583 research outputs found

    AI and OR in management of operations: history and trends

    Get PDF
    The last decade has seen a considerable growth in the use of Artificial Intelligence (AI) for operations management with the aim of finding solutions to problems that are increasing in complexity and scale. This paper begins by setting the context for the survey through a historical perspective of OR and AI. An extensive survey of applications of AI techniques for operations management, covering a total of over 1200 papers published from 1995 to 2004 is then presented. The survey utilizes Elsevier's ScienceDirect database as a source. Hence, the survey may not cover all the relevant journals but includes a sufficiently wide range of publications to make it representative of the research in the field. The papers are categorized into four areas of operations management: (a) design, (b) scheduling, (c) process planning and control and (d) quality, maintenance and fault diagnosis. Each of the four areas is categorized in terms of the AI techniques used: genetic algorithms, case-based reasoning, knowledge-based systems, fuzzy logic and hybrid techniques. The trends over the last decade are identified, discussed with respect to expected trends and directions for future work suggested

    Artificial Intelligence in geospatial analysis: applications of self-organizing maps in the context of geographic information science.

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Geographic Information SystemsThe size and dimensionality of available geospatial repositories increases every day, placing additional pressure on existing analysis tools, as they are expected to extract more knowledge from these databases. Most of these tools were created in a data poor environment and thus rarely address concerns of efficiency, dimensionality and automatic exploration. In addition, traditional statistical techniques present several assumptions that are not realistic in the geospatial data domain. An example of this is the statistical independence between observations required by most classical statistics methods, which conflicts with the well-known spatial dependence that exists in geospatial data. Artificial intelligence and data mining methods constitute an alternative to explore and extract knowledge from geospatial data, which is less assumption dependent. In this thesis, we study the possible adaptation of existing general-purpose data mining tools to geospatial data analysis. The characteristics of geospatial datasets seems to be similar in many ways with other aspatial datasets for which several data mining tools have been used with success in the detection of patterns and relations. It seems, however that GIS-minded analysis and objectives require more than the results provided by these general tools and adaptations to meet the geographical information scientist‟s requirements are needed. Thus, we propose several geospatial applications based on a well-known data mining method, the self-organizing map (SOM), and analyse the adaptations required in each application to fulfil those objectives and needs. Three main fields of GIScience are covered in this thesis: cartographic representation; spatial clustering and knowledge discovery; and location optimization.(...

    Computer-aided design of cellular manufacturing layout.

    Get PDF

    Department of Computer Science Activity 1998-2004

    Get PDF
    This report summarizes much of the research and teaching activity of the Department of Computer Science at Dartmouth College between late 1998 and late 2004. The material for this report was collected as part of the final report for NSF Institutional Infrastructure award EIA-9802068, which funded equipment and technical staff during that six-year period. This equipment and staff supported essentially all of the department\u27s research activity during that period

    Efficient multi-task allocation and path planning for unmanned surface vehicle in support of ocean operations

    Get PDF
    Presently, there is an increasing interest in the deployment of unmanned surface vehicles (USVs) to support complex ocean operations. In order to carry out these missions in a more efficient way, an intelligent hybrid multi-task allocation and path planning algorithm is required and has been proposed in this paper. In terms of the multi-task allocation, a novel algorithm based upon a self-organising map (SOM) has been designed and developed. The main contribution is that an adaptive artificial repulsive force field has been constructed and integrated into the SOM to achieve collision avoidance capability. The new algorithm is able to fast and effectively generate a sequence for executing multiple tasks in a cluttered maritime environment involving numerous obstacles. After generating an optimised task execution sequence, a path planning algorithm based upon fast marching square (FMS) is utilised to calculate the trajectories. Because of the introduction of a safety parameter, the FMS is able to adaptively adjust the dimensional influence of an obstacle and accordingly generate the paths to ensure the safety of the USV. The algorithms have been verified and evaluated through a number of computer based simulations and has been proven to work effectively in both simulated and practical maritime environments

    Object detection and localization: an application inspired by RobotAtFactory using machine learning

