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THE GEOMETRY OF DIAGONAL GROUPS

R. A. BAILEY, PETER J. CAMERON, CHERYL E. PRAEGER, AND CSABA SCHNEIDER

Abstract. Diagonal groups are one of the classes of finite primitive permuta-
tion groups occurring in the conclusion of the O’Nan–Scott theorem. Several of
the other classes have been described as the automorphism groups of geometric
or combinatorial structures such as affine spaces or Cartesian decompositions,
but such structures for diagonal groups have not been studied in general.

The main purpose of this paper is to describe and characterise such struct-
ures, which we call diagonal semilattices. Unlike the diagonal groups in the
O’Nan–Scott theorem, which are defined over finite characteristically simple
groups, our construction works over arbitrary groups, finite or infinite.

A diagonal semilattice depends on a dimension m and a group T . For
m = 2, it is a Latin square, the Cayley table of T , though in fact any Latin
square satisfies our combinatorial axioms. However, for m > 3, the group
T emerges naturally and uniquely from the axioms. (The situation somewhat
resembles projective geometry, where projective planes exist in great profusion
but higher-dimensional structures are coordinatised by an algebraic object, a
division ring.)

A diagonal semilattice is contained in the partition lattice on a set Ω, and
we provide an introduction to the calculus of partitions. Many of the concepts
and constructions come from experimental design in statistics.

We also determine when a diagonal group can be primitive, or quasi-
primitive (these conditions turn out to be equivalent for diagonal groups).

Associated with the diagonal semilattice is a graph, the diagonal graph,
which has the same automorphism group as the diagonal semilattice except
in four small cases with m 6 3. The class of diagonal graphs includes some
well-known families, Latin-square graphs and folded cubes, and is potentially
of interest. We obtain partial results on the chromatic number of a diagonal
graph, and mention an application to the synchronization property of permu-
tation groups.

1. Introduction

1.1. The landscape. In this paper, we give a combinatorial description of the
structures on which diagonal groups, including those arising in the O’Nan–Scott
Theorem, act.

This is a rich area, with links not only to finite group theory (as in the O’Nan–
Scott Theorem) but also to designed experiments, and the combinatorics of Latin
squares and their higher-dimensional generalisations. We do not restrict our study
to the finite case.
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Partitions lie at the heart of this study. We express the Latin hypercubes we
need in terms of partitions, and our final structure for diagonal groups can be
regarded as a join-semilattice of partitions. Cartesian products of sets can be
described in terms of the partitions induced by the coordinate projection maps
and this approach was introduced into the study of primitive permutation groups
by L. G. Kovács [49]. He called the collection of these coordinate partitions a
“system of product imprimitivity”. The concept was further developed in [71]
where the same object was called a “Cartesian decomposition”. In preparation
for introducing the join-semilattice of partitions for the diagonal groups, we view
Cartesian decompositions as lattices of partitions of the underlying set.

Along the way, we also discuss a number of conditions on families of partitions
that have been considered in the literature, especially the statistical literature.

1.2. Outline of the paper. As said above, our aim is to describe the geometry
and combinatorics underlying diagonal groups, in general. In the O’Nan–Scott
Theorem, the diagonal groups D(T,m) depend on a non-abelian simple group T
and a positive integer m. But these groups can be defined for an arbitrary group
T , finite or infinite, and we investigate them in full generality.

Our purpose is to describe the structures on which diagonal groups act. This
takes two forms: descriptive, and axiomatic. In the former, we start with a group
T and a positive integer m, build the structure on which the group acts, and study
its properties. The axiomatic approach is captured by the following theorem, to
be proved in Section 5. Undefined terms such as Cartesian lattice, Latin square,
paratopism, and diagonal semilattice will be introduced later, so that when we get
to the point of proving the theorem its statement should be clear. We mention
here that the automorphism group of a Cartesian lattice is, in the simplest case,
a wreath product of two symmetric groups in its product action, while the auto-
morphism group of a diagonal semilattice D(T,m) is the diagonal group D(T,m);
Latin squares, on the other hand, may (and usually do) have only the trivial group
of automorphisms.

Theorem 1.1. Let Ω be a set with |Ω| > 1, and m an integer at least 2. Let
Q0, . . . , Qm be m + 1 partitions of Ω satisfying the following property: any m of
them are the minimal non-trivial partitions in a Cartesian lattice on Ω.

(a) If m = 2, then the three partitions are the row, column, and letter partitions
of a Latin square on Ω, unique up to paratopism.

(b) If m > 2, then there is a group T , unique up to isomorphism, such that
Q0, . . . , Qm are the minimal non-trivial partitions in a diagonal semilattice
D(T,m) on Ω.

The casem = 3 in Theorem 1.1(b) can be phrased in the language of Latin cubes
and may thus be of independent interest. The proof is in Theorems 4.11 and 4.5
(see also Theorem 4.10). See Section 4.1 for the definition of a regular Latin cube
of sort (LC2).

Theorem 1.2. Consider a Latin cube of sort (LC2) on an underlying set Ω, with
coordinate partitions P1, P2 and P3, and letter partition L. Then the Latin cube is
regular if and only if there is a group T such that, up to relabelling the letters and the
three sets of coordinates, Ω = T 3 and L is the coset partition defined by the diagonal
subgroup {(t, t, t) | t ∈ T }. Moreover, T is unique up to group isomorphism.
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Theorem 1.1 has a similar form to the axiomatisation of projective geometry
(see [90]). We give simple axioms, and show that diagonal structures of smallest
dimension satisfying them are “wild” and exist in great profusion, while higher-
dimensional structures can be completely described in terms of an algebraic object.
In our case, the algebraic object is a group, whereas, for projective geometry, it is a
division ring, also called a skew field. Note that the group emerges naturally from
the combinatorial axioms.

In Section 2, we describe the preliminaries required. Section 3 revisits Carte-
sian decompositions, as described in [71], and defines Cartesian lattices. Section 4
specialises to the case that m = 3. Not only does this show that this case is very
different from m = 2; it also underpins the proof by induction of Theorem 1.1,
which is given in Section 5.

In the last two sections, we give further results on diagonal groups. In Section 6,
we determine which diagonal groups are primitive, and which are quasiprimitive
(these two conditions turn out to be equivalent). In Section 7, we define a graph
having a given diagonal group as its automorphism group (except for four small
diagonal groups), examine some of its graph-theoretic properties, and briefly de-
scribe the application of this to synchronization properties of permutation groups
from [17] (finite primitive diagonal groups with m > 2 are non-synchronizing).

The final section poses a few open problems related to this work.

1.3. Diagonal groups. In this section we define the diagonal groups, in two ways:
a “homogeneous” construction, where all factors are alike but the action is on a
coset space; and an “inhomogeneous” version which gives an alternative way of
labelling the elements of the underlying set which is better for calculation even
though one of the factors has to be treated differently.

Let T be a group with |T | > 1, and m an integer with m > 1. We define the

pre-diagonal group D̂(T,m) as the semidirect product of Tm+1 by Aut(T )×Sm+1,
where Aut(T ) (the automorphism group of T ) acts in the same way on each factor,
and Sm+1 (the symmetric group of degree m+ 1) permutes the factors.

Let δ(T,m + 1) be the diagonal subgroup {(t, t, . . . , t) | t ∈ T } of Tm+1, and

Ĥ = δ(T,m + 1) ⋊ (Aut(T ) × Sm+1). We represent D̂(T,m) as a permutation

group on the set of right cosets of Ĥ . If T is finite, the degree of this permutation
representation is |T |m. In general, the action is not faithful, since δ(T,m + 1)
(acting by conjugation) induces inner automorphisms of Tm+1, which agree with
the inner automorphisms induced by Aut(T ). In fact, if m > 2 or T is non-abelian,

then the kernel of the D̂(T,m)-action is

K̂ = {(t, . . . , t)α ∈ Tm+1 ⋊Aut(T ) | t ∈ T and

α is the inner automorphism induced by t−1},
(1)

and so K̂ ∼= T . Thus, if, in addition, T is finite, then the order of the permutation

group induced by D̂(T,m) is |D̂(T,m)|/|K̂| = |T |m(|Aut(T )| × |Sm+1|). If m = 1
and T is abelian, then the factor S2 induces the inversion automorphism t 7→ t−1

on T and the permutation group induced by D̂(T,m) is the holomorph T ⋊Aut(T ).
We define the diagonal group D(T,m) to be the permutation group induced by

D̂(T,m) on the set of right cosets of Ĥ as above. So D(T,m) ∼= D̂(T,m)/K̂.
To move to a more explicit representation of D(T,m), we choose coset represent-

atives for δ(T,m+1) in Tm+1. A convenient choice is to number the direct factors
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of Tm+1 as T0, T1, . . . , Tm, and use representatives of the form (1, t1, . . . , tm), with
ti ∈ Ti. We will denote this representative by [t1, . . . , tm], and let Ω be the set of
all such symbols. Thus, as a set, Ω is bijective with Tm.

Remark 1.3. Now we can describe the action of D̂(T,m) on Ω as follows.

(I) For 1 6 i 6 m, the factor Ti acts by right multiplication on symbols in the
ith position in elements of Ω.

(II) T0 acts by simultaneous left multiplication of all coordinates by the inverse.
This is because, for x ∈ T0, xmaps the coset containing (1, t1, . . . , tm) to the
coset containing (x, t1, . . . , tm), which is the same as the coset containing
(1, x−1t1, . . . , x

−1tm).
(III) Automorphisms of T act simultaneously on all coordinates; but inner auto-

morphisms are identified with the action of elements in the diagonal sub-
group δ(T,m + 1) (the element (x, x, . . . , x) maps the coset containing
(1, t1, . . . , tm) to the coset containing (x, t1x, . . . , tmx), which is the same
as the coset containing (1, x−1t1x, . . . , x

−1tmx)).
(IV) Elements of Sm (fixing coordinate 0) act by permuting the coordinates in

elements of Ω.
(V) Consider the element of Sm+1 which transposes coordinates 0 and 1. This

maps the coset containing (1, t1, t2, . . . , tm) to the coset containing the tu-
ple (t1, 1, t2 . . . , tm), which also contains (1, t−1

1 , t−1
1 t2, . . . , t

−1
1 tm). So the

action of this transposition is

[t1, t2, . . . , tm] 7→ [t−1
1 , t−1

1 t2, . . . , t
−1
1 tm].

Now Sm and this transposition generate Sm+1.

By (1), the kernel K̂ of the D̂(T,m)-action on Ω is contained in the subgroup
generated by elements of type (I)–(III).

For example, in the case when m = 1, the set Ω is bijective with T ; the fac-
tor T1 acts by right multiplication, T0 acts by left multiplication by the inverse,
automorphisms act in the natural way, and transposition of the coordinates acts as
inversion.

The following theorem states that the diagonal group D(T,m) can be viewed
as the automorphism group of the corresponding diagonal join-semilattice D(T,m)
and the diagonal graph ΓD(T,m) defined in Sections 5.1 and 7.1, respectively. The
two parts of this theorem comprise Theorem 5.7 and Corollary 7.2 respectively.

Theorem 1.4. Let T be a non-trivial group, m > 2, let D(T,m) be the diagonal
semilattice and ΓD(T,m) the diagonal graph. Then the following are valid.

(a) The automorphism group of D(T,m) is D(T,m).
(b) If (|T |,m) 6∈ {(2, 2), (3, 2), (4, 2), (2, 3)}, then the automorphism group of

ΓD(T,m) is D(T,m).

1.4. History. The celebrated O’Nan–Scott Theorem describes the socle (the prod-
uct of the minimal normal subgroups) of a finite permutation group. Its original
form was different; it was a necessary condition for a finite permutation group
of degree n to be a maximal subgroup of the symmetric or alternating group of
degree n. Since the maximal intransitive and imprimitive subgroups are easily
described, attention focuses on the primitive maximal subgroups.

The theorem was proved independently by Michael O’Nan and Leonard Scott,
and announced by them at the Santa Cruz conference on finite groups in 1979.
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(Although both papers appeared in the preliminary conference proceedings, the
final published version contained only Scott’s paper.) However, the roots of the
theorem are much older; a partial result appears in Jordan’s Traité des Substitutions
[44] in 1870. The extension to arbitrary primitive groups is due to Aschbacher and
Scott [5] and independently to Kovács [48]. Further information on the history of
the theorem is given in [71, Chapter 7] and [70, Sections 1–4].

For our point of view, and avoiding various complications, the theorem can be
stated as follows:

Theorem 1.5. Let G be a primitive permutation group on a finite set Ω. Then
one of the following four conditions holds:

(a) G is contained in an affine group AGL(d, p) 6 Sym(Ω), with d > 1 and p
prime, and so preserves the affine geometry of dimension d over the field
with p elements with point set Ω;

(b) G is contained in a wreath product in its product action contained in Sym(Ω),
and so preserves a Cartesian decomposition of Ω;

(c) G is contained in the diagonal group D(T,m) 6 Sym(Ω), with T a non-
abelian finite simple group and m > 1;

(d) G is almost simple (that is, T 6 G 6 Aut(T ), where T is a non-abelian
finite simple group).

Note that, in the first three cases of the theorem, the action of the group is spec-
ified; indeed, in the first two cases, we have a geometric or combinatorial structure
which is preserved by the group. (Cartesian decompositions are described in detail
in [71].) One of our aims in this paper is to provide a similar structure preserved
by diagonal groups, although our construction is not restricted to the case where
T is simple, or even finite.

It is clear that the Classification of Finite Simple Groups had a great effect
on the applicability of the O’Nan–Scott Theorem to the study of finite primitive
permutation groups; indeed, the landscape of the subject and its applications has
been completely transformed by CFSG.

In Section 6 we characterise primitive and quasiprimitive diagonal groups as
follows.

Theorem 1.6. Suppose that T is a non-trivial group, m > 2, and consider D(T,m)
as a permutation group on Ω = Tm. Then the following are equivalent.

(a) D(T,m) is a primitive permutation group;
(b) D(T,m) is a quasiprimitive permutation group;
(c) T is a characteristically simple group, and, if T is an elementary abelian

p-group, then p ∤ (m+ 1).

Diagonal groups and the structures they preserve have occurred in other places
too. Diagonal groups with m = 1 (which in fact are not covered by our analysis)
feature in the paper “Counterexamples to a theorem of Cauchy” by Peter Neumann,
Charles Sims and James Wiegold [64], while diagonal groups over the group T = C2

are automorphism groups of the folded cubes, a class of distance-transitive graphs,
see [20, p. 264].

Much less explicit information is available about related questions on infinite
symmetric groups. Some maximal subgroups of infinite symmetric groups have been
associated with structures such as subsets, partitions [18, 54, 55], and Cartesian
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decompositions [30]. However, it is still not known if infinite symmetric groups have
maximal subgroups that are analogues of the maximal subgroups of simple diagonal
type in finite symmetric or alternating groups. If T is a possibly infinite simple
group, then the diagonal group D(T,m) is primitive and, by [72, Theorem 1.1], it
cannot be embedded into a wreath product in product action. On the other hand,
if Ω is a countable set, then, by [55, Theorem 1.1], simple diagonal type groups
are properly contained in maximal subgroups of Sym(Ω). (This containment is
proper since the diagonal group itself is not maximal; its product with the finitary
symmetric group properly contains it.)

2. Preliminaries

2.1. The lattice of partitions. A partially ordered set (often abbreviated to
poset) is a set equipped with a partial order, which we here write as 4. A finite
poset is often represented by a Hasse diagram. This is a diagram drawn as a graph
in the plane. The vertices of the diagram are the elements of the poset; if q covers p
(that is, if p ≺ q but there is no element r with p ≺ r ≺ q), there is an edge joining
p to q, with q above p in the plane (that is, with larger y-coordinate). Figure 1
represents the divisors of 36, ordered by divisibility.

✉

✉

✉

✉

✉

✉

✉

✉

✉�
�
�

�
�
�

�
�
�❅

❅
❅

❅
❅
❅

❅
❅
❅

Figure 1. A Hasse diagram

In a partially ordered set with order relation 4, we say that an element c is the
meet, or infimum, of a and b if

• c 4 a and c 4 b;
• for all d, d 4 a and d 4 b implies d 4 c.

The meet of a and b, if it exists, is unique; we write it a ∧ b.
Dually, x is the join, or supremum of a and b if

• a 4 x and b 4 x;
• for all y, if a 4 y and b 4 y, then x 4 y.

Again the join, if it exists, is unique, and is written a ∨ b.
The terms “join” and “supremum” will be used interchangeably. Likewise, so

will the terms “meet” and “infimum”.
In an arbitrary poset, meets and joins may not exist. A poset in which every

pair of elements has a meet and a join is called a lattice. A subset of a lattice which
is closed under taking joins is called a join-semilattice.

The poset shown in Figure 1 is a lattice. Taking it as described as the set of
divisors of 36 ordered by divisibility, meet and join are greatest common divisor
and least common multiple respectively.

In a lattice, an easy induction shows that suprema and infima of arbitrary finite
sets exist and are unique. In particular, in a finite lattice there is a unique minimal
element and a unique maximal element. (In an infinite lattice, the existence of
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least and greatest elements is usually assumed. But all lattices in this paper will
be finite.)

The most important example for us is the partition lattice on a set Ω, whose
elements are all the partitions of Ω. There are (at least) three different ways of
thinking about partitions. In one approach, used in [8, 23, 71], a partition of Ω is
a set P of pairwise disjoint subsets of Ω, called parts or blocks, whose union is Ω.
For ω in Ω, we write P [ω] for the unique part of P which contains ω.

A second approach uses equivalence relations. The “Equivalence Relation The-
orem” [23, Section 3.8] asserts that, if R is an equivalence relation on a set Ω, then
the equivalence classes of R form a partition of Ω. Conversely, if P is a partition
of Ω then there is a unique equivalence relation R whose equivalence classes are
the parts of P . We call R the underlying equivalence relation of P . We write
x ≡P y to mean that x and y lie in the same part of P (and so are equivalent in
the corresponding relation).

The third approach to partitions, as kernels of functions, is explained near the
end of this subsection.

The ordering on partitions is given by

P 4 Q if and only if every part of P is contained in a part of Q.

Note that P 4 Q if and only if RP ⊆ RQ, where RP and RQ are the equivalence
relations corresponding to P and Q, and a relation is regarded as a set of ordered
pairs.

For any two partitions P and Q, the parts of P∧Q are all non-empty intersections
of a part of P and a part of Q. The join is a little harder to define. The two
elements α, β in Ω lie in the same part of P ∨ Q if and only if there is a finite
sequence (ω0, ω1, . . . , ωm) of elements of Ω, with ω0 = α and ωm = β, such that ωi
and ωi+1 lie in the same part of P if i is even, and in the same part of Q if i is
odd. In other words, there is a walk of finite length from α to β in which each step
remains within a part of either P or Q.

In the partition lattice on Ω, the unique least element is the partition (denoted
by E) with all parts of size 1, and the unique greatest element (denoted by U) is
the partition with a single part Ω. In a sublattice of this, we shall call an element
minimal if it is minimal subject to being different from E.

(Warning: in some of the literature that we cite, this partial order is written
as <. Correspondingly, the Hasse diagram is the other way up and the meanings
of ∧ and ∨ are interchanged.)

