
Object detection and localization: an
application inspired by

RobotAtFactory using Machine
Learning

Leonardo Pilarski

Dissertation presented to the School of Technology and Management of Bragança to

obtain the Master Degree in Engenharia Industrial.

Work oriented by:

Professor José Luis Sousa Magalhães Lima

Professor Alberto Yoshihiro Nakano

Prof. João Afonso Braun

Bragança

2023

Object detection and localization: an
application inspired by

RobotAtFactory using Machine
Learning

Leonardo Pilarski

Dissertation presented to the School of Technology and Management of Bragança to

obtain the Master Degree in Engenharia Industrial.

Work oriented by:

Professor José Luis Sousa Magalhães Lima

Professor Alberto Yoshihiro Nakano

Prof. João Afonso Braun

Bragança

2023

Dedication

I dedicate this work to everyone who somehow helped me and made this possible. Mainly

to my parents, Janete and Miguel, for all the support, encouragement, motivation, edu-

cation and love. To my siblings for all the moments of relaxation, charges, and for being

the reason for making me a better person every day, for inspiring them. To my grand-

parents, for being very important in my personal growth, giving me a vast personal and

professional knowledge in many areas, as well as a great affection, reciprocal, shown to

me by them. To my second family, Wilson and Sônia, with whom I spent most of my

life, who provided me with knowledge, experiences, and affection, helping me to become

the person I am today. To my undergraduate colleagues, especially Luiz E. M. Luiz, who

besides being a great advisor in the academic field, through opinions and discussions in

the development of this work, provided me with lessons about life, being an example of

person and professional to be inspired.. . .

v

Acknowledgement

I would like to thank professors José Luis Sousa Magalhães Lima and Alberto Yoshihiro

Nakano for all the guidance, advice, and experience given to me, and also for the consid-

eration and commitment to the work developed, where they gave their time for it. I also

thank the guidance and advice of Professor João Afonso Braun, member of CeDRI, for

giving his time to help and advise me. I would also like to remember and thank, all the

professors with whom I had the pleasure of learning and being inspired within engineer-

ing, as well as all those who were part of my academic path. Still in the academic scope,

I thank the educational institutions UTFPR and IPB, for allowing my participation in

the double degree program. I also thank the friends I made in Portugal for helping me,

not only in the academic field, but also in life experiences. Special thanks to Lucas Colla,

David Valente, and Joao Armando Fortes Lima.

vii

Abstract

The evolution of artificial intelligence and digital cameras has made the transformation

of the real world into its digital image version more accessible and widely used. In this

way, the analysis of information can be carried out with the use of algorithms. The

detection and localization of objects is a crucial task in several applications, such as

surveillance, autonomous robotics, intelligent transportation systems, and others. Based

on this, this work aims to implement a system that can find objects and estimate their

location (distance and angle), through the acquisition and analysis of images. Having

as motivation the possible problems that can be introduced in the robotics competition,

RobotAtFactory Lite, in future versions. As an example, the obstruction of the path

developed through the printed lines, requiring the robot to deviate, and/or the positioning

of the boxes in different places of the initial warehouses, being positioned so that the

robot does not know its previous location, having to find it somehow. For this, different

methods were analyzed, based on machine leraning, for object detection using feature

extraction and neural networks, as well as object localization, based on the Pinhole model

and triangulation. By compiling these techniques through python programming in the

module, based on a Raspberry Pi Model B and a Raspi Cam Rev 1.3, the goal of the

work is achieved. Thus, it was possible to find the objects and obtain an estimate of their

relative position. In the future, in a possible implementation together with a robot, this

data can be used to find objects and perform tasks.

Keywords: Machine Learning, neural networks, object detection, localization, robotics

competition.

ix

Resumo

A evolução da inteligência artificial e das câmeras digitais, tornou mais acessível e am-

plamente utilizada a transformação do mundo real, para sua versão em imagem digital.

Dessa maneira, a análise das informações pode ser efetuada com a utilização de algo-

ritmos. A deteção e localização de objetos é uma tarefa crucial em diversas aplicações,

tais como vigilância, robótica autônoma, sistemas de transporte inteligente, entre out-

ras. Baseado nisso, este trabalho tem como objetivo implementar um sistema que consiga

encontrar objetos e estimar sua localização (distância e ângulo), através da aquisição e

análise de imagens. Tendo como motivação os possíveis problemas que possam ser intro-

duzidos na competição de robótica, Robot@Factory Lite, em versões futuras. Podendo

ser citados como exemplo a obstrução do caminho desenvolvido através das linhas impres-

sas, requerendo que o robô desvie, e/ou o posicionamento das caixas em locais diferentes

dos armazéns iniciais, sendo posicionadas de modo que o robô não saiba sua localização

prévia, devendo encontra-las de alguma maneira. Para isso, foram analisados diferentes

métodos, baseadas em machine leraning, para deteção de objetos utilizando extração de

características e redes neurais, bem como a localização de objetos, baseada no modelo de

Pinhole e triangulação. Compilando essas técnicas através da programação em python,

no módulo, baseado em um Raspberry Pi Model B e um Raspi Cam Rev 1.3, o objetivo

do trabalho é alcançado. Assim, foi possível encontrar os objetos e obter uma estimativa

da sua posição relativa. Futuramente, em uma possível implementação junta a um robô,

esses dados podem ser utilizados para encontrar objetos e executar tarefas.

xi

Palavras-chave: Machine Learning, redes neurais, deteção de objetos, localização, com-

petição de robótica.

xii

Contents

Acknowledgement vii

Abstract ix

Resumo xi

Acronyms xxi

1 Introduction 1

1.1 RobotAtFactory Competition . 3

1.2 Motivation . 4

1.3 Objective . 4

1.4 Document Structure . 5

2 State of Art 9

2.1 Object Detection and Classification . 9

2.1.1 Detection Based on Region Proposal 9

2.1.2 Regression/Classification-Based Framework 13

2.1.3 Analysis of the methods . 16

2.2 Artificial Vision . 17

2.2.1 Localization . 18

3 Methodology 21

3.1 Definition of the Problem . 21

xiii

3.2 Concepts . 22

3.2.1 Digital Image . 22

3.2.2 Pinhole Model . 22

3.3 Solution Components . 26

3.3.1 Hardware . 26

3.3.2 Software . 31

4 Development 35

4.1 Module Assembly . 35

4.2 Location Module Algorithm . 37

4.2.1 Detection . 37

4.2.2 Coordinate Location . 40

4.2.3 Main Function . 42

4.3 Detection of Objects . 45

4.3.1 Creating the Dataset . 45

4.3.2 Custom Model Training . 48

5 Tests and Results 52

5.1 Detection of Boxes . 52

5.2 Initial Applicability Test . 53

5.3 Parameterized Lengths . 56

5.4 Position variation tests . 57

5.4.1 Operating Distance Measurement 57

5.4.2 Identification in different angle and distances 58

6 Conclusion and Future Works 65

6.1 Future Works . 68

A Article Produced 79

xiv

List of Tables

2.1 Comparison of Object Detection Algorithms [42]. 17

3.1 Raspberry Pi 4 Tech Specs [68]. 28

5.1 Obtained operating distance measurements in centimeters. 58

5.2 Distance Analysis Calculation. 58

xv

xvi

List of Figures

1.1 Evolution of RobotAtFactory competition arena (a) RobotAtFactory [22],

(b) RobotAtFactory Lite [23] and (c) RobotAtFactory 4.0 virtual view [12] 4

2.1 Two types of frameworks: region proposal based and regression/classifica-

tion based [24]. 10

2.2 Flowchart of R-CNN [31] . 10

2.3 Archtecture of SPP-Net for Object Dection [32] 11

2.4 Archtecture of Fast R-CNN [31] . 12

2.5 Archtecture of Faster R-CNN [34] . 13

2.6 Main idea of YOLO [36]. 15

2.7 Architecture of SSD 300[37]. 16

3.1 Image formation in a perspective camera adapted [18]. 23

3.2 Camera perspective projection model[18]. 24

3.3 Pinhole geometric relations adaptation of [56]. 25

3.4 Hardware Module . 27

3.5 Raspberry Pi 4 model B [67] . 28

3.6 Raspberry Pi utilization with accessories [69] 29

3.7 Raspberry Pi Camera Board [70] . 29

3.8 Raspberry Pi Camera Board [70] . 30

3.9 Cases for Raspberry and Camera . 30

3.10 Software diagram and algorithm . 32

xvii

4.1 Raspberry Pi e Module Raspi Cam, adaptation of [77]. (a) Separate com-

ponents e (b) Connection of components 36

4.2 Location module prototype: (a) Front View, (b) Side View, and (c) Top

View . 36

4.3 Specifications used libraries. 37

4.4 Network configuration flowchart and detection model. 38

4.5 Flowchart of the detection function. 39

4.6 Distance and angle variation based on the Pinhole model. 40

4.7 Flowchart of the distance calculation function 41

4.8 Flowchart of the angle calculation function 43

4.9 Flowchart of the main function . 44

4.10 Creating customizing dataset. 46

4.11 Tools union used for training. 49

5.1 . 53

5.2 Results of training in Roboflow Platform. 53

5.3 Results mAP of training method YOLOv4-Tiny on Google Colab. 54

5.4 Comparison of actual bounding box and detection model 55

5.5 Box dimensions of the robot factory lite test, adapted from [11] 56

5.6 Parameterized Lengths. (a) Top image of parameterized e (b) Digital image

parameterized . 57

5.7 Minimum operating distance measurement. (a) Image actual of minimum

distance (b) Image of module with calculated minimum distance. 58

5.8 Maximum operating distance measurement. (a) Image actual of maximum

distance (b) Image of module with calculated maximum distance. 59

5.9 Measurement of actual parameters with the box to the camera. (a) 30 cm

at 10° at left, (b) 30 cm at 0°, (c) 30 cm at 10° at right. 60

5.10 Result obtained by the detection and localization module. (a) 30 cm at 10°

at left, (b) 30 cm at 0°, (c) 30 cm at 10° at right. 60

xviii

5.11 Relative distance measurements, based on 10 samples for each position

of interest. Relative angle measurements, based on 10 samples for each

position of interest. (a) Mean (cm), (b) Standard Deviation (cm), (c)

Absolute Error (cm) and (d) Relative Error. 62

5.12 Relative angle measurements, based on 10 samples for each position of

interest. (a) Mean (graus), (b) Standard Deviation (graus), (c) Absolute

Error (graus) and (d) Relative Error. 63

A.1 Certificate of participation in the production of an academic article during

the development of this work. 79

xix

Acronyms

AP Average Precision.

API Application Programming Interface.

BB Bounding Box.

CNN Convolutional Neural Network.

DNN Deconvolutional Neural Network.

FC Fully-Connected.

FPS Frames per Second.

fps frames per second.

GB Gigabyte.

GPU Graphics Processing Unit.

hFoV Horizontal Field of View.

IDE Integrated Development Environment.

k Anchor.

mAP mean average precision.

xxi

MP megapixels.

NMS Nonmaximum Suppression.

OpenCV Open Source Computer Vision Library.

OS Operational System.

pixels picture element.

PLA polylactic acid.

Python programming language.

RoI Region ff Interest.

RPN Region Proposal Networks.

SD Secure Digital.

SPM Spatial Pyramid Matching.

SSD Single Shot Multibox Detector.

SVM Support Vector Machine.

vFoV Vertical Field of View.

