) was annotated with four simulation experiment specifications,
i.e., experiments regarding species Cell/R, Cell/C, Cell/X and Cell/Endosome/C,
as depicted in Figure 5.11.

5.3.7. Further Model extension — Recycling (ME2)

When the receptor complex is encapsulated into endocytosis, typically those inter-
nalized complexes are dissociated. Subsequently, the dissociated species are recycled:
the receptor is returned to the membrane, while the ligand and adaptor protein are
transferred to a lysosome, where they are degraded, as shown in Figure 5.12.

To include this recycling process, the endocytosis model ME1 was further extended,
leading to the development of the second extended model, i.e., the recycling model
ME2. All the parameters and reactions from the model ME1 were reused, and one
new reaction was added, which describes the recycling of the receptor from the
dissociated ternary-complex into the membrane, i.e., Cell/Endosome/C → Cell/R.
During the extension, no change had been made in the model configuration from the
model ME1 and the new parameter was configured in the model file of ME2.

Due to the introducing of the recycling process, in the second extended model
ME2, the concentration of the receptors in the cell should be gradually restored
after the washing step, resembling the dynamics of the ternary-complex model M0,
but not the endocytosis model ME1. Inside the cell, the ternary complex and its
remaining components, i.e., Cell/C and Cell/X, are still partially encapsulated
into the endosome without a backward reaction; therefore, the dynamics of the
two species are not influenced by the recycling, and do not change in comparison

137

5. Model Extension Based on Reusing Simulation Experiments

1 val exp = new Experiment with Observation with Hypothesis {

2 model = "file-mlrj:/./EndocytosisModel.mlrj"

3 set("nR" <∼ 6e04, "nL" <∼ 1.05e09, "nX" <∼ 2.4e04)

4 simulator = MLRulesReference()

5 stopTime = 2000

6 observe("Cell/R")

7 observeAt(range(0, 1, 2000))

8 dataPreProcessor = LoessInterpolation(0.1, 0)

9 assume{(Probability >= 0.75)(

10 G(300, 800, (variable("Cell/R") >= 57000) and (variable("Cell/R") <= 58000))

11 and G(1200, 2000, ((variable("Cell/R") >= 59750) and variable("Cell/R") <= 59850))

12)}

13 }

(a) Experiment specification regarding species Cell/R.

1 assume{(Probability >= 0.75)(

2 G(300, 800, variable("Cell/C") >= 1900 and variable("Cell/C") <= 2200)

3 and G(1600, 2000, variable("Cell/C") == 0)

4)}

(b) Specification of model behavioral property regarding species Cell/C.

1 assume{(Probability >= 0.75)(

2 G(0.0, 900, d("Cell/X") <= 0) and

3 G(1200, 2000, variable("Cell/X") >= 23700 and variable("Cell/X") <= 23800)

4)}

(c) Specification of model behavioral property regarding species Cell/X.

1 assume{(Probability >= 0.75)(

2 G(0, 900, d("Cell/Endosome/C") > 0) and

3 G(1200, 2000, variable("Cell/Endosome/C") >= 200 and variable("Cell/Endosome/C") <= 250)

4)}

(d) Specification of model behavioral property regarding species Cell/Endosome/C.

Figure 5.11.: Experiment specifications of the endocytosis model (ME1) in SESSL.
[Adapted from [186]]

to the endocytosis model. In contrast, the species C located inside the endosome
(Cell/Endosome/C) is being degraded, and thus cannot stay aggregated in the
endosome as in the endocytosis model ME1. Hence, when checking the behavioral
properties of the endocytosis model ME1 on the recycling model ME2, the expectation
of the checking result was that whereas the properties regarding species X and species
C in Cell still hold, the properties regarding species Cell/R and Cell/Endosome/C

do not.

138

5.3. Case Study III: Modeling the Receptor Ligand Pathway

Ø

L

C1

X

R C2

Cell

Endosome

C2

kf1 / kr1

kc1 / ku1

ke1

ke2

Figure 5.12.: The recycling model (ME2). [From [186]]

The proposed approach was applied to test the recycling model ME2, and the
four experiment specifications of the endocytosis model ME1 depicted in Figure 5.11
were reused. No adaptation for model parameters and properties in those experiment
specifications was needed, and only the model location was updated to the model
ME2 from the reused model ME1. Using the procedure of the case A presented in
Figure 3.9, the tool TAECS performed simulation experiments with the model ME2,
by adapting the experiment specifications of ME1, and experiments results were
evaluated against specified properties.

Test results are presented in Table 5.2, which show that the experiments regarding
species Cell/C and Cell/X were checked successfully, while the experiments regarding
species Cell/R and Cell/Endsome/C failed. The checking results are in agreement
with the expectation, and thus the overall test result is true, indicating that the
model extension of recycling worked as intended. Simulation trajectories from the
experiments are shown in Figure 5.13. In order to facilitate further reuse, the model
ME2 should be annotated with the experiment specifications that were successfully
checked, i.e., those regarding species Cell/C and Cell/X, whereas the failed ones
need revision.

Property Replication number Expected result Checking result

Cell/R 205 false false

Cell/C 205 true true

Cell/X 205 true true

Cell/Endosome/C 205 false false

Table 5.2.: Results of testing on the recycling model (ME2) by reusing experiments
of the endocytosis model (ME1). [From [186]]

139

5. Model Extension Based on Reusing Simulation Experiments

Figure 5.13.: Simulation results of the recycling model (ME2). The mean trajectories
(in red) with the standard error (in gray error bars) are shown. For all
trajectories, the simulation stop time is after 2,000 time units. (a), (b),
(c) and (d) are the original trajectories from simulation experiments;
(e), (f), (g) and (h) are the smoothed trajectories using the LOESS
method on the original ones, respectively. [From [186]]

5.4. Summary

In this chapter, first of all, model reuse for extension was discussed (Section 5.1).
Although less addressed than model composition in the research area of model reuse,
in practice model extension is a common means for developing models. By taking a
previously validated model and adding new parts to capture the interesting aspects
of the modeled system, the complexity in the modeling task can be reduced and
the successive model extension facilitates the modeling of complex systems and the
development of complex models. Based on a brief discussion of existing work in
supporting model extension and a life cycle of developing models by extension, it was
shown that this work aims to support the validation of the extended model, based
on reusing simulation experiments.

Section 5.2 discussed how the proposed approach is used to support model
extension. Applying the proposed approach for model extension is similar to the
case of model composition, except that the procedure for experiment adaptation
might be more straightforward in model extension, due to the fact that only one
model is reused. For demonstration, a case study of modeling the receptor ligand
pathway was presented, where three models were developed by successive extension.
As shown in the case study, by employing the proposed approach and its prototypical
implementation TAECS during the model extension, important feedback about the

140

5.4. Summary

validity of the extended model is provided to the user and models are developed
systematically. As a result, suitable assistance can be provided for the intricate
process of successively extending and validating models.

141

Chapter 6

Conclusions and Outlook

6.1. Summary

Model reuse has been a longstanding research topic in the modeling and simulation
area, as it presents the appealing intuition of reducing the required time and cost in
model development. However, in practice developing new models by reusing existing
ones turns out to be a challenging endeavor, which requires suitable assistance. The
modeling process is typically intertwined with the execution of simulation experiments.
Thus, this thesis investigates how to employ simulation experiments to support model
development by reuse.

As a starting point, Chapter 2 takes a closer look at simulation experiments and
identifies different types of simulation experiments that could occur in a simulation
study. Whereas simulation experiments are often performed with a model that is
already satisfactorily built to fulfill the purpose of the simulation study, this work
addresses those simulation experiments that are conducted for the creation of a
satisfactory model, including experiments for model calibration and validation.

While numerous approaches have been developed to support the experimentation
process, some effort, as well as this work, promotes the idea of treating experiments
as first class objects, where simulation experiments are managed in a way so that
they can be shared, reproduced, and reused. To reproduce and reuse simulation
experiments, a prerequisite is an explicit, unambiguous experiment specification that
is separated from model description. Based on a discussion of various approaches for
specifying simulation experiments, the embedded domain specific language SESSL
proposed by Ewald et al. [67] has been demonstrated to be a promising candidate.
Initially designed to facilitate the set up and execution of simulation experiments,
SESSL specifies experiments in a declarative manner, supports experiment reuse
across different simulation systems, and, more importantly, allows an easy extension.

143

6. Conclusions and Outlook

Thereby, Chapter 2 establishes the basis of this work, with a conclusion that
simulation experiments can play an important role during model development, and
an unambiguous, explicit specification of simulation experiments in SESSL facilitates
their reuse.

Chapter 3 firstly discusses what kind of support is needed to facilitate model reuse
and how simulation experiments can be employed to provide such support. On the
one hand, efficient model reuse requires information about model context and the
corresponding desired model behavior. On the other hand, simulation experiments
conducted for model validation are capable of representing the model context through
experiment conditions and reflecting the desired model behavior through experiment
results. Therefore, simulation experiments for model validation present themselves
as a useful means for model reuse, and thus become the focus of this work.

The second part of Chapter 3 presents the central concept of exploiting simulation
experiments to support developing models via reuse. The essential idea is to specify
simulation experiments that have been conducted for model validation and annotate
models with their experiment specifications. When models are reused to build new
models, those experiment specifications are also reused to perform experiments
with the new model, to observe the changes in model behavior resulting from the
model reuse. Hence, information is provided on whether some key model behavioral
properties of individual models that should be preserved are disrupted by the model
reuse, and those that should be violated still hold in the new model. This approach
shares some similarities with regression testing in software development, where
previously created test cases are reused when some changes have been made in the
software, to make sure those changes do no affect existing functionalities of the
software.

Based on the discussion in Chapter 2, an explicit experiment specification in SESSL
is employed to facilitate reusing simulation experiments of individual models. In
particular, to convey the information of model validity, the expected model behavior
should be described explicitly, in addition to the experiment condition to generate
this behavior. Therefore, four aspects are distinguished in specifying simulation
experiments: model configuration, simulation configuration, data processing method,
and model behavioral property. Whereas the original version of SESSL supports
the specification of the first two aspects, i.e., model configuration and simulation
configuration, this work extends it with a new trait to facilitate the specification of
the last two aspects, i.e., data processing method and model behavioral property.

However, experiment specifications of reused models cannot be directly executed
on the new model, and certain adaptation is necessary. First of all, the model

144

6.1. Summary

location in the experiment specification needs to be updated, from the reused model
to the new model. In addition, adaptation in model configuration and property
specification may be needed when model parameters are renamed or reconfigured
during the creation of the new model, and those changes are defined by the user
in the adaptation information. Based on experiment specifications of individual
models in SESSL and specified adaptation information, a mechanism is developed to
automatically perform experiments with the new model, by adapting and executing
the reused experiment specifications. To facilitate an automated result analysis, the
idea from simulation-based model checking techniques is adopted, which evaluates
simulation results against the specified desired property with checking algorithms.
Thus, different languages such as temporal logics can be employed to describe
expected behavioral properties and corresponding checking algorithms are used for
result analysis. Besides, due to the extensibility of SESSL, other methods for property
specification and checking can be easily integrated, such as self-defined predicates
or new property specification language, e.g., [260]. Also, modelers can additionally
specify the expectation of property checking on the new model so that the checking
results are compared with the expectation, to show whether the reuse of individual
models for building the new model works as intended.