For a partition P , we denote by |P | the number of parts of P . For example,
|P | = 1 if and only if P = U . In the infinite case, we interpret |P | as the cardinality
of the set of parts of P .

There is a connection between partitions and functions which will be important
to us. Let F : Ω → T be a function, where T is an auxiliary set. We will assume,
without loss of generality, that F is onto. Associated with F is a partition of Ω,

sometimes denoted by F̃ , whose parts are the inverse images of the elements of T ;

in other words, two points of Ω lie in the same part of F̃ if and only if they have the
same image under F . In areas of algebra such as semigroup theory and universal

algebra, the partition F̃ is referred to as the kernel of F .
This point of view is common in experimental design in statistics, where Ω is

the set of experimental units, T the set of treatments being compared, and F (ω) is
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the treatment applied to the unit ω: see [9]. For example, an element ω in Ω might
be a plot in an agricultural field, or a single run of an industrial machine, or one
person for one month. The outcomes to be measured are thought of as functions
on Ω, but variables like F which partition Ω in ways that may affect the outcome
are called factors. If F is a factor, then the values F (ω), for ω in Ω, are called levels
of F . In this context, usually no distinction is made between the function F and

the partition F̃ of Ω which it defines.

If F : Ω → T and G : Ω → S are two functions on Ω, then the partition F̃ ∧ G̃ is
the kernel of the function F ×G : Ω → T × S, where (F ×G)(ω) = (F (ω), G(ω)).

In other words, F̃ ×G = F̃ ∧ G̃.

Definition 2.1. One type of partition which we make use of is the (right) coset
partition of a group relative to a subgroup. Let H be a subgroup of a group G, and
let PH be the partition of G into right cosets of H .

We gather a few basic properties of coset partitions.

Proposition 2.2. (a) If H is a normal subgroup of G, then PH is the kernel
(in the general sense defined earlier) of the natural homomorphism from G
to G/H.

(b) PH ∧ PK = PH∩K .
(c) PH ∨ PK = P〈H,K〉.
(d) The map H 7→ PH is an isomorphism from the lattice of subgroups of G to

a sublattice of the partition lattice on G.

Proof. (a) and (b) are clear. (c) holds because elements of 〈H,K〉 are composed of
elements from H and K. Finally, (d) follows from (b) and (c) and the fact that the
map is injective. �

Subgroup lattices of groups have been extensively investigated: see, for example,
Suzuki [85].

2.2. Latin squares. A Latin square of order n is usually defined as an n × n
array Λ with entries from an alphabet T of size n with the property that each letter
in T occurs once in each row and once in each column of Λ.

The diagonal structures in this paper can be regarded as generalisations, where
the dimension is not restricted to be 2, and the alphabet is allowed to be infinite.
To ease our way in, we re-formulate the definition as follows. For this definition we
regard T as indexing the rows and columns as well as the letters. This form of the
definition allows the structures to be infinite.

A Latin square consists of a pair of sets Ω and T , together with three functions
F1, F2, F3 : Ω → T , with the property that, if i and j are any two of {1, 2, 3}, the
map Fi × Fj : Ω → T × T is a bijection.

We recover the original definition by specifying that the (i, j) entry of Λ is equal
to k if the unique point ω of Ω for which F1(ω) = i and F2(ω) = j satisfies
F3(ω) = k. Conversely, given the original definition, if we index rows and columns
with T , then Ω is the set of cells of the array, and F1, F2, F3 map a cell to its row,
column, and entry respectively.

In the second version of the definition, the set T acts as an index set for rows,
columns and entries of the square. We will need the freedom to change the indices
independently; so we now rephrase the definition in terms of the three partitions

Pi = F̃i (i = 1, 2, 3).
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Two partitions P1 and P2 of Ω form a grid if, for all pi ∈ Pi (i = 1, 2), there
is a unique point of Ω lying in both p1 and p2. In other words, there is a bi-
jection F from P1 × P2 to Ω so that F (p1, p2) is the unique point in p1 ∩ p2.
This implies that P1 ∧ P2 = E and P1 ∨ P2 = U , but the converse is not true.
For example, if Ω = {1, 2, 3, 4, 5, 6} the partitions P1 = {{1, 2}, {3, 4}, {5, 6}} and
P2 = {{1, 3}, {2, 5}, {4, 6}} have these properties but do not form a grid.

Three partitions P1, P2, P3 of Ω form a Latin square if any two of them form a
grid.

This third version of the definition is the one that we shall mostly use in this
paper.

Proposition 2.3. If {P1, P2, P3} is a Latin square on Ω, then |P1| = |P2| = |P3|,
and this cardinality is also the cardinality of any part of any of the three partitions.

Proof. Let Fij be the bijection from Pi × Pj to Ω, for i, j ∈ {1, 2, 3}, i 6= j. For
any part p1 of P1, there is a bijection φ between P2 and p1: simply put φ(p2) =
F12(p1, p2) ∈ p1 for each part p2 of P2. Similarly there is a bijection ψ between
P3 and p1 defined by ψ(p3) = F13(p1, p3) ∈ p1 for each part p3 of P3. Thus
|P2| = |P3| = |p1|, and ψ

−1φ is an explicit bijection from P2 to P3. Similar bijections
are defined by any part p2 of P2 and any part p3 of P3. The result follows. �

The three partitions are usually called rows, columns and letters, and denoted
by R,C,L respectively. This refers to the first definition of the Latin square as a
square array of letters. Thus, the Hasse diagram of the three partitions is shown
in Figure 2.

✉

✉

✉ ✉ ✉

❅
❅
❅

❅
❅
❅�

�
�

�
�
�

E

C

U

R L

Figure 2. A Latin square

The number defined in Proposition 2.3 is called the order of the Latin square.
So, with our second definition, the order of the Latin square is |T |.

Note that the number of Latin squares of order n grows faster than the expo-
nential of n2, and the vast majority of these (for large n) are not Cayley tables of
groups. We digress slightly to discuss this.

The number of Latin squares of order n is a rapidly growing function, so rapid
that allowing for paratopism (the natural notion of isomorphism for Latin squares,
regarded as sets of partitions; see before Theorem 2.5 for the definition) does not af-
fect the leading asymptotics. There is an elementary proof based on Hall’s Marriage
Theorem that the number is at least

n!(n− 1)! · · · 1! > (n/c)n
2/2
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for a constant c. The van der Waerden permanent conjecture (proved by Egoryčev

and Falikman [35, 37]) improves the lower bound to (n/c)n
2

. An elementary ar-
gument using only Lagrange’s and Cayley’s Theorems shows that the number of
groups of order n is much smaller; the upper bound is nn log n. This has been im-

proved to n(c logn)2 by Neumann [63]. (His theorem was conditional on a fact about
finite simple groups, which follows from the classification of these groups.) The
elementary arguments referred to, which suffice for our claim, can be found in [23,
Sections 6.3, 6.5].

Indeed, much more is true: almost all Latin squares have trivial autoparatopism
groups [26, 56], whereas the autoparatopism group of the Cayley table of a group
of order n is the diagonal group, which has order at least 6n2, as we shall see at
the end of Section 2.4.

There is a graph associated with a Latin square, as follows: see [15, 24, 68]. The
vertex set is Ω; two vertices are adjacent if they lie in the same part of one of the
partitions P1, P2, P3. (Note that, if points lie in the same part of more than one of
these partitions, then the points are equal.) This is the Latin-square graph associ-
ated with the Latin square. In the finite case, if |T | = n, then it is a regular graph
with n2 vertices, valency 3(n− 1), in which two adjacent vertices have n common
neighbours and two non-adjacent vertices have 6 common neighbours. Any regular
finite graph with the property that the number of common neighbours of vertices
v and w depends only on whether or not v and w are adjacent is called strongly
regular : see [15, 24]. Its parameters are the number of vertices, the valency, and the
numbers of common neighbours of adjacent and non-adjacent vertices respectively.
Indeed, Latin-square graphs form one of the most prolific classes of strongly regular
graphs: the number of such graphs on a square number of vertices grows faster than
exponentially, in view of Proposition 2.4 below.

A clique is a set of vertices, any two adjacent; a maximum clique means a
maximal clique (with respect to inclusion) such that there is no clique of strictly
larger size. Thus a maximum clique must be maximal, but the converse is not
necessarily true. The following result is well-known; we sketch a proof.

Proposition 2.4. A Latin square of order n > 4 can be recovered uniquely from
its Latin-square graph, up to the order of the three partitions and permutations of
the rows, columns and letters.

Proof. If n > 4, then any clique of size greater than 4 is contained in a unique
clique which is a part of one of the three partitions Pi for i = 1, 2, 3. In particular,
the maximum cliques are the parts of the three partitions.

Two maximum cliques are parts of the same partition if and only if they are
disjoint (since parts of different partitions intersect in a unique point). So we can
recover the three partitions Pi (i = 1, 2, 3) uniquely up to order. �

This proof shows why the condition n > 4 is necessary. Any Latin-square graph
contains cliques of size 3 consisting of three cells, two in the same row, two in the
same column, and two having the same entry; and there may also be cliques of size
4 consisting of the cells of an intercalate, a Latin subsquare of order 2.

We examine what happens for n 6 4.

• For n = 2, the unique Latin square is the Cayley table of the group C2; its
Latin-square graph is the complete graph K4.
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• For n = 3, the unique Latin square is the Cayley table of C3. The Latin-
square graph is the complete tripartite graph K3,3,3: the nine vertices are
partitioned into three parts of size 3, and the edges join all pairs of points
in different parts.

• For n = 4, there are two Latin squares up to isotopy, the Cayley tables
of the Klein group and the cyclic group. Their Latin-square graphs are
most easily identified by looking at their complements, which are strongly
regular graphs on 16 points with parameters (16, 6, 2, 2): that is, all ver-
tices have valency 6, and any two vertices have just two common neigh-
bours. Shrikhande [84] showed that there are exactly two such graphs: the
4 × 4 square lattice graph, sometimes written as L2(4), which is the line
graph L(K4,4) of the complete bipartite graph K4,4; and one further graph
now called the Shrikhande graph. See Brouwer [19] for a detailed description
of this graph.

Latin-square graphs were introduced in two seminal papers by Bruck and Bose in
the Pacific Journal of Mathematics in 1963 [15, 21]. A special case of Bruck’s main
result is that a strongly regular graph having the parameters (n2, 3(n − 1), n, 6)
associated with a Latin-square graph of order n must actually be a Latin-square
graph, provided that n > 23.

2.3. Quasigroups. A quasigroup consists of a set T with a binary operation ◦ in
which each of the equations a ◦ x = b and y ◦ a = b has a unique solution x or y for
any given a, b ∈ T . These solutions are denoted by a\b and b/a respectively.

According to the second of our three equivalent definitions, a quasigroup (T, ◦)
gives rise to a Latin square (F1, F2, F3) by the rules that Ω = T × T and, for (a, b)
in Ω, F1(a, b) = a, F2(a, b) = b, and F3(a, b) = a ◦ b. Conversely, a Latin square
with rows, columns and letters indexed by a set T induces a quasigroup structure
on T by the rule that, if we use the pair (F1, F2) to identify Ω with T ×T , then F3

maps the pair (a, b) to a ◦ b. (More formally, F1(ω) ◦ F2(ω) = F3(ω) for all ω ∈ Ω.)
In terms of partitions, if a, b ∈ T , and the unique point lying in the part of P1

labelled a and the part of P2 labelled b also lies in the part of P3 labelled c, then
a ◦ b = c.

In the usual representation of a Latin square as a square array, the Latin square
is the Cayley table of the quasigroup.

Any permutation of T induces a quasigroup isomorphism, by simply relabelling
the elements. However, the Latin square property is also preserved if we choose
three permutations α1, α2, α3 of T independently and define new functions G1,
G2, G3 by Gi(ω) = (Fi(ω))αi for i = 1, 2, 3. (Note that we write permutations on
the right, but most other functions on the left.) Such a triple of maps is called an
isotopism of the Latin square or quasigroup.

We can look at this another way. Each map Fi defines a partition Pi of Ω, in
which two points lie in the same part if their images under Fi are equal. Permuting
elements of the three image sets independently has no effect on the partitions. So
an isotopism class of quasigroups corresponds to a Latin square (using the partition
definition) with arbitrary labellings of rows, columns and letters by T .

A loop is a quasigroup with a two-sided identity. Any quasigroup is isotopic to
a loop, as observed by Albert [1]: indeed, any element e of the quasigroup can be
chosen to be the identity. (Use the letters in the row and column of a fixed cell
containing e as column, respectively row, labels.)
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A different equivalence on Latin squares is obtained by applying a permutation
to the three functions F1, F2, F3. Two Latin squares (or quasigroups) are said to be
conjugate [45] or parastrophic [83] if they are related by such a permutation. For
example, the transposition of F1 and F2 corresponds (under the original definition)
to transposition (as matrix) of the Latin square. Other conjugations are slightly
harder to define: for example, the (F1, F3) conjugate is the square in which the
(i, j) entry is k if and only if the (k, j) entry of the original square is i.

Combining the operations of isotopism and conjugation gives the relation of
paratopism. The paratopisms form the group Sym(T ) ≀S3. Given a Latin square or
quasigroup, its autoparatopism group is the group of all those paratopisms which
preserve it, in the sense that they map the set {(x, y, x ◦ y) : x, y ∈ T } of triples to
itself. This coincides with the automorphism group of the Latin square (as set of
partitions): take Ω to be the set of triples and let the three partitions correspond
to the values in the three positions. An autoparatopism is called an autotopism if
it is an isotopism. See [59] for details.

In the case of groups, a conjugation can be attained by applying a suitable
isotopism, and so the following result is a direct consequence of Albert’s well-known
theorem [1, Theorem 2].

Theorem 2.5. If Λ and Λ′ are Latin squares, isotopic to Cayley tables of groups
G and G′ respectively, and if some paratopism maps Λ to Λ′, then the groups G
and G′ are isomorphic.

Except for a small number of exceptional cases, the autoparatopism group of a
Latin square coincides with the automorphism group of its Latin-square graph.

Proposition 2.6. Let Λ be a Latin square of order n > 4. Then the automorphism
group of the Latin-square graph of Λ is isomorphic to the autoparatopism group
of Λ.

Proof. It is clear that autoparatopisms of Λ induce automorphisms of its graph.
The converse follows from Proposition 2.4. �

A question which will be of great importance to us is the following: How do we
recognise Cayley tables of groups among Latin squares? The answer is given by the
following theorem, proved in [16, 39]. We first need a definition, which is given in
the statement of [31, Theorem 1.2.1].

Definition 2.7. A Latin square satisfies the quadrangle criterion, if, for all choices
of i1, i2, j1, j2, i

′
1, i

′
2, j

′
1 and j′2, if the letter in (i1, j1) is equal to the letter in

(i′1, j
′
1), the letter in (i1, j2) is equal to the letter in (i′1, j

′
2), and the letter in (i2, j1)

is equal to the letter in (i′2, j
′
1), then the letter in (i2, j2) is equal to the letter in

(i′2, j
′
2).

In other words, any pair of rows and pair of columns define four entries in the
Latin square; if two pairs of rows and two pairs of columns have the property
that three of the four entries are equal, then the fourth entries are also equal. If
(T, ◦) is a quasigroup, it satisfies the quadrangle criterion if and only if, for any
a1, a2, b1, b2, a

′
1, a

′
2, b

′
1, b

′
2 ∈ T , if a1◦b1 = a′1◦b

′
1, a1◦b2 = a′1◦b

′
2, and a2◦b1 = a′2◦b

′
1,

then a2 ◦ b2 = a′2 ◦ b
′
2.

Theorem 2.8. Let (T, ◦) be a quasigroup. Then (T, ◦) is isotopic to a group if and
only if it satisfies the quadrangle criterion.
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In [31], the “only if” part of this result is proved in its Theorem 1.2.1 and the
converse is proved in the text following Theorem 1.2.1.

A Latin square which satisfies the quadrangle criterion is called a Cayley matrix
in [32].

If (T, ◦) is isotopic to a group then we may assume that the rows, columns and
letters have been labelled in such a way that a ◦ b = a−1b for all a, b in T . We shall
use this format in the proof of Theorems 2.11 and 4.11.

2.4. Automorphism groups. Given a Latin square Λ = {R,C,L} on a set Ω, an
automorphism of Λ is a permutation of Ω preserving the set of three partitions; it is
a strong automorphism if it fixes the three partitions individually. (These maps are
also called autoparatopisms and autotopisms, as noted in the preceding section.)
We will generalise this definition later, in Definition 2.18. We denote the groups of
automorphisms and strong automorphisms by Aut(Λ) and SAut(Λ) respectively.

In this section we verify that, if Λ is the Cayley table of a group T , then Aut(Λ)
is the diagonal group D(T, 2) defined in Section 1.3.

We begin with a principle which we will use several times.

Proposition 2.9. Suppose that the group G acts transitively on a set Ω. Let H be
a subgroup of G, and assume that

• H is also transitive on Ω;
• Gα = Hα, for some α ∈ Ω.

Then G = H.

Proof. The transitivity of H on Ω means that we can choose a set X of coset
representatives for Gα in G such that X ⊆ H . Then H = 〈Hα, X〉 = 〈Gα, X〉 =
G. �

The next result applies to any Latin square. As noted earlier, given a Latin
square Λ, there is a loop Q whose Cayley table is Λ.

Proposition 2.10. Let Λ be the Cayley table of a loop Q with identity e. Then the
subgroup SAut(Λ) fixing the cell in row and column e is equal to the automorphism
group of Q.

Proof. A strong automorphism of Λ is given by an isotopism (ρ, σ, τ) of Q, where
ρ, σ, and τ are permutations of rows, columns and letters, satisfying

(ab)τ = (aρ)(bσ)

for all a, b ∈ Q. If this isotopism fixes the element (e, e) of Ω, then substituting
a = e in the displayed equation shows that bτ = bσ for all b ∈ Q, and so τ = σ.
Similarly, substituting b = e shows that τ = ρ. Now the displayed equation shows
that τ is an automorphism of Q.

Conversely, if τ is an automorphism of Q, then (τ, τ, τ) is a strong automorphism
of Λ fixing the cell (e, e). �

Theorem 2.11. Let Λ be the Cayley table of a group T . Then Aut(Λ) is the
diagonal group D(T, 2).

Proof. First, we show that D(T, 2) is a subgroup of Aut(Λ). We take Ω = T × T
and represent Λ = {R,C,L} as follows, using notation introduced in Section 2.1:

• (x, y) ≡R (u, v) if and only if x = u;
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• (x, y) ≡C (u, v) if and only if y = v;
• (x, y) ≡L (u, v) if and only if x−1y = u−1v.

(As an array, we take the (x, y) entry to be x−1y. As noted at the end of Section 2.3,
this is isotopic to the usual representation of the Cayley table.)

Routine verification shows that the generators of D(T, 2) given in Section 1.3
of types (I)–(III) preserve these relations, while the map (x, y) 7→ (y, x) inter-
changes R and C while fixing L, and the map (x, y) 7→ (x−1, x−1y) interchanges C
and L while fixing R. (Here is one case: the element (a, b, c) in T 3 maps (x, y)
to (a−1xb, a−1yc). If x = u then a−1xb = a−1ub, and if x−1y = u−1v then
(a−1xb)−1a−1yc = (a−1ub)−1a−1vc.) Thus D(T, 2) 6 Aut(Λ).

