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Control and Co-ordination in a
Networked Robotic Platform.

Abstract:

Control and Coordination of the robots has been widely researched area among

the swarm robotics. Usually these swarms are involved in accomplishing tasks

assigned to them either one after another or concurrently. Most of the times,

the tasks assigned may not need the entire population of the swarm but a

subset of them. In this project, emphasis has been given to determination of

such subsets of robots termed as ”flock” whose size actually depends on the

complexity of the task. Once the flock is determined from the swarm, leader

and follower robots are determined which accomplish the task in a controlled and

cooperative fashion. Although the entire control system,which is determined for

collision free and coordinated environment, is stable, the results show that both

wireless (bluetooth) and internet (UDP) communication system can introduce

some lag which can lead robot trajectories to an unexpected set. The reason

for this is each robot and a corresponding computer is considered as a complete

robot and communication between the robot and the computer and between the

computers was inevitable. These problems could easily be solved by integrating

a computer on the robot or just add a wifi transmitter/receiver on the robot.

On going down the lane, by introducing smarter robots with different kinds of

sensors this project could be extended on a large scale for varied heterogenous

and homogenous applications.
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Chapter 1

Introduction
Swarm robotics is a new approach to the coordination of large numbers of rel-

atively simple robots. The approach takes its inspiration from the system-level

functioning of social insects, which demonstrate three desired characteristics for

multi-robot systems: robustness, flexibility and scalability. Robustness can be

defined as the degree to which a system can still function in the presence of par-

tial failures or other abnormal conditions. Social insects are highly robust. Their

self-organized systems can still work even after losing lots of system components

or changing the environment parameters considerably. Flexibility can be defined

as the capability to adapt to new, different, or changing requirements of the en-

vironment. Flexibility and robustness have partly conflicting definitions. The

difference between two occurs in problem level. When the problem changes, the

system has to be flexible (not robust) enough to switch to a suitable behavior to

solve the new problem. The biological systems have this level of flexibility and

can easily switch their behaviors when problems change. For instance, ants are

so flexible that they can solve foraging, prey retrieval and chain formation prob-

lems with the same base self-organized mechanism. Scalability can be defined

as the ability to expand a self-organized mechanism to support larger or smaller

numbers of individuals without impacting performance considerably. Although

there is a range in which the swarm performs in acceptable performance levels,

this range is preferred to be as large as possible.[95]

Swarm robotics is an approach to the coordination of large number of robots.

This is inspired from nature and especially from insects and their colonies. These

insects demonstrate three highly desirable characteristics for swarm robotic sys-
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tems. They are robustness,flexibility and scalability. Robustness n. able to

withstand or overcome adverse conditions

1.1 Classification And Literature Review[95]

There are several axes on which the swarm robotics could be classified. With

extensive literature survey I concluded on several axes on which swarm robotics

could be classified. They could be broadly classified into four sections.

1. Modeling

2. Communication

3. Research

4. Behavioral Design

Each category is explained briefly along with supported research and litera-

ture.

1.1.1 Modeling

Modeling is a method used in many research fields to better understand the in-

ternals of the system that is investigated. But as we will discuss in the following

paragraphs, modeling has some more advantages for swarm-robotics compared

to other fields.

The existence of possible risks for the robots and the limited power of the

robots require a human observer to follow the experiments and do some house

keeping works periodically. The time spent on these experiments and possible

risk of losing the robots even if a human observer exists become a bottleneck

when several experiments are needed to validate the results of the studies. To
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eliminate these problems, it is safer and easier to model the experiments and

simulate them on computers.

Another importance of modeling for swarm robotic studies appears when the

scalability of the experiments are tried to be tested. Most of the time, scalability

requires testing the control algorithms on more than hundreds of robots. But

the cost of an individual robot prohibits testing of the experiments on more

than a few tens of robots within the current state of the robot technology. Since

scalability is an important aim of swarm-robot systems, it seems that the models

will be needed until much more cheaper robots are manufactured.

Despite having such advantages of modeling, there is one more point that

needs to be considered by swarm robotic researchers. Although models may be

valuable for understanding the internals of the system being worked on, there

will always be a difference between simulation results and real world results.

Although this difference is tried to be minimized by simulator developers, com-

plex dynamics of interactions between the robots and unpredictable noise in the

sensors and the actuators of the robots makes simulations impossible to be fully

realistic.

Modeling could again be categorized into four types: sensor-based, micro-

scopic, macroscopic and cellular automata modeling. Although adding cellular

automata modeling as another type of modeling method is open to discussion

and we might consider it as a special type of microscopic modeling method, we

chose to add it as another type of modeling method because of the following

reasons.

First, it is used as a modeling tool for several self-organized systems in bi-

ology [9], which shows that it is an established modeling method for biologists

as well as computer scientists. Second, cellular automata is a simple and ma-

ture field, which has lots of analytical, tools [34] and is strongly connected to
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dynamical systems theory [34]. These properties of cellular automata make it a

powerful modeling tool for swarm robotic studies.

1.1.1(a) Sensor-Based Modeling

Sensor-based modeling is a modeling method, which uses the models of sensors

and the actuators of the robots and objects in the environment as the main

components of the modeled system. After modeling these main components, the

interactions of the robots with the environment and the interactions between

the robots are modeled. This modeling method is the mostly used and the oldest

method for modeling robotic experiments.

The key in this approach is to make interactions discussed above as realistic

and as simple as possible since the complexity of these interactions becomes

very important when the scalability of the experiments are tried to be tested.

They also need to be realistic to be useful for swarm robotic systems. These two

aims are contradictory and present a realism-simplicity dilemma in sensor-based

modeling.

The examples of this approach can be found in [4] and [58]. The authors

physically modeled the environment using an open-source physics engine and

run the experiments in parallel over multiple computers connected via a network

to overcome the increased complexity of the simulations. Some other examples

using this approach are [66] and [65].

1.1.1(b) Microscopic Modeling

Microscopic models robotic experiments by modeling each robot and their in-

teractions mathematically. In this method, behaviors of robots are defined as

states and the transition between these states are bound to internal events inside

robot and external events in the environment.
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The main difference between microscopic models in this section and macro-

scopic models in the following section is the granularity of the models developed.

While microscopic approach models the experiments by modeling each robot,

the macroscopic approach models the whole behavior of the system directly.

As a special case of microscopic and macroscopic modeling, probabilistic

microscopic and probabilistic macroscopic models are used in swarm robotics.

By assigning probabilities to transitions between robot actions (for microscopic

models) or transitions between system states (for macroscopic models), the sys-

tem behavior and the noise in the environment are easily integrated into these

probabilistic models.

In probabilistic microscopic models [46], [45], [36], a time unit is defined

based on a primitive event 1 to be able to advance the model at each model

step. After specifying this time unit, the probability of each state transition

is computed with systematic experiments performed with real robots. In other

words, the probabilities of all events are computed per time unit of the model.

After finding these state transition probabilities, the mathematical model is run

for each robot by generating random numbers between 0 and 1 for each possible

event transition of the selected robot and comparing these numbers with state

transition probabilities. If some of these numbers are lower than the predefined

transition probabilities of the associated events, those events are assumed to

occur and the state of that robot is changed.

Jeanson et al., [36] studied aggregation strategies in cockroaches. They

tried to prove that cockroaches perform the global aggregation from local in-

teractions. To do this they measured the important system parameters from

the experiments with cockroach larvae like probability of stopping in an ag-

gregate or probability of starting to move. A numerical model of behaviors of

cockroaches is created from these measurements and tried to be validated by
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numerical simulations. Although their numerical model reveals a quantitative

disagreement with real experiments, they claimed that it also offers strong evi-

dence that aggregation can be explained in terms of local interactions between

individuals.

1.1.1(c) Macroscopic Modeling

Another kind of mathematical modeling method of robotic experiments is macro-

scopic modeling. In macroscopic modeling, the system behavior is defined with

difference equations and each of the system states (variables of difference equa-

tions) represents the average number of robots in a particular state at a certain

time step.

While the system need to be iterated for each robot in microscopic models 2,

macroscopic models are solved only once to obtain the steady state of the model.

Although this feature allows great speed- ups for macroscopic models when com-

pared to microscopic models, microscopic models allow catching the fluctuations

in the experiments. In other words, while macroscopic models allows obtaining

a rough global behavior of the robotic system quickly, microscopic models allow

to obtain a more realistic global behavior slowly.

Similar to microscopic models, probabilistic version of macroscopic models

[46], [42] are used in swarm robotic studies to handle noise in a simple way.

Martinoli et al., [46] applied macroscopic modeling to stick pulling problem. The

authors presented the model incrementally starting from a basic model, which

only contains Search and Obstacle-Avoidance states up to the most complex

model, which contains all states in the robot controller. For each stage, a

difference equation (DE) is developed and the steady state of the DE system

is analyzed to obtain average number of robots in each state at the end of

the experiments. Comparisons of microscopic, macroscopic and sensor-based
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models are also presented and the limitations of macroscopic modeling for stick

pulling problem are described.