    Get PDF
    Mestrado de dupla diplomação com a UTFPR - Universidade Tecnológica Federal do ParanáThe evolution of artificial intelligence and digital cameras has made the transformation of the real world into its digital image version more accessible and widely used. In this way, the analysis of information can be carried out with the use of algorithms. The detection and localization of objects is a crucial task in several applications, such as surveillance, autonomous robotics, intelligent transportation systems, and others. Based on this, this work aims to implement a system that can find objects and estimate their location (distance and angle), through the acquisition and analysis of images. Having as motivation the possible problems that can be introduced in the robotics competition, RobotAtFactory Lite, in future versions. As an example, the obstruction of the path developed through the printed lines, requiring the robot to deviate, and/or the positioning of the boxes in different places of the initial warehouses, being positioned so that the robot does not know its previous location, having to find it somehow. For this, different methods were analyzed, based on machine leraning, for object detection using feature extraction and neural networks, as well as object localization, based on the Pinhole model and triangulation. By compiling these techniques through python programming in the module, based on a Raspberry Pi Model B and a Raspi Cam Rev 1.3, the goal of the work is achieved. Thus, it was possible to find the objects and obtain an estimate of their relative position. In the future, in a possible implementation together with a robot, this data can be used to find objects and perform tasks.A evolução da inteligência artificial e das câmeras digitais, tornou mais acessível e amplamente utilizada a transformação do mundo real, para sua versão em imagem digital. Dessa maneira, a análise das informações pode ser efetuada com a utilização de algoritmos. A deteção e localização de objetos é uma tarefa crucial em diversas aplicações, tais como vigilância, robótica autônoma, sistemas de transporte inteligente, entre outras. Baseado nisso, este trabalho tem como objetivo implementar um sistema que consiga encontrar objetos e estimar sua localização (distância e ângulo), através da aquisição e análise de imagens. Tendo como motivação os possíveis problemas que possam ser introduzidos na competição de robótica, Robot@Factory Lite, em versões futuras. Podendo ser citados como exemplo a obstrução do caminho desenvolvido através das linhas impressas, requerendo que o robô desvie, e/ou o posicionamento das caixas em locais diferentes dos armazéns iniciais, sendo posicionadas de modo que o robô não saiba sua localização prévia, devendo encontra-las de alguma maneira. Para isso, foram analisados diferentes métodos, baseadas em machine leraning, para deteção de objetos utilizando extração de características e redes neurais, bem como a localização de objetos, baseada no modelo de Pinhole e triangulação. Compilando essas técnicas através da programação em python, no módulo, baseado em um Raspberry Pi Model B e um Raspi Cam Rev 1.3, o objetivo do trabalho é alcançado. Assim, foi possível encontrar os objetos e obter uma estimativa da sua posição relativa. Futuramente, em uma possível implementação junta a um robô, esses dados podem ser utilizados para encontrar objetos e executar tarefas

    Proceedings, MSVSCC 2011

    Get PDF
    Proceedings of the 5th Annual Modeling, Simulation & Visualization Student Capstone Conference held on April 14, 2011 at VMASC in Suffolk, Virginia. 186 pp

    Control and Coordination in a Networked Robotic Platform

    Get PDF
    Control and Coordination of the robots has been widely researched area among the swarm robotics. Usually these swarms are involved in accomplishing tasks assigned to them either one after another or concurrently. Most of the times, the tasks assigned may not need the entire population of the swarm but a subset of them. In this project, emphasis has been given to determination of such subsets of robots termed as ”flock” whose size actually depends on the complexity of the task. Once the flock is determined from the swarm, leader and follower robots are determined which accomplish the task in a controlled and cooperative fashion. Although the entire control system,which is determined for collision free and coordinated environment, is stable, the results show that both wireless (bluetooth) and internet (UDP) communication system can introduce some lag which can lead robot trajectories to an unexpected set. The reason for this is each robot and a corresponding computer is considered as a complete robot and communication between the robot and the computer and between the computers was inevitable. These problems could easily be solved by integrating a computer on the robot or just add a wifi transmitter/receiver on the robot. On going down the lane, by introducing smarter robots with different kinds of sensors this project could be extended on a large scale for varied heterogenous and homogenous applications
    corecore