Now we apply Proposition 2.9 in two stages.

• First, take G = Aut(Λ) and H = D(T, 2). Then G and H both induce S3

on the set of three partitions; so it suffices to prove that the group of strong
automorphisms of Λ is generated by elements of types (I)–(III) in D(T, 2).

• Second, take G to be SAut(Λ), and H the group generated by translations
and automorphisms of T (the elements of type (I)–(III) in Remark 1.3).
Both G and H act transitively on Ω, so it is enough to show that the
stabilisers of a cell (which we can take to be (1, 1)) in G and H are equal.
Consideration of elements of types (I)–(III) shows that H(1,1) = Aut(T ),
while Proposition 2.10 shows that G(1,1) = Aut(T ).

The statement at the end of the second stage completes the proof. �

It follows from Proposition 2.4 that, if n > 4, the automorphism group of the
Latin-square graph derived from the Cayley table of a group T of order n is also
the diagonal group D(T, 2). For n 6 4, we described the Latin-square graphs at
the end of Section 2.2. For the groups C2, C3, and C2 × C2, the graphs are K4,
K3,3,3, and L(K4,4) respectively, with automorphism groups S4, S3 ≀S3, and S4 ≀S2

respectively. However, the automorphism group of the Shrikhande graph is the
group D(C4, 2), with order 192. (The order of the automorphism group is 192, see
Brouwer [19], and it contains D(C4, 2), also with order 192, as a subgroup.)

It also follows from Proposition 2.4 that, if T is a group, then the automorphism
group of the Latin-square graph is transitive on the vertex set. Vertex-transitivity
does not, however, characterise Latin-square graphs that correspond to groups, as
can be seen by considering the examples in [92]; the smallest example which is not
a group has order 6.

Finally, we justify the assertion made earlier, that the Cayley table of a group
of order n, as a Latin square, has at least 6n2 automorphisms. By Theorem 2.11,
this automorphism group is the diagonal group D(T, 2); this group has a quotient
S3 acting on the three partitions, and the group of strong automorphisms contains
the right multiplications by elements of T 2.

2.5. More on partitions. Most of the work that we cite in this subsection has
been about partitions of finite sets. See [10, Sections 2–4] for a recent summary of
this material.

Definition 2.12. A partition P of a set Ω is uniform if all its parts have the same
size in the sense that, whenever Γ1 and Γ2 are parts of P , there is a bijection from
Γ1 onto Γ2.
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Many other words are used for this property for finite sets Ω. Tjur [88, 89]
calls such a partition balanced. Behrendt [14] calls them homogeneous, but this
conflicts with the use of this word in [71]. Duquenne [34] calls them regular, as does
Aschbacher [4], while Preece [74] calls them proper.

Statistical work has made much use of the notion of orthogonality between pairs
of partitions. Here we explain it in the finite case, before attempting to find a
generalisation that works for infinite sets.

When Ω is finite, let V be the real vector space RΩ with the usual inner product.
Subspaces V1 and V2 of V are defined in [88] to be geometrically orthogonal to each
other if V1 ∩ (V1 ∩ V2)⊥ ⊥ V2 ∩ (V1 ∩ V2)⊥. This is equivalent to saying that the
matrices M1 and M2 of orthogonal projection onto V1 and V2 commute. If Vi is
the set of vectors which are constant on each part of partition Pi then we say that
partition P1 is orthogonal to partition P2 if V1 is geometrically orthogonal to V2.

Here are two nice results in the finite case. See, for example, [8, Chapter 6], [9,
Chapter 10] and [88].

Theorem 2.13. For i = 1, 2, let Pi be a partition of the finite set Ω with projection
matrix Mi. If P1 is orthogonal to P2 then the matrix of orthogonal projection onto
the subspace consisting of those vectors which are constant on each part of the
partition P1 ∨ P2 is M1M2.

Theorem 2.14. If P1, P2 and P3 are pairwise orthogonal partitions of a finite set
Ω then P1 ∨ P2 is orthogonal to P3.

Let S be a set of partitions of Ω which are pairwise orthogonal. A consequence of
Theorem 2.14 is that, if P1 and P2 are in S, then P1∨P2 can be added to S without
destroying orthogonality. This is one motivation for the following definition.

Definition 2.15. A set of partitions of a finite set Ω is a Tjur block structure if
every pair of its elements is orthogonal, it is closed under taking suprema, and it
contains E.

Thus the set of partitions in a Tjur block structure forms a join-semilattice.
The following definition is more restrictive, but is widely used by statisticians,

based on the work of many people, including Nelder [62], Throckmorton [87] and
Zyskind [94].

Definition 2.16. A set of partitions of a finite set Ω is an orthogonal block structure
if it is a Tjur block structure, all of its partitions are uniform, it is closed under
taking infima, and it contains U .

The set of partitions in an orthogonal block structure forms a lattice.
These notions have been used by combinatorialists and group theorists as well

as statisticians. For example, as explained in Section 2.2, a Latin square can be
regarded as an orthogonal block structure with the partition lattice shown in Fig-
ure 2.

The following theorem shows how subgroups of a group can give rise to a Tjur
block structure: see [8, Section 8.6] and Proposition 2.2(c).

Theorem 2.17. Given two subgroups H, K of a finite group G, the partitions PH
and PK into right cosets of H and K are orthogonal if and only if HK = KH (that
is, if and only if HK is a subgroup of G). If this happens, then the join of these
two partitions is the partition PHK into right cosets of HK.
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An orthogonal block structure is called a distributive block structure or a poset
block structure if each of ∧ and ∨ is distributive over the other.

The following definition is taken from [8].

Definition 2.18. An automorphism of a set of partitions is a permutation of the
underlying set that preserves the set of partitions. Such an automorphism is a
strong automorphism if it preserves each of the partitions.

The group of strong automorphisms of a poset block structure is a generalised
wreath product of symmetric groups: see [12, 27]. One of the aims of the present
paper is to describe the automorphism group of the set of partitions defined by a
diagonal semilattice.

In [28], Cheng and Tsai state that the desirable properties of a collection of
partitions of a finite set are that it is a Tjur block structure, all the partitions are
uniform, and it contains U . This sits between Tjur block structures and orthogonal
block structures but does not seem to have been named.

Of course, this theory needs a notion of inner product. If the set is infinite we
would have to consider the vector space whose vectors have all but finitely many
entries zero. But if Vi is the set of vectors which are constant on each part of
partition Pi and if each part of Pi is infinite then Vi is the zero subspace. So we
need to find a different definition that will cover the infinite case.

We noted in Section 2.1 that each partition is defined by its underlying equiva-
lence relation. If R1 and R2 are two equivalence relations on Ω then their compo-
sition R1 ◦R2 is the relation defined by

ω1(R1 ◦R2)ω2 if and only if ∃ω3 ∈ Ω such that ω1R1ω3 and ω3R2ω2.

Proposition 2.19. Let P1 and P2 be partitions of Ω with underlying equivalence
relations R1 and R2 respectively. For each part Γ of P1, denote by BΓ the set of
parts of P2 whose intersection with Γ is not empty. The following are equivalent.
(Recall that P [ω] is the part of P containing ω.)

(a) The equivalence relations R1 and R2 commute with each other in the sense
that R1 ◦R2 = R2 ◦R1.

(b) The relation R1 ◦R2 is an equivalence relation.
(c) For all ω1 and ω2 in Ω, the set P1[ω1] ∩ P2[ω2] is non-empty if and only if

the set P2[ω1] ∩ P1[ω2] is non-empty.
(d) Modulo the parts of P1 ∧ P2, the restrictions of P1 and P2 to any part of

P1 ∨ P2 form a grid. In other words, if Γ and Ξ are parts of P1 and P2

respectively, both contained in the same part of P1 ∨ P2, then Γ ∩ Ξ 6= ∅.
(e) For all parts Γ and ∆ of P1, the sets BΓ and B∆ are either equal or disjoint.
(f) If Γ is a part of P1 contained in a part Θ of P1 ∨P2 then Θ is the union of

the parts of P2 in BΓ.

In part (d), “modulo the parts of P1 ∧ P2” means that, if each of these parts
is contracted to a point, the result is a grid as defined earlier. In the finite case,
if P1 is orthogonal to P2 then their underlying equivalence relations R1 and R2

commute.
We need a concept that is the same as orthogonality in the finite case (at least,

in the Cheng–Tsai case).

Definition 2.20. Two uniform partitions P and Q of a set Ω (which may be finite
or infinite) are compatible if
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A B
B A

C D
E F

C D
E F

Figure 3. Partitions in Example 2.21

(a) their underlying equivalence relations commute, and
(b) their infimum P ∧Q is uniform.

If the partitions P , Q and R of a set Ω are pairwise compatible then the equiva-
lence of statements (a) and (f) of Proposition 2.19 shows that P ∨Q and R satisfy
condition (a) in the definition of compatibility. Unfortunately, they may not satisfy
condition (b), as the following example shows, so the analogue of Theorem 2.14
for compatibility is not true in general. However, it is true if we restrict attention
to join-semilattices of partitions where all infima are uniform. This is the case
for Cartesian lattices and for semilattices defined by diagonal structures (whose
definitions follow in Sections 3.1 and 5.1 respectively). It is also true for group
semilattices: if PH and PK are the partitions of a group G into right cosets of
subgroups H and K respectively, then PH ∧ PK = PH∩K , as remarked in Proposi-
tion 2.2.

Example 2.21. Let Ω consist of the 12 cells in the three 2 × 2 squares shown
in Figure 3. Let P be the partition of Ω into six rows, Q the partition into six
columns, and R the partition into six letters.

Then P ∧Q = P ∧R = Q∧R = E, so each infimum is uniform. The squares are
the parts of the supremum P ∨ Q. For each pair of P , Q and R, their underlying
equivalence relations commute. However, the parts of (P ∨Q)∧R in the first square
have size two, while all of the others have size one.

3. Cartesian structures

We remarked just before Proposition 2.3 that three partitions of Ω form a Latin
square if and only if any two form a grid. The main theorem of this paper is a
generalisation of this fact to higher-dimensional objects, which can be regarded as
Latin hypercubes. Before we get there, we need to consider the higher-dimensional
analogue of grids.

3.1. Cartesian decompositions and Cartesian lattices. Cartesian decomposi-
tions are defined on [71, p. 4]. Since we shall be taking a slightly different approach,
we introduce these objects rather briefly; we show that they are equivalent to those
in our approach, in the sense that each can be constructed from the other in a stan-
dard way, and the automorphism groups of corresponding objects are the same.

Definition 3.1. A Cartesian decomposition of a set Ω, of dimension n, is a set E
of n partitions P1, . . . , Pn of Ω such that |Pi| > 2 for all i, and for all pi ∈ Pi for
i = 1, . . . , n,

|p1 ∩ · · · ∩ pn| = 1.

A Cartesian decomposition is trivial if n = 1; in this case P1 is the partition of Ω
into singletons.

For the rest of this subsection, P1, . . . , Pn form a Cartesian decomposition of Ω.
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Proposition 3.2. There is a well-defined bijection between Ω and P1 × · · · × Pn,
given by

ω 7→ (p1, . . . , pn)

if and only if ω ∈ pi for i = 1, . . . , n.

For simplicity, we adapt the notation in Section 2.1 by writing ≡i for the equiv-
alence relation ≡Pi

underlying the partition Pi. For any subset J of the index set
{1, . . . , n}, define a partition PJ of Ω corresponding to the following equivalence
relation ≡PJ

written as ≡J :

ω1 ≡J ω2 ⇔ (∀i ∈ J) ω1 ≡i ω2.

In other words, PJ =
∧
i∈J Pi.

Proposition 3.3. For all J,K ⊆ {1, . . . , n}, we have

PJ∪K = PJ ∧ PK , and PJ∩K = PJ ∨ PK .

Moreover, the equivalence relations ≡J and ≡K commute with each other.

It follows from this proposition that the partitions PJ , for J ⊆ {1, . . . , n}, form
a lattice (a sublattice of the partition lattice on Ω), which is anti-isomorphic to the
Boolean lattice of subsets of {1, . . . , n} by the map J 7→ PJ . We call this lattice
the Cartesian lattice defined by the Cartesian decomposition.

For more details we refer to the book [71].
Following [62], most statisticians would call such a lattice a completely crossed

orthogonal block structure: see [7]. It is called a complete factorial structure in [6].
(Warning: a different common meaning of Cartesian lattice is Zn: for example,

see [78].)
The Pi are the maximal non-trivial elements of this lattice. Our approach is

based on considering the dual description, the minimal non-trivial elements of the
lattice; these are the partitions Q1, . . . , Qn, where

Qi = P{1,...,n}\{i} =
∧

j 6=i

Pj

and Q1, . . . , Qn generate the Cartesian lattice by repeatedly forming joins (see
Proposition 3.3).

3.2. Hamming graphs and Cartesian decompositions. The Hamming graph
is so-called because of its use in coding theory. The vertex set is the set of all
n-tuples over an alphabet A; more briefly, the vertex set is An. Elements of An will
be written as a = (a1, . . . , an). Two vertices a and b are joined if they agree in all
but one coordinate, that is, if there exists i such that ai 6= bi but aj = bj for j 6= i.
We denote this graph by Ham(n,A).

The alphabet A may be finite or infinite, but we restrict the number n to be
finite. There is a more general form, involving alphabets A1, . . . , An; here the n-
tuples a are required to satisfy ai ∈ Ai for i = 1, . . . , n (that is, the vertex set is
A1 × · · · × An); the adjacency rule is the same. We will call this a mixed-alphabet
Hamming graph, denoted Ham(A1, . . . , An).

A Hamming graph is connected, and the graph distance between two vertices a
and b is the number of coordinates where they differ:

d(a, b) = |{i | ai 6= bi}|.
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Theorem 3.4. (a) Given a Cartesian decomposition of Ω, a unique mixed-
alphabet Hamming graph can be constructed from it.

(b) Given a mixed-alphabet Hamming graph on Ω, a unique Cartesian decom-
position of Ω can be constructed from it.

(c) The Cartesian decomposition and the Hamming graph referred to above have
the same automorphism group.

The constructions from Cartesian decomposition to Hamming graph and back
are specified in the proof below.

Proof. Note that the trivial Cartesian decomposition of Ω corresponds to the com-
plete graph and the automorphism group of both is the symmetric group Sym(Ω).
Thus in the rest of the proof we assume that the Cartesian decomposition in item (a)
is non-trivial and the Hamming graph in item (b) is constructed with n > 2.

(a) Let E = {P1, . . . , Pn} be a Cartesian decomposition of Ω of dimension n:
each Pi is a partition of Ω. By Proposition 3.2, there is a bijection φ from
Ω to P1 × · · · × Pn: a point a in Ω corresponds to (p1, . . . , pn), where pi is
the part of Pi containing a. Also, by Proposition 3.3 and the subsequent
discussion, the minimal partitions in the Cartesian lattice generated by
P1, . . . , Pn have the form

Qi =
∧

j 6=i

Pj

for i = 1, . . . , n; so a and b in Ω lie in the same part of Qi if their images
under φ agree in all coordinates except the ith. So, if we define a and b to be
adjacent if they are in the same part of Qi for some i, the resultant graph is
isomorphic (by φ) to the mixed-alphabet Hamming graph on P1 × · · ·×Pn.

(b) Let Γ be a mixed-alphabet Hamming graph on A1 × · · · × An. Without
loss of generality, |Ai| > 1 for all i (we can discard any coordinate where
this fails). We establish various facts about Γ; these facts correspond to the
claims on pages 271–276 of [71].

Any maximal clique in Γ has the form

C(a, i) = {b ∈ A1 × · · · ×An | bj = aj for j 6= i},

for some a ∈ Ω, i ∈ {1, . . . , n}. Clearly all vertices in C(a, i) are adjacent
in Γ. If b, c are distinct vertices in C(a, i), then bi 6= ci, so no vertex outside
C(a, i) can be joined to both. Moreover, if any two vertices are joined, they
differ in a unique coordinate i, and so there is some a in Ω such that they
both lie in C(a, i) for that value of i. Let C = C(a, i) and C′ = C(b, j) be
two maximal cliques. Put δ = min{d(x, y) | x ∈ C, y ∈ C′}.

• If i = j, then there is a bijection θ : C → C′ such that d(v, θ(v)) = δ
and d(v, w) = δ+1 for v in C, w in C′ and w 6= θ(v). (Here θ maps a
vertex in C to the unique vertex in C′ with the same ith coordinate.)

• If i 6= j, then there are unique v in C and w in C′ with d(v, w) = δ;
and distances between vertices in C and C′ are δ, δ + 1 and δ + 2,
with all values realised. (Here v and w are the vertices which agree
in both the ith and jth coordinates; if two vertices agree in just one
of these, their distance is δ + 1, otherwise it is δ + 2.)

See also claims 3–4 on pages 273–274 of [71].
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It is a consequence of the above that the partition of the maximal cliques
into types, where C(a, i) has type i, is invariant under graph automorphisms;
each type forms a partition Qi of Ω.

By Proposition 3.3 and the discussion following it, the maximal non-
trivial partitions in the sublattice generated by Q1, . . . , Qn form a Cartesian
decomposition of Ω.

(c) This is clear, since no arbitrary choices were made in either construction.

�

We can describe this automorphism group precisely. Details will be given in the
case where all alphabets are the same; we deal briefly with the mixed-alphabet case
at the end.

Given a set Ω = An, the wreath product Sym(A) ≀ Sn acts on Ω: the ith factor
of the base group Sym(A)n acts on the entries in the ith coordinate of points of Ω,
while Sn permutes the coordinates. (Here Sn denotes Sym({1, . . . , n}).)

Corollary 3.5. The automorphism group of the Hamming graph Ham(n,A) is the
wreath product Sym(A) ≀ Sn just described.

Proof. By Theorem 3.4(c), the automorphism group of Ham(n,A) coincides with
the stabiliser in Sym(An) of the natural Cartesian decomposition E of the set An.
By [71, Lemma 5.1], the stabiliser of E in Sym(An) is Sym(A) ≀ Sn. �

In the mixed alphabet case, only one change needs to be made. Permutations of
the coordinates must preserve the cardinality of the alphabets associated with the
coordinate: that is, g ∈ Sn induces an automorphism of the Hamming graph if and
only if ig = j implies |Ai| = |Aj | for all i, j. (This condition is clearly necessary.
For sufficiency, if |Ai| = |Aj |, then we may actually identify Ai and Aj .)

So if {1, . . . , n} = I1 ∪ · · · ∪ Ir, where Ik is the non-empty set of those indices
for which the corresponding alphabet has some given cardinality, then the group
Aut(Ham(A1, . . . , An)) is the direct product of r groups, each a wreath product
Sym(Aik) ≀ Sym(Ik), acting in its product action, where ik is a member of Ik.