Another distinguished feature of this study is the definition and tracking

of system-wide guarantees for self-organizing emergent systems. The authors

developed an equation-free macroscopic model and system- wide guarantees for

an automated guided vehicle warehouse transportation system. They validated

the results of the model by comparing the results of the accelerated equation-

free macroscopic model with the non-accelerated one. Although they found that

some accuracy are lost which is normal for all macroscopic models, the model

managed to find the steady state successfully.

Trianni et al., [63] tried to find macroscopic models of aggregation and chain

formation problems. But the results of macroscopic model did not fit to the

results obtained from sensor-based simulations. They thought that the possible

problems are the lack of spatial information in the mathematical model, carrying

out the simulation in discrete time and the lack of interaction dynamics in the

model. At the end of their experiments, they decided to make their sensor-

based simulations more realistic using physical sensor based modeling instead

of improving their macroscopic model in their future studies.

1.1.1(d) Cellular Automata Modeling

Cellular automata (CA) is among the simplest mathematical models of complex

systems [34]. The CA models contain discrete lattice of cells in one or more

dimensions where each cell in the lattice has finite number of possible states.

Each cell interacts only with the cells that are in its local neighborhood and

the system dynamics are characterized by the local rules executed locally on the

cells in discrete time steps. Several CA models are developed for the natural

phenomena [17], [12] around us. In addition to using these models as inspiration
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sources of swarm robotic studies, CA can be used as a modeling tool for CA

based experiments. The studies of Shen et al., [56], [57] is an example of this

type of studies. The details of these studies are summarized in the latter parts

of this section.

1.1.2 Communication

I have used the same classification categories Cao et al., [10] used in their survey

of cooperative robotics for classifying the swarm robotics studies based on the

communication mechanisms used by the swarms.

The first category (interaction via sensing) is the simplest and the most

limited type of communication between the robots. This type of communication

requires the robots to distinguish between other robots and the environment

objects. The details are discussed in the corresponding section below.

In the second category (interaction via environment), the robots used the

environment as a communication medium. There are well known examples of

this communication type in biology like communication via pheromones in ants

[9].

The ants communicate with each other through chemicals called pheromones.

For example, when an ant finds food, it will leave a trail along the ground on

its way back to home, which in a short time other ants will follow. When they

return home they will reinforce the trail, bringing other ants, until the food is

exhausted. The slow dissipation property of the pheromone trials will allow the

ants to find new food sources when the older ones are exhausted.

Although the communication scheme is simple in this approach, the physical

implementation of it is not so easy because of the difficulty of creating special

environments allowing communication between agents.

Most of the studies using this approach uses only simulation of this commu-
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nication scheme with the help of a short range wireless communication mech-

anism (e.g. RF or Infrared) [54], [55], [56], [57]. Because of this, I decided

not to create a separate section for interaction via environment method and

described the simulation attempts of this communication method in interaction

via communication section.

The third category (interaction via communication) involves explicit com-

munication with other robots by broadcast messages. Although Cao et al., [10]

included the communication via directed messages (using robot identification

numbers) in this category, we did not prefer this since swarm robotics prefers

to use the communication in a limited way.

Following two sections describe the studies using interaction via sensing and

interaction via communication methods subsequently.

1.1.2(a) Interaction via Sensing

The discrimination of interaction via sensing from interaction via communica-

tion can be difficult time to time. The guideline to do this discrimination is to

look at the aim of the information sender side. If the sender in the interaction

aims to give information to other robots intentionally then that study is catego-

rized as interaction via communication instead of interaction via sensing. So if

two robots interacting to pull a stick and sensing each others action in a limited

way, this work is considered as interaction via sensing. And if a robot broadcasts

information packages or switches on/off a light around them to show their state,

these studies are considered to be the type of interaction via communication.

Interaction via sensing requires the discrimination of other robots from the

environment objects, also called as the kin recognition. Kin recognition is an

important feature of animals in nature. With the help of kin recognition, animals

can behave different to their kins, work together to accomplish some tasks, and
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protect themselves from their enemies better.

I considered kin recognition as a kind of minimalist communication mecha-

nism since just by discriminating the kin and observing their behaviors (without

explicit communication), the robots can manage to solve several problems (e.g.

flocking, chain formation and cooperative stick pulling) in swarm-robotics. It is

also required to solve many problems (e.g. aggregation and flocking) efficiently.

Most of the swarm robotics studies (e.g. [59], [55], [54], [58], [43], [27], [64])

use kin recognition as a communication medium since most of the problems

requires (e.g. flocking, chain formation and cooperative stick pulling) discrim-

ination of robots in the environment to obtain acceptable performance. As an

example, Soysal and Sahin [58] need the robots to discriminate other robots

from obstacles since it is possible for the robots to aggregate near the walls

instead of each other in a rectangular arena.

Trianni et al., [66], [65] tried to solve hole-avoidance problem using genetic

algorithms to evolve the weights of a simple perceptron based controller. The

robots are connected to each other with joints and they have to perform coor-

dinated motion in an environment, which has holes too large to be traversed.

The aim of the study is to learn the correct dynamic to move away from the

holes as a group when the robot(s) on an edge of the formation sense the hole

with its (their) ground sensor(s). The robots can sense their neighbors rela-

tive movements with the help of their traction sensors.The communication with

the help of traction sensors can be considered as an example of interaction via

sensing since there is no intention to send information to other robots in this

communication scheme.
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1.1.2(b) Interaction via Communication

A more advanced version of communication requires direct communication of

robots by broadcasting or one-to-one communication. As mentioned before, one-

to-one communication using identification of robots is not preferred in swarm

robotics studies since this may reduce the scalability and flexibility of the system.

Nouyan and Dorigo [52] implemented a chain formation behavior. Initially

the robots search for other chain members or the nest. Once a robot finds

a chain member or the nest, it becomes a chain member depending on two

predefined timeouts. The robots distinguish chain members and the nest based

on the color of the LED ring around their body. A chain member can have three

different colors: blue, green and red. It activates the color blue, if it connects to

the nest or to a red chain member. It activates the color green, if it connects to

a blue chain member and color red otherwise. This coloring mechanism allows

robots to find the direction of the chain. Since having a long chain instead of

a chain with several branches is preferred, the robot follows the color to reach

to the end of the chain to connect. Nouyan [53] also extended this work with

more detailed configurations in his thesis.

Grob et al., [25] studied the self-assembly problem. The aim of the work is

to locate, approach and connect with an object that acts as a seed or connect to

other robots already connected to the seed. Similar to the Nouyan and Dorigos

previous work described above, a robot discriminates the robots connected to

the seed with the help of the LED ring around robots body. The initial color

of the robots is set to blue. Once a robot connects to the seed or to a robot

already connected to the seed, it activates the color red permanently.

It is also worth to mention the studies performed by Payton et al., [54], [55]

Shen et al., [56], [57] in this section since they used broadcasting to simulate

the interaction via environment type of communication. The details of their
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works related to communication are already described in section 5.1. Although

the works of Payton et al., [54], [55] and Shen et al., [56], [57] can be seen

as simulation attempts of interaction via environment method, we decided to

describe these studies in this section.

Payton et al., [54], [55] simulated the communication mechanism used by

ants. The ants communicate with each other through chemicals called pheromones.

When an ant finds food, it will leave a trail along the ground on its way back

to home, which in a short time other ants will follow. When they return home

they will reinforce the trail, bringing other ants, until the food is exhausted.

The slow dissipation property of the pheromone trials will allow the ants to find

new food sources when the older ones are exhausted.

Shen et al., [56], [57] used a similar approach to be able to simulate the

diffusion of hormones in the environment. Although they did not test their

ideas on real hardware, they claimed that the diffusion of hormones can be

implemented using a short range wireless communication (either using RF or

Infrared).

In their experiments, the robots broadcast packets containing the hormone

type information. To implement the diffusion of the hormones, each receiver

robot determines the direction (e.g. via a directional antenna) of the message

and the distance of the signal source (e.g. by measuring the strength of the sig-

nal). The robot then applies diffusion function defined in the paper to compute

the concentration of that particular hormone at the current and nearby cells.

After collecting all hormonal signals coming from neighbor cells for some period

of time, the robots computes the reaction of collected hormones and broadcast

this information to simulate the diffusion of hormones.
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1.1.3 Research

To categorize robots basing on research, several literature surveys have been

carried out. Dudek et al.,[16] classified the swarm robotics literature in terms

of swarm size, communication range, communication topology, communication

bandwidth, swarm reconfigurability and swarm unit processing ability. They

prepared a taxonomy instead of a survey on swarm robotics and fit some limited

number of sample publications inside this taxonomy.

I believe that swarm size criteria is not much applicable to characterization

of swarm robot systems since scalability is one of the desired characteristics of

swarm robotics and swarm systems should work with large numbers of system

components. I also did not choose communication topology and communication

bandwidth as subcategories since the communication should be kept limited as

much as possible and preferably communication should be done using broad-

casting instead of using robot names or addresses or complex hierarchies based

on robot addresses. Although future studies will investigate the communication

aspect of swarm systems more; having limited diversity in current studies, re-

quire us to have a communication axis which does not include bandwidth and

topology of communication as a category in this survey.