YOLO You Only Look Once.

xxii

Chapter 1

Introduction

Artificial intelligence seeks to create techniques that mimic human intelligence. Computer

vision [1] is one of them and can be understood as a set of mathematical and computational

techniques to process images and extract relevant information. Although some algorithms

attempt to mimic human vision, they are not limited to that [2]. Most focus on extracting

specific features from images, such as colors or shapes, analyzed in a personalized way,

such as in object recognition [3].

This insight plays a key role in robotics [4], particularly in mobile robotics, involving

data acquisition and its use to perform tasks. This multidisciplinary research area has

a wide variety of applications, such as space exploration [5], autonomous transportation

[6], and flexible manufacturing systems [7]. Advances in this area have enabled robots to

perceive and understand their surroundings, using cameras and other sensors to collect

visual information about the terrain. This information, robots to plan their trajectories

and make real-time decisions to move efficiently and safely [8].

Robotics competitions are a crucial setting for the inception of technological devel-

opment [9]. These can be considered the starting point for research and development in

many areas, such as science and technology, as they seek to solve competition problems

with many innovative ideas [10]. One notable example of such competitions is RobotAt-

Factory [11], which aims to simulate a factory environment and transportation objects.

Over the years, it has evolved regarding technology development and complexity. Its most

1

2 CHAPTER 1. INTRODUCTION

recent version [12] had changed regarding its competition area, replacing continuous lines

by spaced markers printed on the floor.

The analysis of RobotAtFactory’s evolution, based on the Lite version of the com-

petition in 2022 and the certified paper[13] in appendix A, raises questions about its

upcoming changes. Regarding this, some assumptions can be made. One of them would

be distributing the boxes randomly in the competition scenario, unlike the current way,

where they all have their initial location in the entry warehouse,thus, forcing the compet

it ors to develop systems capable of locating these objects. Linked to this, besides locating

the boxes, this system would serve to identify possible obstacles, which are obstructing

the route to be performed by the robot.

Object detection aims to identify all occurrences of elements from one or more recog-

nized categories. Usually, a small number of elements are present in the image, however

there are a vast number of potential locations and sizes, which must be analyzed [14].

There are several methods for detecting objects and obtaining their location in the im-

age. All identifications are recorded with information that ranges from the object’s simple

position to its size, using a bounding box or a clipping mask. In some cases, entering in-

formation about the linear or non-linear transformation results in a more precise location

in the image [15].

The detection information estimate the distance between the camera and the detected

object in the image using its dimension information. For this, one or more cameras [16]

used in a process is known as depth or distance estimation. Several techniques that can be

used to perform this estimation, including geometric models and image feature analysis

[17]. One such technique is the Pinhole model [18], based on the relationship between

the sizes of the object in the real world and its produced image. Distance estimation is

essential in many applications, such as autonomous vehicles [19] and virtual reality [20],

among others, where the accuracy of object location is critical for correct decision making.

1.1. ROBOTATFACTORY COMPETITION 3

1.1 RobotAtFactory Competition

The first edition took place in Lisbon in 2011 at the Robotics Festival [21]. The compe-

tition sought to recreate problems autonomous robots face in a factory environment. Its

constitution was based on three parts, the initial warehouse, eight processing machines

and the final warehouse. The robots’ task was to get items from the initial warehouse to

the final one quickly, and sometimes to pass through the machines first. They should have

to collect the boxes, transport and allocate them in each stage, simultaneously locating

and navigating the environment, avoiding obstacles and reaching the goal. The compe-

tition track was formed by white lines on a black background, connecting warehouses

and machines. The competition was divided into three sleeves, with increasing difficulty,

introducing different types of items at each stage, differentiated through different LEDs,

related to their type of processing.

In 2019, the race evolved to its Lite version [11]. Based on the rules of the first

version, it featured hardware and software simplifications, attracting smaller controlled

robots. Materials could now be dragged, using an electromagnet for coupling, decreasing

the requirement for picking materials and focusing on path performance. The shop floor

changes to two A0 sheets, with black line printing on a white background. The complexity

of the sleeves remains the same, changing only the identification of the different items, at

this moment being done through RFID identification.

The 2021 confinement brought restrictions for competition. At that time, the com-

petition was played virtually, through the SIMTWO simulator. The rules were similar

to the face-to-face version, however, in this competition the information about the differ-

ent subjects, with no possibility of RFID identification, was done by sending information

through a simulator or variable. In 2022, a transition started from RFID material ident-

tification and WIFI use and also presented the evolution up to version 4.0 of the test.

The rules are based on its previous editions, with complexity changes related to location

and navigation [12]. Instead of lines, ArUco Markers are printed on the ground, possibly

using reflectors in the track corners.

4 CHAPTER 1. INTRODUCTION

(a)
(b) (c)

Figure 1.1: Evolution of RobotAtFactory competition arena (a) RobotAtFactory [22], (b)
RobotAtFactory Lite [23] and (c) RobotAtFactory 4.0 virtual view [12]

1.2 Motivation

Considering the proximity to the academic environment, robotics competitions offer an

initial path for students to experience problem-solving first-hand. A good example is

the Robot@Factory Lite competition, which bases its competition area on a factory floor

with printed lines and machines. The main product worked on in this race is 3D printed

boxes, transported from one warehouse to another, using the lines to trace their route.

However, if the lines are obstructed, the robot’s path is affected, and may even lead to

a collision. Looking further ahead, if the test were to evolve in the future and the boxes

were scattered randomly in the environment without any prior information about their

location, or if a box were to get lost in the middle of the route, it would need to be located

somehow. Based on these possibilities, the robot must have a system that first detects

these objects, estimates their position in the real world, and then performs the other test

requirements.

1.3 Objective

Based on this motivation, this work aims to develop an object detection and localization

system. It can be used to identify possible obstacles in a pre-defined path or even locate

objects in an unknown environment. Also, without suffering interference, it can operate

in an indoor environment.

1.4. DOCUMENT STRUCTURE 5

The scope of the objective encompasses:

• Using the Raspberry Pi Cam Rev 1.3 coupled with a Raspberry Pi 4 Model B - 4

Gigabyte (GB) RAM;

• Obtaining images of the environment;

• Using neural networks;

• Train a custom object detector;

• Pass training data to the detection model;

• Locate the objects in the image;

• Parameterize its dimensions in the image and the real world;

• Calculate the distance to the object; It is

• Calculate the angular orientation to the object.

1.4 Document Structure

The document structure is presented as follows:

• Chapter 1 presents an introduction to the concepts related to the proposed work.

It begins by providing an overview of the topic and discussing of the research mo-

tivation and objectives. The chapter concludes with a presentation of the structure

of the document;

• Chapter 2 reviews many studies on object detection and localization methods. It

begins by presenting proposed region-based methods, which divide the image into

smaller images and analyze each region to detect objects. Next, regression-based

methods are presented, which get a faster response by predicting the location of

objects in the image with the help of neural networks. Next, a review of machine

6 CHAPTER 1. INTRODUCTION

vision applied to localization is presented. Reviewing these studies is intended to

provide a context and a theoretical basis for the work on object detection and

localization that will be presented later;

• Chapter 3 begins by presenting the definition of the problem being addressed. Then

it presents the methods and mathematical formulations used to parameterize the

relationship between the real world and digital images. Information about the com-

ponents and technical specifications involved by the hardware, including details

about the camera used, the processor, memory and the components necessary for it

to work, is presented. Afterward, the embedded operating system and the built-in

tools for running the software are presented. Finally, the chapter briefly explain the

algorithms developed, as techniques that are used to detect objects and how they

work within the system.

• Chapter 4 begins by showing the union of hardware components, the installation

of the operating system, and tools used by the software, forming the detection

module. The chapter provides a detailed account of the algorithms developed for

the system’s operation, along with the object detection techniques employed and

their functioning within the system. Finally, the way in which the object detection

method was trained is presented, including details about the dataset and the training

techniques employed;

• Chapter 5 presents the tests and results related to object training and detection.

First, the tests that characterize the training quality of the object detection model

and their results are presented, to evaluate the effectiveness of the trained model.

Next, the tests of the detection module and the results obtained are described,

evaluating its performance in different situations and scenarios; and

• Chapter 6 presents the conclusions based on the results obtained, with the tests

carried out during the development of the object detection system. The perfor-

mance of the system in different scenarios is discussed, as well as its limitations and

1.4. DOCUMENT STRUCTURE 7

possibilities for improvement. The main contributions of the work and the achieved

objectives are presented. In addition, the chapter proposes future work and lines

of investigation that can be pursued to improve the system and extend its reach in

terms of applicability.

Chapter 2

State of Art

2.1 Object Detection and Classification

From the classification method, one can evolve to detection and expand its application.

The main objectives of object detection involve finding different objects present in the

image, through rectangular boxes, and classifying them according to their category.

Generic detection methods are divided into two groups as dhowed in 2.1. The first

follows the traditional principle of separating the image into smaller parts and later joining

the common parts, following the principle of dividing a big problem into smaller ones.

The second, on the other hand, seeks a faster response to the problem, working with

regression and adopting a unified structure to reach the final results directly. Next, the

state of the art of [24] object detection will be presented.

2.1.1 Detection Based on Region Proposal

This structure is based on two fundamental aspects. Firstly, it scans all the information,

and then it analyzes the Regions of Interest Region ff Interest (RoI) specifically. It draws

inspiration from works such as [25], [26], and primarily [27], which utilize Convolutional

Neural Networks Convolutional Neural Network (CNN) to project the Bounding Boxes

Bounding Box (BB)s directly onto the regions of highest confidence in the resource map.

9

10 CHAPTER 2. STATE OF ART

Figure 2.1: Two types of frameworks: region proposal based and regression/classification
based [24].

R-CNN

In 2014, Girshick proposed the R-CNN algorithm [28] considered the first convective

neural network-based object detection model obtaining an accuracy of 66% mAP. As

illustrated in Figure 2.2, the model uses selective search to extract about 2000 proposed

regions from each image to be detected [29]. Subsequently, each region is manipulated and

sent to the CNN module [30], generating a feature vector with 4096 dimensions for each

region. This vector is fed into the Support Vector Machine (SVM) classifier [30], where

a linear bounding box regression occurs, delimiting objects by scoring regions. Although

its accuracy is significantly higher than the traditional detection method, the required

computation is very large, resulting in low efficiency. In addition, directly scaling the

proposed region to a fixed-length feature vector may cause object distortion.

Figure 2.2: Flowchart of R-CNN [31]

2.1. OBJECT DETECTION AND CLASSIFICATION 11

SPP-Net

The Fully-Connected (FC) layers take a fixed size input. The deformation or cut of each

proposed region is necessary, but with this comes the problem of possible exclusion of areas

of interest.The variable scale of objects results in a reduction in recognition accuracy.

To work with this problem, He et al.[32] studied the theory of Spatial Pyramid Match-

ing (SPM)[33], proposing a new architecture called SPP-Net. This method adopts more

refined parameters to divide the image and its architecture can be seen in Figure 2.3.

This method reuses data from the fifth conv layer (conv5), and according to the number

of layers of the pyramid and the number of feature maps in the conv5 layer, we have, at

the end of the SPP layer, the final feature vector. We obtain better results for regions

with different scales and better performance by sharing of computational cost before the

SPP layer.

Figure 2.3: Archtecture of SPP-Net for Object Dection [32]

12 CHAPTER 2. STATE OF ART

Fast R-CNN

SPP-Net has shown impressive improvements over R-CNN, but it still has disadvantages.