Part (c) of Theorem 3.4 was also proved in [71, Theorem 12.3]. Our proof
is a simplified version of the proof presented in [71] and is included here as a
nice application of the lattice theoretical framework developed in Section 2. The
automorphism group of the mixed-alphabet Hamming graph can also be determined
using the characterisation of the automorphism groups of Cartesian products of
graphs. The first such characterisations were given by Sabidussi [80] and Vizing [91];
see also [43, Theorem 6.6]. The recent preprint [60] gives a self-contained elementary
proof in the case of finite Hamming graphs.

4. Latin cubes

4.1. What is a Latin cube? As pointed out in [73, 75, 76, 77], there have been
many different definitions of a Latin cube (that is, a three-dimensional generalisa-
tion of a Latin square) and of a Latin hypercube (a higher-dimensional generalisa-
tion). Typically, the underlying set Ω is a Cartesian product Ω1 × Ω2 × · · · × Ωm
where |Ω1| = |Ω2| = · · · = |Ωm|. As for Latin squares in Section 2.2, we often
seek to relabel the elements of Ω1, . . . , Ωm so that Ω = Tm for some set T . The
possible conditions are concisely summarised in [29]. The alphabet is a set of letters
of cardinality |T |a with 1 6 a 6 m − 1, and the type is b with 1 6 b 6 m − a.
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The definition is that if the values of any b coordinates are fixed then all letters in
the given alphabet occur equally often on the subset of Ω so defined (which can
be regarded as a (m − b)-dimensional array, so that the |T |b arrays of this form
partition Tm; these are parallel lines or planes in a cubical array according as b = 2
or b = 1).

One extreme case has a = 1 and b = m−1. This definition is certainly in current
use when m ∈ {3, 4}: for example, see [57, 61]. The hypercubes in [50] have a = 1
but allow smaller values of b. The other extreme has a = m− 1 and b = 1, which
is what we have here. (Unfortunately, the meaning of the phrase “Latin hypercube
design” in Statistics has completely changed in the last thirty years. For example,
see [53, 86].)

Fortunately, it suffices for us to consider Latin cubes, where m = 3. Let P1, P2

and P3 be the partitions which give the standard Cartesian decomposition of the
cube Ω1 × Ω2 × Ω3. Following [77], we call the parts of P1, P2 and P3 layers, and
the parts of P1 ∧ P2, P1 ∧ P3 and P2 ∧ P3 lines. Thus a layer is a slice of the cube
parallel to one of the faces. Two lines ℓ1 and ℓ2 are said to be parallel if there is
some {i, j} ⊂ {1, 2, 3} with i 6= j such that ℓ1 and ℓ2 are both parts of Pi ∧ Pj .

The definitions in [29, 77] give us the following three possibilities for the case
that |Ωi| = n for i in {1, 2, 3}.

(LC0) There are n letters, each of which occurs once per line.
(LC1) There are n letters, each of which occurs n times per layer.
(LC2) There are n2 letters, each of which occurs once per layer.

Because of the meaning of type given in the first paragraph of this section, we shall
call these possibilities sorts of Latin cube. Thus Latin cubes of sort (LC0) are a
special case of Latin cubes of sort (LC1), but Latin cubes of sort (LC2) are quite
different.

Sort (LC0) is the definition of Latin cube used in [8, 13, 33, 41, 57, 61], among
many others in Combinatorics and Statistics. Fisher used sort (LC1) in [38], where
he gave constructions using abelian groups. Kishen called this a Latin cube of first
order, and those of sort (LC2) Latin cubes of second order, in [46, 47].

Two of these sorts have alternative descriptions using the language of this paper.
Let L be the partition into letters. Then a Latin cube has sort (LC0) if and
only if {L, Pi, Pj} is a Cartesian decomposition of the cube whenever i 6= j and
{i, j} ⊂ {1, 2, 3}. A Latin cube has sort (LC2) if and only if {L, Pi} is a Cartesian
decomposition of the cube for i = 1, 2, 3.

The following definition is taken from [77].

Definition 4.1. A Latin cube of sort (LC2) is regular if, whenever ℓ1 and ℓ2 are
parallel lines in the cube, the set of letters occurring in ℓ1 is either exactly the same
as the set of letters occurring in ℓ2 or disjoint from it.

(Warning: the word regular is used by some authors with quite a different mean-
ing for some Latin cubes of sorts (LC0) and (LC1).)

4.2. Some examples of Latin cubes of sort (LC2). In these examples, the
cube is coordinatised by functions f1, f2 and f3 from Ω to Ω1, Ω2 and Ω3 whose
kernels are the partitions P1, P2 and P3. For example, in Figure 4, one part of P1 is
f−1
1 (2). A statistician would typically write this as “f1 = 2”. For ease of reading,
we adopt the statisticians’ notation.
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f2 = 1 f2 = 2
f1 = 1 A B
f1 = 2 C D

f2 = 1 f2 = 2
f1 = 1 D C
f1 = 2 B A

f3 = 1 f3 = 2

Figure 4. The unique (up to isomorphism) Latin cube of sort
(LC2) and order 2

Example 4.2. When n = 2, the definition of Latin cube of sort (LC2) forces the
two occurrences of each of the four letters to be in diagonally opposite cells of the
cube. Thus, up to permutation of the letters, the only possibility is that shown in
Figure 4.

This Latin cube of sort (LC2) is regular. The set of letters on each line of P1∧P2

is either {A,D} or {B,C}; the set of letters on each line of P1∧P3 is either {A,B}
or {C,D}; and the set of letters on each line of P2 ∧P3 is either {A,C} or {B,D}.

Example 4.3. Here Ω = T 3, where T is the additive group of Z3. For i = 1,
2 and 3, the function fi picks out the ith coordinate of (t1, t2, t3). The column
headed L in Table 1 shows how the nine letters are allocated to the cells of the
cube. The P3-layer of the cube with f3 = 0 is as follows.

f2 = 0 f2 = 1 f2 = 2
f1 = 0 A D G
f1 = 1 I C F
f1 = 2 E H B

.

It has each letter just once.
Similarly, the P3-layer of the cube with f3 = 1 is

f2 = 0 f2 = 1 f2 = 2
f1 = 0 B E H
f1 = 1 G A D
f1 = 2 F I C

and the P3-layer of the cube with f3 = 2 is

f2 = 0 f2 = 1 f2 = 2
f1 = 0 C F I
f1 = 1 H B E
f1 = 2 D G A

.

Similarly you can check that if you take the 2-dimensional P1-layer defined by any
fixed value of f1 then every letter occurs just once, and the same thing happens
for P2.

In addition to satisfying the property of being a Latin cube of sort (LC2), this
combinatorial structure has three other good properties.

• It is a regular in the sense of Definition 4.1. The set of letters in any
P1 ∧ P2-line is {A,B,C} or {D,E, F} or {G,H, I}. For P1 ∧ P3 the letter
sets are {A,D,G}, {B,E,H} and {C,F, I}; for P2 ∧P3 they are {A,E, I},
{B,F,G} and {C,D,H}.
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partition P1 P2 P3 Q R S L
function f1 f2 f3 −f1 + f2 −f3 + f1 −f2 + f3
value t1 t2 t3 −t1 + t2 −t3 + t1 −t2 + t3

0 0 0 0 0 0 A
0 0 1 0 2 1 B
0 0 2 0 1 2 C
0 1 0 1 0 2 D
0 1 1 1 2 0 E
0 1 2 1 1 1 F
0 2 0 2 0 1 G
0 2 1 2 2 2 H
0 2 2 2 1 0 I
1 0 0 2 1 0 I
1 0 1 2 0 1 G
1 0 2 2 2 2 H
1 1 0 0 1 2 C
1 1 1 0 0 0 A
1 1 2 0 2 1 B
1 2 0 1 1 1 F
1 2 1 1 0 2 D
1 2 2 1 2 0 E
2 0 0 1 2 0 E
2 0 1 1 1 1 F
2 0 2 1 0 2 D
2 1 0 2 2 2 H
2 1 1 2 1 0 I
2 1 2 2 0 1 G
2 2 0 0 2 1 B
2 2 1 0 1 2 C
2 2 2 0 0 0 A

Table 1. Some functions and partitions on the cells of the cube in Example 4.3

• The supremum of L and P1 ∧ P2 is the partition Q shown in Table 1. This
is the kernel of the function which maps (t1, t2, t3) to −t1 + t2 = 2t1 + t2.
Statisticians normally write this partition as P 2

1 P2. Likewise, the supremum
of L and P1 ∧ P3 is R, which statisticians might write as P 2

3P1, and the
supremum of L and P2 ∧ P3 is S, written by statisticians as P 2

2P3. The
partitions P1, P2, P3, Q, R, S, P1 ∧P2, P1 ∧P3, P2 ∧P3 and L are pairwise
compatible, in the sense of Definition 2.20. Moreover, each of them is a
coset partition defined by a subgroup of T 3.

• In anticipation of the notation used in Section 5.4, it seems fairly natural
to rename P1, P2, P3, Q, R and S as P01, P02, P03, P12, P13 and P23, in
order. For each i in {0, 1, 2, 3}, the three partitions Pjk which have i as one
of the subscripts, that is, i ∈ {j, k}, form a Cartesian decomposition of the
underlying set.
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✉P1 ∧ P2
✉P1 ∧ P3
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✉L

✉

E

✉P1
✉P2

✉P3
✉Q ✉R ✉S

✉

U

Figure 5. Hasse diagram of the join-semilattice formed by the
pairwise compatible partitions in Example 4.3

A E F
H I D
C G B

D B I
E C G
F A H

G H C
B F A
I D E

Figure 6. A Latin cube of sort (LC2) which is not regular

However, the set of ten partitions that we have named is not closed under infima,
so they do not form an orthogonal block structure. For example, the set does not
contain the infimum P3∧Q. This partition has nine parts of size three, one of which
consists of the cells (0, 0, 0), (1, 1, 0) and (2, 2, 0), as can be seen from Table 1.

Figure 5 shows the Hasse diagram of the join-semilattice formed by these ten
named partitions, along with the two trivial partitions E and U . This diagram,
along with the knowledge of compatibility, makes it clear that any three of the
minimal partitions P1 ∧ P2, P1 ∧ P3, P2 ∧ P3 and L give the minimal partitions of
the orthogonal block structure defined by a Cartesian decomposition of dimension
three of the underlying set T 3. Note that, although the partition E is the highest
point in the diagram which is below both P3 and Q, it is not their infimum, because
their infimum is defined in the lattice of all partitions of this set.

Example 4.4. Figure 6 shows an example which is not regular. This was originally
given in [81]. To save space, the three P3-layers are shown side by side.

For example, there is one P1∧P3-line whose set of letters is {A,E, F} and another
whose set of letters is {A,F,H}. These are neither the same nor disjoint.



THE GEOMETRY OF DIAGONAL GROUPS 25

If we write the group operation in Example 4.3 multiplicatively, then the cells
(t1, t2, t3) and (u1, u2, u3) have the same letter if and only if t−1

1 t2 = u−1
1 u2 and

t−1
1 t3 = u−1

1 u3. This means that (u1, u2, u3) = (x, x, x)(t1, t2, t3) where x = u1t
−1
1 ,

so that (t1, t2, t3) and (u1, u2, u3) are in the same right coset of the diagonal sub-
group δ(T, 3) introduced in Section 1.3.

The next theorem shows that this construction can be generalised to any group,
abelian or not, finite or infinite.

Theorem 4.5. Let T be a non-trivial group. Identify the elements of T 3 with the
cells of a cube in the natural way. Let δ(T, 3) be the diagonal subgroup {(t, t, t) | t ∈
T }. Then the parts of the right coset partition Pδ(T,3) form the letters of a regular
Latin cube of sort (LC2).

Proof. Let H1 be the subgroup {(1, t2, t3) | t2 ∈ T, t3 ∈ T } of T 3. Define subgroups
H2 and H3 similarly. Let i ∈ {1, 2, 3}. Then Hi ∩ δ(T, 3) = {1} and Hiδ(T, 3) =
δ(T, 3)Hi = T 3. Proposition 2.2 shows that PHi

∧ Pδ(T,3) = E and PHi
∨ Pδ(T,3) =

U . Because Hiδ(T, 3) = δ(T, 3)Hi, Proposition 2.19 (considering statements (a)
and (d)) shows that {PHi

, Pδ(T,3)} is a Cartesian decomposition of T 3 of dimension
two. Hence the parts of Pδ(T,3) form the letters of a Latin cube Λ of sort (LC2).

Put G12 = H1 ∩ H2 and K12 = {(t1, t1, t3) | t1 ∈ T, t3 ∈ T }. Then the
parts of PG12

are lines of the cube parallel to the z-axis. Also, G12 ∩ δ(T, 3) =
{1} and G12δ(T, 3) = δ(T, 3)G12 = K12, so Propositions 2.2 and 2.19 show that
PG12

∧ Pδ(T,3) = E, PG12
∨ Pδ(T,3) = PK12

, and the restrictions of PG12
and Pδ(T,3)

to any part of PK12
form a grid. Therefore, within each coset of K12, all lines have

the same subset of letters. By the definition of supremum, no line in any other
coset of K12 has any letters in common with these.

Similar arguments apply to lines in each of the other two directions. Hence Λ is
regular. �

The converse of this theorem is proved at the end of this section.
The set of partitions in Theorem 4.5 form a join-semilattice whose Hasse diagram

is the same as the one shown in Figure 5, apart from the naming of the partitions.
We call this a diagonal semilattice of dimension three. The generalisation to arbi-
trary dimensions is given in Section 5.

4.3. Results for Latin cubes. As we hinted in Section 2.2, the vast majority of
Latin squares of order at least 5 are not isotopic to Cayley tables of groups. For
m > 3, the situation changes dramatically as soon as we impose some more, purely
combinatorial, constraints. We continue to use the notation Ω, P1, P2, P3 and L
as in Section 4.1.

A Latin cube of sort (LC0) is called an extended Cayley table of the group T if
Ω = T 3 and the letter in cell (t1, t2, t3) is t1t2t3. Theorem 8.21 of [8] shows that, in
the finite case, for a Latin cube of sort (LC0), the set {P1, P2, P3, L} is contained
in the set of partitions of an orthogonal block structure if and only if the cube is
isomorphic to the extended Cayley table of an abelian group. Now we will prove
something similar for Latin cubes of sort (LC2), by specifying a property of the set

{P1, P2, P3, (P1 ∧ P2) ∨ L, (P1 ∧ P3) ∨ L, (P2 ∧ P3) ∨ L}

of six partitions. We do not restrict this to finite sets. Also, because we do not
insist on closure under infima, it turns out that the group does not need to be
abelian.
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In Lemmas 4.7 and 4.8, the assumption is that we have a Latin cube of sort (LC2),
and that {i, j, k} = {1, 2, 3}. Write

Lij = L ∨ (Pi ∧ Pj).

To clarify the proofs, we shall use the following refinement of Definition 4.1. Recall
that we refer to the parts of Pi ∧ Pj as Pi ∧ Pj-lines.

Definition 4.6. A Latin cube of sort (LC2) is {i, j}-regular if, whenever ℓ1 and
ℓ2 are distinct Pi ∧ Pj -lines, the set of letters occurring in ℓ1 is either exactly the
same as the set of letters occurring in ℓ2 or disjoint from it.

Lemma 4.7. The following conditions are equivalent.

(a) The partition L is compatible with Pi ∧ Pj.
(b) The Latin cube is {i, j}-regular.
(c) The restrictions of Pi∧Pj, Pk and L to any part of Lij form a Latin square.
(d) Every pair of distinct Pi ∧ Pj-lines in the same part of Lij lie in distinct

parts of Pi.
(e) The restrictions of Pi, Pk and L to any part of Lij form a Latin square.
(f) The set {Pi, Pk, Lij} is a Cartesian decomposition of Ω of dimension three.
(g) Each part of Pi ∧ Pk ∧ Lij has size one.

Proof. We prove this result without loss of generality for i = 1, j = 2, k = 3.

(a)⇔(b) By the definition of a Latin cube of sort (LC2), each part of P1 ∧ P2

has either zero or one cells in common with each part of L. Therefore
P1 ∧ P2 ∧ L = E, which is uniform, so Definition 2.20 shows that compati-
bility is the same as commutativity of the equivalence relations underlying
P1 ∧ P2 and L. Consider Proposition 2.19 with P1 ∧ P2 and L in place of
P1 and P2. Condition (a) of Proposition 2.19 is the same as condition (a)
here; and condition (e) of Proposition 2.19 is the same as condition (b) here.
Thus Proposition 2.19 gives us the result.

(a)⇒(c) Let ∆ be a part of L12. If L is compatible with P1 ∧ P2 then, because
P1 ∧ P2 ∧ L = E, Proposition 2.19 shows that the restrictions of P1 ∧ P2

and L to ∆ form a Cartesian decomposition of ∆. Each part of P3 has
precisely one cell in common with each part of P1∧P2, because {P1, P2, P3}
is a Cartesian decomposition of Ω, and precisely one cell in common with
each part of L, because the Latin cube has sort (LC2). Hence the restrictions
of P1 ∧ P2, P3 and L to ∆ form a Latin square. (Note that P3 takes all of
its values within ∆, but neither P1 ∧ P2 nor L does.)

(c)⇒(d) Let ℓ1 and ℓ2 be distinct P1 ∧ P2-lines that are contained in the same part
∆ of L12. Every letter which occurs in ∆ occurs in both of these lines. If
ℓ1 and ℓ2 are contained in the same part of P1, then that P1-layer contains
at least two occurrences of some letters, which contradicts the fact that
L ∧ P1 = E for a Latin cube of sort (LC2).

(d)⇒(e) Let ∆ be a part of L12 and let λ be a part of L inside ∆. Let p1 and p3
be parts of P1 and P3. Then |p1 ∩ λ| = |p3 ∩ λ| = 1 by definition of a Latin
cube of sort (LC2). Condition (d) specifies that p1 ∩∆ is a part of P1 ∧P2.
Therefore (p1 ∩∆)∩ p3 is a part of P1 ∧ P2 ∧ P3, so |(p1 ∩∆) ∩ (p3 ∩∆)| =
|(p1 ∩∆) ∩ p3| = 1. Thus the restrictions of P1, P3, and L to ∆ form a
Latin square.
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(e)⇒(f) Let ∆, p1 and p3 be parts of L12, P1 and P3 respectively. By the definition
of a Latin cube of sort (LC2), p1 ∩ ∆ and p3 ∩ ∆ are both non-empty.
Thus condition (e) implies that |p1 ∩ p3 ∩∆| = 1. Hence {P1, P3, L

12} is a
Cartesian decomposition of dimension three.

(f)⇒(g) This follows immediately from the definition of a Cartesian decomposition
(Definition 3.1).

(g)⇒(d) If (d) is false then there is a part ∆ of L12 which contains distinct P1 ∧P2-
lines ℓ1 and ℓ2 in the same part p1 of P1. Let p3 be any part of P3. Then,
since {P1, P2, P3} is a Cartesian decomposition, |p3 ∩ ℓ1| = |p3 ∩ ℓ2| = 1
and so |p1 ∩ p3 ∩∆| > 2. This contradicts (g).