Iocchi et al., [35] presented a taxonomy of multi-robot systems and address

some multi-robot system studies in their taxonomy. They presented their tax-

onomy hierarchically using levels. First level is cooperation level, which is di-

vided into aware and unaware categories as the lower knowledge level. Aware

category is divided into three more categories namely strongly-coordinated,

weakly-coordinated and not-coordinated as the coordination level. Strongly-

coordinated category is divided into strongly-centralized, weakly-centralized and

distributed categories as the organization level. They also wrote a separate sec-

tion for describing the application domains of multi-robot systems.
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1.1.4 Behavioral Design

Adaptation is any change in the structure or the function of an entity (e.g. a

component of a complex system) that allows it to survive more effectively in its

environment.

Adaptation in biological systems can be classified as structural, behavioral

and physiological adaptation. Structural adaptations are special body parts of

an organism that help it to survive in its natural habitat, like its skin color,

shape, body covering and teeth. Behavioral adaptations are special ways a

particular organism behaves to survive in its natural habitat. Physiological

adaptation are subsystems present in an organism that allow it to perform

certain biochemistry reactions like secreting slime, being able to keep a constant

body temperature or producing pheromones.

An important property of adaptation is its time scale. There are two types

of adaptation based on time scale: evolution and learning. Especially structural

and physiological adaptations do not develop during an individuals life but over

many generations with evolution. In addition to evolution, the individuals may

fine-tune their behaviors in their lifetime. This kind of adaptation is performed

in a relatively shorter time scale and called learning.

In swarm robotics literature, researchers mostly tried to utilize the behav-

ioral adaptation to control large number of robots to accomplish a task collec-

tively. Because of this and importance of adaptation, we decided to categorize

existing behavior design approaches into three sections based on the behavioral

adaptation capability of the robot controllers: manual, learning and evolution.

While we describe the works, which uses non-adaptive robot controllers in non-

adaptive section, the works, which show learning capabilities are described in

learning section and the ones, which try to mimic natural selection for adapting

the robot controllers, are described in evolution section.
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1.1.4.1 Non-Adaptive

Most of the studies utilizing non-adaptive behavior design are categorized into

four subcategories: subsumption, probabilistic finite state automata, distributed

potential field methods and neural networks. While these categorized studies

are described in the following subsections respectively, the non-adaptive studies,

which do not belong to these categories, are described below.

Payton et al., [54], [55] described a new approach in swarm robotics called

pheromone robotics based on the biologically inspired concept of virtual pheromone.

They developed robots with personal digital assistant (PDA) attached at the

top, which allows doing computationally expensive operations. The virtual

pheromones are signaled between robots with a mechanism attached at the

top of the robots, which contains eight radially oriented, directional infrared

receivers and transmitters. The information is transferred between the robots

as 10-bit messages, which have message type, hop-count, and data fields. The

intensity and orientation values obtained from received messages are also used

in obstacle detection and in determining distance and direction of neighboring

robots.

They defined three main concepts in their studies: virtual pheromone, world

embedded computation and world embedded display. Virtual pheromones are

working with the help of infrared mechanism described above. With the help

of virtual pheromones, the robots may solve problems like generating the map

of a field or solving the shortest path problem for a field. This feature is called

as world embedded computation. An external observer can also be informed

about the results obtained in world embedded computation with the help of

a video camera mounted on the observers head, which receives and displays

coded infrared signals from each robot. This feature is called as world embedded

display.
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1.1.4.1(a) Probabilistic Finite State Automata Probabilistic finite

state automata (PFSA) is a way to represent dynamical systems with finite

state spaces. In probabilistic automata, the transitions between the states of

the system are triggered with certain probabilities. The general approach is

to model the robot behaviors as states and defining the state transitions with

some external input and probabilities. This section will summarize the swarm-

robotics studies using this approach.

Soysal and Sahin [58] performed systematic experiments using a probabilistic

finite state machine based controller for performing aggregation task. There

are four behaviors in the controller, which are connected with subsumption

architecture: obstacle avoidance, approach, repel and wait. Normally robots

start in approach state and switches to the wait state when they sense another

robot. The switches between repel and approach states, and wait and repel

states are determined by Preturn and Pleave probabilities respectively. The

authors changed the size of the arena to compare different strategies obtained

by modifying the Preturn and Pleave parameters. They showed that the best

performance is obtained when both of the parameters equal to 1. They also

stated that this strategy might not be very feasible on all robotic systems since

there is a risk of having large number of robots moving in close proximity and

the large power consumption due to continuous movement.

A self-organized model of the aggregation behavior of cockroaches in a

bounded circular arena is developed by Jeanson et al., [36] and Garnier et al.,

[22]. The authors used an approach, which is similar to microscopic modeling

developed by Martinoli et al., [46], [45] and Jeanson et al., [36]. They first de-

fine a self- organized model for the behaviors of the cockroaches and measured

the important transition probabilities between behaviors along with the average

time spent on each behavior by real cockroaches. They compared the results
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obtained from the developed numerical model with the real experiments results.

They claimed that their model better approximates real data than most of the

previous global level models, which shows that the cockroaches may behave

based on local interaction rules.

1.1.4.1(b) Neural Networks Neural networks [29], [28] are powerful

learning mechanisms inspired from nervous system of humans. There are two

general types of swarm robotics studies performed using neural networks. The

first type uses genetic algorithms to evolve the weights of a neural network to

obtain a desired behavior with a fitness function appropriate to the problem.

This type of studies [4], [64], [66], [65] are discussed under section 4.3.

The second type of studies with neural networks considers the neural net-

works as a generalization mechanism and do not use its learning capabilities.

The remaining part of this section summarizes this type of studies.

Grob et al., [25] investigated self-assembly problem with a group of robots.

They defined the problem as controlling the robots in fully autonomous manner

in such a way that they locate, approach and connect with an object that acts

as a seed or connect to other robots already connected to the seed. The seed

and the robots connected to the seed are discriminated based on the color of

the ring around them.

The controller of the robots was a simple perceptron, which connects sensory

inputs to motor outputs of the robots. The controller was preprogrammed with

the controller obtained from another study. The experiments are done on flat

and rough terrains with real robots. The results show that robots achieves

self-assembly in a scalable way.
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1.1.4.2 Learning

Montemanni and Gambardella [50] presented a distributed protocol for mini-

mum power topology (MPT) problem in wireless networks. The aim in MPT

problem is to assign transmission powers to the nodes of a mobile network in

such a way that all the nodes are connected by bidirectional links and the total

power consumption is minimized.

The authors used one of the previous protocols called MLD (Minimum Link

Degree) and made it more distributed. The name of the new protocol is LMPT

(Local Minimum Power Protocol), which uses some local information about

neighbors to obtain better results.

MLD protocol works as follows: There is an ngb (link degree) parameter,

which is used as a minimum number of links any node, should have to obtain

full connectivity on the network. The nodes increase their transmission power

in small amounts until they reach to ngb number of neighbors. Whenever a

node hears another node in this increasing transmission power phase, it realizes

that its neighbor has less than ngb neighbors and sets its transmission power

as the power of its neighbors transmission power if it is greater than its current

transmission power. If it is lower than its current transmission power, then

current transmission power is not changed. This phase goes on until each node

has at least ngb neighbors. They all stop increasing their transmission powers

at this point. The ngb parameter is a heuristic parameter obtained from the

global information known about the network. It does not need to be perfect

information but the more precise it is, the lower the total transmission power

at the end.

1.1.4.2(a) Reinforcement Learning Reinforcement learning (RL) [61]

systems consist of a discrete set of environment states, a discrete set of agent

actions and a set of scalar reinforcement signals. In robotic studies, environment
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states are higher-level representations of sensor readings (e.g. existence of an

object in front of the robot based on the thresholded values of front sensor

readings). Similarly agent actions are higher-level representations of actuator

commands.

The reinforcement value is the core concept in RL which differentiates it from

other types of learning methods [49] (e.g. supervised or unsupervised learning)

The reinforcement value gives a numerical hint to the agent for the relative

success of the executed action in achieving the goal of the agent. The aim of

the agent in this setting is to learn a policy (which maps states to actions) that

maximizes the cumulative reinforcement values obtained in the long-term.

One of the important properties of RL is that the RL algorithms have clean

theoretical convergence properties because of their dynamic programming roots

[61]. Despite advantages of RL, there are serious problems in applying RL to

multi-robot studies. First, theoretical convergence properties of RL require large

numbers of learning trials that are difficult to perform with physical robots.

Another problem is the size of the search space. The RL algorithms are

proved to converge on toy problems, which has limited search space, compared

to the robotic problems. Large search space (both state and action spaces) of

robotic problems requires lots more epochs to be able converge to acceptable

results.

Noise is another serious problem while applying RL to multi-robot studies.

Besides having lots of noise in sensor readings and actuator actions, interac-

tion between the robots make the environment noisier and more unpredictable.

Having multiple robots in the environment also breaks the convergence assump-

tion of some of the well-known popular reinforcement learning algorithms (e.g.

Q-learning [67]) since noise converts the environment to a dynamic one from a

stationary one.
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The last problem is probably the most difficult and classical problem in

machine learning: the credit assignment problem. Both temporal and spatial

credit assignment problems exist in multi-robot problems since the actions of

the robots can be rewarded with a delay and the result may depend on the

actions of multiple robots.