It uses many stages similar to R-CNN, causing an additional expense of unnecessary stor-

age space. Layers before the SPP layer cannot be updated, with fine-tuning [32] decreasing

precision. To work around this problem, Girshik et al.[28] made some modifications to

their initial project, creating Fast R-CNN.

The architecture is similar to SPP-Net, and the entire image is analyzed at the conv

layer, instead of splitting it into 2000 initial proposals, producing a convolutional feature

map. Then a feature vector is extracted from each proposed region using a pooling layer

RoI reshapes itself to a fixed size for sending to FC. From the resource vector RoI two

outputs are obtained, one through a softmax layer predicting the class of the proposed

region for all categories, including the background. The other uses regression to encode

the refined bounding box positions, producing four real values. Thus, training all layers

can be done at once, lowering storage space and accuracy expenses.

Figure 2.4: Archtecture of Fast R-CNN [31]

Faster R-CNN

Predecessor methods to Faster R-CNN used selective search to find proposed regions,

making the process slow and affecting network performance. To solve this, Ren et al.[34]

2.1. OBJECT DETECTION AND CLASSIFICATION 13

[35] created the Faster R-CNN method that does not use selective search, streamlining the

process and allowing the network to learn the proposed regions. In this method the image

is provided as input, similar to its predecessor method, providing the map of convolutional

features. Instead of traversing the entire map through selective search, using a separate

network speeds up the process, working simultaneously. This small network is slid over

the convolutional resource map of the last layer. Next, Region Proposal Networks (RPN)

generate object proposals, using a classifier and a regressor. In this process, the concept of

Anchor (k) was included, which is the central point of the sliding window. The classifier

informs the probability of the proposal containing an object and the regressor presents the

coordinates. These are remodeled in a grouping layer RoI, classifying the image within

the analyzed region and modeling the displacement and allocation of the bounding boxes.

Figure 2.5: Archtecture of Faster R-CNN [34]

2.1.2 Regression/Classification-Based Framework

Regression/classification-based frameworks are more agile, incorporating fewer processes

into their environment. Instead of generating region proposals or extracting features with

CNNs, they proceed directly to image pixel analysis, classifying the bounding box position

14 CHAPTER 2. STATE OF ART

and class, thus reducing the analysis time and increasing the speed of obtaining answers.

The context of these methods, based on [24], is analyzed below, with You Only Look

Once (YOLO) [36] and Single Shot Multibox Detector (SSD) [37].

YOLO

The original proposal of YOLO [36] utilized a large feature map to accelerate the process,

eliminating the need for region proposal extraction, to detect bounding boxes BBs and

confidence levels related to the class. The operational process of this method is described

as follows is based on dividing the input image into a grid, with cells of S × S dimensions.

Each cell in the YOLO model predicts B bounding boxes BBs and their corresponding

confidence levels. The BBs are then used to locate the object within the linear reference

of the cell.

The confidence scores [24] are defined as the probability of objects existing and the

confidence of that prediction. Additionally, the probability of there being C classes in

each cell is calculated simultaneously. If both criteria are met, then they are taken into

consideration. On a single TitanX, its detection speed can reach 45fps working in real

time, but has poor recognition performance when dealing with objects in group form.

According to the authors, the YOLO approach offers significant major advantages

over traditional object detection methods. First, the processing speed is much higher

than models in the R-CNN family, even reaching and surpassing real-time performance

levels. In addition, a lighter and speed-optimized version, known as Fast YOLO, has also

been developed.

The second advantage the reduced false detections in the image background because

they use features of the entire image to predict each bounding box, taking into account

the context of the objects in the image and detecting fewer objects incorrectly.

The third advantage is that YOLO models learn generic representations of objects.

Since they are highly generalizable, these models are more robust when applied to new

domains and unknown images for analysis. However, it should be noted that these models

also have disadvantages and limitations. They are generally less accurate than other

2.1. OBJECT DETECTION AND CLASSIFICATION 15

objects detection methods, especially when it comes to detecting small objects.

Figure 2.6: Main idea of YOLO [36].

The evolution of YOLO continues after its first release [36]. The second version [38]

was proposed to be faster and more accurate than the first version, using anchor boxes,

dimension clustering, and multilevel training. The release of the third version [39] inproved

prediction, due to the introduction of 3 different scales it solved the shortcoming in the

previous version, but led to a loss in speed, due to the process becoming more expensive

of processing. The fourth official version [40] improved inference and accuracy, due to

better efficiency in running on Graphics Processing Unit (GPU), occupying less memory.

This last version proved to be the most efficient in real-time object detection using the

metrics of the [41] metrics. This method had its Average Precision (AP) and Frames per

Second (FPS) improved by approximately 25% and 22%, respectively, as shown in the

table 2.1.

SSD

To address the challenges posed by small object detection and the various sample reduction

operations in YOLO, SSD [37] was developed. Instead of using fixed grids as in the

previous method, this approach employs anchor boxes with varying scales to generate the

output BBs, combining multiple predictions and resolutions.

16 CHAPTER 2. STATE OF ART

This method is based on the VGG16 backbone architecture with the addition of two

convulational layers at the end of the network, predicting displacement of boxes at differ-

ent scales, as presented in Figure 2.7. Its training is based on information reduction and

the final result obtained by Nonmaximum Suppression (NMS). It achieves 77,2% mAP

on VOC2007 at 46 FPS on an Nvidia Titan X. However, the result for small targets is

poor, and the feature maps of different scales are independent, leading to simultaneous

detection of the same object by different sized boxes.

Figure 2.7: Architecture of SSD 300[37].

2.1.3 Analysis of the methods

The results announced by the authors of the various models are usually associated with

the datasets used [42]. It is because, over the years, several competitive challenges for

object detection were organized, and typically the datasets used to evaluate the competing

methods were predefined. Since then, these datasets have continued to be used to evaluate

newly developed models. The metrics considered in these challenges are not always the

same. Thus, it is common for each dataset to be associated with specific metrics. Despite

all this variability, some metrics are always relevant, such as accuracy, revocation, and

IoU.

It is possible to locate objects in images through bounding boxes with different qualities

and processing speeds, depending on the available resources and the model used. No single

model that is best in all cases, and it is necessary to evaluate the needs of each application,

such as time, quality, accuracy, and precision. R-CNN models offer more accurate results,

while YOLO models prioritize speed over quality. The SSD model is an intermediate

2.2. ARTIFICIAL VISION 17

Method Backbone Size/Pixel Test mAP/% fps
YOLOv1 VGG16 448×448 VOC 2007 66.4 45

SSD VGG16 300×300 VOC 2007 77.2 46
YOLOv2 Darknet-19 544×544 VOC 2007 78.6 40
YOLOv3 Darknet-53 608×608 MS COCO 33 51
YOLOv4 CSP Darknet-53 608×608 MS COCO 43.5 65.7
R-CNN VGG16 1000×600 VOC2007 66 0.5
SPP-Net ZF-5 1000×600 VOC2007 54.2 -

Fast R-CNN VGG16 1000×600 VOC2007 70.0 7
Faster R-CNN ResNet-101 1000×600 VOC2007 76.4 5

Table 2.1: Comparison of Object Detection Algorithms [42].

option, offering higher speeds than the R-CNN models and equal or better quality than

the YOLO models.

The YOLOv4 was chosen to implement the application because it is the latest and

most improved version of the YOLO family of models. Several models have been studied

to locate objects through bounding boxes, but the performance in terms of speed and

quality of detections has not been analyzed in an absolute way due to the characteristic

variables that involve the process.

2.2 Artificial Vision

Machine vision is one of the most active and promising areas of artificial intelligence. It

involves the development of algorithms and models that enable machines to understand

and interpret images and videos like humans. Machine vision has applications in many

fields, such as medicine, robotics, security, and entertainment [43].

In recent years, there have been significant advances, driven by progress in the devel-

opment of machine learning algorithms [44] and the availability of large labeled datasets

for training [45]. Some of the major areas of advancement in machine vision include:

• Object detection and classification: Object detection and classification is one of

the fundamental tasks of machine vision [14]. In recent years, convolutional neural

networks (CNNs) have been widely used for object detection and classification [24].

18 CHAPTER 2. STATE OF ART

Algorithms such as YOLO, R-CNN, and their variants have achieved impressive

results in this area [42].

• Image segmentation: Image segmentation is another important task of machine

vision, which involves dividing an image into several regions or segments [46]. Re-

cent advances in image segmentation include semantic segmentation, which involves

assigning semantic labels to each pixel in an image.

• Face recognition: Face recognition is an important area of machine vision, which has

applications in the security and identification of individuals [47]. Face recognition

has been improved using deep neural networks such as FaceNet and DeepFace.

• Self-driving: Self-driving is another important area of machine vision, which involves

detecting and classifying objects in real time to allow vehicles to move autonomously

[48]. Machine vision technologies are a key part of developing autonomous driving

systems [6].

Machine vision constantly evolves, and recent advances in machine learning algorithms

and data sets have driven its development. The applications of machine vision are vast

and range from object detection and classification to self-driving cars. Machine vision will

continue to be an active area of research and development in artificial intelligence.

2.2.1 Localization

Object localization, through distance estimation using images, is a widely used technique

in many machine vision applications [49], such as autonomous vehicles, robotics and

security systems, among others. In recent years, there have been significant advances

in the state of the art of using images to measure the distance of objects, thanks to

the evolution of [50] technologies such as cameras, sensors, and [51] image processing

algorithms.

Some of the main methods for measuring the distance of objects using images include:

2.2. ARTIFICIAL VISION 19

• Stereo-vision: Stereo-vision is a technique that involves using two cameras to capture

images of an object from different points of view. Distance is measured by comparing

the differences between the two images [52]. This method is widely used in robotics

and autonomous vehicle vision.

• Machine Learning Algorithms: Machine learning algorithms such as Convolutional

Neural Networks (CNNs) have been used to measure the distance of objects based

on images. These algorithms are trained on a large set of image data and can detect

patterns that indicate distances [53].

The use of images to measure the distance of objects has advanced considerably in recent

years, thanks to the development of technologies. Often, it is possible to combine several

techniques to measure the distance of objects more accurately. For example, stereo-

vision can be combined with machine learning algorithms to improve the accuracy of the

measurement. This possibility of coupling continues to allow systems to reach new levels

of accuracy and efficiency.

Work was analyzed that calculates the distance from specific points to a robotic plat-

form [17], which uses stereoscopy to avoid platform collision. The chapter also includes

an analysis of object detection in robot soccer competitions [54], as well as the use of

monocular vision to measure the distance and height of horizontal edges in mobile robots

[55]. All these works used cameras to obtain images of the real world for subsequent anal-

ysis. For this, they used trigonometric analysis of the data, mainly related to the Pinhole

model. Thus, this work will be based using a camera to acquire the images, obtaining

the data through machine learning for object detection and analyzing the data through

mathematical modeling of the Pinhole model.

Chapter 3

Methodology

The upcoming chapter will present the problem formulation and a proposed solution.

Then, it will introduce the concepts used in the development process. Finally, the ar-

chitecture of the detection and localization module will be presented, including all the

constituent parts.

3.1 Definition of the Problem

There are several ways to approach the localization problem for a line following robot.