(d)⇒(b) If (b) is false, there are distinct P1 ∧P2-lines ℓ1 and ℓ2 whose sets of letters
Λ1 and Λ2 are neither the same nor disjoint. Because Λ1 ∩ Λ2 6= ∅, ℓ1 and
ℓ2 are contained in the same part of L12.

Let λ ∈ Λ2 \ Λ1. By definition of a Latin cube of sort (LC2), λ occurs
on precisely one cell ω in the P1-layer which contains ℓ1. By assumption,
ω /∈ ℓ1. Let ℓ3 be the P1 ∧ P2-line containing ω. Then ℓ3 and ℓ2 are in the
same part of L12, as are ℓ1 and ℓ2. Hence ℓ1 and ℓ3 are in the same part of
L12 and the same part of P1. This contradicts (d).

�

Lemma 4.8. The set {Pi, Lik, Lij} is a Cartesian decomposition of Ω if and only
if L is compatible with both Pi ∧ Pj and Pi ∧ Pk.

Proof. If L is not compatible with Pi ∧ Pj , then Lemma 4.7 shows that there is a
part of Pi ∧ Pk ∧ Lij of size at least two. This is contained in a part of Pi ∧ Pk.
Since Pi ∧ Pk 4 Lik, it is also contained in a part of Lik. Hence {Pi, L

ij , Lik} is
not a Cartesian decomposition of Ω. Similarly, if L is not compatible with Pi ∧ Pk
then {Pi, Lij , Lik} is not a Cartesian decomposition of Ω.

For the converse, Lemma 4.7 shows that if L is compatible with Pi ∧ Pj then
{Pi, Pk, Lij} is a Cartesian decomposition of Ω. Let ∆ be a part of Lij , and let L∗

be the restriction of L to ∆. Lemma 4.7 shows that Pi, Pk and L∗ form a Latin
square on ∆. Thus distinct letters in L∗ occur only in distinct parts of Pi ∧ Pk.

If L is also compatible with Pi ∧ Pk, then Lemma 4.7 shows that each part of
Lik is a union of parts of Pi ∧ Pk, any two of which are in different parts of Pi
and different parts of Pk, and all of which have the same letters. Hence any two
different letters in L∗ are in different parts of Lik. Since {Pi, Pk, Lij} is a Cartesian
decomposition of Ω, every part of Pi ∧ Pk has a non-empty intersection with ∆,
and so every part of Lik has a non-empty intersection with ∆. Since L ≺ Lik, such
an intersection consists of one or more parts of L∗ in ∆. We have already noted
that distinct letters in L∗ are in different parts of Lik, and so it follows that the
restriction of Lik to ∆ is the same as L∗. Hence the restrictions of Pi, Pk and Lik

to ∆ form a Latin square on ∆, and so the restrictions of Pi and L
ik to ∆ give a

Cartesian decomposition of ∆.
This is true for every part ∆ of Lij , and so it follows that {Pi, Lij , Lik} is a

Cartesian decomposition of Ω. �

Lemma 4.9. The set {Pi, Lij , Lik} is a Cartesian decomposition of Ω if and only
if the set {Pi ∧ Pj , Pi ∧ Pk, L} generates a Cartesian lattice under taking suprema.

Proof. If {Pi ∧ Pj , Pi ∧ Pk, L} generates a Cartesian lattice under taking suprema
then the maximal partitions in the Cartesian lattice are (Pi ∧ Pj) ∨ (Pi ∧ Pk),
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(Pi ∧ Pj) ∨ L and (Pi ∧ Pk) ∨ L. They form a Cartesian decomposition, and are
equal to Pi, L

ij and Lik respectively.
Conversely, suppose that {Pi, Lij , Lik} is a Cartesian decomposition of Ω. The

minimal partitions in the corresponding Cartesian lattice are Pi ∧Lij , Pi ∧Lik and
Lij ∧ Lik. Now, L 4 Lij and L 4 Lik, so L 4 Lij ∧ Lik. Because the Latin cube
has sort (LC2), {Pi, L} and {Pi, Lij ∧Lik} are both Cartesian decompositions of Ω.
Since L 4 Lij ∧ Lik, this forces L = Lij ∧ Lik.

The identities of the other two infima are confirmed by a similar argument. We
have Pi∧Pj 4 Pi, and Pi∧Pj 4 Lij , by definition of Lij . Therefore Pi∧Pj 4 Pi∧Lij .
Lemmas 4.7 and 4.8 show that {Pi, Pk, Lij} is a Cartesian decomposition of Ω.
Therefore {Pk, Pi∧Lij} and {Pk, Pi ∧Pj} are both Cartesian decompositions of Ω.
Since Pi∧Pj 4 Pi∧Lij , this forces Pi∧Pj = Pi∧Lij . Likewise, Pi∧Pk = Pi∧Lik. �

The following theorem is a direct consequence of Definitions 4.1 and 4.6 and
Lemmas 4.7, 4.8 and 4.9.

Theorem 4.10. For a Latin cube of sort (LC2), the following conditions are equiv-
alent.

(a) The Latin cube is regular.
(b) The Latin cube is {1, 2}-regular, {1, 3}-regular and {2, 3}-regular.
(c) The partition L is compatible with each of P1 ∧ P2, P1 ∧ P3 and P2 ∧ P3.
(d) Each of {P1, P2, P3}, {P1, L

12, L13}, {P2, L
12, L23} and {P3, L

13, L23} is a
Cartesian decomposition.

(e) Each of the sets {P1 ∧ P2, P1 ∧ P3, P2 ∧ P3}, {P1 ∧ P2, P1 ∧ P3, L},
{P1 ∧ P2, P2 ∧ P3, L} and {P1 ∧ P3, P2 ∧ P3, L} generates a Cartesian lat-
tice under taking suprema.

The condition that {P1, P2, P3} is a Cartesian decomposition is a part of the
definition of a Latin cube. This condition is explicitly included in item (d) of
Theorem 4.10 for clarity.

The final result in this section gives us the stepping stone for the proof of The-
orem 1.1. The proof is quite detailed, and makes frequent use of the relabelling
techniques that we already saw in Sections 2.2 and 2.3.

Theorem 4.11. Consider a Latin cube of sort (LC2) on an underlying set Ω,
with coordinate partitions P1, P2 and P3, and letter partition L. If every three of
P1 ∧ P2, P1 ∧ P3, P2 ∧ P3 and L are the minimal partitions in a Cartesian lattice
on Ω then there is a group T such that, up to relabelling the letters and the three
sets of coordinates, Ω = T 3 and L is the coset partition defined by the diagonal
subgroup {(t, t, t) | t ∈ T }. Moreover, T is unique up to group isomorphism.

Proof. Theorem 4.10 shows that a Latin cube satisfying this condition must be
regular. As {P1, P2, P3} is a Cartesian decomposition of Ω and, by Lemma 4.7,
{Pi, Pj , Lik} is also a Cartesian decomposition of Ω whenever {i, j, k} = {1, 2, 3},
the cardinalities of P1, P2, P3, L

12, L13 and L23 must all be equal (using the
argument in the proof of Proposition 2.3). Thus we may label the parts of each by
the same set T . We start by labelling the parts of P1, P2 and P3. This identifies
Ω with T 3. At first, these three labellings are arbitrary, but they are made more
specific as the proof progresses.

Let (a, b, c) be a cell of the cube. Because P1 ∧ P2 4 L12, the part of L12 which
contains cell (a, b, c) does not depend on the value of c. Thus there is a binary
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c1 c2
b1 λ µ
b2 ν φ

Figure 7. A 2× 2 subsquare of the Latin square defined by (T, ⋄)

operation ◦ from T ×T to T such that a◦b is the label of the part of L12 containing
{(a, b, c) | c ∈ T }; in other words, (a, b, c) is in part a ◦ b of L12, irrespective of the
value of c. Lemma 4.7 and Proposition 2.3 show that, for each a in T , the function
b 7→ a◦b is a bijection from T to T . Similarly, for each b in T , the function a 7→ a◦b
is a bijection. Therefore (T, ◦) is a quasigroup.

Similarly, there are binary operations ⋆ and ⋄ on T such that the labels of the
parts of L13 and L23 containing cell (a, b, c) are c⋆a and b⋄c respectively. Moreover,
(T, ⋆) and (T, ⋄) are both quasigroups.

Now we start the process of making explicit bijections between some pairs of the
six partitions. Choose any part of P1 and label it e. Then the labels of the parts
of L12 can be aligned with those of P2 so that e ◦ b = b for all values of b. In the
quasigroup (T, ⋆), we may use the column headed e to give a permutation σ of T to
align the labels of the parts of P3 and those of L13 so that c ⋆ e = cσ for all values
of c.

Let (a, b, c) be a cell of the cube. Because {L, P1} is a Cartesian decomposition
of the cube, there is a unique cell (e, b′, c′) in the same part of L as (a, b, c). Then

a ◦ b = e ◦ b′ = b′,

c ⋆ a = c′ ⋆ e = c′σ, and

b ⋄ c = b′ ⋄ c′.

Hence

(2) b ⋄ c = (a ◦ b) ⋄ ((c ⋆ a)σ−1)

for all values of a, b and c in T .
The quasigroup (T, ⋄) can be viewed as a Latin square with rows labelled by

parts of P2 and columns labelled by parts of P3. Consider the 2 × 2 subsquare
shown in Figure 7. It has b1 ⋄ c1 = λ, b1 ⋄ c2 = µ, b2 ⋄ c1 = ν and b2 ⋄ c2 = φ.

Let b3 be any row of this Latin square. Then there is a unique a in T such that
a ◦ b1 = b3. By Equation (2),

b3 ⋄ ((c1 ⋆ a)σ
−1) = (a ◦ b1) ⋄ ((c1 ⋆ a)σ

−1) = b1 ⋄ c1 = λ, and

b3 ⋄ ((c2 ⋆ a)σ
−1) = (a ◦ b1) ⋄ ((c2 ⋆ a)σ

−1) = b1 ⋄ c2 = µ.

The unique occurrence of letter ν in column (c1 ⋆ a)σ
−1 of this Latin square is in

row b4, where b4 = a ◦ b2, because

b4 ⋄ ((c1 ⋆ a)σ
−1) = (a ◦ b2) ⋄ ((c1 ⋆ a)σ

−1) = b2 ⋄ c1 = ν.

Now

b4 ⋄ ((c2 ⋆ a)σ
−1) = (a ◦ b2) ⋄ ((c2 ⋆ a)σ

−1) = b2 ⋄ c2 = φ.

This shows that whenever the letters in three cells of a 2×2 subsquare are known
then the letter in the remaining cell is forced. That is, the Latin square (T, ⋄)
satisfies the quadrangle criterion (Definition 2.7). By Theorem 2.8, this property
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proves that (T, ⋄) is isotopic to the Cayley table of a group. By [1, Theorem 2],
this group is unique up to group isomorphism.

As remarked at the end of Section 2.3, we can now relabel the parts of P2,
P3 and L23 so that b ⋄ c = b−1c for all b, c in T . Then Equation (2) becomes
b−1c = (a ◦ b)−1((c ⋆ a)σ−1), so that

(3) (a ◦ b)b−1c = (c ⋆ a)σ−1

for all a, b, c in T . Putting b = c in Equation (3) gives

(4) (a ◦ c)σ = c ⋆ a

for all a, c in T , while putting b = 1 gives

((a ◦ 1)c)σ = c ⋆ a

for all a, c in T . Combining these gives

(5) a ◦ c = (a ◦ 1)c = (c ⋆ a)σ−1

for all a, c ∈ T .
We have not yet made any explicit use of the labelling of the parts of P1 other

than e, with e ◦ 1 = 1. The map a 7→ a ◦ 1 is a bijection from T to T , so we may
label the parts of P1 in such a way that e = 1 and a ◦ 1 = a−1 for all a in T . Then
Equation (5) shows that a ◦ b = a−1b for all a, b in T .

Now that we have fixed the labelling of the parts of P1, P2 and P3, it is clear
that they are the partitions of T 3 into right cosets of the subgroups as shown in
the first three rows of Table 2.

Consider the partition L23. For α = (a1, b1, c1) and β = (a2, b2, c2) in T 3, we
have (using the notation in Section 2.1)

L23[α] = L23[β] ⇐⇒ b1 ⋄ c1 = b2 ⋄ c2

⇐⇒ b−1
1 c1 = b−1

2 c2

⇐⇒ α and β are in the same right coset of K23,

whereK23 = {(t1, t2, t2) | t1 ∈ T, t2 ∈ T }. In other words, L23 is the coset partition
of T 3 defined by K23.

Since a ◦ b = a−1b, a similar argument shows that L12 is the coset partition of
T 3 defined by K12, where K12 = {(t1, t1, t2) | t1 ∈ T, t2 ∈ T }.

Equation (4) shows that the kernel of the function (c, a) 7→ c ⋆ a is the same as
the kernel of the function (c, a) 7→ a−1c, which is in turn the same as the kernel of
the function (c, a) 7→ c−1a. It follows that L13 is the coset partition of T 3 defined
by K13, where K13 = {(t1, t2, t1) | t1 ∈ T, t2 ∈ T }.

Thus the partitions Pi and L
ij are the partitions of T 3 into right cosets of the

subgroups as shown in Table 2. Lemma 4.9 shows that the letter partition L is
equal to Lij ∧ Lik whenever {i, j, k} = {1, 2, 3}. Consequently, L is the partition
into right cosets of the diagonal subgroup {(t, t, t) | t ∈ T }. �

The converse of Theorem 4.11 was given in Theorem 4.5.
For {i, j, k} = {1, 2, 3}, let Hi be the intersection of the subgroups of T 3 corre-

sponding to partitions Pi and L
jk in Table 2, so that the parts of Pi ∧ Ljk are the

right cosets of Hi. Then H1 = {(1, t, t) | t ∈ T } and H2 = {(u, 1, u) | u ∈ T }. If T
is abelian then H1H2 = H2H1 and so the right-coset partitions of H1 and H2 are
compatible. If T is not abelian then H1H2 6= H2H1 and so these coset partitions are
not compatible. Because we do not want to restrict our theory to abelian groups,
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Partition Subgroup of T 3

P1 {(1, t2, t3) | t2 ∈ T, t3 ∈ T }
P2 {(t1, 1, t3) | t1 ∈ T, t3 ∈ T }
P3 {(t1, t2, 1) | t1 ∈ T, t2 ∈ T }
L12 K12 = {(t1, t1, t3) | t1 ∈ T, t3 ∈ T }
L13 K13 = {(t1, t2, t1) | t1 ∈ T, t2 ∈ T }
L23 K23 = {(t1, t2, t2) | t1 ∈ T, t2 ∈ T }

P1 ∧ P2 {(1, 1, t) : t ∈ T }
P1 ∧ P3 {(1, t, 1) : t ∈ T }
P2 ∧ P3 {(t, 1, 1) : t ∈ T }

L δ(T, 3) = {(t, t, t) : t ∈ T }

Table 2. Coset partitions at the end of the proof of Theorem 4.11
and some infima

we do not require our collection of partitions to be closed under infima. Thus we
require a join-semilattice rather than a lattice.

4.4. Automorphism groups.

Theorem 4.12. Suppose that a regular Latin cube M of sort (LC2) arises from a
group T by the construction of Theorem 4.5. Then the group of automorphisms of
M is equal to the diagonal group D(T, 3).

Proof (sketch). It is clear from the proof of Theorem 4.5 that D(T, 3) is a subgroup
of Aut(M), and we have to prove equality.

Just as in the proof of Theorem 2.11, if G denotes the automorphism group ofM ,
then it suffices to prove that the group of strong automorphisms of M fixing the
cell (1, 1, 1) is equal to Aut(T ).

In the proof of Theorem 4.11, we choose a part of the partition P1 which will play
the role of the identity of T , and using the partitions we find bijections between the
parts of the maximal partitions and show that each naturally carries the structure
of the group T . It is clear that any automorphism of the Latin cube which fixes
(1, 1, 1) will preserve these bijections, and hence will be an automorphism of T . So
we have equality. �

Remark 4.13. We will give an alternative proof of this theorem in the next section,
in Theorem 5.7.

5. Diagonal groups and diagonal semilattices

5.1. Diagonal semilattices. Let T be a group, and m be an integer with m > 2.
Take Ω to be the group Tm. Following our convention in Section 1.3, we will now
denote elements of Ω by m-tuples in square brackets.

Consider the following subgroups of Ω:

• for 1 6 i 6 m, Ti is the ith coordinate subgroup, the set of m-tuples with
jth entry 1 for j 6= i;

• T0 is the diagonal subgroup δ(T,m) of Tm, the set {[t, t, . . . , t] | t ∈ T }.

Let Qi be the partition of Ω into right cosets of Ti for i = 0, 1, . . . ,m.
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Observe that, by Theorem 4.11, the partitions P2 ∧ P3, P1 ∧ P3, P2 ∧ P3 and L
arising from a regular Latin cube of sort (LC2) are the coset partitions defined by
the four subgroups T1, T2, T3, T0 of T 3 just described in the case m = 3 (see the
last four rows of Table 2).

Proposition 5.1. (a) The set {Q0, . . . , Qm} is invariant under the diagonal
group D(T,m).

(b) Any m of the partitions Q0, . . . , Qm generate a Cartesian lattice on Ω by
taking suprema.

Proof. (a) It is clear that the set of partitions is invariant under right trans-
lations by elements of Tm and left translations by elements of the diagonal
subgroup T0, by automorphisms of T (acting in the same way on all co-
ordinates), and under the symmetric group Sm permuting the coordinates.
Moreover, it can be checked that the map

[t1, t2, . . . , tm] 7→ [t−1
1 , t−1

1 t2, . . . , t
−1
1 tm]

interchanges Q0 and Q1 and fixes the other partitions. So we have the
symmetric group Sm+1 acting on the whole set {Q0, . . . , Qm}. These trans-
formations generate the diagonal group D(T,m); see Remark 1.3.

(b) The set Tm naturally has the structure of an m-dimensional hypercube,
and Q1, . . . , Qm are the minimal partitions in the corresponding Cartesian
lattice. For any other set of m partitions, the assertion follows because the
symmetric group Sm+1 preserves the set of m+ 1 partitions.

�

Definition 5.2. Given a group T and an integer m with m > 2, define the part-
itions Q0, Q1, . . . , Qm as above. For each subset I of {0, . . . ,m}, put QI =

∨
i∈I Qi.

The diagonal semilattice D(T,m) is the set {QI | I ⊆ {0, 1, . . . ,m}} of partitions
of the set Tm.

Thus the diagonal semilattice D(T,m) is the set-theoretic union of the m+ 1
Cartesian lattices in Proposition 5.1(b). Clearly it admits the diagonal group
D(T,m) as a group of automorphisms.

Proposition 5.3. D(T,m) is a join-semilattice, that is, closed under taking joins.
For m > 2 it is not closed under taking meets.

Proof. For each proper subset I of {0, . . . ,m}, the partition QI occurs in the Carte-
sian lattice generated by {Qi | i ∈ K} for every subset K of {0, . . . ,m} which
contains I and has cardinality m.