We divided reinforcement learning studies into two categories: the studies,

which use local reinforcement and the ones, which use global reinforcement. In

the former one, the reinforcement is only given to the robots, which are close

to the location where the reinforcement is generated. In the latter one, all

robots are rewarded as if the last action is a result of the collective actions of

all robots. In other words, even if some robots do not contribute to the goal,

all of the robots are rewarded in global reinforcement scheme.

As we discussed in section 2, the communication should be kept limited as

much as possible in swarm robotic systems. Because of this preference, local re-

inforcement scheme is more realistic for swarm robotics. But investigating the

global reinforcement and comparing its results with local reinforcement may

offer new insights in swarm robotics. Yang and Gu presented a survey about

multi-robot reinforcement learning studies in [68]. They first discussed prelimi-

naries of the subject starting from Markov decision processes up to relation of

multi-agent reinforcement learning with the game theory. Later, they summa-

rized theoretic frameworks for multi- agent reinforcement learning, algorithms

utilizing these frameworks and the studies performed with these algorithms.

After discussing these, they summarized the works done up to that time for

scaling reinforcement learning to multi-robot systems. Finally they described

the main challenges of multi-robot systems and future research directions in

the field which are mainly obtaining team cooperation, abstracting state and

action spaces, generalization and approximation of look-up tables used in re-
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inforcement learning algorithms and extending the reinforcement learning into

continuous state and action spaces.

Local Reinforcement: In local reinforcement scheme, the reinforcement

value generated after achieving a subgoal is only shared by the robots, which

contribute in achieving that subgoal. One of the studies using local reinforce-

ment was the study of Li et al., [43]. The authors used Balchs social entropy

metric [5] to analyze the effect of diversity and specialization on a stick-pulling

experiment. Since Balchs social entropy metric can only be used to measure the

diversity of the robot groups, Li et al., defined specialization as a new metric of

the correlation between diversity and performance.

The learning algorithm basically starts with a random direction and GTP(Gripping

Time Parameter). When a predefined amount of time passes for a robot, an

average reinforcement is computed for that time period. Then the GTP value

is updated for that robot depending on both the current and the previous av-

erage reinforcements. If the current average reinforcement value is greater than

the previous one then the GTP is modified in the same direction selected in

the previous step. If the current average reinforcement value is lower than the

previous one (It means the performance becomes worse.) then GTP is modified

in the opposite direction.

Li et al., performed systematic experiments using local and global rein-

forcement signals with different group characteristics (homogeneous, heteroge-

neous and caste-based robot groups). Although the performance of the learning

swarms achieved the same level of performance independent of the initial GTP,

the performance of homogeneous swarms with a fixed GTP is decreased when

the initial gripping parameters are increased. This shows that a higher level of

robustness is achieved with this learning algorithm.

Global Reinforcement: In global reinforcement scheme, the reinforce-
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ments obtained by robots in a specified period of time are shared between

robots. Mataric [48] solved foraging problem using reinforcement learning in

multi-robot domain. The author defined two challenges for applying reinforce-

ment learning to multi-robot domain. The first one is that even if for single

robot experiments the domain has very complex state space; when more than

one robot is used, the problem becomes more complex because of the inferences

between the robots. The second challenge is the structuring and assigning rein-

forcement learning. The first problem is handled with the help of behaviors and

conditions. The complexity if state and actions spaces are reduced considerably

with the help of them. The second problem is handled with the help of shaped

reinforcement, which consists of heterogeneous reward functions and progress

estimators.

Mataric developed a simple reinforcement algorithm called reinforcement

summation algorithm, which adds and normalizes the reinforcement values ob-

tained for state action pairs over time. The author compared the results of

two different variations of this algorithm with a hand coded optimal solution

and pure q-learning algorithm without shaped reinforcement. The first vari-

ation of her algorithm was the reinforcement summation algorithm with only

heterogeneous reward functions and the second variation was the reinforcement

summation algorithm with both heterogeneous reward functions and progress

estimators. The results showed that the first variation is better when com-

pared to others and q-learning algorithm is better than the hand coded optimal

solution.

1.2 Problem Statement

While most studies have focussed their research in certain areas of Swarm

Robotics, our research on solving three major aspects of Swarm Robotics. They
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are i) Pattern and Chain formations ii) Self Assembly of Robots and iii) Coor-

dination to achieve tasks.

1.3 Significance of Study —& Experimental Setup

Payton et al., studied the colonization of ants and tried to simulate the pheromone

behavior of the ants. They named it the virtual pheromone and tried sending

messages using a wireless system. The idea is somewhat similar but limited to

a certain group of robots instead of communicating globally among the robots

by eliminating the wastage of communication energy.The goal of the project is

not only to answer multiple research related problems on mobile robots but also

to promote the concept of social robotics.

The following steps define the environment and experimental setup of the

system.

1. The robots are from iRobot Corporation called Create. They come with

8 bit micro controllers which could be added to the robots but not used

in this particular experimental setup .

2. Class 1 bluetooth dongle attached to Windows XP desktop and Bluetooth

communication receivers from Element Serial which can be attached to

the robots on a 13 pin slot.

3. A coordinate system setup in the Control System Laboratory of Electrical

Engineering and Computer Science department at University of Tennessee,

Knoxville.
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Figure 1: iRobot Create
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Chapter 2

System

2.1 Introduction

A mobile robot is capable of autonomous motion because it is equipped with

motors that are driven by an on board computer. The concept of autonomy is

understood as the ability to independently make intelligent decisions as the sit-

uation changes. These machines are used in inaccessible environments that are

often cluttered with unknown, moving or fixed obstacles, in extreme conditions

or for special applications. This is why the study of the mobile robot dynamics

is becoming increasingly important.

Wheeled mobile robots are a class of mechanical systems characterized by

non-integrable kinematical constraints. The condition of rolling motion without

slipping and side-slipping between the wheel and the contact surface demands

the presence of non-holonomic constraints, which are the kinematic particularity

of this kind of robot.

On the other hand, mobile robots are more complex to control than serial

and parallel robots, because of non-holonomic constraints. But, at the level

of instantaneous velocities, mobile robots can be treated mathematically as a

special type of parallel robot, having different connections to the ground in

parallel.

In his paper, Angeles [72] studied some interesting aspects of the mobile

robot dynamics using the formalism of Lagrange equations. Other authors (e.g.

Colbaugh et al. [73]) gave a characterization of the mechanical non-holonomic

systems. Volterra, Appel and Ceaplighin used also the Lagrange equations and
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formalism of multipliers in the dynamics of motion with the links. Recently,

neural networks appeared as powerful tools for learning dynamics of highly

nonlinear systems (Kim et al. [74]).

The analysis of the problems of two-wheeled mobile robot dynamics is being

done mainly to solve successfully the control of the motion of such systems.

Simple models are very often accepted for a system description, even though

they do not take into account the masses of the many mobile elements. Authors

describing the dynamics of such systems use classical equations taken from New-

tonian mechanics and, most often, they approach the motion of these systems

using second-order Lagrange equations [75,76,77,78].

An equivalent parallel robot, consisting of three legs, can model a differen-

tially driven mobile robot with two moving actuators [79, 80]. Pathak et al. [81]

analyze the dynamic modeling and the position control of a series of wheeled

inverted pendulums (Segway, Quasimoro, JOE) by partial feedback lineariza-

tion and from a controllability point of view. Using recursive formulation, the

kinematics model with a global singularity analysis is carefully discussed in [82].

Chakraborty and Ghosal have presented in their works [83, 84] the kinematics

and a set of differential equations for the dynamics modeling and simulation of

a wheeled mobile robot.

The Quasimoro prototype of the mobile wheeled- pendulum by Salerno and

Angeles [85] is a special quasi-holonomic mechanical system, which comprises

two driving wheels and an intermediate central body carrying the payload.

Salerno, Ostrovskaya and Angeles studied in the paper [86] the dynamics of

a rolling robot, using the second-order Lagrange equations with multipliers.
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2.2 Robot Anatomy and its Kinematic Model

Let us consider a mobile robot with three conventional wheels that can roll

without slipping on a horizontal surface (Fig. 1). This kind of differentially

driven robots needs three non-collinear support points in order not to fall over.

In practice, the robot can turn on the spot by giving opposite speeds to both

actuated wheels.

The mobile robots are made up of a rigid frame with non-deformable wheels

and sometimes they are moving on a fixed horizontal ground. To simplify the

graphical image of the kinematical scheme of the robot, in what follows we

will represent the intermediate reference systems by only two axes, as is being

presented in many robotics papers [72, 80, 93]. The zk axis is represented for

each component element Tk. It is noted that the relative rotation with the angle

θi must be always about the direction of the zk axis.