Some ordinary methods include: inertial markers, visual markers, GPS, and SLAM. The

vast majority of the robots competing in Robot@Factory Lite have used mainly encoders

and infrared detection sensors to locate themselves and reach the target object. Regardless

of the method chosen, it is important to regularly check the accuracy of the methods used

and make the necessary adjustments to ensure that the robot stays on track. However,

in certain specific cases, the information from these sensors alone is unnecessary for error

correction. Examples are when the robot leaves the predefined route and/or is displaced

by external factors and when the route is obstructed by the insertion of unknown items.

Regarding the evolution of the race, the target objects (boxes) can be positioned in

previously unknown locations on the competition track. Thus, the need arises for a

detection and localization system that circumvents these problems, detecting objects and

21

22 CHAPTER 3. METHODOLOGY

estimating parameters such as distance and angular deviation, providing information for

further implementations in conjunction with robots developed for competition.

3.2 Concepts

3.2.1 Digital Image

The image can be presented as a representation or storage of visual perception. The

computer processes discrete data represented in binary form. Therefore, the images must

be digitalized for their processing. Continuous images are spatially discretized and quan-

tified in intensity, represented by I(x, y). The matrix indices, row and column, identify a

point in the image, and the corresponding value (I) of the matrix element identifies the

gray level at that point, assuming value and a finite interval. The elements of this digital

matrix are called [18] pixels. The more picture element (pixels) the image has, the better

its resolution and quality, however, this entails an increase in its processing time. Thus,

images only capture information about the amount of light, and the spatial information

about the direction of the light rays is lost.

3.2.2 Pinhole Model

o utilize images and aid in robot localization, it’s crucial to comprehend the geometric

principles underlying the formation of the image captured by a camera. By analyzing

the data present in the image, it becomes feasible to establish the relative positioning of

objects concerning the camera’s position. The main focus is to be able to transform and

project the real 3D world into a 2D image, but this entails a loss of depth information. But

there are some ways to get around this problem, such as using multiple cameras, multiple

images from a camera or the relationship between the points present in the image and

the objects that make up the scene.

The model used with greater recurrence linked to computer vision is pinhole [18], which

uses perspective projection, this model is presented in figure 3.1. The projected image,

3.2. CONCEPTS 23

plane I, is composed of all the rays that pass through a small hole at the entrance to the

camera, called the focal plane F. The distribution of pixels is defined by the focal length,

generally, patterns in images are intrinsic to the camera or obtained through calibration.

Figure 3.1: Image formation in a perspective camera adapted [18].

The analysis of a point in the real world Pc on an image point Pi, is presented in

figure 3.2. The point Pc its coordinates (Xc, Yc, Zc), defined by the camera reference C .

The point Pi has coordinates (xi, yi) defined in the reference frame of image I. The point

C represents the optical center, whose distance to the reference frame I is λ of the focal

length. The line passing through the optical center and perpendicular to the I plane is

the optical axis.

Using trigonometry and the relationship of triangles, the relationship between the

coordinates of the points in the two reference frames are given by

xi = λ

zc

xc, (3.1)

where

yi = λ

zc

yc. (3.2)

24 CHAPTER 3. METHODOLOGY

Figure 3.2: Camera perspective projection model[18].

The formulation to calculate the relationship between objects size using pinhole is

similar to the one used to calculate the relationship of points. The RaspiCam is equivalent

to a camera with a rectilinear lens, not deforming the objects in the image and preserving

their characteristics. From the camera specifications, one can consult the Horizontal Field

of View (hFoV), the Vertical Field of View (vFoV) and the focal length, which are related,

as shown in Figure 3.3.

Given that the field of view angles of the actual image and the projected image are

identical,

θo = θi (3.3)

and
θo

2 = θi

2 , (3.4)

tan(θo

2) = θi

2 . (3.5)

But the tangent relates to the sides of the triangle as

tan(θ) = C_opposite

C_Adjacent
. (3.6)

Then

tan(θo

2) = o

2 (3.7)

3.2. CONCEPTS 25

and

tan(θi

2) = i

2 . (3.8)

Like this
o

2 ∗ d
= i

2 ∗ f
(3.9)

and
d

o
= f

i
. (3.10)

By using these formulas and parameterizations, it is possible to establish relations between

the sizes of objects in the real world, measured in centimeters, and their corresponding

sizes in the image, measured in pixels.

Image of
object

Object Plan of imageObject

Image of
object

Plan of image

Inverted
Pinhole camera

Pinhole
camera

Field of
vision (θ)

Figure 3.3: Pinhole geometric relations adaptation of [56].

Several works are based on the use of camera vision, through focal length, to locate

objects and know the distance between the camera and the object. [55] presents a method

to spatially locate objects detected in the central column of images obtained by a moving

camera, restricted to the same direction as the optical axis, and at a constant speed, as

frequently occurs in certain mobile robots. The analysis of visual odometry is presented

in [57], among other methods based on sensory fusion for location in mining fields.

The localization system will be based on the pinhole camera model. It differs from

analog camera models, in addition to not having a lens, as it does not have a shutter,

which is the mechanism that controls the exposure time of material sensitive to light

rays. Despite being based on simple construction, they work perfectly by respecting the

physical laws of image formation, obtaining an inverted image because the illuminated

26 CHAPTER 3. METHODOLOGY

objects emit light in several directions, and the small hole in the camera only allows a

few rays to pass through. As the rays fall in a straight line, those that fall at an angle

have their inverse projection. This model describes the relationships between the objects

dimension in the real world and its projection on the image plane.

3.3 Solution Components

3.3.1 Hardware

The proposed hardware to create the localization module, presented in the Figure 3.4,

was based on related works presented in [58], [59],[60], [61], [62], [63],[64],[65] and [66].

The main components and specifications taken into account were:

• Computer Platform Raspberry Pi 4 Model B - 4 GB RAM:

– Fast CPU;

– Image/video processing and neural networks;

– Adaptive;

– High hardware and software compatibility and

– Low cost (92 euros).

• Camera Raspberry Pi Cam Rev 1.3 plus flexible apartment cable:

– Compatibility with own connector on Raspberry;

– Light and compact module and

– Low cost (7,57 euros).

Raspberry Pi 4 Model B

This device offers flexible memory options, with configurations of up to 4 GB of DDR4

Random Access Memory (RAM). It is powered via a USB-C port and features a micro

3.3. SOLUTION COMPONENTS 27

+

Hardware

Flat Flexible Cable

Raspberry Pi
Model B - 4 GB

Raspberry Pi
Cam Rev 1.3

Conector

CSI

Conector

CSI

+

Case for
Raspberry Pi

Case for Camera

Figure 3.4: Hardware Module

28 CHAPTER 3. METHODOLOGY

HDMI output that supports up to 4k dual-display monitors. Additionally, it offers en-

hanced connectivity and extended GPIO, as presented in Table 3.1 and Figure 3.5, all

while remaining affordable.

Figure 3.5: Raspberry Pi 4 model B [67]

Specifications Quantity
Broadcom BCM2711, Quad core Cortex-A72 (ARM v8) 64-bit SoC @ 1.5GHz 1
1GB, 2GB, 4GB or 8GB LPDDR4-3200 SDRAM (depending on model) 1
2.4 GHz and 5.0 GHz IEEE 802.11ac wireless
Bluetooth 5.0
BLE Gigabit Ethernet 1
USB 3.0 ports 2
USB 2.0 ports 2
Raspberry Pi standard 40 pin GPIO header
micro-HDMI ports (up to 4kp60 supported) 2
lane MIPI DSI display port 2
lane MIPI CSI camera port 2
4-pole stereo audio and composite video port
Micro-SD card slot for loading operating system and data storage 1
5V DC via USB-C connector (minimum 3A*) 1
5V DC via GPIO header (minimum 3A*) 1

Table 3.1: Raspberry Pi 4 Tech Specs [68].

This small, powerful and extremely affordable computer is ideal for embedded projects,

using cameras and much more. Just connect it to a computer monitor or television,

keyboard and mouse, add a Secure Digital (SD) card with the system installed, and it is

ready for use, as shown in Figure 3.6.

3.3. SOLUTION COMPONENTS 29

Figure 3.6: Raspberry Pi utilization with accessories [69]

Raspberry Pi Cam Rev 1.3

Raspberry Pi Cam Rev 1.3 module is mainly used in computer vision works like [63],[64],[65]

and [66] as it is easy to access and customized for use on various versions of the Raspberry

Pi. It is compatible with the latest version of Raspbian, the main operating system used

on the Raspberry Pi.

Figure 3.7: Raspberry Pi Camera Board [70]

The dimensions of the board are shown in Figure 3.8 and its weight is approximately

3 grams. These specs make this module perfect for placement on mobile devices where

size and weight are important.

Its uses vary from recording videos in high quality, to taking photos and creating tyme

30 CHAPTER 3. METHODOLOGY

Figure 3.8: Raspberry Pi Camera Board [70]

lapse files.With its built-in fixed focus lens, this device is capable of capturing crystal-clear

pictures at 5 megapixels megapixels (MP), with still images of 2592 x 1944 pixels. It also

supports video recording in 1080 pixels at 30 frames per second frames per second (fps),

720 pixels at 60 fps, and 640 x 480 pixels at 60/90 fps [71].

Case for Raspberry and Cam

The Raspberry Pi 4 Case and the support for the Raspberry Pi Camera were manufactured

through 3D printing, using polylactic acid (PLA), as shown in Figure 3.9. They bring a

safer design to the project, offering more security and stability to the circuit boards. The

case guarantees a perfect fit and compatible design for the project.

Figure 3.9: Cases for Raspberry and Camera

The Raspberry board is attached to the case with screws and has a cover with a perfect

3.3. SOLUTION COMPONENTS 31

fit to keep the board wholly sealed, with only the side connectors available for access and

use. The camera module is securely attached to the device’s case and connected to the

Raspberry Pi via a flat cable that passes through the designated slot in the case. These

two cases are joined together by a connecting rod and screws. In this way, it becomes

malleable.

3.3.2 Software

The development of the localization system, occurred through the Operational System

(OS) Raspbian interface. The neural network training, required to obtain the configu-

ration weights was performed solely on Google Colab. This platform provides a Jupyter

notebook running on a GPU and is free to use. To train the network, GPU and cuDNN

were used with specific drivers installed, and OpenCV. The coding of the localization pro-

gram, was developed entirely in Python programming language through the Thonny in-

terpreter, native to the Raspbian interface. For execution, all dependencies were installed

in our system: PiCamera and OpenCV. The algorithm for detecting objects and calculat-

ing their coordinates will be executed directly on the Raspberry, using the OpenCV tool.

The schematic of the software and algorithms is shown in Figure 3.10.

Operating System - Raspbian

An operating system glsOS is a collection of programs that provide an interface for users

to interact with the computer. There are numerous glsOS options available on the market,

including Windows, GNU/Linux, and MacOS, which are primarily used in desktops/note-

books. Raspbian is a popular OS based on Debian that is specifically designed for the

Raspberry Pi. Mobile devices also have their own operating systems, such as Apple iOS,

Windows Phone, and Android.

32 CHAPTER 3. METHODOLOGY

Output
Distance

Parameters

Input Camera

Figure 3.10: Software diagram and algorithm

3.3. SOLUTION COMPONENTS 33

Integrated Development Environment - Thonny

Thonny is an Integrated Development Environment (IDE) with simple language and in-

terpretation for beginners in aprogramming language (Python) [72]. Its use ranges from

being used to create simple programs to creating applications. It makes programming

acessible, like its similar Microsoft Visual Studio [73] or NetBeans IDE [74], as it has

several tools , libraries, and dependencies for the most part already incorporated.