The conceptual architecture of the proposed approach is presented (Section 3.5.5),
which consists of three layers: the user interface, experimentation, and result analysis.
The uppermost layer allows users to specify important ingredients: the model to
experiment, the experiment specification to reuse, adaptation information, and result
expectation. Taking those ingredients from the first layer, the experimentation layer
performs simulation experiments, and pre-processes simulation results with data
processing method if specified. The bottom layer checks simulation trajectories
against specified properties and returns results.

As a prototypical implementation, the tool TAECS has been developed based on
SESSL, which fulfills the adaptation, execution, and checking of simulation experi-
ments (see Section 3.5.5). TAECS automatically generates new SESSL experiment
specifications by adapting reused ones, and returns them to the user. This automatic
reuse, adaptation, and documentation of experiment specifications facilitate the
successive reuse of models.

To apply the developed approach in supporting model development via reuse, two
types of model reuse are individually considered. Chapter 4 investigates the use of
the approach in model composition. A life cycle is presented to structure the intricate
process of developing models by composition into several phases. Based on this life
cycle, the specific phase that this work aims to support is illuminated, i.e., semantic

145

6. Conclusions and Outlook

validation of the composed model. A composed model contains all parameters from
both model components and typically has a higher parameter dimension. Thus,
adapting simulation experiments for the composed model needs to consider the
possible incompatibility in parameter configuration. Two solutions are described to
deal with this problem. One completely relies on user specification, which includes
providing a complete model configuration in the definition of the composed model
and specifying the adaptation information for resolving possible conflicts. Another
solution aims to provide some assistance by automatically generating assignment
ranges for model parameters, based on their configuration in experiment specifications
of model components.

Two case studies are presented to demonstrate the effectiveness of the proposed
approach in supporting model composition: the case study of Lotka-Volterra models
(Section 4.4) and the case study of Wnt/β-catenin models (Section 4.5). Based on
a simple variant of the Lotka-Volterra model, the first case study illustrates how
the proposed approach is used during the development of composed models. In the
second case study, a realistic simulation study of modeling the Wnt/β-catenin [87, 89]
is replayed, where a complex model is developed by successive composition of three
model components. As illustrated in the two case studies, by providing important
insights into the behavior of the composed model, the developed approach and its
prototypical implementation TAECS are able to support the development of valid
composed models and contribute to the process of successive model composition.

Chapter 5 is concerned with another type of model reuse, i.e., model extension.
Model reuse for extension receives less attention than model composition in the
research area of model reuse, and therefore this work firstly addresses this type
of reuse. Through a discussion of developing models via extending existing ones,
the benefits of this type of model reuse are shown, which include reducing the
complexity of the modeling task, and facilitating the development of large, complex
models. Subsequently, the proposed approach is applied to the model development via
extension, aiming to support the validation of the extended model. For demonstration,
a case study of modeling the receptor ligand pathway is presented, where three
models are developed via extending one after another. As shown in the case study, by
automatically reusing simulation experiments performed with the original model, the
proposed approach along with TAECS can help to systematically develop extended
models and provide valuable support in the process of successive model extension.

From the perspective of methodology, applying the proposed approach in model
composition and in model extension do not make much difference, except that in
model composition the adaptation of experiment specifications might need more

146

6.1. Summary

effort (see Section 4.3.2). In model composition, two models are reused to build the
composed model, and their composition may result in emergent behavior, which
is not easily predictable by individually analyzing the behavior of each reused
model component. The proposed approach focuses on behavioral properties that are
exhibited by individual reused models, and inspects the impact of model reuse on
those properties. Therefore, further work toward identifying and validating emergent
properties is needed to facilitate the development of valid composed models. When
models are built by extending existing ones, only one model is reused. By adding
new parts into the reused model, model extension may lead to new behavior in the
extended model, in addition to possible changes in the existing behavior exhibited
by the original model. Whereas the developed approach assists modelers in ensuring
that the key behavior of the original model is not disrupted by the extension and
the obsolete behavior is not preserved, additional effort is required to validate the
new behavior, e.g., by performing new simulation experiments. Independently of
whether the model reuse leads to emergent behavior or new behavior, when the
existing behavioral properties are influenced by the composition or extension, either
as expected or not, the proposed approach can uncover those changes and thus
provide modelers with important feedback.

Based on two types of model reuse and altogether three case studies, the ef-
fectiveness of the proposed approach along with the developed tool TAECS has
been demonstrated. As SESSL is independent of concrete modeling approaches and
simulation systems, the proposed approach inherits this merit. For demonstration,
another example of Lotka-Volterra models is presented in Appendix A, where SBML,
one of the widely used modeling formalisms for systems biology, is employed to
describe models and its listed simulation tool SBMLSim is used to perform simulation
experiments. Due to the extensibility of SESSL, various methods for property
specification and property checking, as well as data processing methods, can be
integrated. So far, mitl[a,b] (in the case study of Wnt/β-catenin pathway, Section 4.5,
and the case study of receptor ligand pathway, Section 5.3), LTL and custom predicate
definition (in the case study of Lotka-Volterra models, Section 4.4) have been used
for describing individual simulation trajectories. To deal with the stochasticity
arising from experiments with stochastic models, CSL has been employed to express
probabilistic properties regarding replications and statistical model checking methods
were used for probability estimation (in the case study of Lotka-Volterra models
and the case study of receptor ligand pathway). Moreover, averaging over multiple
replications was used, when model behavioral properties were derived based on

147

6. Conclusions and Outlook

aggregated observations and high variance exists among different simulation runs (in
the case study of Wnt/β-catenin pathway).

To summarize, this thesis presents an approach of reusing simulation experiments
of individual models to automatically perform experiments with the model that is
developed by composing or extending existing ones. As a result, modelers can gain
crucial insights into whether individual models are reused as intended and whether
the newly built model displays valid behavior. With the proposed approach and its
prototypical implementation TAECS, a fast and valuable feedback is provided to
modelers during the model reuse, and new models are developed in a systematic way.
Hence, suitable assistance can be provided to accelerate the modeling process and
improve the quality of model development.

6.2. Limitations and Future Work

One limitation of this work is that all the information required for adaptation of
simulation experiments is specified by users. Although some assistance can be
provided in the case of model composition by generating parameter assignment
ranges (see Section 4.3.2), users still need to define a complete model configuration
in the model file and specify the necessary information for adaptation. Thus, further
effort could be an automated extraction of adaptation information by monitoring
and analyzing the differences between the reused models and the resulting model.
Relevant work includes model version control (e.g., [257]) for detecting changes in
models, and model transformation (e.g., [161]) for mapping differences in models to
differences in experiment specifications.

One prerequisite of this work is an explicit specification of model behavioral
properties that are essential to the model validity, and an automatic result analysis
against the specified properties. When individual models are reused to build new
ones, regarding the same property of interest the behavior displayed by the newly
built model might be different from the reused model. However, it highly depends
on users’ interpretation to answer the question of whether the dissimilarity is “slight”
enough so that the behavior of both models should be perceived as equally valid,
or it should be considered as a violation of this behavioral property by the new
model. For example, in the reused model, one behavioral property is that under
a certain experiment condition the model variable A reaches steady state with the
value being 10, whereas in the new model, under the same experiment condition, the
model variable A also reaches steady state but with the value being 11. Without
additional information from users, it is difficult to determine whether 10 and 11

148

6.2. Limitations and Future Work

are sufficiently close so that the new model still satisfies the behavioral property
of the reused model, or this property is violated by the new model. Thus, to more
accurately assess model behavior, the specification of model behavioral properties
needs to take this uncertainty into account, for which, however, there seems to be no
easy solution and users’ intervention appears necessary.

Simulation experiments that are performed for model validation are the focus of
this work. As stated in Section 3.1.2, various techniques exist to validate models
based on performing simulation experiments, such as face validation, each checking
the model behavior against certain requirements. Currently, in this work, applicable
simulation experiments are limited to those where requirements on model behavior
can be reflected by simulation trajectories and explicitly expressed in properties.
Thus, another direction of future work could be to support other types of validation
experiments, e.g., sensitivity analysis, for which methods to express corresponding
requirements on model behavior are needed.

The ultimate goal of this work is to provide support for developing models based on
model reuse, with a focus on validation of the resulting model. However, the modeling
process is highly complex and efforts on solely one specific aspect of this process
can only provide limited support. Therefore, to better facilitate the development of
models, this work should be combined with other efforts toward this goal.

One possible direction is to integrate this approach into management of the
modeling process. An artifact-based workflow approach is proposed by Rybacki
et al. [208], to structure the modeling process and further manage it. Three artifacts
are presented in [208], and the artifact of formal model is of relevance, as this work
focuses on the development of formal models. To integrate the developed approach,
the artifact Formal Model can be adapted as depicted in Figure 6.1. Two stages are
defined in this artifact, i.e., Creating Formal Model and V&V Formal Model, which
represent the creation of the formal model and its verification and validation (V&V),
respectively. This work can be viewed as a sub-stage in the stage V&V Formal Model,
namely the Validating via Reusing Experiments sub-stage. This sub-stage can
be activated when the formal model is created based on reusing previously validated
models and those reused models are annotated with specifications of their validation
experiments. The integration of the proposed approach with artifact-based workflow
is ongoing work, with the first results presented in [205].

149

6. Conclusions and Outlook

Creating Formal Model

Complete
Model

Revise
Model

Selecting
Formalism

Building
Model

Initiate
Model

Creation

Incomplete
Model

V&V Formal Model

V&V
Succeeded

V&V
Failed

Validating via
Reusing Experiments

Failed

SucceededV&V
Complete

Model

Succeeded

V&V Formal Model

Reuse
Model

Prior
Experiments

Exist

This work

Figure 6.1.: The adapted artifact Formal Model in the artifact-based workflow ap-
proach proposed by Rybacki et al. [208]. This work provides assistance
in validating the formal model based on prior simulation experiments,
and thus presents as a sub-stage of the stage V&V Formal Model, i.e.,
Validating via Reusing Simulation Experiments. This sub-stage can be
activated when the model is created by reusing previously validated
models and simulation experiments for validating the reused models are
available.

150

Appendix A

An Example of Composing Lotka-
Volterra models Based on the SBML
formalism

To demonstrate that the presented approach is independent of concrete modeling
and simulation methods, the Lotka-Volterra models described in Case Study I
(Section 4.4) are used, however, using the modeling formalism SBML [103], instead
of ML-Rules.

In this example, for simplicity, parameters are configured as single constants, rather
than assignment ranges in Case Study I. The initial predator and prey population
size as 10 and 100, respectively, and the rest model parameters are configured as
follows:

a : 0.014, b : 0.6, d : 0.7, k : 0.002

For a model with rabbits as the prey and foxes as the predator (M1), the reaction
rules are depicted in Figure 4.3. The formalism SBML (Systems Biology Markup
Language) [103] is used to represent the model (model files can be found in the
supplemental package). The SBMLSim, one of the listed tools for SBML models
[245], is selected for model execution.