Figure 2: Kinematic Schematic of the Robot

27



The moving platform of the robot,as Staciu derived in his paper[94],is linked

to a central reference frame Gx1y1z1, is an isosceles triangle with the dimension

l for the base and a + b for its height. It has the mass m1 and the tensor of

inertia J1. Two cylindrical coaxial driving wheels of the same radius r are fixed

to the frames A2x2
Ay2

Az2
A,B2x2

By2
Bz2

B and connect to chassis by means of

revolute joints at the points A2 = O1 and B2 = O2. They have the masses

m2
A = m2

B and the tensors of inertia J2
A = J2

B . A crank C2C3 = PO2 is

jointed to the moving platform at the point C2 = P of the triangle. Its mass

and tensor of inertial with respect to C2 are respectively mC
2 and JC2 . This rigid

element can orientate permanently the motion of a passive rolling caster wheel

of small a radiusr0, mass mC
3 and tensor of inertia JC3 (Fig.2). The caster wheel

has no kinematical function; its only purpose is to keep the robot in balance.

Let us analyze how the motion of the robot on a curved trajectory in the

turning period between two permanent rectilinear motions. The non-holonomic

constraints reduce the mobile robots velocity degrees of freedom and hence the

robot has only two actuated joints.

In the forward velocity kinematics (FVK), we will consider that the input

rotation angles θ1,θ2 of the driven wheels can determine completely the instan-

taneous position and orientation of the robot. Thus, since the platform has a

planar motion, its position with respect to a fixed reference frame Ox0y0z0 with

origin O on the horizontal ground, is given by the coordinates x10, y10, H and

by the angle of rotation θ, which form the following matrices:

r10 =


x10

y10

H

 ; a10 =


cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 (1)

In what follows, we apply the method of successive displacements to the

geometric analysis of closed-loop chains and we note that a joint variable is the
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displacement required to move a link from the initial location to the actual po-

sition. If every link is connected to at least two other links, the chain forms one

or more to at least two other links, the chain forms one or more independent

closed loops. We call the matrix aϕk,k1,for example, the orthogonal transfor-

mation 3x3 matrix of relative rotation with the angle ϕak,k1 of link TAk around

zAkaxis.

In the study of the kinematics of mobile robots, we are interested in deriv-

ing a matrix equation relating the location of an arbitrary Tk body to the joint

variables. When the change of coordinates is successively considered, the corre-

sponding matrices are multiplied. We obtain the following orthogonal transfor-

mation matrices in the reference frames [87]:

aA21 = aθ1za1; aB21 = aθ2za1;

aC21 = aθ4za2; aC32 = aθ3za1; (2)

where

a1 =


cos θi 0 −1

−1 0 0

0 1 0

 ; a2 =


−1 0 0

0 1 0

0 0 −1

 ;

aθ1z =


cos θi sin θi 0

− sin θi cos θi 0

0 0 1

 where(i = 1, 2, 3, 4) (3)

If the distance A2B2 = l between both actuated wheels is known, as well as

the characteristic dimensions d,h of the crank PO3, the following vectors give

the invariable positions of the revolute joints A2, B2, C2:

rA21 =


a

−l/2

−h0

 ; rB21 =


a

l/2

−h0

 ;
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rC21 =


−b

0

0

 ; rC32 =


d

0

h

 (4)

So, kinematics of the robot’s elements is completely characterized by five

relative angular velocities

ω10 = θu3; ωA10 = θ1u3; ωB21 = θ2u3,

ωC21 = θ4u3; ωC32 = θ3u3; u3 = [0 0 1]T (5)

which are associated with the following skew-symmetric matrices:

ω10 = θu3; ω21 = θ1u3; ω21 = θ2u3;

ω21 = θ4u3; ω32 = θ3u3; u3 =


0 −1 0

1 0 0

0 0 0

 (6)

Since the analyzed system of three rolling wheels is characterized by non-

holonomic constraints, the matrix conditions of connectivity (7) will establish

five analytical relations between the characteristic velocities of a two-degrees-

of-freedom mobile robot:

~ν10 + ω̃10~r
A
21 = [rθ̇1 0 0]T

~ν10 + ω̃10~r
B
21 = [rθ̇2 0 0]T

aC21(~ν10 + ω̃10~r
C
21) + (aC21ω̃10~r

C
21 + ω̃C21)~rC32 = [−r0θ̇3 0 0]T . (7)

These constraint conditions are satised if all wheels do not slip transversally

and do not slip longitudinally, so that the distance over which the outer wheel

surface rotates equals the distance travelled by the point on the rigid body to

which the wheel axle is attached.

Indeed, we assume in FVK problem that the position and orientation of

the mechanism at a given instant will be completely determined by the input

rotation angles of the two actuated wheels, namely:

θ1 = θ∗1[1 + cos(πt/3)]θ2 = θ∗2[1 + cos(πt/3)] (8)

Therefore, the relations (7) can provide rst the Jacobian matrix and then
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the expressions of the characteristic velocities of the moving platform:

ω10 = θ̇ = r(θ̇1 − θ̇2);

ν10
x = rθ̇1 − 0.5lθ̇;

νy10 = −aθ̇;

[ẋ10 ẏ10 0]T = aT 10[νx10 νy10 0]T ; (9).

Concerning the kinematics of the crank

PO3 and the passive caster wheel jointed at the point O3 = C3, from the ma-

trix conditions (7) we will derive a signicant differential equation and a relation

containing the angular velocities ωC21 = θ̇4 = ψ̇, ωC32 = θ̇3 as follows:

dψ̇ + r ˙theta1 sinψ − [d+ 0.5l sinψ + (a+ b) cosψ]θ̇ = 0

r0θ̇3 = [(a+ b) sinψ − 0.5l cosψ]θ̇ + rθ̇1 cosψ. (10)

In the forward position kinematics, the estimation of the relative angle of

rotation and the absolute pose of the moving platform must be performed by

integration of the velocity equations (9), (10).

In order to determine new conditions of connectivity of the accelerations, we

could derive the matrix relations (7). Thus, the characteristic accelerations of

the moving platform are immediately obtained:

ε10 = ω̇10 = θ̈ = r(θ̈1− θ̈2), γx10 = rθ̈1 +aθ̇2− lθ̈/2 γy10 = rθ̇θ̇1 +aθ̈− lθ̇2/2

[ẍ10 ÿ10 0]T = aT 10[γx10 γy10 0]T (11)

Note that the absolute velocities ~νCk0, ~ω
C
k0, the accelerations ~γCk0, ~ε

C
k0 and the

useful square matrices ω̃Ck0ω̃
C
k0 + ν̃Ck0 of the third leg OC2C3 of the robot, for

example, can be calculated with some recursive matrix formulae [20-22]:

~νC20 = aC21[~ν20 + ω̃10~r
C
21],

~νC30 = aC32[~ν20 + ω̃20~r
C
32],

~ωC20 = aC21[~ω10 + ~ωC21],

~ωC30 = aC32[~ω20 + ~ωC32],

~γC20 = aC21[~ω10 + (ω̃10ω̃10 + ε̃10)~ωC32],
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~γC30 = aC32[~ω20 + (ω̃20ω̃20 + ε̃20)~ωC32],

~εC20 = aC21~ε10 + ~ε21 + aC21ω̃10a21
CT ~ωC21,

~εC30 = aC32~ε20 + ~ε32 + aC32ω̃
C
20a32

CT ~ωC32,

ω̃C20ω̃
C
20 + ~εC20 = aC21[ω̃C10ω̃

C
10]aCT 21 + ω̃C21ω̃

C
21 + ε̃C21 + 2aC21ω̃10a21

CT ω̃C21,

ω̃C30ω̃
C
30+~εC30 = aC32[ω̃C20ω̃

C
20]aCT 32+ω̃C32ω̃

C
32+ε̃C32+2aC32ω̃20a32

CT ω̃C32, (12)

2.3 Equations of Motion(Dynamic)

2.3.1 Principle of Virtual Work

Two electric motors that generate the torques ~M1 = ~M1~u3 and ~M2 = ~M2~u3,

which have the direction of the common axis A2B2 = O1O2, control the evolu-

tion of the driving wheels A2, B2 and transmit the motion at the passive caster

wheel C2.

We will study the inverse dynamic problem, in order to establish the varia-

tion of the torques M1,M2 and the powers P1, P2 developed by the two active

wheels, during the evolution of the robot between the initial position and the

position which corresponds to the stationary motion. Thus, we will use an

approach based on the principle of virtual work.

In every analysis, the system is considered initially at rest. It is noteworthy

that the simulation runs do not account for either external dissipation, such as

rolling friction between the wheels and ground, or internal dissipation, such as

friction in the bearings.

The fundamental principle of virtual work states that a mechanical system is

under dynamic equilibrium if and only if the virtual work developed by all exter-

nal, internal and inertia forces vanishes during any general virtual displacement,

which is compatible with the kinematical constraints [4,23,25].