When executing the program, the programmer can simultaneously see the execution

and the code together, facilitating the analysis. Also, it is possible to see the code, the

values of the variables, and their change in real time. It has an integrated automatic

debugger, and the completion code, which displays the errors on the screen. Its main

advantages are that it is free, open source, intuitive, and focused on the beginner, with

a high visual experience. One of the main drawbacks is its limited scope and support

for Python. Since June 2017, it has been included by default in the official Raspberry Pi

operating system [75].

Programming Language - Python

Programming language is writing in a structured way that helps to specify a set of in-

structions and rules used to generate programs (Software). The software can be developed

to run on computers, mobile devices, embedded systems and any other devices that al-

low code execution. There are many programming languages, such as Java Script, Java,

Python, C, C++, among others [76].

Python will be used to develop the project because it is cross-platform, simple, efficient,

free, has mature code, consistent updates, a large bank of ready-made functions, and is

compatible with several devices, mainly because it is the language used in programming

in Thonny (Section 3.3.2).

34 CHAPTER 3. METHODOLOGY

Open Source Computer Vision Library (OpenCV)

An open source computer vision and machine learning library that provides a common

infrastructure for machine perception applications. With over 2,500 optimized algorithms,

the library includes a comprehensive set of classic and state-of-the-art algorithms. It can

be used in various of applications, from street view image stitching to fast face and object

detection. It has C++, Python, Java, and MATLAB interfaces and supports various

operating systems, such as Windows, Linux, Android, and Mac OS. The library is handy

for real-time vision applications and consists of more than 500 algorithms and about 10

times more support functions for focusing on this area. For this work, OpenCV version

4.6 was used in the Linux environment.

Chapter 4

Development

4.1 Module Assembly

The connection of the components is simple and easy to implement, as shown in figure 4.1.

The Raspberry Pi connects to the camera via an cable between the CSI ports. The union

of these components forms the localization module. This module can be embedded in any

robot to obtain its location, with the main focus on solving competition problems. The

module can still be adapted and expanded for implementation in environments beyond

the competition, such as industries, hospitals, among others.

For purposes of protection, handling, and coupling of the module, before connecting

the cable between the components, they must be fitted in the case. Then the flat cable

can be connected to the Raspberry and the camera. The complete module can be seen in

Figure 4.2.

35

36 CHAPTER 4. DEVELOPMENT

Camera
module

port (CSI)

Raspberry Pi 4 model B

Raspberry Pi
Cam Rev 1.3

(a)

Board and Camera
connection

Flat Flex Cable

Cam module and
Raspberry Pi
connection

Raspberry Pi 4 model B

Raspberry Pi
Cam Rev 1.3

(b)

Figure 4.1: Raspberry Pi e Module Raspi Cam, adaptation of [77]. (a) Separate compo-
nents e (b) Connection of components

(a) (b) (c)

Figure 4.2: Location module prototype: (a) Front View, (b) Side View, and (c) Top View

4.2. LOCATION MODULE ALGORITHM 37

4.2 Location Module Algorithm

4.2.1 Detection

Configurations Net and Model Detection

The algorithm starts by importing the libraries needed to execute all developed code use

in the module. They are presented, along with their respective functionalities, in Figure

4.3. Next, as shown in Figure 4.4, the network configurations should be performed, which

will later be used in the detection model. Finally, this data and model will be used in the

object detection function.

CV2 Math Time

Library for
Image

Processing

Library for
Mathematical
Calculations

Library for
Representing

Time

Figure 4.3: Specifications used libraries.

The explanation of our detection model setup, represented by the flow chart in figure

4.4, will be presented next. The first step is to insert the paths of the necessary file

folders, which were previously used in training performed on Google Colab, to obtain the

weights. The initial path should point to the folder containing the names of the classes

to be detected, followed by the paths of configuration and weights. These parameters are

necessary for the network’s configuration.

With the paths prepared, the configuration operations begin. The folder that contains

the names has its files read and stored in a vector (Class Names) through the code. When

storing data, blank spaces at the beginning and end of each word are removed, and the

names are separated into individual positions within the vector. In the second part, the

network configuration takes place. For this, the functions of the CV2 library are used,

which presents an API, to build, modify and use models with different types of structures.

The network is created using the command for reading binary and text files containing the

38 CHAPTER 4. DEVELOPMENT

INPUT OPERATION OUTPUT

Names Path

Weights Path

Config Path

net = cv2.dnn.readNet(weights,config)

model = cv2.dnn_DetectionModel(net)

model.setInputParams(size=(416,416), scale=1/255)

Class Names
(vector)

Detection
Function

Figure 4.4: Network configuration flowchart and detection model.

weights and settings, respectively. The extensions (.weights and .cfg) and Deconvolutional

Neural Network (DNN) required by the model are provides by YOLO, which uses the

Darknet framework. After passing the network as an argument for creating the model in

the algorithm, the input frame’s size and scale settings are specified. The resulting name

vector and detection model are subsequently utilized by the object detection function.

Detection Function

The object detection function has its operation flowchart presented in the Figure 4.5.

The object detection function is invoked in the main function with three parameters: the

frames captured by the camera, the object accuracy threshold, and the non-maximum

suppression value, which is used to eliminate multiple bounding box predictions for the

same object. In addition, a list is created in the arguments passed to the function, which

will store the name of the objects to be detected.

The object detection function first invokes the detection model with the parameters

4.2. LOCATION MODULE ALGORITHM 39

specified in the function call. If no object is detected, the respective variables will store

the class identification, accuracy, and the coordinates of the bounding box. If no object is

found, the variables will be empty. At the same time, if the list of objects has no names

stored yet, the names of the classes to be identified will be passed. Also, a list is created

that will store information regarding the detection of possible objects found.

After calling the model and creating the necessary variables, the next step is to verify if

any object was found, testing if the class identification variable has a non-zero stored value.

If any value is found, three lists will be created storing, respectively, the identification,

accuracy, and detection box values of all the objects. Then, with the identification of

the objects, it is verified to which class the object belongs, in this case having only one

class (box), then all objects found will belong to the same class. Finally, if the object

belongs to the target class, all information will be stored in a variable created for this,

the function will return the frame and the objects information. Otherwise, the function

returns the frame and the value zero for the information.

START

END

FRAME

ACCURACY
LIMIT

NON
MAXIMUM

SUPPRESSION

MODEL
DETECTION

CLASS ID
FOUND

DETECTION
FUNCTION

RETURN
FRAME, []

CREATE OBJECTS
INFORMATIONS

(VECTOR)

 OBJECTS
(VECTOR)

LENGHT
OBJECTS = 0

CLASS NAME IN
OBJECTS

RETURN
FRAME, OBJECTS
INFORMATIONS

OBJECTS INFORMATIONS = [[a,b,c],[..., ..., ...], ...]

YES

CLASS ID

BBOX COORDINATE

ACCURACY

OBJECTS =
CLASS NAMES

YES

NOT

YES

CLASSES IDS = [a, ...]

ACCURACIES = [b, ...]

BBOXES = [c, ...]

CLASS NAME = CLASS NAMES
[CLASSES IDS]

NOT
NOT

Figure 4.5: Flowchart of the detection function.

40 CHAPTER 4. DEVELOPMENT

4.2.2 Coordinate Location

The estimated calculation of the location coordinates, distance, and orientation angle,

was based on the Pinhole camera, as in Figure 4.6. It can be seen that most of the

parameters are kept constant, such as the maximum size the image can be, according to

the camera resolution setting, producing a specific output image according to the user’s

selection. The camera’s angle of view and focal length also remain constant. The only

pattern that varies is the distance between the object and the camera, leading to changes

in the size of the object in the image. Based on this information, the distance and the

angle of orientation will be calculated.

Image Plan

d

b
Image Plan Image Plan

Object Object Object

D

D/2
D/4

Pinhole
Camera

c

a

f

g

Figure 4.6: Distance and angle variation based on the Pinhole model.

Distance

The distance between the object and module is obtained using the camera parameters,

which are focal length, hFoV, and image resolution, all related to each other. As these

values are fixed, based on what was presented in section 3.2.2 and in the equation 3.10,

4.2. LOCATION MODULE ALGORITHM 41

the only parameter changed is the distance between the camera and the object. However,

this change leads to a change of the size that the image in the object occupies in the

final image. These values can be related to each other by a rule of proportionality. Thus,

the calculation of the distance is based on the variation in the width of the object in the

image.

The algorithm uses the information of the resolution (width), the actual size of the

object (width) and the hFoV, entered by the user and represented respectively by the

letters "b", "c" and "d", in the figure 4.7. The value provided by the object detection

function is also used, with this parameter being the width of the detection box formed,

represented by the letter ’a", in figure 4.7. Using the trigonometric relations for a right

triangle, considering that the center of the object and camera of the module are aligned,

through the equation 3.10 and substituting the value of the focal length for the angle

hFoV, the value of the distance is calculated.

The representation of the object is made in 2D, losing the information of depth. There-

fore, it is assumed that the object is always aligned parallel to the center of the module.

But this value can be corrected after the calculation of the alignment angle between the

centers. So, whenever the distance value is found, its value is used to find the angle of

alignment between the centers. With this value, the distance is converted to an angular

offset by dividing its original value obtained by the cosine of the value returned by the

angle calculation function. In this way, a value closer to the real one is obtained.

DISTANCE
FUNCTION

a = OBJECT
WIDTH IN
IMAGE

c = REAL OBJECT
WIDTH

PARAMETERIZED

d = hFoV
(Horizontal Field of

View)

b = IMAGE WIDTH
RESOLUTION

return
DISTANCE

Figure 4.7: Flowchart of the distance calculation function

42 CHAPTER 4. DEVELOPMENT

Orientation - Angle

The center offset angle, between the object and the module, is obtained based on the

positioning of the object’s center in the image. There can be three possibilities: where

the object are aligned, offset to the right, or offset to the left. This identification is made

for possible future implementations. Finally, assuming the object is always aligned with

the module, relative to the y-axis, the angle is calculated using trigonometric relations.

The algorithm uses the information of the resolution (width) and the actual size of

the object (width), entered by the user and represented respectively by the letters ’b’ and

’c’, in Figure 4.8. Also used are the values provided by the object detection function, the

initial position, on the x-axis, of the detection box and its width, and the return of the

distance calculation function, represented respectively by the letters ’g’, ’a’ and ’D’, also

in Figure 4.8.

As already mentioned, the function is based on using trigonometric relations for a

right triangle. The distance information is calculated, representing the adjacent catet.

But as its value is obtained in the centimeter scale, a conversion is made to the pixel

scale, using the value of the real size of the object and the resolution of the image. The

opposite skew, on the other hand, is found by calculating the size between the center of

the image and the value of the center of the object, with respect to the x-axis. To do this,

the return value of the detection function is used with the parameters of the box, adding

the value of its initial position, with its width divided by 2. The value of the center of the

image is obtained by dividing the resolution by 2. Finally, the modulus of this equation

is obtained, trying to find only the value of the skew, considering that the direction of

rotation has already been identified previously. Thus, the angle is obtained by calculating

the arc tangent of the division between the opposite and adjacent sides.