Let I and J be two proper subsets of {0, . . . ,m}. If |I ∪ J | 6 m then there is a
subset K of {0, . . . ,m} with |K| = m and I ∪J ⊆ K. Then QI ∨QJ = QI∪J in the
Cartesian lattice defined by K, and this supremum does not depend on the choice
of K. Therefore QI ∨QJ ∈ D(T,m).

On the other hand, if I ∪ J = {0, . . . ,m}, then

QI ∨QJ = Q0 ∨Q1 ∨ · · · ∨Qm < Q1 ∨Q2 ∨ · · · ∨Qm = U.

Hence QI ∨QJ = U , and so QI ∨QJ ∈ D(T,m).
If m = 3, consider the subgroups

H = T0T1 = {[x, y, y] | x, y ∈ T } and K = T2T3 = {[1, z, w] | z, w ∈ T }.
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If PH and PK are the corresponding coset partitions, then

PH = Q{0,1} and PK = Q{2,3},

which are both in D(T, 3). Now, by Proposition 2.2,

PH ∧ PK = PH∩K ,

where H ∩K = {[1, y, y] | y ∈ T }; this is a subgroup of Tm, but the coset partition
PH∩K does not belong to D(T, 3). This example is easily generalised to larger
values of m. �

When T is finite, Propositions 5.1(b) and 5.3 show that D(T,m) is a Tjur block
structure but is not an orthogonal block structure when m > 2 (see Section 2.5).

We will see in the next section that the property in Proposition 5.1(b) is exactly
what is required for the characterisation of diagonal semilattices. First, we extend
Definition 2.18.

Definition 5.4. For i = 1, 2, let Pi be a finite set of partitions of a set Ωi. Then
P1 is isomorphic to P2 if there is a bijection φ from Ω1 to Ω2 which induces a
bijection from P1 to P2 which preserves the relation 4.

As we saw in Section 2.2, this notion of isomorphism is called paratopism in the
context of Latin squares.

The remark before Proposition 5.1 shows that a regular Latin cube of sort (LC2)
“generates” a diagonal semilatticeD(T, 3) for a group T , unique up to isomorphism.
The next step is to consider larger values of m.

5.2. The theorem. We repeat our axiomatisation of diagonal structures from the
introduction. We emphasise to the reader that we do not assume a Cartesian
decomposition on the set Ω at the start; the m + 1 Cartesian decompositions are
imposed by the hypotheses of the theorem, and none is privileged.

Theorem 5.5. Let Ω be a set with |Ω| > 1, and m an integer at least 2. Let
Q0, . . . , Qm be m + 1 partitions of Ω satisfying the following property: any m of
them are the minimal non-trivial partitions in a Cartesian lattice on Ω.

(a) If m = 2, then the three partitions are the row, column, and letter partitions
of a Latin square on Ω, unique up to paratopism.

(b) If m > 2, then there is a group T , unique up to group isomorphism, such that
Q0, . . . , Qm are the minimal non-trivial partitions in a diagonal semilattice
D(T,m) on Ω.

Note that the converse of the theorem is true: Latin squares (with m = 2) and
diagonal semilattices have the property that their minimal non-trivial partitions do
satisfy our hypotheses.

The general proof for m > 3 is by induction, the base case being m = 3. The
base case follows from Theorem 4.11, as discussed in the preceding subsection, while
the induction step is given in Subsection 5.5.

5.3. Setting up. First, we give some notation. Let P be a set of partitions of Ω,
and Q a partition of Ω. We denote by P//Q the following object: take all partitions
P ∈ P which satisfy Q 4 P ; then regard each such P as a partition, not of Ω, but
of Q (that is, of the set of parts of Q). Then P//Q is the set of these partitions
of Q. (We do not write this as P/Q, because this notation has almost the opposite
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meaning in the statistical literature cited in Section 2.) The next result is routine
but should help to familiarise this concept.

Furthermore, we will temporarily call a set {Q0, . . . , Qm} of partitions of Ω
satisfying the hypotheses of Theorem 5.5 a special set of dimension m.

Proposition 5.6. Let P be a set of partitions of Ω, and Q a minimal non-trivial
element of P.

(a) If P is an m-dimensional Cartesian lattice, then P//Q is an (m − 1)-
dimensional Cartesian lattice.

(b) If P is the join-semilattice generated by an m-dimensional special set Q,
and Q ∈ Q, then P//Q is generated by a special set of dimension m− 1.

(c) If P ∼= D(T,m) is a diagonal semilattice, then P//Q ∼= D(T,m− 1).

Proof. (a) This follows from Proposition 3.3, because if Q = PI where I =
{1, . . . ,m} \ {i} then we are effectively just limiting the set of indices to I.

(b) This follows from part (a).
(c) Assume that P = D(T,m). Then, since Aut(P) contains D(T,m), which

is transitive on {Q0, . . . , Qm}, we may assume that Q = Qm. Thus P//Q
is a set of partitions of Qm. In the group Tm+1 ⋊ Aut(T ) generated by
elements of types (I)–(III) in Remark 1.3, the subgroup Tm generated by
right multiplication of the last coordinate by elements of T is normal, and
the quotient is Tm⋊Aut(T ). Moreover, the subgroups Ti commute pairwise,
so the parts of Qi ∨Qm are the orbits of TiTm (for i < m) and give rise to
a minimal partition in D(T,m− 1).

�

5.4. Automorphism groups. In the cases m = 2 and m = 3, we showed that
the automorphism group of the diagonal semilattice D(T,m) is the diagonal group
D(T,m). The same result holds for arbitrary m; but this time, we prove this result
first, since it is needed in the proof of the main theorem. The proof below also
handles the case m = 3.

Theorem 5.7. For m > 2, and any non-trivial group T , the automorphism group
of the diagonal semilattice D(T,m) is the diagonal group D(T,m).

Proof. Our proof will be by induction on m. The cases m = 2 and m = 3 are
given by Theorems 2.11 and 4.12. However, we base the induction at m = 2, so
we provide an alternative proof for Theorem 4.12. So in this proof we assume that
m > 2 and that the result holds with m− 1 replacing m.

Recall from Section 1.3 that D̂(T,m) denotes the pre-diagonal group, so that

D(T,m) ∼= D̂(T,m)/K̂, with K̂ as in (1). Suppose that σ : D̂(T,m) → D(T,m) is

the natural projection with kerσ = K̂.
By Proposition 5.1, we know thatD(T,m) is a subgroup of Aut(D(T,m)), and we

have to show that equality holds. Using the principle of Proposition 2.9, it suffices
to show that the group SAut(D(T,m)) of strong automorphisms of D(T,m) is the
group σ(Tm+1⋊Aut(T )) generated by the images of the elements of the pre-diagonal
group of types (I)–(III), as given in Remark 1.3.

Consider Qm, one of the minimal partitions in D(T,m), and let Ω be the set of
parts of Qm. For i < m, the collection of subsets of Ω which are the parts of Qm
inside a part of Qi∨Qm is a partition Qi of Ω. Proposition 5.6(c) shows that the Qi
are the minimal partitions of D(T,m− 1), a diagonal semilattice on Ω. Moreover,
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the group σ(Tm) is the kernel of the action of σ(Tm+1 ⋊ Aut(T )) on Ω. Further,

since Tm ∩ K̂ = 1, σ(Tm) ∼= Tm ∼= T . As in Section 1.3, let Ĥ be the stabiliser in

D̂(T,m) of the element [1, . . . , 1]: then Tm ∩ Ĥ = 1 and so Tm acts faithfully and
regularly on each part of Qm.

So it suffices to show that the same is true of SAut(D(T,m)); in other words, it
is enough to show that the subgroup H of SAut(D(T,m)) fixing setwise all parts
of Qm and any given point α of Ω is trivial.

Any m of the partitions Q0, . . . , Qm are the minimal partitions in a Cartesian
lattice of partitions of Ω. Let Pij denote the supremum of the partitions Qk for k /∈
{i, j}. Then, for fixed i, the partitions Pij (as j runs over {0, . . . ,m} \ {i}) are the
maximal partitions of the Cartesian lattice generated by {Qj | 0 6 j 6 m and j 6=
i} and form a Cartesian decomposition of Ω. Hence each point of Ω is uniquely
determined by the parts of these partitions which contain it (see Definition 3.1).

For distinct i, j < m, all parts of Pij are fixed by H , since each is a union of
parts of Qm. Also, for i < m, the part of Pim containing α is fixed by H . By the
defining property of the Cartesian decomposition {Pij | 0 6 j 6 m and j 6= i}, we
conclude that H fixes every point lying in the same part of Pim as α and this holds
for all i < m.

Taking α = [1, . . . , 1], the argument in the last two paragraphs shows in partic-
ular that H fixes pointwise the part P0m[α] of P0m and the part P1m[α] of P1m

containing α. In other words, H fixes pointwise the sets

P0m[α] = {[t1, . . . , tm−1, 1] | t1, . . . , tm−1 ∈ T } and

P1m[α] = {[t1, . . . , tm−1, t1] | t1, . . . , tm−1 ∈ T }.

Applying, for a given t ∈ T , the same argument to the element α′ = [t, 1, . . . , 1, t]
of P1m[α], we obtain that H fixes pointwise the set

P0m[α′] = {[t1, . . . , tm−1, t] | t1, . . . , tm−1 ∈ T }.

Letting t run through the elements of T , the union of the parts P0m[α′] is Ω, and
this implies that H fixes all elements of Ω and we are done. �

The particular consequence of Theorem 5.7 that we require in the proof of the
main theorem is the following.

Corollary 5.8. Suppose that m > 3. Let P and P ′ be diagonal semilattices iso-
morphic to D(T,m), and let Q and Q′ be minimal partitions in P and P ′, respect-
ively. Then each isomorphism ψ : P//Q → P ′//Q′ is induced by an isomorphism
ψ : P → P ′ mapping Q to Q′.

Proof. We may assume without loss of generality that P = P ′ = D(T,m) and, since
Aut(D(T,m)) induces Sm+1 on the minimal partitions Q0, . . . , Qm of D(T,m), we
can also suppose that Q = Q′ = Qm. Thus P//Q = P ′//Q′ ∼= D(T,m − 1).

Let σ : D̂(T,m) → D(T,m) be the natural projection map, as in the proof of
Theorem 5.7. The subgroup of Aut(D(T,m)) fixingQm is the imageX = σ(Tm+1⋊
(Aut(T )× Sm)) where the subgroup Sm of Sm+1 is the stabiliser of the point m in
the action on {0, . . . ,m}. Moreover, the subgroup X contains σ(Tm), the copy of
T acting on the last coordinate of the m-tuples, which is regular on each part of
Qm. Put Y = σ(Tm). Then Y is the kernel of the induced action of X on P//Qm,
which is isomorphic to D(T,m − 1), and so X/Y ∼= D(T,m − 1). Moreover since
m > 3, it follows from Theorem 5.7 that X/Y = Aut(D(T,m− 1)). Thus the given
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map ψ in Aut(D(T,m − 1)) lies in X/Y , and we may choose ψ as any pre-image
of ψ in X . �

5.5. Proof of the main theorem. Now we begin the proof of Theorem 5.5. The
proof is by induction on m. As we remarked in Section 5.2, there is nothing to
prove for m = 2, and the case m = 3 follows from Theorem 4.11. Thus we assume
that m > 4. The induction hypothesis yields that the main theorem is true for
dimensions m − 1 and m − 2. Given a special set {Q0, . . . , Qm} generating a
semilattice P , we know, by Proposition 5.6, that, for each i, P//Qi is generated
by a special set of dimension m− 1, and so is isomorphic to D(T,m− 1) for some
group T . Now, T is independent of the choice of i; for, if P//Qi ∼= D(Ti,m − 1),
and P//Qj ∼= D(Tj ,m− 1), then, by Proposition 5.6(c),

D(Ti,m− 2) ∼= P//(Qi ∨Qj) ∼= D(Tj ,m− 2),

so by induction Ti ∼= Tj . (This proof works even when m = 4, because it is the
reduction to m = 3 that gives the groups Ti and Tj , so that the Latin squares
D(Ti, 2) and D(Tj , 2) are both Cayley tables of groups, and so Theorem 2.5 implies
that Ti ∼= Tj .)

We call T the underlying group of the special set.

Theorem 5.9. Let Q and Q′ be special sets of dimension m > 4 on sets Ω and Ω′

with the same underlying group T . Then Q and Q′ are isomorphic in the sense of
Definition 5.4.

Proof. Let P and P ′ be the join-semilattices generated by Q and Q′ respectively,
where Q = {Q0, . . . , Qm} and Q′ = {Q′

0, . . . , Q
′
m}.

We consider the three partitions Q1, Q2, and Q1 ∨Q2. Each part of Q1 ∨Q2 is
partitioned by Q1 and Q2; these form a |T | × |T | grid, where the parts of Q1 are
the rows and the parts of Q2 are the columns. We claim that

• There is a bijection F1 from the set of parts of Q1 to the set of parts of Q′
1

which induces an isomorphism from P//Q1 to P ′//Q′
1.

• There is a bijection F2 from the set of parts of Q2 to the set of parts of Q′
2

which induces an isomorphism from P//Q2 to P ′//Q′
2.

• There is a bijection F12 from the set of parts of Q1∨Q2 to the set of parts of
Q′

1∨Q
′
2 which induces an isomorphism from P//(Q1∨Q2) to P ′//(Q′

1∨Q
′
2);

moreover, each of F1 and F2, restricted to the partitions of P//(Q1 ∨ Q2),
agrees with F12.

The proof of these assertions is as follows. As each part of Q1 ∨ Q2 is a union
of parts of Q1, the partition Q1 ∨ Q2 determines a partition R1 of Q1 which is a
minimal partition of P//Q1. Similarly Q′

1 ∨Q
′
2 determines a minimal partition R′

1

of P ′//Q′
1. Then since P//Q1

∼= P ′//Q′
1
∼= D(T,m−1), by the induction hypothesis,

as discussed above, we may choose an isomorphism F1 : P//Q1 → P ′//Q′
1 in the

first bullet point such that R1 is mapped to R′
1. Now F1 induces an isomorph-

ism (P//Q1)//R1 → (P ′//Q′
1)//R

′
1, and since there are natural isomorphisms from

(P//Q1)//R1 to P//(Q1 ∨Q2) and from (P ′//Q′
1)//R

′
1 to P ′//(Q′

1 ∨Q
′
2), F1 induces

an isomorphism
F12 : P//(Q1 ∨Q2) → P ′//(Q′

1 ∨Q
′
2).

The join Q1 ∨Q2 determines a partition R2 of Q2 which is a minimal partition of
P//Q2, and Q

′
1∨Q

′
2 determines a minimal partition R′

2 of P ′//Q′
2. Further, we have

natural isomorphisms from (P//Q2)//R2 to P//(Q1 ∨ Q2) and from (P ′//Q′
2)//R

′
2
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to P ′//(Q′
1 ∨ Q′

2), so we may view F12 as an isomorphism from (P//Q2)//R2 to
(P ′//Q′

2)//R
′
2. By Corollary 5.8, the isomorphism F12 is induced by an isomorphism

from P//Q2 to P ′//Q′
2, and we take F2 to be this isomorphism.

Thus, F12 maps each part ∆ of Q1∨Q2 to a part ∆′ of Q′
1∨Q

′
2, and F1 maps the

rows of the grid on ∆ described above to the rows of the grid on ∆′, and similarly
F2 maps the columns.

Now the key observation is that there is a unique bijection F from the points
of ∆ to the points of ∆′ which maps rows to rows (inducing F1) and columns to
columns (inducing F2). For each point of ∆ is the intersection of a row and a
column, and can be mapped to the intersection of the image row and column in ∆′.

Thus, taking these maps on each part of Q1 ∨ Q2 and combining them, we see
that there is a unique bijection F : Ω → Ω′ which induces F1 on the parts of Q1

and F2 on the parts of Q2. Since F1 is an isomorphism from P//Q1 to P ′//Q′
1, and

similarly for F2, we see that

F maps every element of P which is above either Q1 or Q2 to the
corresponding element of P ′.

To complete the proof, we have to deal with the remaining partitions of P and
P ′. We note that every partition in P has the form

QI =
∨

i∈I

Qi

for some I ⊆ {0, . . . ,m}. By the statement proved in the previous paragraph, we
may assume that I ∩ {1, 2} = ∅ and in particular that |I| 6 m− 1.

Suppose first that |I| 6 m − 2. Then there is some k ∈ {0, 3, . . . ,m} such that
k 6∈ I. Without loss of generality we may assume that 0 6∈ I. Since {Q1, . . . , Qm}
generates a Cartesian lattice, which is closed under meet, we have

QI = QI∪{1} ∧QI∪{2},

and since the partitions on the right are mapped by F to Q′
I∪{1} and Q′

I∪{2}, it

follows that F maps QI to Q′
I .

Consider finally the case when |I| = m − 1; that is, I = {0, 3, 4, . . . ,m}. As
m > 4, we have 0, 3 ∈ I and may put J = I \ {0, 3} = {4, . . . ,m}. Then, for
i ∈ {0, 3}, |J ∪ {i}| = m−2, so the argument in the previous paragraph shows that
F maps QJ∪{i} to Q′

J∪{i}. Since QI = QJ∪{0}∨QJ∪{3}, it follows that F maps QI
to Q′

I . �

Now the proof of the main theorem follows. For letQ be a special set of partitions
of Ω with underlying group T . By Proposition 5.1, the set of minimal partitions in
D(T,m) has the same property. By Theorem 5.9, Q is isomorphic to this special
set, so the join-semilattice it generates is isomorphic to D(T,m).

6. Primitivity and quasiprimitivity

A permutation group is said to be quasiprimitive if all its non-trivial normal
subgroups are transitive. In particular, primitive groups are quasiprimitive, but a
quasiprimitive group may be imprimitive. If T is a (not necessarily finite) simple
group and m > 2, then the diagonal group D(T,m) is a primitive permutation
group of simple diagonal type; see [5], [48], or [71, Section 7.4]. In this section,
we investigate the primitivity and quasiprimitivity of diagonal groups for an arbi-
trary T ; our conclusions are in Theorem 1.6 in the introduction.
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The proof requires some preliminary lemmas.
A subgroup of a group G is characteristic if it is invariant under Aut(G). We

say that G is characteristically simple if its only characteristic subgroups are itself
and 1. We require some results about abelian characteristically simple groups.

An abelian group (T,+) is said to be divisible if, for every positive integer n and
every a ∈ T , there exists b ∈ T such that nb = a. The group T is uniquely divisible
if, for all a ∈ T and n ∈ N, the element b ∈ T is unique. Equivalently, an abelian
group T is divisible if and only if the map T → T , x 7→ nx is surjective for all
n ∈ N, while T is uniquely divisible if and only if the same map is bijective for all
n ∈ N. Uniquely divisible groups are also referred to as Q-groups. If T is a uniquely
divisible group, p ∈ Z, q ∈ Z \ {0} and a ∈ T , then there is a unique b ∈ T such
that qb = a and we define (p/q)a = pb. This defines a Q-vector space structure
on T . Also note that any non-trivial uniquely divisible group is torsion-free.