A first set of virtual characteristic velocities of the robot bodies results easily
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from the constraint conditions (7), namely:

ων1a = 1, ων2a = 0, ων10a = r/l, ,

νxν10a = r/2, νyν10a = −ar/l, θν10a = r/l, ,

ων3a = r/r0[0.5 cosψ + (a+ b)/l sinψ],

ων4a = r/d[−0.5 cosψ + (a+ b)/l cosψ] + r/l,

ωνϕ = ων4a − ων10a (13)

Assuming that the frictional forces at the joints are negligible, the virtual

work produced by the forces of constraint at the joints is zero. Hence, the

following compact expression of the torque applied to the right driving wheel

A2 is (Staicu[24]) :

M1 = ~ννT10a
~F10 + ~ωνT10a

~M10 + ~νAνT20a
~FA20 + ~ωAνT20a

~MA
20 + ~νBνT20a

~FB20 + ~ωBνT20a
~MB
20 +

~νCνT20a
~FC20 + ~ωCνT20a

~MC
20 + ~νCνT30a

~FC30 + ~ωCνT30a
~MC
30 (14)

with its analytical form

M1 = m1ω
ν
10a(0.25l2θ̈ − 0.5lrθ̈1 − arθ̇θ̇1 + a2θ̈) + m1ω

ν
1a(r2θ̈1 − 0.5lrθ̈ +

arθ̇2) + Jz1θ̈ω
ν
10a + 0.5mA

2r
2(3ων1aθ̈1 + 0.5ων10aθ̈) + 0.5mB

2r
2(3ων2aθ̈2 +

0.5ων10aθ̈) + mC
2ω

ν
3ar0[r0θ̈3 − (d − xC2)ω2

ψ] + mC
2ω

ν
ψa[r0(d + xC2)θ̇3ωψ +

d3(3h+ d)εψ/3(h+ d)] + 0.5mC
3r

2
0(3ων3aθ̈3 + 0.5ωνψaεψ), (15)

where ωψ = ψ̇ − θ̇, εψ = ψ̈ − θ̈.

The force of inertial and the resultant moment of the forces of inertia have,

for example, the following general form:

−~F inCk0 = −mC
k[ ~γCk0 + (ω̃Ck0ω̃

C
k0 + ε̃Ck0)~rCk ]

− ~M inC
k0 = −[mC

kr̃
C
k

~γCk0 + hatJCk~ε
C
k0 + ω̃Ck0hatJ

C
k~r
C
k ] (16)

where the accelerations ~γCk0, ~ε
C
k0 and the square matrices ω̃Ck0ω̃

C
k0 + ε̃Ck0 can

be calculated by relations (12).

For torque M2 of the couple applied to the left driving wheel B2, an expres-

sion analogous to (15) results in:

M2 = m1ω
ν
10b(0.25l2θ̈ − 0.5lrθ̈2 − arθ̇θ̇2 + a2θ̈) + m1ω

ν
2b(r

2θ̈2 − 0.5lrθ̈ +
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arθ̇2)+Jz1θ̈ω
ν
10b+0.5mB

2r
2(3ων2bθ̈2+0.5ων10bθ̈)+0.5mA

2r
2(3ων1bθ̈1+0.5ων10bθ̈)+

mC
2ω

ν
3br0[r0θ̈3−(d−xC2)ω2

ψ]+mC
2ω

ν
ψb[r0(d+xC2)θ̇3ωψ+d3(3h+d)εψ/3(h+

d)] + 0.5mC
3r

2
0(3ων3bθ̈3 + 0.5ωνψaεψ), (17)

where the following virtual velocities must be introduced:

ων1b = 0, ων2b = 1, ων10b = −r/l,

νxν10b = r/2, νyν10b = ar/l,

ων3b = r(0.5 cosψ − [a+ b] sinψ/l)/r0,

ων4b = −r(0.5 sinψ − [a+ b] cosψ/l)/d− r/l,

ων4b = ων4b − ων10b, (18)

The matrix relation (14) constitues the inverse dynamics model of the mobile

robot provided with caster wheel.

The various dynamical effects, including the Coriolis, coupling centrifugal

forces and the gravitational actions, are considered in equation(14).

2.4 Equations of Motion(Kinematic)

The previous section determines and derives the equations of a dynamically

driven non holonomic robot. We have provided this information, to show that

this system works on a dynamic robot although we used kinematic robots from

iRobot, called as ”Create”. The equations of motion for such kinematic robots

are very straight forward. The robot is modeled by non-linear odinary equations

given by

• ẋ = ν. cosθ

• ẏ = ν. sinθ

• θ̇ = u

where ν is the linear velocity, u is the angular velocity, θ is the angular orienta-

tion with respect to x-axis.
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Chapter 3

Problem, its Solution and its

Application

3.1 Problem

In the previous chapter we have determined the kinematics of the robot. There-

fore we have reached a point where we could control robot to achieve desired

objectives. Now the actual problem is to achieve a Networked Robotic Platform

where in a swarm of robots behave cooperatively to achieve a specific task by

assigning a leader among themselves and the followers follow the leader in a

specific formation.

For our experiments, we used four robots from iRobot, with one robot being

the leader and remaining three being the followers. The number of followers is

a variable that could be changed when needed but we have chosen to use all

the three robots as followers because we wanted to show the formation control

robustness of the system.

This entire phenomena is depicted in the following flowchart and each step

is explained in detail in the latter sections.

3.2 Flowchart of the system

The entire system can be broadly classified into three sections. This is a vertical

process and is illustrated in the following Figure.
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Figure 3: System Process.

As shown above, this system is classified into three stages.

• Stage 1: Knowledge of Position and Destination. This knowledge is global

and is highly necessary for the system to function.

• Stage 2: Protagonist Determination is next step in this hierarchial process

which is necessary for the deermination of leader and the followers.

• Stage3: Follower Algorithm is another final step in this system which holds

the leader follower and formation control algorithms.
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Figure 4: Position and Destination Knowledge.

3.2.1 Position and Destination Knowledge.

To begin with, this system needs global knowledge of position information of

all the robots in the environment. This knowledge provides us the advantage

of minimizing the energy consumption in the system. As shown above this

stage has two substages. i) Updating the information ii) Syncronizing between

Obstacle Avoidance functions.

3.2.1.1 Updating the Information:

At every interval, (0.2 secs in our case) , the position information is read using

the sensors present on the robot. With the availability of a GPS, this information

would be much more be qualitative. This updating is required for obstacle

avoidance functions as our robots lack in other forms of perceptions.

3.2.1.2 Syncronizing between Obstacle Avoidance functions:

At every update the position information is synchronized with the obstacle

avoidance functions. This step is the necessary work around to avoid obstacles

when other forms of perception are absent. There are two forms of obstacles,

static and dynamic. The position information of the static obstacle are also

known to the system. Since we are dealing with four robots in our experiments,

each robot will have three dynamic obstacles. For simplicity, no other dynamic
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obstacles are present in the neighbourhood.

The next stage in the process is ”Protagonist Determination”. This process

is determining the leader robot among the swarm of robots. As the number

of robots in the swarm increase determination of ”Protagonist Robot” becomes

complicated. The selection process is elaborated in the following flowchart.

3.2.2 Protagonist Determination

3.2.2.1 Determining position and destination information

The robots are controlled by a central control system (which is a Windows

powered computer in this case). At the end of each iteration of the cycle, the

robots’ positions and next destination are updated in this control system.

R = [R1R2R2.........Rn]T (19)

where Ri is the position information of the ′i′th robot.

Thus ’R’ matrix contains the position information of the entire population

of the swarm.

3.2.2.2 Calculating nearest robot

Once the positions of the robots and destination are determined, distance be-

tween each robot and destination are determined using the formula

dn =
√

(xn − xd)2 + (yn − yd)2 (20.1)

D = [d1 d2 d3.......dn]T (20.2)

where di is the distance between the ith robot and destination. (xi, yi) are

the coordinates of the ith robot and (xd, yd) are the coordinates of the current

destination.

After detemining the matrix ’D’, the least distance to the destinationDmin =

min(D) is found out. Then all the robots that are ′D′min meters apart from
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the destination are populated in the ’L’ matrix. This is the step that marks

the beginning of the protagonist determination. Please look at the following

flowchart.

Figure 5: Protagonist Determination.

As depicted in the above flowchart, the robot locations and destination are

updated at the end of each iteration. The algorithm then proceeds to determine

all the closest possible robots to the destination and populates them in L ma-

trix (’L’ matrix is a n x 1 matrix, which contains the IDs of the closest possible

robots). As the size of the swarm becomes larger, the probability of this ma-

trix L becoming larger is closer to 1. Deploying the least energy consumption
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phenomena, a protogonist robot is analytically determined from this L matrix.

Figure 6: An illustration of distance calculation between robots and the destination.

L = [Ra Rb Rc....]
T

where Ra, Rb.. denote the ”Identification (I.D) tags” of the robots. These are

the tags that are assigned to each robot at the beginning of the experiment.

This implies that ’L’ matrix is populated with the potential protagonist

robots.
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At this stage all the robots which are not a part of ’L’ matrix potentially

become followers and are populated in the prioritization matrix.

P = R− L

Prioritzation is discussed a few subsections below. At this stage, a protag-

onist a.k.a leader robot must be selected from L matrix. To determine this,

energy consumed by each robot is calculated with respect to oreintation of the

robot.

3.2.2.3 Communication

Once the angle is calculated and the protagonist is determined, information is

passed to all the robots from the Control Console. Each robot in the system

thus gets the following information.

• ID of Protagonist robot.( For Protagonist Robot, it gets the information

that it is flagged as the leader robot)

• Locations of all the robots.(including location of themselves).