4.2.3 Main Function

The main function is starts by capturing the frame. To the detection function then it is

sent, along with the parameters already mentioned in Section 4.2.1. If no object is found,

4.2. LOCATION MODULE ALGORITHM 43

ANGLE
FUNCTION

a = OBJECT
WIDTH IN
IMAGE

c = REAL OBJECT
WIDTH

PARAMETERIZED

b = IMAGE WIDTH
RESOLUTION

return
ANGLE

g = INITIAL x
POSITION OF
THE BBOX

D =
DISTANCE TO

OBJECT

THE X
POSITION

OF THE BBOX >
CENTER
IMAGEM

RIGHT

LEFT

NOT

YES

THE X
POSITION

OF THE BBOX !=
CENTER
IMAGEM

YES

NOT

Figure 4.8: Flowchart of the angle calculation function

no value is returned and another frame is sent for analysis. However, if one or more

objects are found, the function returns the coordinates of the detection box, the name of

the identified class, and the accuracy.

Moving on to the localization phase, the necessary parameters, as mentioned in Section

4.2.2, are passed to the distance calculation function. With the distance, the algorithm

calculates the angular displacement, as described in Section 4.2.2. At first it is checked in

which position the object is with respect to the central axis. If the object is shifted from

the system center towards the right or left, the angle is computed, which is subsequently

utilized to apply a distance correction. Otherwise, there is no need for correction and, as

described above, the angle is calculated. Finally, all information of interest is presented,

being the class and accuracy, along with the distance and displacement angle, of all

objects, if more than one is detected.

44 CHAPTER 4. DEVELOPMENT

FRAMES

DETECTION
OBJECTS

FOUND

NOT

BBOX -
COORDENATE
CLASS NAME
ACCURACY

ANGLE(L)

CENTER
BBOX

ANGLE(R)

RIGHTLEFT CENTER

ANGLE=0

DISTANCE

DISTANCE
CORRECTION

DISTANCE
CORRECTION

CLASS NAME
ACCURACY
DISTANCE
ANGLE

YES

Figure 4.9: Flowchart of the main function

4.3. DETECTION OF OBJECTS 45

4.3 Detection of Objects

4.3.1 Creating the Dataset

The first step in training a network is to have a good dataset. For this experiment, one

was initially created with 220 images of boxes used in the robot@factory Lite competition.

These images were obtained using an iPhone 11 Pro, at the Electronic Systems Laboratory

of the Polytechnic Institute of Bragança, using various backgrounds, orientations, and

other objects together. The images obtained were in JPG format, with dimensions of

3024x4032 pixels.

The Roboflow online tool was employed to label the objects in the image and generate

annotations in the dataset. This tool facilitates the task of computer vision in the field

of deep learning. It was selected for its user-friendly features as it is free, requires no

installation, and can be accessed through any web browser online.

The first step to using Roboflow is to create a free account. To begin, a workspace is

created wherein an individual or a team of collaborators can produce, administer, annotate

datasets, as well as train and utilize models. Thus, a new project was created with the

following steps:

Creation Project

• Project Type: Object Detection (Bounding Box);

• What Are You Detecting: Boxes;

• Project Name: Boxes; and

• License: CC BY 4.0.

Upload and Annotate

• File upload: At this stage, the 220 images were uploaded and in JPG format. If

we had the annotations file, these could have been uploaded together.

46 CHAPTER 4. DEVELOPMENT

SOURCE IMAGES

Definition Classes:
BOX

File Upload

Annotations

TRAIN/TEST SPLIT

REPROCESSING

Training
88 %

Resize: Stretch to 416x416

Validation
8 %

Test
4 %

AUGMENTATION

Grayscale: Apply to 50% of
images

Saturation: Between -50% and
+50%

Blur: Up to 3px

GENERATE

EXPORT

Options:
- JSON
- XML
- TXT
- CSV
- More Others

CREATING PROJECT: Object Detection (BOXES)

Creat Model

Figure 4.10: Creating customizing dataset.

4.3. DETECTION OF OBJECTS 47

• Annotation of image: As we did not have the annotations file for these objects,

the objects were annotated, one by one, in each image. This part consists of creating

rectangular boxes to demarcate where the object of interest is. On the Roboflow

platform this is easy and can be done using the annotate tool. In this work, since

only one object was annotated, the words for each class of annotated objects were

generated, and for this purpose, the ’box’ class was created. Subsequently, this

markup is converted to a format, most commonly of the text type, with the coordi-

nates of these contours.

• File segmentation: The annotated data is later separated into training, validation,

and test folders. The number of files are chosen, in this case being separated into

88% for training, 8% for validation and 4% for testing.

Reprocessing

Reprocessing the images consists of making changes to our dataset to meet the input

requirements of the training model. For this case, the modifications made were the appli-

cation of self orientation and resizing the images, which initially had a size of 3024x4032

pixels. Finally, the application summary is presented:

• Auto-Oriente:Applied; and

• Resize: Stretch 416x416 pixels.

Expansion

The main problem, most often related to the dataset, is the small number of images

used. Thus, image augmentation was performed, creating new images. The operations

performed on the dataset are described:

• Outputs per training example: 3;

• Flip: Horizontal;

48 CHAPTER 4. DEVELOPMENT

• Crop: 0% Minimum Zoom, 17% Maximum Zoom;

• Rotation: Between -15° and +15°;

• Grayscale: Apply to 25% of images; and

• Saturation: Between -41% and +41%.

At the end of the dataset expansionthe number increased from 220 to 564 images. In

this way, the subsequent training of the detection method can be improved, through the

greater amount of information.

Export Dataset

The end of dataset creation consists of exporting the data to be used. Roboflow offers

two ways: downloading a zipped file or using a code Jupyter, via terminal or URL. It is

also possible to choose the download file format, which can be JSON, XML, TXT, CSV,

among others. In this work, a zipped file in YOLO Darknet format, with TXT files, was

downloaded.

4.3.2 Custom Model Training

The integration of all the tools used to train of this custom model is shown in Figure 4.11.

The explanation of the steps after creating the dataset are presented below. The script

developed to obtain the weights for configuring the network was based on the model

made available in the Roboflow platform tutorials for training detection methods with

custom data [78]. The training of the model for box detection, based on YOLOv4 Tiny,

was performed using the Google Colaboratory platform. This tool is free, runs online in

the Google cloud, supports Python programming language, and provides GPU and TPU

resources to be used.

Creating a Darknet environment was required, requiring OpenCV, Cuda Toolkit,

cuDNN and GPU. However, Google Colab has all of this, just need to configure and

enable these options. After these steps, an execution command is activated that updates

4.3. DETECTION OF OBJECTS 49

Take Pictures

Create Custom Dataset

Model Training Environment

Using Tools

Figure 4.11: Tools union used for training.

the compilation. Then, the training weights of the 29 layers of the YOLOv4 Tiny model,

pre-trained in the coco dataset, are downloaded to be used as the training starting point.

During this phase, specific configurations for box detection are initiated. The YOLO

Darknet compressed file, which consists of JPG and TXT files, is loaded and placed in

the drive folder, separated into training and test directories. This folder is subsequently

accessed by the script, where it is unzipped. Additionally, three more files are uploaded

to the same folder, which will be accessed by the script to establish the training settings.

They are the object names, object data files and training model settings, with their

settings being displayed:

1. obj.names:

• BOX.

2. obj.data:

• classes = 1;

• train = path to folders of train.txt files;

• valid = path to folders of test.txt files;

• names = path to folders of obj.names files; and

• bachup = path to trained weights storage folders.

50 CHAPTER 4. DEVELOPMENT

3. yolov4-custom.cfg:

• batch = 64 (images for iteration);

• subdivisions = 16 (batch iteration images subdivision);

• max_batches = 6000 (num_classes*2000 but never less than 6000);

• width = 416 (multiple of 32. Larger size improves accuracy but increases

training time);

• height = 416 (has to be multiple of 32);

• steps = 8000, 9000 (80% of max_batches), (90% of max_batches);

• classes = 1; and

• filters = 18 ((num_classes + 5) * 3).

Finally, with all the settings made, the network is trained. For this, the following files

were passed: obj.data, yolov4-custom.cfg and yolov4-tiny.conv.29. Thus, the network

begins its training until it completes 6000 iterations, and at every 1000 iterations, the

training personnel files achieved are stored in the backup folder. At the end of the

training its final value is saved as yolov4-tiny-custom_final.weights, its performance is

checked and the weights are tested in the object detection algorithm.

4.3. DETECTION OF OBJECTS 51

.

Chapter 5

Tests and Results

5.1 Detection of Boxes

The training dataset was built using the Roboflow platform.The accuracy of the data used

to train object detection models could be observed through the platform, like chapter 4.

However, the tool is limited, and the detector can be used only or optimized for the

NVIDIA Jetson line, both of which are not within the scope of this work. For verification

purposes, show in Figure 5.2 using the training data, an mAP of 99% and a precision of

100% were obtained.

The training of the custom box detectorin the localization module was based on the

YOLOv4-tiny and Darknet method. His training took place on Google colab, using the

dataset produced in Roboflow. His training took approximately one hour, 14 minutes and

34 seconds. The training mAP is shown in figure 5.3. The performance of this network is

presented:

• 38 layers of weight files;

• ap = 100 % ;

• mAP@0.50 = 1.00;

• confidence threshold = 0,25:

52

5.2. INITIAL APPLICABILITY TEST 53

Figure 5.1

Figure 5.2: Results of training in Roboflow Platform.

– Precision = 1 (correct positive identifications);

– Recall = 1 (predict positives);

– F1 - score = 1 (Balance between accuracy and recall); and

– TP = 23 / FP = 0 / FN = 0.

• Points datasets:

– MS COCO = 101;

– PascalVOC 2007 = 11; and

– ImageNet and PascalVOC 2010-2012 = 0.

5.2 Initial Applicability Test

From some initial tests performed for generic training of the detection model, a good

detection of the objects was noticed. However, the selection box formed by the detection

54 CHAPTER 5. TESTS AND RESULTS

Figure 5.3: Results mAP of training method YOLOv4-Tiny on Google Colab.

5.2. INITIAL APPLICABILITY TEST 55

code to frame the object was very distant from the object’s contours. It causes an error

in calculating the localization parameters since the value of the width of the bounding

box is used. Thus, through the results in Figure 5.4, the error was parameterized. The

difference between the actual contour and the one produced by the detection algorithm

is calculated by

Figure 5.4: Comparison of actual bounding box and detection model

Multiplication_factor = Object

BBox
= 185

216 = 0, 8564 ∼= 0, 85, (5.1)

which is the factor applied to the bounding box. The algorithm keeps the same when

detecting the object but reduces by approximately 15% of its original size when plotting.

Thus, even if the detection model does not fit the object in the detection box in the best

way, but it has a good detection capability, correction factors can be applied. In this way,

it was verified that errors could be corrected if found, and the experiment could proceed.

This type of error occurs because of the way objects are annotated in the training

dataset. If they are offset or turned differently, they are still identified, but not properly.

For this reason, the pre-training phase of object annotation is crucial, and it must be

presented as accurately as possible how the objects should be located, with respect to

56 CHAPTER 5. TESTS AND RESULTS

their shapes and proportions. In order to proceed with the tests, the detection model had

its dataset well structured as presented in Section 4.3.1 and 5.1. The objective was to

detect only the largest side face of the box, used as a parameter for algorithm development

and calculations.

5.3 Parameterized Lengths

The main tests started parameterizing the measures, the real world and the digital image.