Performing simulation experiments with SBML models based on SBMLSim has
been supported by SESSL through the binding sessl.sbmlsim. To run simulation
experiments, the provided simulator DormandPrice54 from SBMLSim is used, with
the step size being 0.01. Simulation stops after 10 simulation time units and during
the simulation the number of the prey and predator are observed at each 0.1 time
unit. Models represented in SBML are deterministic, and thus only one replication
is necessary. Simulation results are shown in Figure A.1.

151

A. An Example of Composing Lotka-Volterra models Based on the SBML formalism

Time (simulation time unit)
0 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f S
pe

ci
es

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Rabbit
Fox

Figure A.1.: Simulation results of the basic Lotka-Volterra model described in SBML,
where rabbits are the prey and foxes are the predator.

According to the simulation result, one model behavioral property was derived
that both the prey and the predator do not die out, shown as follows:

G(#Rabbit > 0 ∧ #Fox > 0)

Based on the simulation set-up and the property, the experiment is specified in
SESSL, as shown in Figure A.2.

1 import sessl._

2 import sessl.sbmlsim._

3 val exp = new Experiment with Observation with Hypotheses {

4 model = "file-mlrj:/./LotkaVolteraM1.mlrj"

5 simulator = DormandPrince54(0.01)

6 stopTime = 10.0

7 observe("Rabbit", "Fox")

8 observeAt(range(0.0, 0.1, 10.0))

9 assume(

10 G(0.0, 10.0, variable("Rabbit") > 0 and variable("Fox") > 0)

11)

12 }

Figure A.2.: SESSL experiment specification for the basic Lotka-Volterra model
described in SBML.

Similarly, another basic Lotka-Volterra model M2 is needed, where rabbits are
the prey and wolves are the predator. Using the same model configuration and
experiment set-up, model M2 also satisfies the behavioral property that both the
prey (rabbits) and the predator (wolves) survive. Thereby, the basic Lotka-Volterra
model M2 is annotated with an experiment specification, which is similar to Figure
A.2, except that the species fox is replaced by the wolf.

152

Time (simulation time unit)
0 1 2 3 4 5 6 7 8 9 10

N
um

be
r o

f S
pe

ci
es

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

Rabbit
Fox
Wolf

Figure A.3.: Simulation results of the composed Lotka-Volterra model described in
SBML.

Based on the two basic Lotka-Volterra models, one with rabbits and foxes (M1)
and another with rabbits and wolves (M2), a composed model M12 can be developed,
where all three species exist and both foxes and wolves hunt on rabbits. The composed
model is created by integrating the two model components together and the reaction
rules are described in Figure 4.10(a). The parameter configuration remains the same
as in model components and no new parameter is introduced.

Experiment specifications of the two model components are reused to perform
experiments on the composed model. As no parameters are renamed or reconfigured
during the composition, in the reused experiment specifications only the model
location is updated from the model component to the composed model. Based on the
adapted experiment specifications, experiments are automatically executed with the
composed model and simulation outputs are checked against the specified behavioral
property. Simulation trajectories are shown in Figure A.3. Test results show that
the property of both model components hold for the composed model.

153

List of Figures

2.1. A simplified version of the life cycle of a simulation study proposed by Balci. 15
2.2. Categorization of simulation experiments. 19
2.3. Layered view on a common structure of a simulation experiment proposed

by Leye. 22
2.4. A simple example of SESSL experiment specification. 32

3.1. The relations between model, simulator, and experimental frame. 41
3.2. The information needed to support model reuse. 42
3.3. The concept of reusing simulation experiments in the Cardiac Electrophysi-

ology Web Lab. 44
3.4. Examples of simulation trajectories generated from experiments with stochas-

tic models. 49
3.5. The overall concept of the proposed approach. 57
3.6. An illustrative example of SESSL experiment specification with four aspects. 59
3.7. An example of the adapted SESSL experiment. 61
3.8. The overall architecture of the proposed approach. 66
3.9. The working process of TAECS with two cases. 69

4.1. A life cycle of modeling based on composition. 76
4.2. The overview of reusing simulation experiments for model composition. . . 83
4.3. A Lotka-Volterra model described in ML-Rules. 91
4.4. Simulation results of the basic Lotka-Volterra model regarding the “coexist-

ing state” property. 92
4.5. SESSL experiment specification regarding the “coexisting state” property

for a basic Lotka-Volterra model of the prey rabbit and the predator fox. . 92
4.6. Simulation results of the basic Lotka-Volterra model regarding the “empty

state” property. 93
4.7. SESSL experiment specification regarding the “empty state” property for a

basic Lotka-Volterra model of the prey rabbit and the predator fox. 93
4.8. Simulation results of the basic Lotka-Volterra model regarding the “recovery

comparison” property. 95

155

List of Figures

4.9. SESSL experiment specification regarding the “recovery comparison” prop-
erty for a basic Lotka-Volterra model of the prey rabbit and the predator
fox. 95

4.10. Reaction rules of composed Lotka-Volterra models. 97
4.11. The Wnt pathway model that contains three individual models: the mem-

brane model, the Axin/β-cat model and the ROS model [89]. 102
4.12. Example for obtaining valid intervals for formulas with temporal operators. 105
4.13. Simulation results of the Membrane Model (M1). 108
4.14. Experiment specification of the Membrane model (M1) in SESSL. 109
4.15. Simulation results of the Axin/β-Catenin Model (M2). 110
4.16. Experiment specifications of the Axin/β-Catenin model (M2) in SESSL. . . 110
4.17. Simulation results of the first composed model (M12). 113
4.18. Experiment specifications of the composed model (M12) in SESSL. 115
4.19. Simulation results of the ROS model (M3). 117
4.20. Experiment specification of the ROS model (M3) in SESSL. 117
4.21. Simulation results of the second composed model (M123). 119

5.1. A life cycle of modeling based on extension. 123
5.2. The overview of reusing simulation experiments for model extension. 125
5.3. The receptor ligand pathway. 126
5.4. The two scenarios of the ternary-complex formation. 128
5.5. The ternary-complex model (M0). 129
5.6. Simulation results of the ternary-complex model (M0). 130
5.7. Experiment specifications of the ternary-complex model (M0) in SESSL. . . 132
5.8. The endocytosis model (ME1). 133
5.9. Simulation results of the endocytosis model (ME1). 135
5.10. Simulation trajectories of the ternary-complex model (M0) and the endocy-

tosis model (ME1) with long simulation run time. 136
5.11. Experiment specifications of the endocytosis model (ME1) in SESSL. 138
5.12. The recycling model (ME2). 139
5.13. Simulation results of the recycling model (ME2). 140

6.1. The adapted artifact Formal Model in the artifact-based workflow approach
proposed by Rybacki et al. [208]. 150

A.1. Simulation results of the basic Lotka-Volterra model described in SBML . . 152
A.2. SESSL experiment specification for the basic Lotka-Volterra model described

in SBML. 152
A.3. Simulation results of the composed Lotka-Volterra model described in SBML.153

156

List of Tables

3.1. Examples for different experimental validation techniques. 38

4.1. Results overview for the case study of Lotka-Volterra models. 98
4.2. Detailed results for the case study of Lotka-Volterra models. 100

5.1. Results of testing on the endocytosis model (ME1) by reusing experiments
of the ternary-complex model (M0). 134

5.2. Results of testing on the recycling model (ME2) by reusing experiments of
the endocytosis model (ME1). 139

157

Bibliography

[1] R. R. Adams. SED-ED, a workflow editor for computational biology experiments
written in SED-ML. Bioinformatics, 28(8):1180–1181, 2012.

[2] B. Alpern and F. B. Schneider. Verifying temporal properties without temporal logic.
ACM Transactions on Programming Languages and Systems, 11(1):147–167, Jan.
1989.

[3] R. Alur, T. Feder, and T. A. Henzinger. The Benefits of Relaxing Punctuality. J.
ACM, 43(1):116–146, 1996.

[4] J. G. Arnold, D. N. Moriasi, P. W. Gassman, et al. SWAT: Model use, calibration,
and validation. Transactions of the ASABE, 55(4):1491–1508, 2012.

[5] F. Bacchus, J. Tenenberg, and J. A. Koomen. A non-reified temporal logic. Artificial
Intelligence, 52:87–108, 1991.

[6] O. Balci. Guidelines for successful simluation studies (tutorial session). In Proceedings
of the 22nd winter simulation conference, pages 25–32. IEEE Press, 1990.

[7] O. Balci. Verification validation and accreditation of simulation models. In Proceedings
of the 29th winter simulation conference, pages 135–141. IEEE Computer Society,
1997.

[8] O. Balci. Verification, validation, and testing. In J. Banks, editor, Handbook of
Simulation: Principles, Methodology, Advances, Applications, and Practice, pages
335–393. John Wiley & Sons, 1998.

[9] O. Balci. A life cycle for modeling and simulation. Simulation, 88(7):870–883, 2012.
[10] O. Balci, J. D. Arthur, and R. E. Nance. Accomplishing reuse with a simulation

conceptual model. In Proceedings of the 2008 winter simulation conference, pages
959–965. IEEE, 2008.

[11] P. Ballarini, J. Mäkelä, and A. S. Ribeiro. Expressive statistical model checking of
genetic networks with delayed stochastic dynamics. In D. Gilbert and M. Heiner,
editors, Computational Methods in Systems Biology, Lecture Notes in Computer
Science, pages 29–48. Springer Berlin Heidelberg, 2012.

[12] J. Banks. Discrete-event System Simulation. Discrete-event System Simulation.
Prentice Hall, 2001.

[13] A.-L. Barabási and Z. N. Oltvai. Network biology: understanding the cell’s functional
organization. Nature Reviews Genetics, 5(2):101–113, 2004.

159

Bibliography

[14] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification.
In B. Steffen and G. Levi, editors, Verification, Model Checking, and Abstract
Interpretation, volume 2937 of Lecture Notes in Computer Science, pages 44–57.
Springer Berlin Heidelberg, 2004.

[15] R. G. Bartholet, D. C. Brogan, P. F. Reynolds Jr, and J. C. Carnahan. In search of
the philosopher’s stone: Simulation composability versus component-based software
design. In Proceedings of the Fall Simulation Interoperability Workshop, 2004.

[16] R. R. Barton. Designing simulation experiments. In Proceedings of the 2013 winter
simulation conference, pages 342–353. IEEE Press, 2013.

[17] G. Batt, J. T. Bradley, R. Ewald, F. Fages, et al. 06161 working groups’ report: The
challenge of combining simulation and verification. In Dagstuhl Seminar Proceedings.
Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2006.

[18] A. Bauer, M. Leucker, and C. Schallhart. Monitoring of real-time properties. In
International Conference on Foundations of Software Technology and Theoretical
Computer Science, pages 260–272. Springer, 2006.