In the following lemma, elements of Tm+1 are written as (t0, . . . , tm) with ti ∈
T , and Sm+1 is considered as the symmetric group acting on the set {0, . . . ,m}.
Moreover, we let H denote the group Aut(T )× Sm+1; then H acts on Tm+1 by

(6) (t0, . . . , tm)(ϕ, π) = (t0π−1ϕ, . . . , tmπ−1ϕ)

for all (t0, . . . , tm) in Tm+1, ϕ in Aut(T ), and π in Sm+1. The proof of statements
(b)–(c) depends on the assertion that bases exist in an arbitrary vector space, which
is a well-known consequence of the Axiom of Choice. Of course, in special cases, for
instance when T is finite-dimensional over Fp or over Q, then the use of the Axiom
of Choice can be avoided.

Lemma 6.1. The following statements hold for any non-trivial abelian character-
istically simple group T .

(a) Either T is an elementary abelian p-group or T is a uniquely divisible group.
Moreover, T can be considered as an F-vector space, where F = Fp in the
first case, while F = Q in the second case.

(b) Aut(T ) is transitive on the set T \ {0}.
(c) Suppose that m > 1 and put

∆ = δ(T,m+ 1) = {(t, . . . , t) ∈ Tm+1 | t ∈ T } and

Γ =

{
(t0, . . . , tm) ∈ Tm+1 |

m∑

i=0

ti = 0

}
.

Then ∆ and Γ are H-invariant subgroups of Tm+1. Furthermore, precisely
one of the following holds.

(i) T is an elementary abelian p-group where p | (m+1), so that ∆ 6 Γ.
In particular, Γ/∆ is an H-invariant subgroup of Tm+1/∆, which is
proper if m > 2

(ii) Either T is uniquely divisible or T is an elementary abelian p-group
with p ∤ (m+ 1). Further, in this case, Tm+1 = Γ⊕∆ and Γ has no
proper, non-trivial H-invariant subgroup.

Proof. (a) First note that, for n ∈ N, both the image nT and the kernel {t ∈
T | nt = 0} of the map t 7→ nt are characteristic subgroups of T .

If T is not a divisible group, then there exist n ∈ N and a ∈ T such
that a /∈ nT . Thus nT 6= T , and hence, since T is characteristically simple,
nT = 0. In particular, T contains a non-zero element of finite order, and
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hence T also contains an element of order p for some prime p. Since T
is abelian, the set Y = {t ∈ T | pt = 0} is a non-trivial characteristic
subgroup, and so Y = T ; that is, T is an elementary abelian p-group and
it can be regarded as an Fp-vector space.

Hence we may assume that T is a non-trivial divisible group. That is,
nT = T for all n ∈ N, but also, as T is characteristically simple, {t ∈ T |
nt = 0} = {0} for all n ∈ N. Hence T is uniquely divisible. In this case,
T can be viewed as a Q-vector space, as explained before the statement of
this lemma.

(b) By part (a), T can be considered as a vector space over some field F. If
a, b ∈ T \ {0}, then, by extending the sets {a} and {b} into F-bases, we can
construct an F-linear transformation that takes a to b.

(c) The definition of ∆ and Γ implies that they are H-invariant, and also that,
if T is an elementary abelian p-group such that p divides m+1, then ∆ < Γ,
and so Γ/∆ is a proper H-invariant subgroup of Tm+1/∆.

Assume now that either T is uniquely divisible or T is a p-group with
p ∤ (m + 1). Then Tm+1 = ∆ ⊕ Γ where the decomposition is into the
direct sum of H-modules. It suffices to show that, if a = (a0, . . . , am) is
a non-trivial element of Γ, then the smallest H-invariant subgroup X that
contains a is equal to Γ. The non-zero element a of Γ cannot be of the
form (b, . . . , b) for b ∈ T \ {0}, because (m+ 1)b 6= 0 whether T is uniquely
divisible or T is a p-group with p ∤ (m+1). In particular there exist distinct
i, j in {0, . . . ,m} such that ai 6= aj . Applying an element π in Sm+1, we may
assume without loss of generality that a0 6= a1. Applying the transposition
(0, 1) ∈ Sm+1, we have that (a1, a0, a2, . . . , am) ∈ X , and so

(a0, a1, a2, . . . , am)− (a1, a0, a2, . . . , am) = (a0 − a1, a1 − a0, 0, . . . , 0) ∈ X.

Hence there is a non-zero element a ∈ T such that (a,−a, 0, . . . , 0) ∈ X .
By part (b), Aut(T ) is transitive on non-zero elements of T and hence
(a,−a, 0, . . . , 0) ∈ X for all a ∈ T . As Sm+1 is transitive on pairs of indices
i, j ∈ {0, . . . ,m} with i 6= j, this implies that all elements of the form
(0, . . . , 0, a, 0, . . . , 0,−a, 0, . . . , 0) ∈ Tm+1 belong to X , but these elements
generate Γ, and so X = Γ, as required.

�

Non-abelian characteristically simple groups are harder to describe. A direct
product of pairwise isomorphic non-abelian simple groups is characteristically sim-
ple. Every finite characteristically simple group is of this form, but in the infinite
case this is not true; the first example of a characteristically simple group not of
this form was published by McLain [58] in 1954, see also Robinson [79, (12.1.9)].

Now we work towards the main result of this section, the classification of prim-
itive or quasiprimitive diagonal groups. First we do the case where T is abelian.

Lemma 6.2. Let G be a permutation group on a set Ω and let M be an abelian
regular normal subgroup of G. If ω ∈ Ω, then G = M ⋊ Gω and the following are
equivalent:

(a) G is primitive;
(b) G is quasiprimitive;
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(c) M has no proper non-trivial subgroup which is invariant under conjugation
by elements of Gω.

Proof. The product decomposition G = MGω follows from the transitivity of M ,
while M ∩ Gω = 1 follows from the regularity of M . Hence G = M ⋊ Gω. As-
sertion (a) clearly implies assertion (b). The fact that (b) implies (c) follows
from [71, Theorem 3.12(ii)] by noting that M , being abelian, has no non-trivial
inner automorphisms. Finally, that (c) implies (a) follows directly from [71, Theo-
rem 3.12(ii)]. �

To handle the case where T is non-abelian, we need the following definition and
lemma.

A group X is said to be perfect if X ′ = X , where X ′ denotes the commutator
subgroup. The following lemma is Lemma 2.3 in [69], where the proof can be found.
For X = X1 × · · · ×Xk a direct product of groups and S ⊆ {1, . . . , k}, we denote
by πS the projection from X onto

∏
i∈S Xi.

Lemma 6.3. Let k be a positive integer, let X1, . . . , Xk be groups, and suppose,
for i ∈ {1, . . . , k}, that Ni is a perfect subgroup of Xi. Let X = X1 × · · · × Xk

and let K be a subgroup of X such that for all i, j with 1 6 i < j 6 k, we have
Ni ×Nj 6 π{i,j}(K). Then N1 × · · · ×Nk 6 K.

Now we are ready to prove Theorem 1.6. In this proof, G denotes the group
D(T,m) with m > 2. As defined earlier in this section, we let H = A × S, where
A = Aut(T ) and S = Sm+1. Various properties of diagonal groups whose proofs
are straightforward are used without further comment.

Proof of Theorem 1.6. We prove (a) ⇒ (b) ⇒ (c) ⇒ (a).

(a)⇒(b) Clear.
(b)⇒(c) We show that T is characteristically simple by proving the contrapositive.

Suppose that N is a non-trivial proper characteristic subgroup of T . Then
Nm+1 is a normal subgroup of G, as is readily checked. We claim that the
orbit of the point [1, 1, . . . , 1] ∈ Ω under Nm+1 is Nm. We have to check
that this set is fixed by right multiplication by Nm (this is clear, and it
is also clear that it is a single orbit), and that left multiplication of every
coordinate by a fixed element of N fixes Nm (this is also clear). So D(T,m)
has an intransitive normal subgroup, and is not quasiprimitive.

If T is abelian, then it is either an elementary abelian p-group or uniquely
divisible. In the former case, if p | (m+1), the subgroup Γ from Lemma 6.1
acts intransitively on Ω, and is normalised by H ; so G is not quasiprimitive,
by Lemma 6.2. (The image of [0, . . . , 0] under the element (t0, . . . , tm) ∈ Γ is
[t1− t0, t2− t0, . . . , tm− t0], which has coordinate sum zero since −mt0 = t0.
So the orbit of Γ consists of m-tuples with coordinate sum zero.)

(c)⇒(a) Assume that T is characteristically simple, and not an elementary abelian
p-group for which p | (m+ 1).

If T is abelian, then it is either uniquely divisible or an elementary abelian
p-group with p ∤ (m+1). Then Lemma 6.1(c) applies; Tm+1 = Γ⊕∆, where
∆ is the kernel of the action of Tm+1 on Ω, and Γ contains no proper non-
trivial H-invariant subgroup; so by Lemma 6.2, G is primitive.
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So we may suppose that T is non-abelian and characteristically simple.
Then Z(T ) = 1, and so Tm+1 acts faithfully on Ω, and its subgroup R = Tm

(the set of elements of Tm+1 of the form (1, t1, . . . , tm)) acts regularly.
Let L = {(t0, 1, . . . , 1) | t0 ∈ T }. Put N = Tm+1. Then RL = LR =

N ∼= L × R. We identify L with T0 and R with T1 × · · · × Tm. Then N is
normal in G, and G = NH .

Let ω = [1, . . . , 1] ∈ Ω be fixed. Then Gω = H and Nω = I, where I is
the subgroup of A consisting of inner automorphisms of T .

To show that G is primitive on Ω, we show that Gω is a maximal subgroup
of G. So let X be a subgroup of G that properly contains Gω . We will show
that X = G.

Since S 6 X , we have that X = (X ∩ (NA))S. Similarly, as NωA 6

X ∩ (NA), we find that X ∩ (NA) = (X ∩N)A. So X = (X ∩N)(AS) =
(X ∩N)Gω. Then, since Gω is a proper subgroup of X and Gω ∩N = Nω,
it follows that X ∩N properly contains Nω. Set X0 = X ∩N . Thus there
exist some pair (i, j) of distinct indices and an element (u0, u1, . . . , um) inX0

such that ui 6= uj. Since (u
−1
i , . . . , u−1

i ) ∈ X0, it follows that there exists an
element (t0, t1, . . . , tm) ∈ X0 such that ti = 1 and tj 6= 1. Since S ∼= Sm+1

normalises NωA and permutes the direct factors of N = T0 × T1 × · · · × Tm
naturally, we may assume without loss of generality that i = 0 and j = 1,
and hence that there exists an element (1, t1, . . . , tm) ∈ X0 with t1 6= 1;
that is, T1∩π0,1(X0) 6= 1, where π0,1 is the projection from N onto T0×T1.

If ψ ∈ A, then ψ normalises X0 and acts coordinatewise on Tm+1; so

(1, tψ1 , . . . , t
ψ
m) ∈ X0, so that tψ1 ∈ T1 ∩ π0,1(X0). Now, {tψ1 | ψ ∈ A}

generates a characteristic subgroup of T1. Since T1 is characteristically
simple, T1 6 π0,1(X0). A similar argument shows that T0 6 π0,1(X0).
Hence T0 × T1 = π0,1(X0). Since the group S ∼= Sm+1 acts 2-transitively
on the direct factors of N , and since S normalises X0 (as S < Gω < X),
we obtain, for all distinct i, j ∈ {1, . . . ,m}, that πi,j(X0) = Ti × Tj (where
πi,j is the projection onto Ti × Tj).

Since the Ti are non-abelian characteristically simple groups, they are
perfect. Therefore Lemma 6.3 implies that X0 = N , and hence X =
(X0A)S = G. Thus Gω is a maximal subgroup of G, and G is primitive, as
required.

�

In the case m = 1, diagonal groups behave a little differently. If T is abelian,
then the diagonal group is simply the holomorph of T , which is primitive (and hence
quasiprimitive) if and only if T is characteristically simple. The theorem is true as
stated if T is non-abelian, in which case the diagonal group is the permutation group
on T generated by left and right multiplication, inversion, and automorphisms of T .

7. The diagonal graph

The diagonal graph is a graph which stands in a similar relation to the diagonal
semilattice as the Hamming graph does to the Cartesian lattice. In this section,
we define it, show that apart from a few small cases its automorphism group is
the diagonal group, and investigate some of its properties, including its connection
with the permutation group property of synchronization.
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We believe that this is an interesting class of graphs, worthy of study by algebraic
graph theorists. The graph ΓD(T,m) has appeared in some cases: when m = 2 it
is the Latin-square graph associated with the Cayley table of T , and when T = C2

it is the folded cube, a distance-transitive graph.

7.1. Diagonal graph and diagonal semilattice. In this subsection we define
the diagonal graph ΓD(T,m) associated with a diagonal semilattice D(T,m). We
show that, except for five small cases (four of which we already met in the context
of Latin-square graphs in Section 2.4), the diagonal semilattice and diagonal graph
determine each other, and so they have the same automorphism group, namely
D(T,m).

Let Ω be the underlying set of a diagonal semilattice D(T,m), for m > 2 and
for a not necessarily finite group T . Let Q0, . . . , Qm be the minimal partitions of
the semilattice (as in Section 5.1). We define the diagonal graph as follows. The
vertex set is Ω; two vertices are joined if they lie in the same part of Qi for some i
with 0 6 i 6 m. Since parts of distinct Qj , Qj′ intersect in at most one point, the
value of i is unique. Clearly the graph is regular with valency (m+ 1)(|T | − 1) (if
T is finite).

We represent the vertex set by Tm, with m-tuples in square brackets. Then
[t1, . . . , tm] is joined to all vertices obtained by changing one of the coordinates,
and to all vertices [xt1, . . . , xtm] for x ∈ T , x 6= 1. We say that the adjacency of
two vertices differing in the ith coordinate is of type i, and that of two vertices
differing by a constant left factor is of type 0.

The semilattice clearly determines the graph. So, in particular, the group
D(T,m) acts as a group of graph automorphisms.

If we discard one of the partitions Qi, the remaining partitions form the minimal
partitions in a Cartesian lattice; so the corresponding edges (those of all types other
than i) form a Hamming graph (Section 3.2). So the diagonal graph is the edge-
union of m+1 Hamming graphs Ham(T,m) on the same set of vertices. Moreover,
two vertices lying in a part of Qi lie at maximal distance m in the Hamming graph
obtained by removing Qi.

Theorem 7.1. If (T,m) is not (C2, 2), (C3, 2), (C4, 2), (C2 × C2, 2), or (C2, 3),
then the diagonal graph determines uniquely the diagonal semilattice.

Proof. We handled the case m = 2 in Proposition 2.4 and the following comments,
so we can assume that m > 3.

The assumption that m > 3 has as a consequence that the parts of the partitions
Qi are the maximal cliques of the graph. For clearly they are cliques. Since any
clique of size 2 or 3 is contained in a Hamming graph, we see that any clique of size
greater than 1 is contained in a maximal clique, which has this form; and it is the
unique maximal clique containing the given clique. (See the discussion of cliques in
Hamming graphs in the proof of Theorem 3.4.)

So all the parts of the partitions Qi are determined by the graph; we need to
show how to decide when two cliques are parts of the same partition. We call each
maximal clique a line; we say it is an i-line, or has type i, if it is a part of Qi. (So
an i-line is a maximal set any two of whose vertices are type-i adjacent.) We have
to show that the partition of lines into types is determined by the graph structure.
This involves a closer study of the graph.
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Since the graph admits D(T,m), which induces the symmetric group Sm+1 on
the set of types of line, we can assume (for example) that if we have three types
involved in an argument, they are types 1, 2 and 3.

Call lines L and M adjacent if they are disjoint but there are vertices x ∈ L and
y ∈M which are adjacent. Now the following holds:

Let L and M be two lines.
• If L and M are adjacent i-lines, then every vertex in L is
adjacent to a vertex in M .

• If L is an i-line and M a j-line adjacent to L, with i 6= j, then
there are at most two vertices in L adjacent to a vertex in M ,
and exactly one such vertex if m > 3.

For suppose that two lines L and M are adjacent, and suppose first that they
have the same type, say type 1, and that x ∈ L and y ∈M are on a line of type 2.
Then L = {[∗, a2, a3, . . . , am]} and M = {[∗, b2, b3, . . . , bm]}, where ∗ denotes an
arbitrary element of T . We have a2 6= b2 but ai = bi for i = 3, . . . ,m. The common
neighbours on the two lines are obtained by taking the entries ∗ to be equal in the
two lines. (The conditions show that there cannot be an adjacency of type i 6= 2
between them.)

Now suppose that L has type 1 and M has type 2, with a line of type 3 join-
ing vertices on these lines. Then we have L = {[∗, a2, a3, . . . , am]} and M =
{[b1, ∗, b3, . . . , bm]}, where a3 6= b3 but ai = bi for i > 3; the adjacent vertices
are obtained by putting ∗ = b1 in L and ∗ = a2 in M . If m > 3, there is no
adjacency of any other type between the lines.

If m = 3, things are a little different. There is one type 3 adjacency between
the lines L = {[∗, a2, a3]} and M = {[b1, ∗, b3]} with a3 6= b3, namely [b1, a2, a3]
is adjacent to [b1, a2, b3]. There is also one type-0 adjacency, corresponding to
multiplying L on the left by b3a

−1
3 : this makes [x, a2, a3] adjacent to [b1, y, b3] if

and only if b3a
−1
3 x = b1 and b3a

−1
3 a2 = y, determining x and y uniquely.

So we can split adjacency of lines into two kinds: the first kind when the edges
between the two lines form a perfect matching (so there are |T | such edges); the
second kind where there are at most two such edges (and, if m > 3, exactly one).
Now two adjacent lines have the same type if and only if the adjacency is of the
first kind. So, if either m > 3 or |T | > 2, the two kinds of adjacency are determined
by the graph.

Make a new graph whose vertices are the lines, two lines adjacent if their adja-
cency in the preceding sense is of the first kind. Then lines in the same connected
component of this graph have the same type. The converse is also true, as can be
seen within a Hamming subgraph of the diagonal graph.

Thus the partition of lines into types is indeed determined by the graph structure,
and is preserved by automorphisms of the graph.

Finally we have to consider the case where m = 3 and T = C2. In general, for
T = C2, the Hamming graph is the m-dimensional cube, and has a unique vertex
at distance m from any given vertex; in the diagonal graph, these pairs of antipodal
vertices are joined. This is the graph known as the folded cube (see [20, p. 264]).
The arguments given earlier apply ifm > 4; but, ifm = 3, the graph is the complete
bipartite graph K4,4, and any two disjoint edges are contained in a 4-cycle. �
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Corollary 7.2. Except for the cases (T,m) = (C2, 2), (C3, 2), (C2 × C2, 2), and
(C2, 3), the diagonal semilattice D(T,m) and the diagonal graph ΓD(T,m) have the
same automorphism group, namely the diagonal group D(T,m).

Proof. This follows from Theorem 7.1 and the fact that ΓD(C4, 2) is the Shrikhande
graph, whose automorphism group is D(C4, 2): see Section 2.4. �

7.2. Properties of finite diagonal graphs. We have seen some graph-theoretic
properties of ΓD(T,m) above. In this subsection we assume that T is finite and
m > 2, though we often have to exclude the case m = |T | = 2 (where, as we have
seen, the diagonal graph is the complete graph K4).