For this purpose, the test box was placed at a known distance of 20 cm, as shown in figure

5.6a. Its actual dimensions are presented in the figure 5.5. The Teflon feet placed at the

bottom of the box are approximately 0.5 cm, totaling an effective height of 6.5 cm.

6 cm

9 cm

Figure 5.5: Box dimensions of the robot factory lite test, adapted from [11]

By utilizing the RaspiCam camera, Python, and OpenCV, a series of selection boxes

with predetermined dimensions were drawn until the optimal fit for the tracked object

was achieved, obtaining the results shown in Figure 5.6. The best values being 270 × 190

pixels. The optimal size for the box is 270 × 190 pixels, and the image it is contained

within measures 640 × 480 pixels in total.

With the parameterized data, it is possible to pass on to tests with applications of the

algorithms to obtain the detections of the objects and calculate the distances.

5.4. POSITION VARIATION TESTS 57

(a) (b)

Figure 5.6: Parameterized Lengths. (a) Top image of parameterized e (b) Digital image
parameterized

5.4 Position variation tests

5.4.1 Operating Distance Measurement

The operating range, referring to the detection distances, of the module was obtained

through practical tests. Initially, the box and the detection module were positioned facing

each other, in such a way that the camera was practically touching the box, with their

centers aligned. Then the detection module was moved away centimeter by centimeter

from the box, respecting the central alignment, until the box was detected by the module.

This detection refers to the minimum distance necessary for the object to be detected. The

next step was to move the module further away until the object was no longer detected,

this being the maximum distance that the module can detect the objects. For each case,

10 reference measurements were noted.

The test, for measuring the maximum detection distance, can be seen in the image

5.8. The figure was taken in order to visually identify where the module and the box

were, as well as the space between them. The figure 5.8b shows the image obtained by

the algorithm embedded in the detection module. The visualization of the minimum

operating distance can be seen in the figure 5.7, and the real images and the images

58 CHAPTER 5. TESTS AND RESULTS

obtained by the module, can be seen respectively in the figures 5.7a and 5.7b. The results

that appear in the image, besides the rectangular selection box, are the object’s class,

confidence, distance and angle. The results obtained for the system’s operating range

distances can be seen in the table 5.1, and the analysis of the values found in the table

5.2.

(a) (b)

Figure 5.7: Minimum operating distance measurement. (a) Image actual of minimum
distance (b) Image of module with calculated minimum distance.

Experiment 1 2 3 4 5 6 7 8 9 10
Maximum 248,45 259,74 248,45 248,45 248,45 248,45 248,45 259,74 248,45 248,45
Minimum 8,93 9,10 9,08 8,93 8,96 9,07 9,07 8,93 8,93 8,98

Table 5.1: Obtained operating distance measurements in centimeters.

Distance Actual Average Absolute Error
Maximum 218,5 250,7 32,2
Minimum 8,99 9,4 0,4

Table 5.2: Distance Analysis Calculation.

5.4.2 Identification in different angle and distances

A second experiment was done to verify the operation of the detection module for locating

the box at different distances and angles. For this it was fixed on a polar graph sheet,

5.4. POSITION VARIATION TESTS 59

(a) (b)

Figure 5.8: Maximum operating distance measurement. (a) Image actual of maximum
distance (b) Image of module with calculated maximum distance.

with the center of the camera aligned with the center of the graph. The experiment was

done respecting the hFoV of the camera [71], of 53.5 degrees. The distances chosen for the

measurements were from 20 to 60 centimeters, with a variation of 10 centimeters between

each distance. The angles were 0 to 20 degrees, varying in 10 degrees for both sides,

right and left, with respect to the central reference axis. For convenience we adopted the

visualization only of the angle value in modulo, since the direction of rotation is previously

verified, as presented in Section 4.2.2.

The measurements were made with the camera always stationary, varying only the

position of the box. Ten measurements were made for each position, always in such a

way that the camera could see only the target face of the experiment. Starting always

from the center, without varying the angle with respect to our references, as shown in

figure 5.9b, obtaining the results of the module, as shown in figure 5.10b. Then, for box

shifted with respect to the center of the system, on the left and right side, as presented

respectively in figures 5.9a and 5.9c. Thus, obtaining results as presented in figures 5.10a

5.10c.

The calculated results, as a reference of the various measurements are presented in

the figures 5.11 and 5.12, respectively referring to the distance and angle values. For each

60 CHAPTER 5. TESTS AND RESULTS

(a) (b) (c)

Figure 5.9: Measurement of actual parameters with the box to the camera. (a) 30 cm at
10° at left, (b) 30 cm at 0°, (c) 30 cm at 10° at right.

(a) (b) (c)

Figure 5.10: Result obtained by the detection and localization module. (a) 30 cm at 10°
at left, (b) 30 cm at 0°, (c) 30 cm at 10° at right.

5.4. POSITION VARIATION TESTS 61

position, as mentioned earlier, ten measurements were performed, where the box object

was positioned and the first ten readings of the algorithm were noted. In order to remove

the possibility of introducing human error, the box was not moved while the readings

were being taken, changing position only when the readings were finished.

The values obtained and displayed by the module are the class name of the detected

object, accuracy, the distance and the displacement angle. As we sought to find a class,

when an object was detected, reference to this class was obligatorily made. With regard

to accuracy, we obtained a unanimous measurement of 100% in all cases, using rounding

and two decimal places. For the distance and angle metrics, four reference values were

obtained for analysis, being the mean, standard deviation, absolute error, and relative

error, referring to the measurements. These results are presented in the figures 5.11a,

5.11b, 5.11c and 5.11d, referring to distance, and in the figures 5.12a, 5.12b, 5.12c and

5.12d, referring to the angle.

Distance - analysis of the results obtained

The analysis of the results presented the variations referring to the change position of the

object. Starting with the analysis of the standard deviation, we tried our best to reduce

the introduction of errors that could lead to obtaining different values in the samples,

and seeking a common value. But, these differences still occurred, as can be seen in

Figure 5.11b, where there is growth concerning the increase of distance, mostly up to 50

centimeters. From 60 centimeters on they began to decrease, and except the position at

20° to the right, all the values came to zero. The most significant differences occurred

at 50 centimeters, at 10º and 20º on the right side. With respect to the value of the

average of the samples, presented in Figure 5.11a, the absolute error is, presented in

Figure 5.11c. Following a pattern almost similar to the standard deviation, the error

increases with respect to distance up to 50 centimeters. After 50 centimeters, the error

starts to decrease, at the values closest to the central axis. But at the extremities, the

value increases and it can also be seen that the error is greater on the left side. The

figure 5.11d, presents the percentage referring to the absolute error and the value of the

62 CHAPTER 5. TESTS AND RESULTS

(a) (b)

(c) (d)

Figure 5.11: Relative distance measurements, based on 10 samples for each position of
interest. Relative angle measurements, based on 10 samples for each position of interest.
(a) Mean (cm), (b) Standard Deviation (cm), (c) Absolute Error (cm) and (d) Relative
Error.

5.4. POSITION VARIATION TESTS 63

(a) (b)

(c) (d)

Figure 5.12: Relative angle measurements, based on 10 samples for each position of
interest. (a) Mean (graus), (b) Standard Deviation (graus), (c) Absolute Error (graus)
and (d) Relative Error.

64 CHAPTER 5. TESTS AND RESULTS

mean, which is similar on both sides, with a slight difference only for the distance of 60

centimeters at 20º, on the right side.

The differences in measurements that occurred, between items located at the same

distance and displacement, but on opposite sides, did not present equal values due to

the irregularities and physical errors introduced. Some of these errors are the difference

in lighting, imperfections in the module support and measurement environment, possible

imperfections in the camera, among others. However, the values were as expected, because

the farther away it is, the more difficult it is to visualize it, consequently, not being able

to assertively locate its contour, used as a parameter. Thus, leading to errors with respect

to the estimated and actual value.

Angle - analysis of the results obtained

The parameters, referring to the angles, presented a higher standard deviation on the right

side, figure 5.12b but without a pattern of distribution of the values. With the average

values, presented in the figure, the absolute error can be calculated, figure Absolute Angle.

The absolute error presents an increase concerning the angular variation, being small in

the center and larger at the extremities in the vast majority of values, what cannot be

said about the distance variation where the error value of the angle does not present a

pattern. For the relative error, figure 5.12d, shows that its largest values are in the center,

being smaller and varied around it.

As in the case of distance, different values are found in all cases. Some of these errors

are the difference in illumination, imperfections in the module support and measurement

environment, possible imperfections in the camera, among others. But it can be seen

what was expected, that as the object gets further away, the object gets smaller and thus

displacement movements have less impact compared to distances close to the camera.

Chapter 6

Conclusion and Future Works

This work had as its main objective the development of a system of detection and local-

ization of objects in real-time, aiming to incorporate it in a physical module to test its

application. Artificial Intelligence concepts were used with computer vision to acquire

information from the real world to create the system. Object detection models based on

neural networks were utilized for machine learning. The image data was then analyzed

using geometric modeling techniques to identify specific image features.

The choice of tools and methods, was based on the state of the art of machine vision

and object detection. Several methods were analyzed for detection, taking into account

accuracy and speed. For localization, the analysis was based on the components, such

as cameras, and the geometric modeling of distance estimation. A union of methods and

tools was sought to achieve the main goal. Thus, the YOLO-based detection method,

Specifically YOLOv4 tiny version, was chosen for its accuracy and speed, and its opti-

mization for working in restricted processing environments. Also, relying on geometric

modeling based on the Pinhole model, use the information returned by the detection to

parameterize a distance relationship between the image and the real world.

The development was divided into three fundamental parts: the choice of components

to assemble the module, the development of the object detection/localization algorithm,

and the creation and training of the custom dataset.

The choice of module components was based on cost, finding inexpensive components,

65

66 CHAPTER 6. CONCLUSION AND FUTURE WORKS

and the ability to perform the project requirements. The Raspberry Pi Camera Rev

1.3 module was chosen for image acquisition, with a maximum resolution of 1080 pixels,

mainly because of its great compatibility with the microcomputer, Raspberry Pi 4 Model

B, used for processing the application. This microcomputer can run object detection

applications and is compatible with the OpenCV library, providing tools for working with

artificial vision.

The algorithm was programmed in Raspbian’s Thonny interpreter and divided into

two fundamental parts: object detection and distance estimation. The first part uses

functions from the OpenCV library and network configuration files, created outside the

program, to create a function to detect specific objects. After detecting the objects,

the localization functions (distance and angle) were created, based on the detection and

trigonometry feedback data. To estimate the location, object detection and distance

estimation techniques were combined through the use of object framing and trigonometry

parameters, along with the Pinhole method.

The files used in the detection function, were previously created for training the custom

network. The Roboflow platform was used to create a custom dataset, which included

annotated files, method configuration values, and class names stored in separate files.

With this data, the training was done in Google Colab, in order to obtain the weights for

programming the network in the algorithm.

After completing all the specified development, the system proceeded to the testing

phase to measure its effectiveness. The training data and the framing of the detection

box were analyzed for detection. For this, two tests were performed, one in relation to the

detection model and the other in relation to the localization. The training data and the

framing of the detection box were analyzed for detection. To analyze the accuracy of the

distance estimate, first the module was positioned in front of the object, The objective is

to detect a box and measure the distance range of the module by obtaining the minimum

and maximum values. Then, the object was fixed in a position and the object had its

location varied, with respect to distance and angle, to obtain its accuracy in most of its

area of operation. Thus, varying the angle within hFoV and the distance up to the value

67

of 60 cm.