[19] H. Benali and N. B. Ben Saoud. Towards a component-based framework for
interoperability and composability in modeling and simulation. Simulation, 87
(1-2):133–148, 2011.

[20] F. T. Bergmann, R. Adams, S. Moodie, J. Cooper, et al. COMBINE archive and
OMEX format: one file to share all information to reproduce a modeling project.
BMC bioinformatics, 15(1):1, 2014.

[21] J. Bézivin, S. Bouzitouna, M. D. Del Fabro, et al. A canonical scheme for model
composition. In Model Driven Architecture–Foundations and Applications, pages
346–360. Springer, 2006.

[22] A. Bouajjani and Y. Lakhnech. Temporal logic + timed automata: Expressiveness
and decidability. In I. Lee and S. Smolka, editors, CONCUR ’95: Concurrency
Theory, volume 962 of Lecture Notes in Computer Science, pages 531–545. Springer
Berlin Heidelberg, 1995.

[23] A. Bouajjani and Y. Lakhnech. Logics vs. automata: The hybrid case. In R. Alur,
T. Henzinger, and E. Sontag, editors, Hybrid Systems III, volume 1066 of Lecture
Notes in Computer Science, pages 531–542. Springer Berlin Heidelberg, 1996.

[24] G. E. Box. Robustness in the strategy of scientific model building. Robustness in
statistics, 1:201–236, 1979.

[25] P. Bratley, B. Fox, and L. Schrage. A Guide to Simulation. Springer New York, 2012.

[26] L. Brim, M. Ceska, S. Drazan, and D. Safránek. On robustness analysis of stochastic
biochemical systems by probabilistic model checking. CoRR, abs/1310.4734, 2013.

[27] L. Brim, M. Češka, and D. Šafránek. Model checking of biological systems. In Formal
Methods for Dynamical Systems, pages 63–112. Springer, 2013.

160

Bibliography

[28] L. Calzone, F. Fages, and S. Soliman. BIOCHAM: an environment for modeling
biological systems and formalizing experimental knowledge. Bioinformatics, 22(14):
1805–1807, 2006.

[29] M. Carrillo, P. A. Góngora, and D. A. Rosenblueth. An overview of existing modeling
tools making use of model checking in the analysis of biochemical networks. Frontiers
in plant science, 3:155, 2012.

[30] F. Cellier. Continuous System Modeling. Continuous System Modeling. Springer,
New York, 1991.

[31] C. Cercignani and M. Lampis. Kinetic models for gas-surface interactions. Transport
Theory and Statistical Physics, 1(2):101–114, 1971.

[32] R. Chreyh and G. Wainer. Cd++ repository: an internet based searchable database
of devs models and their experimental frames. In Proceedings of the 2009 Spring
Simulation Multiconference, page 159. Society for Computer Simulation International,
2009.

[33] L. Chwif, J. Banks, J. P. de Moura Filho, and B. Santini. A framework for specifying
a discrete-event simulation conceptual model. Journal of Simulation, 7(1):50–60,
2013.

[34] F. Ciesinski and M. Größer. On probabilistic computation tree logic. In C. Baier,
B. Haverkort, H. Hermanns, J.-P. Katoen, and M. Siegle, editors, Validation of
Stochastic Systems, pages 147–188. Sp, Berlin Heidelberg, 2004.

[35] E. Clarke, A. Donzé, and A. Legay. On simulation-based probabilistic model checking
of mixed-analog circuits. Formal Methods in System Design, 36(2):97–113, 2010.

[36] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge,
Mass. [u.a.], 1999.

[37] E. M. Clarke, J. R. Faeder, C. Langmead, et al. Statistical Model Checking in
BioLab: Applications to the Automated Analysis of T-Cell Receptor Signaling
Pathway. In Computational Methods in Systems Biology, volume 5307 of Lecture
Notes in Computer Science, pages 231–250. Sp, Berlin Heidelberg, 2008.

[38] W. S. Cleveland. Robust locally weighted regression and smoothing scatterplots.
Journal of the American statistical association, 74(368):829–836, 1979.

[39] H. Clevers and R. Nusse. Wnt/β-catenin signaling and disease. Cell, 149(6):1192–1205,
2012.

[40] Commons Math Developers. Apache commons math, release 3.6. Available
from https://commons.apache.org/proper/commons-math/download_math.cgi,
2016.

[41] J. Cooper, G. R. Mirams, and S. A. Niederer. High-throughput functional curation
of cellular electrophysiology models. Progress in biophysics and molecular biology,
107(1):11–20, 2011.

161

https://commons.apache.org/proper/commons-math/download_math.cgi

Bibliography

[42] J. Cooper, J. O. Vik, and D. Waltemath. A call for virtual experiments: accelerating
the scientific process. Progress in biophysics and molecular biology, 117(1):99–106,
2015.

[43] J. Cooper, M. Scharm, and G. R. Mirams. The cardiac electrophysiology web lab.
Biophysical journal, 110(2):292–300, 2016.

[44] S. A. Coskun, A. E. Cicek, N. Lai, et al. An online model composition tool for system
biology models. BMC systems biology, 7(1):88, 2013.

[45] M. Courtot, N. Juty, Knüpfer, et al. Controlled vocabularies and semantics in systems
biology. Molecular systems biology, 7(1):543, 2011.

[46] J. O. Dada, I. Spasić, N. W. Paton, and P. Mendes. Sbrml: a markup language for
associating systems biology data with models. Bioinformatics, 26(7):932–938, 2010.

[47] D. Dahmen, H. E. Plesser, and S. Kunkel. Replicability and reproducibility of neural
network simulations. In Berstein Conference, 2015.

[48] O. Dalle. OSA: An open component-based architecture for discrete-event simulation.
PhD thesis, INRIA, 2005.

[49] O. Dalle. On reproducibility and traceability of simulations. In Proceedings of the
2012 winter simulation conference, pages 1–12. IEEE, 2012.

[50] T. Daum and R. G. Sargent. Experimental frames in a modern modeling and
simulation system. IIE Transactions, 33(3):181–192, 2001.

[51] P. K. Davis and R. H. Anderson. Improving the composability of DoD models and
simulations. JDMS, 1(1):5–17, Apr. 2004.

[52] P. K. Davis and A. Tolk. Observations on New Developments in Composability and
Multi-resolution Modeling. In Proceedings of the 39th winter simulation conference,
WSC ’07, pages 859–870, Piscataway, NJ, USA, 2007. IEEE Press.

[53] L. De Alfaro and T. A. Henzinger. Interface-based design. In Engineering Theories
of Software-intensive Systems, volume 195 of NATO Science Series: Mathematics,
Physics, and Chemistry, pages 83–104. Springer, M. Broy, J. Gruenbauer, D. Harel,
and C.A.R. Hoare, 2005.

[54] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic
on finite traces. In Proc. of the 23rd Int. Joint Conference on Artificial Intelligence,
pages 854–860. AAAI Press, 2013.

[55] J.-L. de Kok, G. Engelen, and J. Maes. Reusability of model components for
environmental simulation–case studies for integrated coastal zone management.
Environmental Modelling & Software, 68:42–54, 2015.

[56] H. de Swaan Arons and C. A. Boer. Storage and retrieval of discrete-event simulation
models. Simulation Practice and Theory, 8(8):555–576, 2001.

[57] M. del Milagro Gutierrez and H. P. Leone. Composability model in a distributed simu-
lation environment for supply chain. Iberoamerican Journal of Industrial Engineering,
5(10):55–69, 2014.

162

Bibliography

[58] B. Delinchant, F. Wurtz, D. Magot, and L. Gerbaud. A component-based framework
for the composition of simulation software modeling electrical systems. Simulation,
80(7-8):347–356, 2004.

[59] J. M. Donohue. Experimental designs for simulation. In Proceedings of the 26th winter
simulation conference, pages 200–206. Society for Computer Simulation International,
1994.

[60] D.R. Miller. Sensitivity analysis and validation of simulation models. Journal of
Theoretical Biology, 48(2):345 – 360, 1974.

[61] M. Droz and A. Pȩkalski. Different strategies of evolution in a predator-prey system.
Physica A: Statistical Mechanics and its Applications, 298:545–552, 2001.

[62] P. Du, W. A. Kibbe, and S. M. Lin. Improved peak detection in mass spectrum by
incorporating continuous wavelet transform-based pattern matching. Bioinformatics,
22(17):2059–2065, 2006.

[63] M. G. Elfeky, W. G. Aref, and A. K. Elmagarmid. Periodicity detection in time
series databases. IEEE Transactions on Knowledge and Data Engineering, 17:1–13,
2005.

[64] H. Elmqvist, S. E. Mattsson, and M. Otter. Object-oriented and hybrid modeling in
modelica. Journal Européen des systèmes automatisés, 35(1):1–10, 2001.

[65] E. Engström, P. Runeson, and M. Skoglund. A systematic review on regression test
selection techniques. Information and Software Technology, 52(1):14–30, 2010.

[66] R. Ewald and A. M. Uhrmacher. Automating the runtime performance evaluation
of simulation algorithms. In Proceedings of the 2009 winter simulation conference,
pages 1079–1091. IEEE, 2009.

[67] R. Ewald and A. M. Uhrmacher. SESSL: A domain-specific language for simulation
experiments. ACM Transactions on Modeling and Computer Simulation, 24(2):
11:1–11:25, Feb. 2014.

[68] R. Ewald, J. Himmelspach, and A. M. Uhrmacher. An Algorithm Selection Approach
for Simulation Systems. In Proceedings of the 22nd Workshop on Principles of
Advanced and Distributed Simulation (PADS’08), pages 91–98, 2008.

[69] R. Ewald, J. Himmelspach, M. Jeschke, S. Leye, and A. M. Uhrmacher. Flexible
experimentation in the modeling and simulation framework JAMES II–Implications
for computational systems biology. Briefings in bioinformatics, 11(3):290–300, 2010.

[70] F. Fages and A. Rizk. On the analysis of numerical data time series in temporal
logic. In Computational Methods in Systems Biology, 2007.

[71] F. Fages and A. Rizk. On temporal logic constraint solving for analyzing numerical
data time series. Theoretical Computer Science, 408(1):55–65, 2008.

[72] H. Fan and A. E. Mark. Refinement of homology-based protein structures by
molecular dynamics simulation techniques. Protein Science, 13(1):211–220, 2004.

[73] J. Fisher, D. Harel, and T. A. Henzinger. Biology as Reactivity. CACM, 54(10):
72–82, 2011.

163

Bibliography

[74] A. Fletcher, D. Halsall, S. Huxham, and D. Worthington. The dh accident and
emergency department model: a national generic model used locally. Journal of the
Operational Research Society, 58(12):1554–1562, 2007.

[75] Y. Funato, T. Michiue, M. Asashima, and H. Miki. The thioredoxin-related redox-
regulating protein nucleoredoxin inhibits Wnt–β-catenin signalling through dishev-
elled. Nature cell biology, 8(5):501–508, 2006.