3.2.2.4 State Determination

Our next step is to determine the states of all the robots (excluding the pro-

tagonist). At this stage the Control Console receives the state of all the robots.

’1’ for busy and ’0’ for idle. This state determination is the crucial step for

determining the follower robots which will be discussed in the ”Prioritization”

section.

3.2.2.5 Prioritization

This is the stage where the follower robots are determined. Before getting into

proritization techniques, there is another latent phenomena called as the ”Task

41



Management”. Depending upon the robots and the tasks they could perform,

a choice is given to the user to prioritize the tasks according to the need. An

illustration of setting up the tasks is shown in the picture below.

Figure 7: An illustration of a GUI that enables to setup the prioritization prior to
the experiment.

Notice from the picture that, if the robot is busy in a task that is lower in

priority to the currently required one, then it halts the current job and becomes

a follower. In addition to this, if ” Don’t Overwrite” box is checked , then the

robot does not become a follower at all until the current task is completed.

3.3 Follower Algorithm

To this point, the leader and the follower robots have been selected. Now let

us look into the details of Leader - Follower Algorithm. This section broadly

encompasses three major stages.

• Obstacle Avoidance
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• Formation Control

• Synchronized Tracking

3.3.1 Obstacle Avoidance

As shown above, Obstacle Avoidance function is further divided into two stages.

a) Static Obstacle Avoidance and b) Coordinated Obstacle Avoidance. To avoid

a collision first we define a area around a robot that detects the presence of

another object ( obstacle or a robot ). Look at the Figure below.

Figure 8: An illustration of ”Collision Avoidance and Detection Regions” around a
robot

Let’s say that the location of the robot is (x, y) where xεR and yεR are the

Cartesian coordinates. The destination is defined by (xD, yD) and location of

obstacle is (xO, yO). Now position errors are defined by

ex = x− xD; ey = y − yD
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. The distance function to avoid collision with an obstacle is given by

do =
√

((x− xo)2) + ((y − yo)2)

and distance function to reach destination is given by

dD =
√

((x− xD)2) + ((y − yD)2)

. Now obstacle avoidance function is defined as

Va = (min(0,
(d2o−R

2)
(d2o−r2)

))2

where r > 0 and R > 0 and R is the obstacle detection radius and r is the

obstacle avoidance radius.

This function is infinite at the boundary of avoidance region and is zero

outside the detection region. Thus by taking the partial derivatives for the

comfort of choosing the values for different regions, we have [96]

ifdo >= R

∂Va
∂x = 0; ∂Va∂y = 0

ifr < do < R

∂Va
∂x = 4

(R2−r2)(d2o−R
2)(x−xo)

(d2o−r2)3
; ∂Va∂y = 4

(R2−r2)(d2o−R
2)(y−yo)

(d2o−r2)3

ifdo < r

∂Va
∂x = 0; ∂Va∂y = 0

Thus the desired orientation θd = Atan2(−ey− ∂Va
∂y ,−ex−

∂Va
∂x ) and therefore

the error in orientation is eθ = θ − θd.

The Figure above shows two regions around a robot schematic. One region

circumfenced in blue is the ”Obstacle Detection Region” and is ”R” metres

away from the location of the robot (geometric centre, x, y). When any object

comes within this region of the robot, the robot detects the obstacle, halts for

a moment i.e.,( ẋ, ẏ = 0) immediately calculates its implications on continuing
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in its current state. This means, it gives higher priority to avoid collision than

to reach its destination.

And the region circumfenced in red is the ”Obstacle Avoidance Region” and

is ”r” metres apart from robot. When any object comes within this region, the

robot, halts instantly (if in motion) and moves away from the obstacle. This

means that robot instantaneously changes its current state to avoid collision.

Both of these phenomena are detailed in further sections.

3.3.1.1 Static Obstacle Avoidance

Consider a scenario where a robot at (x, y) has to reach a destination (xd, yd)

and avoid a static obstacle located at (xo, y0) in its path. To avoid collision

with this static obstacle and stay in its path as much as possible the following

controller must be applied.[96]

u = Ku.eθ; v = Kv.cos(eθ).dD for gains Ku,Kv > 0.

Following the work of Silvia Mastellone et.al IJRR 2008, the proof is as

follows.

Ex = ex + ∂Va
∂x

Ey = ey + ∂Va
∂y

The error dynamics are

ėx = v(cos(eθ + θd))− ẋd,

ėy = v(sin(eθ + θd))− ẏd,

ėθ = u− θ̇d

Now manipulating the above equations by applying the controller, we have

ėx = Kv[ex.cos
2(eθ)− ey.cos(eθ).sin(eθ)]− ẋd,

ėy = Kv[ey.cos
2(eθ) + ex.cos(eθ).sin(eθ)]− ẏd,

ėθ = Ku.eθ − θ̇d

Considering a Lyapunov like function
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V = Vt + Va

= 1
2 (e2x + e2y + e2θ) + (min(0,

(d2o−R
2)

(d2o−r2)
))2. Derivating

’V’ we get

dV
dt = ex.ėx + ey.ėy + etheta.ėθ + ∂Va

∂y .ẏ + ∂Va
∂x .ẋ

≤ −Kv.cos
2(eθ)(e

2
x + e2y)− exẋd − ey ẏd − eθ(Kueθ)

When obstacle is outside the the detection region we have ∂Va
∂x = ∂Va

∂y = 0

and thus the inequality comes into action.

dV
dt ≤ −Kv.cos

2(eθ)(e
2
x + e2y)− exẋd − ey ẏd − eθ(Kueθ)

=


ex

ey

eθ


T

M


ex

ey

eθ

−

ex

ey∥∥∥∥eθ∥∥∥∥


T 

ẋd

ẏd

−εθ

 ,≤

ex

ey

eθ


T

M


ex

ey

eθ

+

∥∥∥∥∥∥∥∥∥∥


ex

ey

eθ


∥∥∥∥∥∥∥∥∥∥

∥∥∥∥∥∥∥∥∥∥


ẋd

ẏd

−εθ


∥∥∥∥∥∥∥∥∥∥

where

M =


K.cos2(eθ) 0 0

0 K.cos2(eθ) 0

0 0 Kθ


and assuming that∥∥∥∥eθ∥∥∥∥ 6= π

2 we have cos2(eθ) > 0. Therefore dV
dt whenever

∥∥∥∥e∥∥∥∥ >
∥∥∥∥∥d

∥∥∥∥∥
λmin(M)

where e =


ex

ey

eθ

 and d =


ẋd

ẏd

ε̇θ

. Therefore the stability of the error dynamics

and hence tracking with bounding error, are guaranteed outside the detection

region. Moreover, by increasing the gains Ku,Kv we can decrease the tracking

error.

When the robot is inside the detection region(r ≤ da ≤ R), the inequality
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becomes dV
dt ≤ −Kv.cos

2(eθ).d
2
D−

∥∥∥∥eθ∥∥∥∥ (Ku

∥∥∥∥eθ∥∥∥∥−εθ), which is negative definite

for

∥∥∥∥eθ∥∥∥∥ > εθ
Ku

Hence, as shown by Stipanovic et al.(2007), since dV
dt is negative definite,

then V is non-increasing inside the detection region. Since

lim∥∥∥∥∥z − za
∥∥∥∥∥ to r+

Va = ∞ where z =

[
x y

]T
, zd =

[
xd yd

]T
, then colli-

sion avoidance is guaranteed.

3.3.1.2 Coordinated Obstacle Avoidance

So far we have seen static collision avoidance where the robot was efficiently

avoiding static obstacles where the location of the obstacle is known. As men-

tioned earlier, no perceptive mechanisms are available on the robot and hence

except for robots and static obstacles, no other dynamic obstacles are present

in the environment and hence the name of the section is ”Coordinated Obsta-

cle Avoidance” and not just dynamic obstacle avoidance. In such a situation,

instantaneous location of the other robots must be known rather than location

and to determine such an instantaneous locations, all the trajectories must be

known to the robot to predict the motion of the robot in its trajectory and avoid

collision.

Therefore the collision algorithm is exactly the same but instead of loca-

tion of obstacle, we consider the trajectory of the obstacle. This calculation

becomes heavier and complicated with the increase in number of robots in the

environment. To avoid this cumbersome calculations, a database structure is

used which is updated with trajectories, destination and location information

after every cycle. (A cycle here is defined as one complete process shown in Fig-

ure 6) Thus calculations are just referenced from database that updates with

information and avoids the system lag.

All being said about the similarity, the following controller is applied for
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Coordinated Obstacle Avoidance.

u = Kui .eθi ; v = Kvi .cos(eθi).dDi for gains Ku,Kv > 0.

With dynamic obstacles the needed information is the instantaneous location of

the obstacles, i.e., the trajectories of the remaining robots.