The clique number ω(Γ) of a graph Γ is the number of vertices in its largest
clique; the clique cover number θ(Γ) is the smallest number of cliques whose union
contains every vertex; and the chromatic number χ(Γ) is the smallest number of
colours required to colour the vertices so that adjacent vertices receive different
colours.

The following properties are consequences of Section 7.1, especially the proof of
Theorem 7.1. We give brief explanations or pointers to each claim.

• There are |T |m vertices, and the valency is (m+ 1)(|T | − 1). (The number
of vertices is clear; each point v lies in a unique part of size |T | in each of
the m+1 minimal partitions of the diagonal semlattice. Each of these parts
is a maximal clique, the parts pairwise intersect only in v, and the union of
the parts contains all the neighbours of v.)

• Except for the case m = |T | = 2, the clique number is |T |, and the clique
cover number is |T |m−1. (The parts of each minimal partition carry maximal
cliques, and thus each minimal partition realises a minimal-size partition of
the vertex set into cliques.)

• ΓD(T,m) is isomorphic to ΓD(T
′,m′) if and only if m = m′ and T ∼= T ′.

(The graph is constructed from the semilattice; and if m > 2, or m = 2 and
|T | > 4, the semilattice is recovered from the graph as in Theorem 7.1; for
the remaining cases, see the discussion after Proposition 2.4.)

Distances and diameter can be calculated as follows. We define two sorts of
adjacency: (A1) is i-adjacency for i 6= 0, while (A2) is 0-adjacency.

Distances in ΓD(T,m). We observe first that, in any shortest path, adjacencies of
fixed type occur at most once. This is because different factors of Tm+1 commute,
so we can group those in each factor together.

We also note that distances cannot exceed m, since any two vertices are joined
by a path of length at mostm using only edges of sort (A1) (which form a Hamming
graph). So a path of smallest length is contained within a Hamming graph.

Hence, for any two vertices t = [t1, . . . , tm] and u = [u1, . . . , um], we compute
the distance in the graph by the following procedure:

(D1) Let d1 = d1(t, u) be the Hamming distance between the vertices [t1, . . . , tm]
and [u1, . . . , um]. (This is the length of the shortest path not using a 0-
adjacency.)

(D2) Calculate the quotients uit
−1
i for i = 1, . . . ,m. Let ℓ be the maximum

number of times that a non-identity element of T occurs as one of these
quotients, and set d2 = m − ℓ + 1. (We can apply left multiplication by
this common quotient to find a vertex at distance one from t; then use
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right multiplication by m − ℓ appropriate elements to make the remaining
elements agree. This is the length of the shortest path using a 0-adjacency.)

(D3) Now the graph distance d(u, v) = min{d1, d2}.

Diameter of ΓD(T,m). An easy argument shows that the diameter of the graph is
m+1−⌈(m+1)/|T |⌉ which is at most m, with equality if and only if |T | > m+1.
The bound m also follows directly from the fact that, in the previous procedure,
both d1 and d2 are at most m.

If |T | > m+ 1, let 1, t1, t2, . . . , tm be pairwise distinct elements of T . It is easily
checked that d([1, . . . , 1], [t1, . . . , tm]) = m. For clearly d1 = m; and for d2 we note
that all the ratios are distinct so l = 1.

Chromatic number. This has been investigated in two special cases: the casem = 2
(Latin-square graphs) in [40], and the case where T is a non-abelian finite simple
group in [17] in connection with synchronization. We have not been able to compute
the chromatic number in all cases; this section describes what we have been able
to prove.

The argument in [17] uses the truth of the Hall–Paige conjecture by Wilcox [93],
Evans [36] and Bray et al. [17], which we briefly discuss. (See [17] for the history
of the proof of this conjecture.)

Definition 7.3. A complete mapping on a group G is a bijection φ : G → G for
which the map ψ : G → G given by ψ(x) = xφ(x) is also a bijection. The map ψ
is the orthomorphism associated with φ.

In a Latin square, a transversal is a set of cells, one in each row, one in each
column, and one containing each letter; an orthogonal mate is a partition of the
cells into transversals. It is well known (see also [31, Theorems 1.4.1 and 1.4.2])
that the following three conditions on a finite group G are equivalent. (The original
proof is in [65, Theorem 7].)

• G has a complete mapping;
• the Cayley table of G has a transversal;
• the Cayley table of G has an orthogonal mate.

The Hall–Paige conjecture [42] (now, as noted, a theorem), asserts the following:

Theorem 7.4. The finite group G has a complete mapping if and only if either G
has odd order or the Sylow 2-subgroups of G are non-cyclic.

Now let T be a finite group and let m be an integer greater than 1, and consider
the diagonal graph ΓD(T,m). The chromatic number of a graph cannot be smaller
than its clique number. We saw at the start of this section that the clique number
is |T | unless m = 2 and |T | = 2.

• Suppose first that m is odd. We give the vertex [t1, . . . , tm] the colour
u1u2 · · ·um in T , where ui = ti if i is odd and ui = t−1

i if i is even. If two
vertices lie in a part of Qi with i > 0, they differ only in the ith coordinate,
and clearly their colours differ. Suppose that [t1, . . . , tm] and [s1, . . . , sm] lie
in the same part of Q0, so that si = xti for i = 1, . . . ,m, where x 6= 1. Put
vi = si if i is odd and vi = s−1

i if i is even. Then vivi+1 = uiui+1 whenever
i is even, so the colour of the second vertex is

v1v2 · · · vm = v1u2 · · ·um = xu1u2 · · ·um,

which is different from that of the first vertex since x 6= 1.
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• Now suppose that m is even and assume in this case that the Sylow 2-
subgroups of T are are trivial or non-cyclic. Then, by Theorem 7.4, T has
a complete mapping φ. Let ψ be the corresponding orthomorphism. We
define the colour of the vertex [t1, . . . , tm] to be

t−1
1 t2t

−1
3 t4 · · · t

−1
m−3tm−2t

−1
m−1ψ(tm).

An argument similar to but a little more elaborate than in the other case
shows that this is a proper colouring. We refer to [17] for details.

With a little more work we get the following theorem, a contribution to the
general question concerning the chromatic number of the diagonal graphs. Let
χ(T,m) denote the chromatic number of ΓD(T,m).

Theorem 7.5. (a) If m is odd, or if |T | is odd, or if the Sylow 2-subgroups of
T are non-cyclic, then χ(T,m) = |T |.

(b) If m is even, then χ(T,m) 6 χ(T, 2).

All cases in (a) were settled above; we turn to (b).
A graph homomorphism from Γ to ∆ is a map from the vertex set of Γ to that of

∆ which maps edges to edges. A proper r-colouring of a graph Γ is a homomorphism
from Γ to the complete graph Kr. Since the composition of homomorphisms is a
homomorphism, we see that if there is a homomorphism from Γ to ∆ then there is
a colouring of Γ with χ(∆) colours, so χ(Γ) 6 χ(∆).

Theorem 7.6. For any m > 3 and non-trivial finite group T , there is a homomor-
phism from ΓD(T,m) to ΓD(T,m− 2).

Proof. We define a map by mapping a vertex [t1, t2, . . . , tm] of ΓD(T,m) to the ver-
tex [t1t

−1
2 t3, t4, . . . , tm] of ΓD(T,m−2), and show that this map is a homomorphism.

If two vertices of ΓD(T,m) agree in all but position j, then their images agree in all
but position 1 (if j ≤ 3) or j − 2 (if j > 3). Suppose that ti = xsi for i = 1, . . . ,m.
Then t1t

−1
2 t3 = xs1s

−1
2 s3, so the images of [t1, . . . , tm] and [s1, . . . , sm] are joined.

This completes the proof. �

This also completes the proof of Theorem 7.5.

The paper [40] reports new results on the chromatic number of a Latin-square
graph, in particular, if |T | > 3 then χ(T, 2) 6 3|T |/2. They also report a conjecture
of Cavenagh, which claims that χ(T, 2) 6 |T |+ 2, and prove this conjecture in the
case where T is abelian.

Payan [67] showed that graphs in a class he called “cube-like” cannot have chro-
matic number 3. Now ΓD(C2, 2), which is the complete graph K4, has chromatic
number 4; and the folded cubes ΓD(C2,m) are “cube-like” in Payan’s sense. It
follows from Theorems 7.5 and 7.6 that the chromatic number of the folded cube
ΓD(C2,m) is 2 if m is odd and 4 if m is even. So the bound in Theorem 7.5(b) is
attained if T ∼= C2.

7.3. Synchronization. A permutation group G on a finite set Ω is said to be
synchronizing if, for any map f : Ω → Ω which is not a permutation, the trans-
formation monoid 〈G, f〉 on Ω generated by G and f contains a map of rank 1
(that is, one which maps Ω to a single point). For the background of this notion in
automata theory, we refer to [2].

The most important tool in the study of synchronizing groups is the following
theorem [2, Corollary 4.5 ]. A graph is trivial if it is complete or null.
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Theorem 7.7. A permutation group G is synchronizing if and only if no non-trivial
G-invariant graph has clique number equal to chromatic number.

From this it immediately follows that a synchronizing group is transitive (if G
is intransitive, take a complete graph on one orbit of G), and primitive (take the
disjoint union of complete graphs on the blocks in a system of imprimitivity for G).
Now, by the O’Nan–Scott theorem (Theorem 1.5), a primitive permutation group
preserves a Cartesian or diagonal semilattice or an affine space, or else is almost
simple.

Theorem 7.8. If a group G preserves a Cartesian decomposition, then it is non-
synchronizing.

This holds because the Hamming graph has clique number equal to chromatic
number. (We saw in the proof of Theorem 3.4 that the clique number of the
Hamming graph is equal to the cardinality of the alphabet. Take the alphabet
A to be an abelian group; also use A for the set of colours, and give the n-tuple
(a1, . . . , an) the colour a1 + · · ·+ an. If two n-tuples are adjacent in the Hamming
graph, they differ in just one coordinate, and so get different colours.)

In [17], it is shown that a primitive diagonal group whose socle contains m + 1
simple factors with m > 1 is non-synchronizing. In fact, considering Theorem 1.6,
the following more general result is valid.

Theorem 7.9. If G preserves a diagonal semilattice D(T,m) with m > 1 and T a
finite group of order greater than 2, then G is non-synchronizing.

Proof. If T is not characteristically simple then Theorem 1.6 implies that G is
imprimitive and so it is non-synchronizing. Suppose that T is characteristically
simple and let Γ be the diagonal graph ΓD(T,m). Since we have excluded the case
|T | = 2, the clique number of Γ is |T |, as we showed in the preceding subsection.
Also, either T is an elementary abelian group of odd order or the Sylow 2-subgroups
of T are non-cyclic. (This is clear unless T is simple, in which case it follows from
Burnside’s Transfer Theorem, see [3, (39.2)].) So, by Theorem 7.5, χ(Γ) = |T |.
Now Theorem 7.7 implies that D(T,m) is non-synchronizing; since G 6 D(T,m),
also G is non-synchronizing. �

Remark 7.10. It follows from the above that a synchronizing permutation group
must be of one of the following types: affine (with the point stabiliser a primitive
linear group); simple diagonal with socle the product of two copies of a non-abelian
simple group; or almost simple. In the first and third cases, some but not all such
groups are synchronizing; in the second case, no synchronizing example is known.

8. Open problems

Here are a few problems that might warrant further investigation.
Form > 3, Theorem 5.5 characterisedm-dimensional special sets of partitions as

minimal partitions in join-semilattices D(T,m) for a group T . However, for m = 2,
such special sets arise from an arbitrary quasigroup T . The automorphism group of
the join-semilattice generated by a 2-dimensional special set is the autoparatopism
group of the quasigroup T and, for |T | > 4, it also coincides with the automorphism
group of the corresponding Latin-square graph (Proposition 2.6).

Since we wrote the first draft of the paper, Michael Kinyon has pointed out to
us that the Paige loops [66] (which were shown by Liebeck [51] to be the only finite
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simple Moufang loops which are not groups) have vertex-primitive autoparatopism
groups.

Problem 8.1. Determine whether there exists a quasigroup T , not isotopic to a
group or a Paige loop, whose autoparatopism group is primitive. This is equivalent
to requiring that the automorphism group of the corresponding Latin-square graph
is vertex-primitive; see Proposition 2.6.

If T is a non-abelian finite simple group and m > 3, then the diagonal group
D(T,m) is a maximal subgroup of the symmetric or alternating group [52]. What
happens in the infinite case?

Problem 8.2. Find a maximal subgroup of Sym(Ω) that contains the diagonal
group D(T,m) if T is an infinite simple group. If Ω is countably infinite, then
by [55, Theorem 1.1], such a maximal subgroup exists. (For a countable set, [30]
describes maximal subgroups that stabilise a Cartesian lattice.)

Problem 8.3. Investigate the chromatic number χ(T,m) of the diagonal graph
ΓD(T,m) if m is even and T has no complete mapping. In particular, either show
that the bound in Theorem 7.5(b) is always attained (as we noted, this is true for
T = C2) or improve this bound.

For the next case where the Hall–Paige conditions fail, namely T = C4, the graph
ΓD(T, 2) is the complement of the Shrikhande graph, and has chromatic number 6;
so, for any even m, the chromatic number of ΓD(T,m) is 4, 5 or 6, and the sequence
of chromatic numbers is non-increasing.

If T is a direct product of m pairwise isomorphic non-abelian simple groups,
with m an integer and m > 1, then D(T,m) preserves a Cartesian lattice by [71,
Lemma 7.10(ii)]. Here T is not necessarily finite, and groups with this property are
called FCR (finitely completely reducible) groups. However there are other infinite
characteristically simple groups, for example the McLain group [58].

Problem 8.4. Determine whether there exist characteristically simple (but not
simple) groups T which are not FCR-groups, and integersm > 1, such that D(T,m)
preserves a Cartesian lattice. It is perhaps the case that D(T,m) does not preserve
a Cartesian lattice for these groups T ; and we ask further whether D(T,m) might
still preserve some kind of structure that has more automorphisms than the diagonal
semilattice.

Problem 8.5. Describe sets of more than m+ 1 partitions of Ω, any m of which
are the minimal elements in a Cartesian lattice.

For m = 2, these are equivalent to sets of mutually orthogonal Latin squares.
For m > 2, any m + 1 of the partitions are the minimal elements in a diagonal

semilattice D(T,m). Examples are known when T is abelian. One such family
is given as follows. Let T be the additive group of a field F of order q, where
q > m+ 1; let F = {a1, a2, . . . , aq}. Then let W = Fm. For i = 1, . . . , q, let Wi be

the subspace spanned by (1, ai, a
2
i , . . . , a

m−1
i ), and let W0 be the subspace spanned

by (0, 0, . . . , 0, 1). The coset partitions of W given by these q + 1 subspaces have
the property that any m of them are the minimal elements in a Cartesian lattice
of dimension m (since any m of the given vectors form a basis of W .) Note the
connection with MDS codes and geometry: the 1-dimensional subspaces are the
points of a normal rational curve in PG(m− 1, F ). See [22].

For which non-abelian groups T do examples with m > 2 exist?
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Problem 8.6. With the hypotheses of Problem 8.5, find a good upper bound for
the number of partitions, in terms of m and T .

We note one trivial bound: the number of such partitions cannot exceed m +
|T | − 1. This is well-known when m = 2 (there cannot be more than |T | − 1
mutually orthogonal Latin squares of order |T |). Now arguing inductively as in the
proof of Proposition 5.6, we see that increasing m by one can increase the number
of partitions by at most one.

Since the first draft of this paper was written, three of the authors and Michael
Kinyon have written a paper [11] addressing (but by no means solving) the last two
problems above.
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[49] L. G. Kovács, Wreath decompositions of finite permutation groups, Bulletin of the Australian

Mathematical Society, 40 (9) (1989), 255–279.

[50] Charles F. Laywine, Gary L. Mullen and Geoff Whittle, D-Dimensional hypercubes and the
Euler and MacNeish conjectures, Monatshefte für Mathematik 119 (1995), 223–238.

[51] Martin W. Liebeck, The classification of finite simple Moufang loops, Math. Proc. Cambridge
Philos. Soc. 102 (1987), 33–47.

[52] M. W. Liebeck, C. E. Praeger and J. Saxl, A classification of the maximal subgroups of the
finite alternating and symmetric groups, J. Algebra 111 (1987), 365–383.

[53] C. Devon Lin, Rahul Mukerjee and Boxin Tang, Construction of orthogonal and nearly or-
thogonal Latin hypercubes, Biometrika 96 (2009), 243–247.

[54] H. D. Macpherson and Peter M. Neumann, Subgroups of infinite symmetric groups, J. London
Math. Soc. (2) 42 (1990), 64–84.

[55] H. D. Macpherson and Cheryl E. Praeger, Maximal subgroups of infinite symmetric groups,
J. London Math. Soc. (2) 42 (1990), 85–92.

[56] B. D. McKay and I. M. Wanless, On the number of Latin squares, Annals of Combinatorics
9 (2005), 335–344.

[57] Brendan D. McKay and Ian M. Wanless, A census of small Latin hypercubes, SIAM Journal
of Discrete Mathematics 22 (2008), 719–736.

[58] D. H. McLain, A characteristically-simple group, Math. Proc. Cambridge Philos. Soc 50

(1954), 641–642.
[59] Mahamendige Jayama Lalani Mendis and Ian M. Wanless, Autoparatopisms of quasigroups

and Latin squares, J. Combinatorial Designs 25 (2017), 51–74.
[60] S. Morteza Mirafzal and Meysam Ziaee, A note on the automorphism group of the Hamming

graph, https://arxiv.org/abs/1901.07784 (accessed 23 July 2020)
[61] Gary L. Mullen and Robert E. Weber, Latin cubes of order 6 5, Discrete Mathematics 32

(1980), 291–297.
[62] J. A. Nelder, The analysis of randomized experiments with orthogonal block structure, I:

Block structure and the null analysis of variance, Proceedings of the Royal Society of London,
Series A 283 (1965), 147–162.

[63] Peter M. Neumann, An enumeration theorem for finite groups, Quart. J. Math. Oxford 20

(1969), 395–401.
[64] Peter M. Neumann, Charles C. Sims and James Wiegold, Counterexamples to a theorem of

Cauchy, J. London Math. Soc. (1) 43 (1968), 234.
[65] L. J. Paige, Complete mappings of finite groups, Pacific J. Math 1 (1951), 111–116.
[66] L. J. Paige, A class of simple Moufang loops, Proc. Amer. Math. Soc. 7 (1956), 471–482.
[67] Charles Payan, On the chromatic number of cube-like graphs, Discrete Math. 103 (1992),

271–277.
[68] K. T. Phelps, Automorphism free Latin square graphs, Discrete Mathematics 31 (1980),

193–200.
[69] Cheryl E. Praeger and Csaba Schneider, Factorisations of characteristically simple groups, J.

Algebra, 255(1) (2002), 198–220.

https://arxiv.org/abs/1901.07784


52 BAILEY, CAMERON, PRAEGER AND SCHNEIDER

[70] Cheryl E. Praeger and Csaba Schneider, The contribution of L. G. Kovács to the theory of
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