[76] J. H. Gennari, M. L. Neal, M. Galdzicki, and D. L. Cook. Multiple ontologies
in action: composite annotations for biosimulation models. Journal of biomedical
informatics, 44(1):146–154, 2011.

[77] D. Ghosh. DSLs in Action. Manning Publications Co., Greenwich, CT, USA, 2011.

[78] D. T. Gillespie. Exact Stochastic Simulation of Coupled Chemical Reactions. Journal
of Physical Chemistry, 81(25):2340–2361, 1977.

[79] L. Ginzburg and H. Akçakaya. Consequences of ratio-dependent predation for
steady-state properties of ecosystems. Ecology, 73(5):1536–1543, 1992.

[80] E. Glinsky and G. Wainer. Devstone: a benchmarking technique for studying perfor-
mance of devs modeling and simulation environments. In Ninth IEEE International
Symposium on Distributed Simulation and Real-Time Applications, pages 265–272.
IEEE, 2005.

[81] W. Gong, Y. M. Tien, C. H. Juang, J. R. Martin, and J. Zhang. Calibration
of empirical models considering model fidelity and model robustness—focusing on
predictions of liquefaction-induced settlements. Engineering Geology, 2015.

[82] V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, and S. F. Railsback.
The ODD protocol: A review and first update. Ecological Modelling, 221(23):
2760–2768, 2010.

[83] V. Grimm, P. Polhill, and J. Touza. Documenting social simulation models: The
odd protocol as a standard. In Simulating Social Complexity - A handbook, pages
117–133. Springer, 2013.

[84] M. Grohe. Generalized Model-Checking Problems for First-Order Logic. In Pro-
ceedings of the 18th Annual Symposium on Theoretical Aspects of Computer Science,
STACS ’01, pages 12–26, London, UK, UK, 2001. Springer-Verlag.

[85] T. Gruber. Ontology. http://tomgruber.org/writing/

ontology-definition-2007.htm. Accessed: 2016-10-17.

[86] P. L. Gustavson, J. P. Hancock, and M. McAuliffe. Base Object Models (BOMs):
Reusable Component Objects for Federation Development. In Simulation Interoper-
ability Workshop, 1998.

[87] F. Haack. Exploring the spatio-temporal dynamics of lipid rafts and their role in
signal transduction: a modeling and simulation approach. PhD thesis, University of
Rostock, 2016.

164

http://tomgruber.org/writing/ontology-definition-2007.htm
http://tomgruber.org/writing/ontology-definition-2007.htm

Bibliography

[88] F. Haack, K. Burrage, R. Redmer, and A. M. Uhrmacher. Studying the role of lipid
rafts on protein receptor bindings with cellular automata. IEEE/ACM transactions
on computational biology and bioinformatics, 10(3):760–770, 2013.

[89] F. Haack, H. Lemcke, R. Ewald, et al. Spatio-temporal model of endogenous ros and
raft-dependent wnt/beta-catenin signaling driving cell fate commitment in human
neural progenitor cells. PLoS Comput Biol, 11(3):1–28, 03 2015.

[90] A. Hallagan, B. Ward, and L. F. Perrone. An experiment automation framework
for ns-3. In Proceedings of the 3rd Int’l ICST Conference on Simulation Tools and
Techniques. ICST, 2010.

[91] R. N. Hannoush. Kinetics of wnt-driven β-catenin stabilization revealed by quantita-
tive and temporal imaging. PloS ONE, 3(10):e3498, 2008.

[92] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
aspects of computing, 6(5):512–535, 1994.

[93] T. Helms, M. Luboschik, H. Schumann, and A. Uhrmacher. An approximate execution
of rule-based multi-level models. In A. Gupta and T. Henzinger, editors, Compu-
tational Methods in Systems Biology, volume 8130 of Lecture Notes in Computer
Science, pages 19–32. Springer, Berlin Heidelberg, 2013.

[94] T. Helms, C. Maus, F. Haack, and A. M. Uhrmacher. Multi-level modeling and
simulation of cell biological systems with ml-rules: A tutorial. In Proceedings of the
2014 winter simulation conference, WSC ’14, pages 177–191, Piscataway, NJ, USA,
2014. IEEE Press.

[95] T. Helms, R. Ewald, S. Rybacki, and A. M. Uhrmacher. Automatic runtime adapta-
tion for component-based simulation algorithms. Acm Transactions on Modeling &
Computer Simulation, 26(1):1–24, 2015.

[96] R. Henkel, O. Wolkenhauer, and D. Waltemath. Combining computational models,
semantic annotations and simulation experiments in a graph database. Database,
2015:bau130, 2015.

[97] J. Hillston. A tool to enhance model exploitation. Performance evaluation, 22(1):
59–74, 1995.

[98] J. Himmelspach. Konzeption, Realisierung und Verwendung eines allgemeinen
Modellierungs-, Simulations-und Experimentiersystems: Entwicklung und Evaluation
effizienter Simulationsalgorithmen. Sierke, 2007.

[99] J. Himmelspach and A. M. Uhrmacher. Plug’N Simulate. In Proceedings of the 40th
Annual Simulation Symposium, ANSS ’07, pages 137–143, Washington, DC, USA,
2007. IEEE Computer Society.

[100] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. Prism: A tool for auto-
matic verification of probabilistic systems. In Proceedings of the 12th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems,
TACAS’06, pages 441–444, Berlin, Heidelberg, 2006. Springer-Verlag.

165

Bibliography

[101] K. Hoad, S. Robinson, and R. Davies. AutoSimOA: A framework for automated
analysis of simulation output. Journal of Simulation, 5(1):9–24, 2011.

[102] M. Hofmann. On the complexity of parameter calibration in simulation models. The
Journal of Defense Modeling and Simulation: Applications, Methodology, Technology,
2(4):217–226, 2005.

[103] M. Hucka, A. Finney, H. M. Sauro, H. Bolouri, J. C. Doyle, H. Kitano, A. P. Arkin,
B. J. Bornstein, D. Bray, A. Cornish-Bowden, et al. The systems biology markup
language (SBML): a medium for representation and exchange of biochemical network
models. Bioinformatics, 19(4):524–531, 2003.

[104] P. Kacsuk. Enabling distributed simulations using big data and clouds. In Proceedings
of the 3rd ACM Conference on SIGSIM-Principles of Advanced Discrete Simulation,
pages 125–126, New York, NY, USA, 2015. ACM.

[105] J. R. Karr, J. C. Sanghvi, D. N. Macklin, M. V. Gutschow, et al. A whole-cell
computational model predicts phenotype from genotype. Cell, 150(2):389–401, 2012.

[106] S. Kasputis and H. C. Ng. Model composability: formulating a research thrust:
composable simulations. In Proceedings of the 32nd winter simulation conference,
pages 1577–1584. Society for Computer Simulation International, 2000.

[107] J.-P. Katoen and I. S. Zapreev. Simulation-based ctmc model checking: An empirical
evaluation. In Sixth International Conference on the Quantitative Evaluation of
Systems. QEST’09., pages 31–40. IEEE, 2009.

[108] J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The ins
and outs of the probabilistic model checker MRMC. Performance evaluation, 68(2):
90–104, 2011.

[109] W. Kelton, R. Sadowski, and N. Swets. Simulation with Arena. McGraw-Hill
Education, 2015.

[110] W. D. Kelton. Design of experiments: experimental design for simulation. In
Proceedings of the 32nd winter simulation conference, pages 32–38. Society for
Computer Simulation International, 2000.

[111] W. D. Kelton and R. R. Barton. Experimental design for simulation: Experimental
design for simulation. In Proceedings of the 35th winter simulation conference, WSC
’03, pages 59–65. Winter Simulation Conference, 2003.

[112] J. Kleijen. Validation of models: statistical techniques and data availability. In
Proceedings of the 1999 winter simulation conference, volume 1, pages 647–654. IEEE,
1999.

[113] J. Kleijnen. Design and Analysis of Simulation Experiments. International Series in
Operations Research & Management Science. Springer US, 2007.

[114] J. P. Kleijnen. Verification and validation of simulation models. European journal of
operational research, 82(1):145–162, 1995.

[115] J. P. Kleijnen. Experimental design for sensitivity analysis, optimization, and
validation of simulation models. In J. Banks, editor, Handbook of Simulation:

166

Bibliography

Principles, Methodology, Advances, Applications, and Practice, pages 173–223. John
Wiley & Sons, 1998.

[116] J. P. Kleijnen, S. M. Sanchez, T. W. Lucas, and T. M. Cioppa. State-of-the-art
review: a user’s guide to the brave new world of designing simulation experiments.
INFORMS Journal on Computing, 17(3):263–289, 2005.

[117] D. Köhn, C. Maus, R. Henkel, and M. Kolbe. Towards enhanced retrieval of
biological models through annotation-based ranking. In International Workshop on
Data Integration in the Life Sciences, pages 204–219. Springer, 2009.

[118] L. F. Konikow and J. D. Bredehoeft. Ground-water models cannot be validated.
Advances in water resources, 15(1):75–83, 1992.

[119] G. Korn and J. Wait. Digital continuous-system simulation. Prentice-Hall, 1978.

[120] F. Krause, J. Uhlendorf, T. Lubitz, et al. Annotation and merging of SBML models
with semanticSBML. Bioinformatics, 26(3):421–422, 2010.

[121] S. Kurkowski, T. Camp, and M. Colagrosso. Manet simulation studies: the incredibles.
ACM SIGMOBILE Mobile Computing and Communications Review, 9(4):50–61, 2005.

[122] A. D. Lattner, H. Pitsch, I. J. Timm, et al. Assistsim–towards automation of
simulation studies in logistics. Simulation Notes Europe, 21(3-4):119–128, 2011.

[123] D. A. Lauffenburger and J. J. Linderman. Receptors: models for binding, trafficking,
and signaling. Oxford University Press, New York, 1996.

[124] A. Law and W. Kelton. Simulation Modeling and Analysis. McGraw-Hill international
series. McGraw-Hill, 2000.

[125] A. M. Law. A tutorial on design of experiments for simulation modeling. In Proceedings
of the 2014 winter simulation conference, WSC ’14, pages 66–80, Piscataway, NJ,
USA, 2014. IEEE Press.

[126] J. Ledet, S. Cam, B. K. Gorur, O. Dayibas, H. Oguztuzun, L. Yilmaz, and A. E.
Smith. A hybrid transformation process for simulation modernization and reuse via
model replicability and scenario reproducibility. Transformation, 7:8, 2015.

[127] E. Lee, A. Salic, R. Krüger, et al. The roles of apc and axin derived from experimental
and theoretical analysis of the wnt pathway. PLoS Biol, 1(1):e10, 2003.

[128] A. Legay, B. Delahaye, and S. Bensalem. Statistical model checking: An overview.
In Runtime Verification, pages 122–135, 2010.

[129] H. K. Leung and L. White. Insights into regression testing [software testing]. In
Proceedings of the Conference on Software Maintenancen, pages 60–69. IEEE, 1989.