3.3.2 Formation Control and Synchronized Tracking

Before barging into the control theory of formations, a little introduction to

”Graph theory ”[97] is given. Graph theory: In mathematics and computer

science, graph theory is the study of graphs, mathematical structures used to

model pairwise relations between objects from a certain collection. A ”graph” in

this context refers to a collection of vertices or ’nodes’ and a collection of edges

that connect pairs of vertices. A graph may be undirected, meaning that there

is no distinction between the two vertices associated with each edge, or its edges

may be directed from one vertex to another. To form a particular formation,

we have considered a ” Cycle Graph” in the beginning and later it can emerge

into any graph depending on the requirement of the user. A cycle graph is a

2-regular graph and the complete graph on n vertices is (n-1)-regular.(as defined

by Mesbahi et.al 2010). Considering the agreement protocol which concurs with

the controller applied in the system, the speed of the robots are written as (for

a three robots presence in our situation),

v1(t) = 1
2 ((s3(t)− s1(t)) + (s2(t)− s1(t))); v2t = s1(t)− s2(t); v3t = s2(t)− s3(t)

which assumes the form

v(t) =


−1 1

2
1
2

1 −1 0

0 1 −1

 .s(t)
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where s(t) =

[
s1(t) s2(t) s3(t)

]T
Therefore a triangle formed by three fol-

lower robots are drawn towards their centroid until they come into each other’s

obstacle avoidance regions and a straight line formed by three follower robots

are drawn towards their center. The illustration is shown below.

Figure 9: Robots initially in a triangular shape drawn towards their centroid.

Figure 10: Robots aligned in a straight line but still drawn towards their centroid.
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Once such a formation is accomplished, the next step is to follow the leader

robot. To accomplish this phenomena, the task is divided into two stages, shape

of the formation and synchronized tracking.

3.3.2.1 Formation Control.

To determine the formation control, the current state of the robot locations and

alignment must be known. As seen above, the follower robots use graph theory

to gather towards their centroid, but on a close observation, the robots do not

maintain the same alignment when they reach the centroid destination. This is

because our controller simultaneously controls the linear and angular velocities,

and thus to perfectly follow the leader robot, the alignment should be taken

care of. For this the alignment of the leader is determined and followers are

adjusted to match their leaders’ alignment. While the followers are busy in

reaching their centroid, the leader aligns itself towards the final destination (or

a trajectory) such that the path it travels is simple. This step is not necessary

but recommended to avoid proper formation control among followers.

For example, if the leader makes ψl degrees with x-axis (cc) and each follower

makes ψf1, ψf2, ....ψfn degrees with x-axis(cc) then each follower robot must

turn θreq = ψl − ψfi(i = 1, 2, 3...n). The next step is to calculate the relative

angles(ρi) and distances(di) between the leader and each follower. This idea is

shown in the Figure below.
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Figure 11: Follower bots aligned w.r.t leader and relative measurements are calculated.

As these values are calculated, it is also obvious that arrangement of these

robots form a polygon. (Here at all cases only simple non-intersecting poly-

gons are considered) and the follower robots to retain the formation follow the

trajectory of the centroid of thus formed polygon. The centroid of the simple

polygon is calculated as,

cx = 1
6A

p∑
i=0

(xi+xi+1)(xiyi+1−yixi+1); cy =
1

6A

p∑
i=0

(yi+yi+1)(xiyi+1−yixi+1)

where p = Number of sides -1 and A is the area of polygon which is defined by

A = 1
2

p∑
i=0

(xiyi+1 − yixi+1)

3.3.2.2 Synchronized Tracking

Once these relative angles and distances are measured, it is the job of the leader

to lead the group. So the leader defines the velocity and the directional angle.

Thus the controller is applied to this leader which is somewhat similar to the one

mentioned earlier. v = VL;u = KL ∗ (ψl − α) where α is the directional angle.

Common sense states that when α is changed then the shape of the formation

could be changed.
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3.4 Experimental Setup

The entire experiment is setup at 3C Systems Laboratory in Electrical Engi-

neering Department at University of Tennessee. The robots used in this exper-

iment are from iRobot corporation and are called ”Create”. This experiment is

conducted by four such Create robots. The position information is physically

updated in the beginning of the iteration in the GUI and from the next iteration,

the position data is updated into the system. A Windows XP powered com-

puter equipped with MATLAB acts as central control station. Communication

is setup using Class 1 Bluetooth technology.

A Figure of GUI is depicted below.

Figure 12: GUI to enter position and destination information. The distance travelled
and the angle turned by the protagonist robot in reaching the destination is shown at
the bottom of this GUI.

As shown above, a GUI is developed where in the user enters the location

and orientation information of all the robots. These values could be added at

any time of operation. If the are added at the beginning of the experiment,
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the robots go through the entire process and the distance travelled and current

orientation of robots are populated in the database. On the other hand if the

values are entered during an accomplishment of certain task then the system

decides whether they have to continue their current pursuit or abandon it and

proceed with the new task. This decision is again tied back to the task prior-

itization. On extrapolating this system to a large population of robots (even

better if robots are heterogeneous) this could be utilized in simultaneous task

accomplishments which are discussed in detail in the next chapter.
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Chapter 4

Conclusion

4.1 Future Work

This system could be developed with many additions. Many research teams

across the country are using similar robots for numerous purposes. With the

increase in actual number of robots, the problem complexity is increased thus

increasing the efficiency of the system. Instead of using Bluetooth technology, if

the robots are connected by wireless internet, many problems in communication

and task accomplishments could easily be solved.

4.1.1 Simultaneous Implementation

Instead of one robot flock achieving one task at a time, several robots can be

made to achieve several tasks simultaneously. Imagine a swarm of robots and

more than one task is given then several flock of robots are formed among this

swarm and each team would again select a protagonist to achieve the task. Once

protagonist robots are decided and they are busy in achieving the task,then

task(s) can be given to the remaining robots thus forming a continuous system.

Applications of this could be several.

As shown in the figure above, different flocks of robots are formed and even-

tually a protagonist robot is picked up from each flock which will be engaged in

accomplishment of the given task.
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Figure 13: An illustration of simultaneous task accomplishment.
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4.1.2 Simultaneous Multiple Task Implementation

If we closely observe this system is independent of robots that accomplish the

task. So given a control system and provided with different sets of robots at

different locations, different tasks could be achieved simultaneously and under

a single central control system. A small depiction of this system is shown be-

low. As mentioned on various occasion in previous chapters by introduction of

heterogeneous robots the task prioritization becomes an interesting aspect by

itself and optimization of that phenomena can lead to a very efficient system.

Figure 14: A sketch depicting simultaneous task accomplishment in different locations
simultaneously
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4.1.3 Machine Learning

With provision of a camera and access to the ROM on the robot, machine

learning could be implemented on the robot. Static obstacles could be detected.

Once the robot encounters with an obstacle, and does not recognise as a robot,

then machine learning could be adapted in such a way that obstacle is detected

in such a path at the particular point and the system will never take that path

again. On multiple iterations of the same environment, this system could be

made false proof.

Of course it is provided that the working environment might not be the same

all the time but whenever an environment is changed and with a database of

history of possible shapes of obstacles, the system could be adapted from one

environment to another with little time for training.

4.2 Applications

Several areas like Military, Commercial and Domestic could make use of this sys-

tem. For example, in military areas, majority of the bomb detection systems are

currently tele-operated systems, where an operator has to continuously control

the robot. With the use of this system, these robots could helped in locating

hazardous places, take a picture of something suspicious and send it back to

the control station. With addition of tele-operation to this system, this system

could be both autonomous and semi-autonomous at the same time handling

more than one task simultaneously.

Consider a swarm of robots that is running this system. Each robot apart

from being autonomous is also equipped with a camera and GPS to identify

its location. In war grounds these robots could be effectively used for various

purposes. With a central control system provided,the user can ask the robots
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to reach any point and transmit information back to the central station. With

integrated of tele-operation system into the robots, the control of any robot

could be taken with touch of a button. The system is illustrated here below.

Figure 15: An example of an application where four protagonist robots are in accom-
plishment of tasks

Its to be kept in mind that these images are illustrations of the actual appli-

cation. As shown above the robots are three protagonist robots from different

flocks attending to different tasks simultaneously.
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Figure 16: An application which shows live images transmitted from robots

Shown above is the picture of the hand-held computer, the central control

system with the user with the images transmitted by the four protagonist bots

that were formed out a swarm and attending to four different tasks simultane-

ously . As the screen shows, one of the four images seem to be suspicious while

the other three images are normal. At this stage using the provided controls,

the user can switch robot ’R2’ from autonomous to tele-operation.

Extensive Research is being conducted in water and air borne robots which
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are applied at so many areas including military. With this system becoming self

sufficient, this system could be implemented not only on ground vehicles but

also in bots that operate in water.

4.3 Conclusion

Thus this system proves to be a useful system with varied applications. The only

dependencies of this system is a reliable wireless network, for which researchers

have found numerous ways that could cater economic to very expensive needs

and customers. A few limitations of this system currently is the Bluetooth

wireless system and the Create robots which are unable to transmit data among

themselves but only to a Central Control System. Wireless Internet on the other

hand could be a very positive alternative to it, although at this point I do not

know the pros and cons using such a system on these Create Robots.

As stated in section 4.1.2, since this system offers a robust solution on op-

timizing the system and independent of robots, this system could be adapted

to various industrial applications. This system could also open doors to indus-

trial, commercial and domestic networks in various situations like regulation of

appliances or machines in an environment etc.
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