166 research outputs found

    Some new results on the self-dual [120,60,24] code

    Full text link
    The existence of an extremal self-dual binary linear code of length 120 is a long-standing open problem. We continue the investigation of its automorphism group, proving that automorphisms of order 30 and 57 cannot occur. Supposing the involutions acting fixed point freely, we show that also automorphisms of order 8 cannot occur and the automorphism group is of order at most 120, with further restrictions. Finally, we present some necessary conditions for the existence of the code, based on shadow and design theory.Comment: 23 pages, 6 tables, to appear in Finite Fields and Their Application

    Partial geometric designs and difference families

    Get PDF
    We examine the designs produced by different types of difference families. Difference families have long been known to produce designs with well behaved automorphism groups. These designs provide the elegant solutions desired for applications. In this work, we explore the following question: Does every (named) design have a difference family analogue? We answer this question in the affirmative for partial geometric designs

    Author index for volumes 101–200

    Get PDF

    SL(2,Z) Representations and 2-Semiregular Modular Categories

    Get PDF
    We address the open question of which representations of the modular group SL(2,Z) can be realized by a modular category. In order to investigate this problem, we introduce the concept of a symmetrizable representation of SL(2,Z) and show that this property is necessary for the representation to be realized. We then prove that all congruence representations of SL(2,Z) are symmetrizable. The proof involves constructing a symmetric basis, which greatly aids in further calculation. We apply this result to the reconstruction of modular category data from representations, as well as to the classification of semiregular categories, which are defined via an action of the Galois group Gal(Qbar/Q) on their simple objects

    The geometry of diagonal groups

    Get PDF
    Part of the work was done while the authors were visiting the South China University of Science and Technology (SUSTech), Shenzhen, in 2018, and we are grateful (in particular to Professor Cai Heng Li) for the hospitality that we received.The authors would like to thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support and hospitality during the programme Groups, representations and applications: new perspectives (supported by EPSRC grant no.EP/R014604/1), where further work on this paper was undertaken. In particular we acknowledge a Simons Fellowship (Cameron) and a Kirk Distinguished Visiting Fellowship (Praeger) during this programme. Schneider thanks the Centre for the Mathematics of Symmetry and Computation of The University of Western Australia and Australian Research Council Discovery Grant DP160102323 for hosting his visit in 2017 and acknowledges the support of the CNPq projects Produtividade em Pesquisa (project no.: 308212/2019-3) and Universal (project no.:421624/2018-3).Diagonal groups are one of the classes of finite primitive permutation groups occurring in the conclusion of the O'Nan-Scott theorem. Several of the other classes have been described as the automorphism groups of geometric or combinatorial structures such as affine spaces or Cartesian decompositions, but such structures for diagonal groups have not been studied in general. The main purpose of this paper is to describe and characterise such structures, which we call diagonal semilattices. Unlike the diagonal groups in the O'Nan-Scott theorem, which are defined over finite characteristically simple groups, our construction works over arbitrary groups, finite or infinite. A diagonal semilattice depends on a dimension m and a group T. For m=2, it is a Latin square, the Cayley table of T, though in fact any Latin square satisfies our combinatorial axioms. However, for m≥3, the group T emerges naturally and uniquely from the axioms. (The situation somewhat resembles projective geometry, where projective planes exist in great profusion but higher-dimensional structures are coordinatised by an algebraic object, a division ring.) A diagonal semilattice is contained in the partition lattice on a set Ω, and we provide an introduction to the calculus of partitions. Many of the concepts and constructions come from experimental design in statistics. We also determine when a diagonal group can be primitive, or quasiprimitive (these conditions turn out to be equivalent for diagonal groups). Associated with the diagonal semilattice is a graph, the diagonal graph, which has the same automorphism group as the diagonal semilattice except in four small cases with m<=3. The class of diagonal graphs includes some well-known families, Latin-square graphs and folded cubes, and is potentially of interest. We obtain partial results on the chromatic number of a diagonal graph, and mention an application to the synchronization property of permutation groups.PostprintPeer reviewe

    Q(sqrt(-3))-Integral Points on a Mordell Curve

    Get PDF
    We use an extension of quadratic Chabauty to number fields,recently developed by the author with Balakrishnan, Besser and M ̈uller,combined with a sieving technique, to determine the integral points overQ(√−3) on the Mordell curve y2 = x3 − 4

    Multicoloured Random Graphs: Constructions and Symmetry

    Full text link
    This is a research monograph on constructions of and group actions on countable homogeneous graphs, concentrating particularly on the simple random graph and its edge-coloured variants. We study various aspects of the graphs, but the emphasis is on understanding those groups that are supported by these graphs together with links with other structures such as lattices, topologies and filters, rings and algebras, metric spaces, sets and models, Moufang loops and monoids. The large amount of background material included serves as an introduction to the theories that are used to produce the new results. The large number of references should help in making this a resource for anyone interested in beginning research in this or allied fields.Comment: Index added in v2. This is the first of 3 documents; the other 2 will appear in physic
    corecore