[130] J. Lewis, C. E. Breeze, J. Charlesworth, O. J. Maclaren, and J. Cooper. Where next
for the reproducibility agenda in computational biology? BMC Systems Biology, 10
(1):52, 2016.

[131] S. Leye. Toward guiding simulation experiments. PhD thesis, University of Rostock,
2013.

167

Bibliography

[132] S. Leye, J. Himmelspach, and A. M. Uhrmacher. A discussion on experimental model
validation. In 11th International Conference on Computer Modelling and Simulation,
pages 161–167. IEEE, 2009.

[133] S. Leye, R. Ewald, and A. M. Uhrmacher. Composing problem solvers for simulation
experimentation: A case study on steady state estimation. PloS ONE, 9(4):e91948,
04 2014.

[134] C. Li, M. Donizelli, N. Rodriguez, et al. Biomodels database: An enhanced, curated
and annotated resource for published quantitative kinetic models. BMC systems
biology, 4(1):92, 2010.

[135] W. Lindemann. Extension of a binaural cross-correlation model by contralateral
inhibition. i. simulation of lateralization for stationary signals. The Journal of the
Acoustical Society of America, 80(6):1608–1622, 1986.

[136] C. M. Lloyd, M. D. Halstead, and P. F. Nielsen. CellML: its future, present and past.
Progress in biophysics and molecular biology, 85(2):433–450, 2004.

[137] B. Lloyd-Lewis, A. G. Fletcher, T. C. Dale, and H. M. Byrne. Toward a quantitative
understanding of the Wnt/β-catenin pathway through simulation and experiment.
Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 5(4):391–407, 2013.

[138] R. Lord. Some extensions to the cercignani–lampis gas–surface scattering kernel.
Physics of Fluids A: Fluid Dynamics (1989-1993), 3(4):706–710, 1991.

[139] R. Lord. Some further extensions of the cercignani–lampis gas–surface interaction
model. Physics of Fluids (1994-present), 7(5):1159–1161, 1995.

[140] A. Lotka. Elements of Physical Biology. Williams & Wilkins Company, 1925.
[141] M. G. Lozano, F. Moradi, and R. Ayani. Sdr: A semantic based distributed repository

for simulation models and resources. In Modelling & Simulation, 2007. AMS’07.
First Asia International Conference on, pages 171–176. IEEE, 2007.

[142] M. Luboschik, S. Rybacki, F. Haack, and H.-J. Schulz. Supporting the integrated
visual analysis of input parameters and simulation trajectories. Computers & Graphics,
39:37–47, 2014.

[143] G. Lucko, P. C. Benjamin, K. Swaminathan, and M. G. Madden. Comparison of
manual and automated simulation generation approaches and their use for construc-
tion applications. In Proceedings of the 2010 winter simulation conference, pages
3132–3144. Winter Simulation Conference, 2010.

[144] J. Ma and B. Knight. A reified temporal logic. The Computer Journal, 39(9):800–807,
1996.

[145] D. Machado, R. S. Costa, M. Rocha, I. Rocha, B. Tidor, and E. C. Ferreira. A critical
review on modelling formalisms and simulation tools in computational biosystems.
In Distributed Computing, Artificial Intelligence, Bioinformatics, Soft Computing,
and Ambient Assisted Living, pages 1063–1070. Springer, 2009.

[146] D. Machado, R. S. Costa, M. Rocha, E. C. Ferreira, B. Tidor, and I. Rocha. Modeling
formalisms in systems biology. AMB Express, 1(45):1–14, 2011.

168

Bibliography

[147] G. T. Mackulak, F. P. Lawrence, and T. Colvin. Effective simulation model reuse: a
case study for amhs modeling. In Proceedings of the 30th winter simulation conference,
pages 979–984. IEEE Computer Society Press, 1998.

[148] I. Mahmood, R. Ayani, V. Vlassov, and F. Moradi. Statemachine matching in bom
based model composition. In Distributed Simulation and Real Time Applications,
2009. DS-RT’09. 13th IEEE/ACM International Symposium on, pages 136–143.
IEEE, 2009.

[149] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In
Formal Techniques, Modelling and Analysis of Timed and Fault-Tolerant Systems,
pages 152–166. Springer, Heidelberg, 2004.

[150] O. Maler, D. Nickovic, and A. Pnueli. Checking temporal properties of discrete,
timed and continuous behaviors. In Pillars of computer science, pages 475–505.
Springer, 2008.

[151] A. Maria. Introduction to modeling and simulation. In Proceedings of the 29th winter
simulation conference, pages 7–13. IEEE Computer Society, 1997.

[152] E. D. Maria, F. Fages, and S. Soliman. On coupling models using model-checking:
Effects of irinotecan injections on the mammalian cell cycle. In Proceedings of
Computational Methods in Systems Biology, pages 142–157. Springer, 2009.

[153] C. Maus, S. Rybacki, and A. M. Uhrmacher. Rule-based multi-level modeling of cell
biological systems. BMC Systems Biology, 5(1):166, 2011.

[154] K. H. Mayo, M. Nunez, C. Burke, C. Starbuck, D. Lauffenburger, and C. R. Savage.
Epidermal growth factor receptor binding is not a simple one-step process. Journal
of Biological Chemistry, 264(30):17838–44, 1989.

[155] O. Mazemondet, R. Hubner, J. Frahm, et al. Quantitative and kinetic profile of Wnt/β-
catenin signaling components during human neural progenitor cell differentiation.
Cellular & molecular biology letters, 16(4):515–538, 2011.

[156] O. Mazemondet, R. Hubner, J. Frahm, et al. Quantitative and kinetic profile of Wnt/β-
catenin signaling components during human neural progenitor cell differentiation.
Cellular & molecular biology letters, 16(4):515–538, 2011.

[157] O. Mazemondet, M. John, S. Leye, A. Rolfs, and A. M. Uhrmacher. Elucidating the
sources of beta-catenin dynamics in human neural progenitor cells. PloS ONE, 7(8):
e42792–e42792, 2012.

[158] B. Medjahed and A. Bouguettaya. A multilevel composability model for semantic
web services. IEEE Transactions on Knowledge and Data Engineering, 17(7):954–968,
July 2005.

[159] J. K. Medley, A. Goldberg, and J. R. Karr. Guidelines for reproducibly building and
simulating systems biology models. 2016.

[160] N. D. Mendes, F. Lang, Y.-S. Le Cornec, R. Mateescu, G. Batt, and C. Chaouiya.
Composition and abstraction of logical regulatory modules: application to multicel-
lular systems. Bioinformatics, 29(6):749–757, 2013.

169

Bibliography

[161] T. Mens, K. Czarnecki, and P. V. Gorp. 04101 discussion–a taxonomy of model
transformations. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum
für Informatik, 2005.

[162] M. Messer, J. H. Panchal, J. K. Allen, and F. Mistree. Model refinement decisions
using the process performance indicator. Engineering Optimization, 43(7):741–762,
2011.

[163] M. Minsky. Models, minds, machines. In Proceedings of IFIP Congress, pages 45–49,
1965.

[164] G. R. Mirams, H. M. Byrne, and J. R. King. A multiple timescale analysis of a
mathematical model of the wnt/β-catenin signalling pathway. Journal of mathematical
biology, 60(1):131–160, 2010.

[165] T. Monks, S. Robinson, and K. Kotiadis. Model reuse versus model development:
Effects on credibility and learning. In Proceedings of the 2009 winter simulation
conference, pages 767–778. Winter Simulation Conference, 2009.

[166] F. Moradi, P. Nordvaller, and R. Ayani. Simulation model composition using boms. In
2006 Tenth IEEE International Symposium on Distributed Simulation and Real-Time
Applications, pages 242–252. IEEE, 2006.

[167] F. Moradi, R. Ayani, and G. Tan. A rule-based approach to syntactic and semantic
composition of boms. In Proceedings of the 11th IEEE International Symposium on
Distributed Simulation and Real-Time Applications, pages 145–155. IEEE Computer
Society, 2007.

[168] M. Mroz and G. Franks. A performance experiment system supporting fast mapping
of system issues. In Proceedings of the Fourth International ICST Conference on
Performance Evaluation Methodologies and Tools, page 31. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009.

[169] M. L. Neal, M. T. Cooling, L. P. Smith, C. T. Thompson, H. M. Sauro, B. E. Carlson,
D. L. Cook, and J. H. Gennari. A Reappraisal of How to Build Modular, Reusable
Models of Biological Systems. PLoS Comput Biol, 10(10):e1003849, 10 2014.

[170] D. Nickovic and O. Maler. AMT: A property-based monitoring tool for analog
systems. In International Conference on Formal Modeling and Analysis of Timed
Systems, pages 304–319. Springer, 2007.

[171] N. L. Novère, A. Finney, M. Hucka, et al. Minimum information requested in
the annotation of biochemical models (MIRIAM). Nature Biotechnology, 23(12):
1509–1515, 2005.

[172] M. Odersky, L. Spoon, and B. Venners. Programming in Scala. Artima, 2008.

[173] A. I. of Aeronautics and A. Staf. AIAA Guide for the Verification and Validation of
Computational Fluid Dynamics Simulations. American Institute of Aeronautics &
Astronautics, 1998.

170

Bibliography

[174] T. I. Ören. GEST—a modelling and simulation language based on system theoretic
concepts. In Simulation and model-based methodologies: an integrative view, pages
281–335. Springer, 1984.

[175] C. M. Overstreet, R. E. Nance, and O. Balci. Issues in enhancing model reuse. In
International Conference on Grand Challenges for Modeling and Simulation, pages
27–31, 2002.

[176] G. Özhan, E. Sezgin, D. Wehner, et al. Lypd6 enhances Wnt/β-catenin signaling by
promoting Lrp6 phosphorylation in raft plasma membrane domains. Developmental
cell, 26(4):331–345, 2013.

[177] E. H. Page and J. M. Opper. Observations on the complexity of composable simulation.
In Proceedings of the 31st winter simulation conference, pages 553–560. ACM, 1999.

[178] E. H. Page, A. Buss, P. A. Fishwick, K. J. Healy, R. E. Nance, and R. J. Paul.
Web-based simulation: revolution or evolution? ACM Transactions on Modeling and
Computer Simulation (TOMACS), 10(1):3–17, 2000.

[179] E. H. Page, L. Litwin, M. T. McMahon, et al. Goal-directed grid-enabled computing
for legacy simulations. In Cluster, Cloud and Grid Computing (CCGrid), 2012 12th
IEEE/ACM International Symposium on, pages 873–879. IEEE, 2012.

[180] O. Pârvu and D. Gilbert. Automatic validation of computational models using
pseudo-3d spatio-temporal model checking. BMC Systems Biology, 8(1):1–24, 2014.

[181] R. J. Paul and S. J. Taylor. What use is model reuse: Is there a crook at the end
of the rainbow? In Proceedings of the 2002 winter simulation conference, volume 1,
pages 648–652. IEEE, 2002.

[182] K. Pawlikowski, H.-D. Jeong, and J.-S. Lee. On credibility of simulation studies of
telecommunication networks. IEEE Communications Magazine, 40(1):132–139, 2002.

[183] D. Peng, A. Steiniger, T. Helms, and A. Uhrmacher. Towards Composing ML-Rules
Models. In Proceedings of the 2013 winter simulation conference, 2013.

[184] D. Peng, R. Ewald, and A. M. Uhrmacher. Towards Semantic Model Composition
via Experiments. In Proceedings of the 2Nd ACM SIGSIM/PADS Conference on
Principles of Advanced Discrete Simulation, pages 151–162, New York, NY, USA,
2014. ACM.

[185] D. Peng, T. Warnke, and M. A. Uhrmacher. Domain-specific languages for flexibly
experimenting with stochastic models. Simulation Notes Europe, 25(2):17–22, 2015.

[186] D. Peng, T. Warnke, F. Haack, and A. M. Uhrmacher. Reusing simulation experiment
specifications to support developing models by successive extension. Simulation
Modelling Practice and Theory, 68:33–53, 2016.

[187] L. F. Perrone, C. S. Main, and B. C. Ward. Safe: Simulation automation framework
for experiments. In Proceedings of the 2012 winter simulation conference, WSC ’12,
pages 249:1–249:12. Winter Simulation Conference, 2012.

[188] M. D. Petty and E. W. Weisel. A composability lexicon. In Spring Simulation
Interoperability Workshop (SISO), pages 181–187, 2003.

171

Bibliography

[189] M. D. Petty and E. W. Weisel. A formal basis for a theory of semantic composability.
In Proceedings of the Spring 2003 Simulation Interoperability Workshop, pages 416–
423, 2003.

[190] M. Pidd. Reusing simulation components: simulation software and model reuse: a
polemic. In Proceedings of the 34th winter simulation conference, pages 772–775.
Winter Simulation Conference, 2002.

[191] A. Pos, P. Borst, J. Top, and H. Akkermans. Reusability of simulation models.
Knowledge-Based Systems, 9(2):119–125, 1996.

[192] R. J. Prill, P. A. Iglesias, and A. Levchenko. Dynamic properties of network motifs
contribute to biological network organization. PLOS Biology, 3(11):e343, Oct. 2005.

[193] H. Rahmandad and J. D. Sterman. Reporting guidelines for simulation-based research
in social sciences. System Dynamics Review, 28(4):396–411, 2012.

[194] R. Randhawa, C. a. Shaffer, and J. J. Tyson. Model aggregation: a building-block
approach to creating large macromolecular regulatory networks. Bioinformatics
(Oxford, England), 25(24):3289–95, Dec. 2009.

[195] R. Randhawa, C. A. Shaffer, and J. J. Tyson. Model Composition for Macromolecular
Regulatory Networks. IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 7(2):278–287, 2010.

[196] E. Renshaw. Modelling Biological Populations in Space and Time. Cambridge Studies
in Mathematical Biology. Cambridge University Press, 1991.

[197] T. Rharass, H. Lemcke, M. Lantow, et al. Ca2+-mediated mitochondrial ROS
metabolism augments Wnt/β-catenin pathway activation to facilitate cell differentia-
tion. Journal of Biological Chemistry, 289(40):27937–27951, 2014.

[198] G. Rill. Vehicle modeling by subsystems. Journal of the Brazilian Society of
Mechanical Sciences and Engineering, 28(4):430–442, 2006.

[199] S. Robinson. Simulation: The Practice of Model Development and Use. Wiley, 2004.
[200] S. Robinson. Conceptual modelling for simulation part i: definition and requirements.

Journal of the operational research society, 59(3):278–290, 2008.
[201] S. Robinson, R. E. Nance, R. J. Paul, M. Pidd, and S. J. Taylor. Simulation model

reuse: definitions, benefits and obstacles. Simulation modelling practice and theory,
12(7):479–494, 2004.

[202] S. Robinson, G. Arbez, L. G. Birta, A. Tolk, and G. Wagner. Conceptual modeling:
definition, purpose and benefits. In Proceedings of the 2015 winter simulation
conference, pages 2812–2826. IEEE, 2015.

[203] M. Röhl and A. M. Uhrmacher. Composing simulations from xml-specified model
components. In Proceedings of the 2006 winter simulation conference, pages 1083–
1090. IEEE, 2006.

[204] N. D. Rollins, C. M. Barton, S. Bergin, M. A. Janssen, and A. Lee. A computational
model library for publishing model documentation and code. Environmental Modelling
& Software, 61:59–64, 2014.

172

Bibliography

[205] A. Ruscheinski. Artefaktbasierte Workflows zur semi-automatischen Validierung von
Modellerweiterungen. Master’s thesis, University of Rostock, 2016.

[206] S. Rybacki, J. Himmelspach, F. Haack, and A. M. Uhrmacher. WorMS- a Framework
to Support Workflows in M&S. In Proceedings of the 2011 winter simulation
conference, WSC ’11, pages 716–727. Winter Simulation Conference, 2011.

[207] S. Rybacki, S. Leye, J. Himmelspach, and A. M. Uhrmacher. Template and frame
based experiment workflows in modeling and simulation software with worms. In
2012 IEEE Eighth World Congress on Services, pages 25–32. IEEE, 2012.

[208] S. Rybacki, F. Haack, K. Wolf, and A. M. Uhrmacher. Developing simulation models-
from conceptual to executable model and back-an artifact-based workflow approach.
In Proceedings of the 7th International ICST Conference on Simulation Tools and
Techniques, pages 21–30. ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), 2014.

[209] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn. Design and analysis of
computer experiments. Statistical science, pages 409–423, 1989.

[210] S. Sahle, R. Gauges, J. Pahle, et al. Simulation of Biochemical Networks Using
COPASI: A Complex Pathway Simulator. In Proceedings of the 38th winter simulation
conference, WSC ’06, pages 1698–1706. Winter Simulation Conference, 2006.

[211] H. Sakane, H. Yamamoto, and A. Kikuchi. LRP6 is internalized by Dkk1 to suppress
its phosphorylation in the lipid raft and is recycled for reuse. Journal of cell science,
123(3):360–368, 2010.

[212] S. Sanchez and H. Wan. Work smarter, not harder: A tutorial on designing and
conducting simulation experiments. In Proceedings of the 2012 winter simulation
conference, pages 1–15, Dec 2012.

[213] S. M. Sanchez. Work smarter, not harder: guidelines for designing simulation
experiments. In Proceedings of the 37th winter simulation conference, pages 69–82.
Winter Simulation Conference, 2005.

[214] R. G. Sargent. A tutorial on verification and validation of simulation models. In
Proceedings of the 16th winter simulation conference, pages 114–121. IEEE Press,
1984.

[215] R. G. Sargent. Verification and validation of simulation models. Journal of simulation,
7(1):12–24, 2013.

[216] P. Savory and G. Mackulak. The science of simulation modeling. Science, 1:115–119,
1994.

[217] F. Scholkmann, J. Boss, and M. Wolf. An efficient algorithm for automatic peak
detection in noisy periodic and quasi-periodic signals. Algorithms, 5(4):588–603,
2012.

[218] M. Schulz, J. Uhlendorf, E. Klipp, and W. Liebermeister. SBMLmerge, a system for
combining biochemical network models. Genome Informatics Series, 17(1):62, 2006.

173

Bibliography

[219] J. Schützel, D. Peng, A. M. Uhrmacher, and L. F. Perrone. Perspectives on Languages
for Specifying Simulation Experiments. In Proceedings of the 2014 winter simulation
conference, WSC ’14, pages 2836–2847, Piscataway, NJ, USA, 2014. IEEE Press.

[220] M. L. Scott. Programming Language Pragmatics. Elsevier Science, 2015.
[221] K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box

probabilistic systems. In International Conference on Computer Aided Verification,
pages 202–215. Springer, 2004.

[222] K. Sen, M. Viswanathan, and G. Agha. On statistical model checking of stochastic
systems. In K. Etessami and S. Rajamani, editors, Computer Aided Verification,
volume 3576 of Lecture Notes in Computer Science, pages 266–280. Springer Berlin
Heidelberg, 2005.

[223] K. Sen, M. Viswanathan, and G. Agha. On Statistical Model Checking of Stochastic
Systems. In Computer Aided Verification, volume 3576 of Lecture Notes in Computer
Science, pages 266–280. Springer, Berlin Heidelberg, Jan. 2005.

[224] R. E. Shannon. Introduction to the art and science of simulation. In Winter
Simulation Conference, pages 7–14, 1998.

[225] Y. Shoham. Reasoning about Change: Time and Causation from the Standpoint of
Artificial Intelligence. Technical report, Yale Univ., New Haven, CT (USA), May
1987.

[226] J. Šimunek, M. T. Van Genuchten, and M. Šejna. HYDRUS: Model use, calibration,
and validation. Transactions of the ASABE, 55(4):1263–1274, 2012.

[227] C. U. Smith, C. M. Llado, R. Puigjaner, and L. G. Williams. Interchange formats
for performance models: Experimentation and ouput. In Quantitative Evaluation of
Systems, 2007. QEST 2007. Fourth International Conference on the, pages 91–100.
IEEE, 2007.

[228] C. U. Smith, C. M. Lladó, and R. Puigjaner. Model interchange format specifications
for experiments, output and results. The Computer Journal, 54(5):674–690, 2011.

[229] L. P. Smith, M. Hucka, S. Hoops, A. Finney, M. Ginkel, C. J. Myers, I. I. Moraru, and
W. Liebermeister. Sbml level 3 package specification: Hierarchical model composition.
2013.

[230] M. Spiegel, P. F. Reynolds Jr, and D. C. Brogan. A case study of model context for
simulation composability and reusability. In Proceedings of the 37th winter simulation
conference, pages 437–444. Winter Simulation Conference, 2005.

[231] J. Stelling, P. Mendes, E. Klipp, et al. Defining modeling strategies for Systems
Biology. Technical report, FutureSysBio Workshop, Göteborg, Sweden, 2011.

[232] C. Szabo. Composable simulation models and their formal validation. PhD thesis,
National University of Singapore, 2010.

[233] C. Szabo and Y. M. Teo. On syntactic composability and model reuse. In First Asia
International Conference on Modelling & Simulation, 2007. AMS’07., pages 230–237.
IEEE, 2007.

174

Bibliography

[234] C. Szabo and Y. M. Teo. An approach for validation of semantic composability
in simulation models. In Proceedings of the 2009 ACM/IEEE/SCS 23rd Workshop
on Principles of Advanced and Distributed Simulation, pages 3–10. IEEE Computer
Society, 2009.

[235] C. Szabo and Y. M. Teo. An approach to semantic-based model discovery and
selection. In Proceedings of the 2011 winter simulation conference, pages 3054–3066.
IEEE, 2011.

[236] C. Szabo and Y. M. Teo. An analysis of the cost of validating semantic composability.
Journal of Simulation, 6(3):152–163, 2012.

[237] C. Szabo, Y. M. Teo, and S. See. A time-based formalism for the validation of
semantic composability. In Proceedings of the 41st winter simulation conference,
pages 1411–1422. Winter Simulation Conference, 2009.

[238] C. Szyperski, D. Gruntz, and S. Murer. Component Software: Beyond Object-oriented
Programming. ACM Press Series. ACM Press, 2002.

[239] R. J. Tabaczynski, F. H. Trinker, and B. A. Shannon. Further refinement and valida-
tion of a turbulent flame propagation model for spark-ignition engines. Combustion
and Flame, 39(2):111–121, 1980.

[240] S. J. Taylor, A. Khan, K. L. Morse, A. Tolk, L. Yilmaz, J. Zander, and P. J. Moster-
man. Grand challenges for modeling and simulation: simulation everywhere—from
cyberinfrastructure to clouds to citizens. simulation, page 0037549715590594, 2015.

[241] K. Ten Tusscher and A. Panfilov. Cell model for efficient simulation of wave
propagation in human ventricular tissue under normal and pathological conditions.
Physics in medicine and biology, 51(23):6141, 2006.

[242] Y. M. Teo and C. Szabo. CoDES: An integrated approach to composable modeling
and simulation. In 41st Annual Simulation Symposium (anss-41 2008), pages 103–110.
IEEE, 2008.

[243] A. Teran-Somohano, O. Dayıbaş, L. Yilmaz, and A. Smith. Toward a model-driven
engineering framework for reproducible simulation experiment lifecycle management.
In Proceedings of the 2014 winter simulation conference, pages 2726–2737. IEEE
Press, 2014.

[244] A. Teran-Somohano, A. E. Smith, J. Ledet, L. Yilmaz, and H. Oğuztüzün. A
model-driven engineering approach to simulation experiment design and execution.
In Proceedings of the 2015 winter simulation conference, pages 2632–2643. IEEE
Press, 2015.

[245] The Sytems Biology Institute. Simulation software for systems biology. http:

//systems-biology.org/software/simulation/sbmlsim.html, 2016.

[246] A. Tolk. What comes after the semantic web - pads implications for the dynamic
web. In Workshop on Principles of Advanced and Distributed Simulation (PADS),
page 55. IEEE Computer Society, 2006.

175

http://systems-biology.org/software/simulation/sbmlsim.html
http://systems-biology.org/software/simulation/sbmlsim.html

Bibliography

[247] A. Tolk, S. Y. Diallo, R. D. King, C. D. Turnitsa, and J. J. Padilla. Conceptual
modeling for composition of model-based complex systems, pages 355–381. Citeseer,
2010.

[248] T. Tomita, S. Hagihara, and N. Yonezaki. A probabilistic temporal logic with
frequency operators and its model checking. In F. Yu and C. Wang, editors, Proc. of
the 13th International Workshop on Verification of Infinite-State Systems, Taipei,
Taiwan, 10th October 2011, volume 73 of Electronic Proceedings in Theoretical
Computer Science, pages 79–93. Open Publishing Association, 2011.

[249] M. K. Traoré. Analyzing static and temporal properties of simulation models.
In Proceedings of the 38th winter simulation conferencen, pages 897–904. Winter
Simulation Conference, 2006.

[250] T. G. Trucano, L. P. Swiler, T. Igusa, W. L. Oberkampf, and M. Pilch. Calibration,
validation, and sensitivity analysis: What’s what. Reliability Engineering & System
Safety, 91(10):1331–1357, 2006.

[251] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an annotated
bibliography. SIGPLAN Notices, 35(6):26–36, June 2000.

[252] M. T. Vass, C. A. Shaffer, N. Ramakrishnan, L. T. Watson, and J. J. Tyson. The
jigcell model builder: a spreadsheet interface for creating biochemical reaction network
models. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB), 3(2):155–164, 2006.

[253] A. Verbraeck and E. C. Valentin. Design guidelines for simulation building blocks.
In Proceedings of the 40th winter simulation conference, pages 923–932. Winter
Simulation Conference, 2008.

[254] V. Vito. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi.
Mem. R. Accad. Naz. dei Lincei, 2:31–113, 1926.

[255] D. Waltemath, R. Adams, D. A. Beard, F. T. Bergmann, U. S. Bhalla, R. Britten,
V. Chelliah, M. T. Cooling, J. Cooper, E. J. Crampin, et al. Minimum information
about a simulation experiment (MIASE). PLoS computational biology, 7(4):e1001122,
2011.

[256] D. Waltemath, R. Adams, F. T. Bergmann, et al. Reproducible computational
biology experiments with SED-ML - the simulation experiment description markup
language. BMC systems biology, 5(1):198, 2011.

[257] D. Waltemath, R. Henkel, R. Hälke, M. Scharm, and O. Wolkenhauer. Improving
the reuse of computational models through version control. Bioinformatics, 29(6):
742–748, 2013.

[258] J. Wang, Q. Chang, G. Xiao, N. Wang, and S. Li. Data driven production modeling
and simulation of complex automobile general assembly plant. Computers in Industry,
62(7):765–775, 2011.

176

Bibliography

[259] S. Wang and G. Wainer. Semantic selection for model composition using samsaas. In
Proceedings of the Symposium on Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, pages 25–32. Society for Computer Simulation International, 2015.

[260] T. Warnke, D. Peng, F. Haack, and A. M. Uhrmacher. Towards a language for
specifying properties of simulation trajectories. In 12th International Conference on
Computational Methods in Systems Biology, 2014.

[261] T. Warnke, T. Helms, and A. M. Uhrmacher. Syntax and semantics of a multi-level
modeling language. In Proceedings of the 3rd ACM SIGSIM Conference on Principles
of Advanced Discrete Simulation, SIGSIM PADS ’15, pages 133–144, New York, NY,
USA, 2015. ACM.

[262] E. Weisel, M. Petty, and R. Mielke. Validity of models and classes of models in
semantic composability. Proceedings of the Fall 2003 SIW, 9:68, 2003.

[263] M. R. Wigan. The fitting, calibration, and validation of simulation models. Simulation,
18(5):188–192, 1972.

[264] C.-H. Yeang, H. C. Mak, S. McCuine, C. Workman, T. Jaakkola, and T. Ideker.
Validation and refinement of gene-regulatory pathways on a network of physical
interactions. Genome biology, 6(7):1, 2005.

[265] S. Yoo and M. Harman. Regression Testing Minimization, Selection and Prioritization:
A Survey. Softw. Test. Verif. Reliab., 22(2):67–120, Mar. 2012.

[266] H. L. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In International Conference on Computer
Aided Verification, pages 223–235. Springer, 2002.

[267] H. L. Younes and R. G. Simmons. Statistical probabilistic model checking with
a focus on time-bounded properties. Information and Computation, 204(9):1368 –
1409, 2006.

[268] H. L. S. Younes and R. G. Simmons. Probabilistic verification of discrete event
systems using acceptance sampling. In Proceedings 14th International Conference on
Computer Aided Verification, volume 2404 of LNCS, pages 223–235. Springer, 2002.

[269] T. Yu, C. M. Lloyd, D. P. Nickerson, M. T. Cooling, A. K. Miller, A. Garny, J. R.
Terkildsen, J. Lawson, R. D. Britten, P. J. Hunter, et al. The physiome model
repository 2. Bioinformatics, 27(5):743–744, 2011.

[270] B. Zeigler. Theory of Modelling and Simulation. A Wiley-Interscience Publication.
John Wiley, 1976.

[271] B. Zeigler, H. Praehofer, and T. Kim. Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems. Academic Press, 2000.

[272] B. P. Zeigler and H. S. Sarjoughian. Introduction to devs modeling and simulation with
java: Developing component-based simulation models. Technical report, University
of Arizona, 2003.

177

Bibliography

[273] B. P. Zeigler, D. Fulton, P. Hammonds, and J. Nutaro. Framework for M&S based
system development and testing in net-centric environment. ITEA Journal, 26(3):
21–34, 2005.

[274] P. Zuliani, A. Platzer, and E. M. Clarke. Bayesian statistical model checking with
application to simulink/stateflow verification. In Proceedings of the 13th ACM
International Conference on Hybrid Systems: Computation and Control, HSCC ’10,
pages 243–252, New York, NY, USA, 2010. ACM.

178

Selbständigkeitserklärung

Ich, Danhua Peng, erkläre hiermit, dass ich die vorliegende Dissertation mit dem Titel
“Reusing Simulation Experiments for Model Composition and Extension” selbständig,
ohne die unerlaubete Hilfe und nur unter Vorlage der angegebenen Literatur und
Hilfsmittel angefertigt habe.

	Introduction
	Context and Background
	Motivation and Problem Statement
	Contributions
	Terminology
	Thesis Structure
	Bibliographic Note

	Simulation Experiments and Their Representation
	An Overview on Simulation Experiments
	Simulation Experiment Categorization
	Conducting Simulation Experiments
	Structuring a Simulation Experiment
	Methods to Support Experimentation

	Simulation Experiments as First Class Objects
	The Specification of Simulation Experiments
	Separating Representations of the Experiment and the Model
	Experiment Specifications for Experimentation Support
	Guidelines for Representing Simulation Experiments
	Languages for Experiment Specification

	Summary

	Exploiting Simulation Experiments for Developing Models via Reuse
	Simulation Experiments in Model Development
	Model Calibration and Validation
	Model Validation via Simulation Experiments

	Simulation Experiments and Model Reuse
	Related Work
	Reusing Simulation Experiments
	Regression Testing in Software Development

	Requirement Analysis
	Structuring Simulation Experiments for Model Validation
	Specifying Simulation Experiments with Stochastic Models
	Specifying Expected Behavioral Properties of Models
	Specifying Data Processing Method

	Proposed Approach
	Overall Concept
	Experiment Specification in SESSL
	Experiment Adaptation, Generation and Execution
	Result Analysis
	General Architecture

	Summary

	Model Composition Based on Reusing Simulation Experiments
	Introduction on Model Composition
	Composition and Composability
	Existing Work to Support Model Composition

	A Life Cycle of Developing Composed Models
	Reusing Simulation Experiment for Model Composition
	Overview
	Experiment Adaptation and Generation

	Case Study I: the Lotka-Volterra Model
	Background
	Ingredients
	The basic Lotka-Volterra Model
	Composing Lotka-Volterra Models
	Reusing Simulation Experiments of Model Components

	Case Study II: Modeling the Wnt/β-catenin Pathway
	Background
	Ingredients
	Developing the Wnt/β-catenin Model

	Summary

	Model Extension Based on Reusing Simulation Experiments
	Model Reuse for Extension
	Reusing Simulation Experiments for Model Extension
	Case Study III: Modeling the Receptor Ligand Pathway
	Background
	Ingredients
	The Basic Model — Ternary-Complex Formation (M0)
	Model Extension — Endocytosis (ME1)
	Reusing Simulation Experiments of the Ternary-Complex Model
	Model Documentation
	Further Model extension — Recycling (ME2)

	Summary

	Conclusions and Outlook
	Summary
	Limitations and Future Work

	An Example of Composing Lotka-Volterra models Based on the SBML formalism
	Bibliography