To conclude, the results obtained with respect to object detection were very satis-

factory, obtaining a mean average precision (mAP) of 100% and the parameters of the

detection box. Which frame the object, obtained results with accuracy above 95%, vary-

ing with respect to the distance from the object and camera, parameterized according to

the expected and obtained detection box. For distance, the operating range is from 8.99

cm to 218.5 cm, measured in the central alignment. With angle variation, larger errors

were obtained, to some extent, with increasing distance and angle. The largest absolute

error obtained was 3.8 cm, located at 60 cm with 20° to the left. The smallest error was

obtained at 10º to the right at 60 cm, with a value of 0.17 cm. Regarding the angle, the

absolute error also increases to some extent with respect to distance, but in this case,

the largest errors are at the largest angles and shortest distances. The largest error was

obtained at 50 cm at 20° to the right, with an error value of 0.64°. The smallest was

0.05º, at 20 cm on both sides at 10º.

It is verified that the errors are not standardized with the position variation analyzing

both values related to the absolute error due to the non-ideality of the equipment used,

lighting variation, module temperature, among others. No matter how hard one tries to

keep the same parameters for all measurements, this is not possible due to the problems

cited. However, the error variation increasing up to a certain distance and decreasing

from a certain point on was expected. Because the lens imperfection is introduced, no

matter how much the camera module software tries to correct this deformation, this does

not happen in its entirety. And the quality and blur of the image obtained by the camera,

gets worse as an object moves away. Thus, the image loses information and will return to

a higher error at huge distances, close to the maximum detected value. Bounding box will

have errors, as presented in the parameterization of the longest distance value at which

the object is still detected.

68 CHAPTER 6. CONCLUSION AND FUTURE WORKS

6.1 Future Works

This work addresses several applications for the detection and localization of objects.

With this, some implementations for future work are presented:

• Train and attempt to deploy other object detection models, to improve performance

and accuracy in object detection. Once the model has been trained for the new ob-

jects of interest, it is possible to test the model on the localization module, provided

that the module can receive the outputs of the detection model for the new classes;

• Test the module for application in environments with uneven terrain, using the

vertical field of view of the camera to estimate both the distance between the module

and the object and the vertical displacement angle of the object’s center relative to

the camera’s central axis. This approach allows for more precise information on the

object’s location in environments with irregular terrain;

• Installing heatsinks and fans on the Raspberry Pi to keep the temperature stable,

aiming for long periods of operation, given that increased temperature can affect

the module’s performance;

• Using a Deep Learning accelerator is an effective strategy to maximize the per-

formance of the detection algorithm, allowing for achieving the maximum possible

FPS and, thus, increasing the detection speed. With this approach, it is possible to

process a large volume of data on time, ensuring more accurate and reliable results;

and

• Embarking the module on a robot allows it to use the collected information to

autonomously locate objects and perform tasks, making the most of the system’s

capabilities in applications that require mobility and interaction with the environ-

ment. The integration of the system with the robot would open up new possibilities

for application, allowing the use in various areas such as robotics, industrial au-

tomation, and logistics, among others.

Bibliography

[1] J. L. Crowley, H. I. Christensen, and A. Chehikian, Vision as process: basic research

on computer vision systems. Springer, 1995.

[2] V. Wiley and T. Lucas, “Computer vision and image processing: A paper review,”

International Journal of Artificial Intelligence Research, vol. 2, no. 1, pp. 29–36,

2018.

[3] F. F. Feliciano, I. L. de Souza, and F. R. Leta, “Visão computacional aplicacada

à metrologia dimensional automatizada: Considerações sobre sua exatidão,” En-

gevista, 2005.

[4] “Uma perspectiva sobre técnicas de localização de alcance para visão computa-

cional,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. PAMI-

5, doi: 10.1109/TPAMI.1983.4767365.

[5] K. P. Valavanis and G. N. Saridis, Intelligent robotic systems: theory, design and

applications. Springer Science & Business Media, 2012, vol. 182.

[6] M. Bertozzi and A. Broggi, “Gold: A parallel real-time stereo vision system for

generic obstacle and lane detection,” IEEE transactions on image processing, vol. 7,

no. 1, pp. 62–81, 1998.

[7] J. França, “Desenvolvimento de algoritmos de visão estereoscópica para aplicações

em robótica móvel,” UFSC, Florianópolis-SC, Brasil, 2003.

69

https://doi.org/10.1109/TPAMI.1983.4767365

70 BIBLIOGRAPHY

[8] R. Vassallo, A. Franca, and H. Schneebeli, “Detecção de obstáculos através de um

fluxo óptico padrão obtido a partir de imagens omnidirecionais,” in Proc. of Latin

America IEEE Robotics Symp.(SBAI/IEEE-LARS), 2005.

[9] L. Brancalião, J. Gonçalves, M. Á. Conde, and P. Costa, “Systematic mapping

literature review of mobile robotics competitions,” Sensors, vol. 22, no. 6, p. 2160,

2022.

[10] L. B. Almeida, J. Azevedo, C. Cardeira, et al., “Mobile robot competitions: Fostering

advances in research, development and education in robotics,” 2000.

[11] J. Lima, P. Costa, And V. Pinto, Robot@factory lite, Disponível em: https://web.

fe.up.pt/~robotica2019/index.php/en/robot-factory-lite-2. Acesso em: 06

de janeiro 2023, 2019.

[12] P. Costa, J. Lima, And V. Pinto, Robot@factory 4.0, Disponível em: https://

www.festivalnacionalrobotica.pt/2022/competicoes/robotfactory-4.0-11.

Acesso em: 06 de janeiro 2023, 2022.

[13] L. E. Luiz, L. Pilarski, K. Baidi, et al., “Robot at factory lite - a step-by-step ed-

ucational approach to the robot assembly,” in ROBOT2022: Fifth Iberian Robotics

Conference, D. Tardioli, V. Matellán, G. Heredia, M. F. Silva, and L. Marques,

Eds., Cham: Springer International Publishing, 2023, pp. 550–561, isbn: 978-3-031-

21065-5.

[14] Y. Amit, P. Felzenszwalb, and R. Girshick, “Object detection,” Computer Vision:

A Reference Guide, pp. 1–9, 2020.

[15] X. Zhang, Y.-H. Yang, Z. Han, H. Wang, and C. Gao, “Object class detection: A

survey,” ACM Computing Surveys (CSUR), vol. 46, no. 1, pp. 1–53, 2013.

[16] P. P. Sampedro and H. A. G. de Souza, “Análise de sistemas de produção de imagens

estereoscópicas baseados em câmeras com uma única objetiva,” Linguagens-Revista

de Letras, Artes e Comunicação, vol. 8, no. 2, pp. 185–205, 2014.

https://web.fe.up.pt/~robotica2019/index.php/en/robot-factory-lite-2
https://web.fe.up.pt/~robotica2019/index.php/en/robot-factory-lite-2
https://www.festivalnacionalrobotica.pt/2022/competicoes/robotfactory-4.0-11
https://www.festivalnacionalrobotica.pt/2022/competicoes/robotfactory-4.0-11

BIBLIOGRAPHY 71

[17] G. R. Esteves, M. FEITOSA, and B. J. T. Fernandes, “Estereoscopia no cálculo de

distância e controle de plataforma robótica,” in SIBGRAP-Conference on Graphics,

Patterns and Images, 2011, pp. 65–70.

[18] R. C. Gonzalez and R. E. Woods, Processamento de imagens digitais. Editora

Blucher, 2000.

[19] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural network,” Ad-

vances in neural information processing systems, vol. 1, 1988.

[20] J. A. Da Silva, J. A. Aznar-Casanova, N. Pinto-Ribeiro Filho, and J. E. Santillán,

“On the metric of visual space,” Arquivos brasileiros de oftalmologia, vol. 69, no. 1,

pp. 127–135, 2006.

[21] F. Ribeiro, G. Lopes, J. Costa, N. Pereira, J. Cruz And E. Bicho, Robot@factory,

Disponível em: http://robotica2012.dei.uminho.pt/12/index.php-option=

com_content&view=category&layout=blog&id=75&Itemid=99.html. Acesso em:

06 de janeiro 2023, 2012.

[22] P. J. Costa, N. Moreira, D. Campos, J. Gonçalves, J. Lima, and P. L. Costa, “Lo-

calization and navigation of an omnidirectional mobile robot: The robot@ factory

case study,” IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 11,

no. 1, pp. 1–9, 2016.

[23] J. Lima, V. Oliveira, T. Brito, et al., “An industry 4.0 approach for the robot@

factory lite competition,” in 2020 IEEE International Conference on Autonomous

Robot Systems and Competitions (ICARSC), IEEE, 2020, pp. 239–244.

[24] Z.-Q. Zhao, P. Zheng, S.-t. Xu, and X. Wu, “Object detection with deep learning:

A review,” IEEE transactions on neural networks and learning systems, vol. 30,

no. 11, pp. 3212–3232, 2019.

[25] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-encoders,” in

International conference on artificial neural networks, Springer, 2011, pp. 44–51.

http://robotica2012.dei.uminho.pt/12/index.php-option=com_content&view=category&layout=blog&id=75&Itemid=99.html
http://robotica2012.dei.uminho.pt/12/index.php-option=com_content&view=category&layout=blog&id=75&Itemid=99.html

72 BIBLIOGRAPHY

[26] G. W. Taylor, I. Spiro, C. Bregler, and R. Fergus, “Learning invariance through

imitation,” in CVPR 2011, IEEE, 2011, pp. 2729–2736.

[27] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, “Overfeat:

Integrated recognition, localization and detection using convolutional networks,”

English (US), Publisher Copyright: © 2014 International Conference on Learning

Representations, ICLR. All rights reserved.; 2nd International Conference on Learn-

ing Representations, ICLR 2014 ; Conference date: 14-04-2014 Through 16-04-2014,

2014.

[28] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for

accurate object detection and semantic segmentation,” in 2014 IEEE Conference

on Computer Vision and Pattern Recognition, 2014, pp. 580–587. doi: 10.1109/

CVPR.2014.81.

[29] J. R. R. Uijlings, K. E. A. van de Sande, T. Gevers, and A. W. M. Smeulders,

“Selective search for object recognition,” International Journal of Computer Vision,

vol. 104, pp. 154–171, 2013.

[30] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Sys-

tems, F. Pereira, C. Burges, L. Bottou, and K. Weinberger, Eds., vol. 25, Curran

Associates, Inc., 2012. [Online]. Available: https://proceedings.neurips.cc/

paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[31] R. Girshick, “Fast r-cnn,” in 2015 IEEE International Conference on Computer

Vision (ICCV), 2015, pp. 1440–1448. doi: 10.1109/ICCV.2015.169.

[32] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolu-

tional networks for visual recognition,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 37, no. 9, pp. 1904–1916, 2015. doi: 10.1109/TPAMI.

2015.2389824.

https://doi.org/10.1109/CVPR.2014.81
https://doi.org/10.1109/CVPR.2014.81
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/ICCV.2015.169
https://doi.org/10.1109/TPAMI.2015.2389824
https://doi.org/10.1109/TPAMI.2015.2389824

BIBLIOGRAPHY 73

[33] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid

matching for recognizing natural scene categories,” in 2006 IEEE Computer Society

Conference on Computer Vision and Pattern Recognition (CVPR’06), vol. 2, 2006,

pp. 2169–2178. doi: 10.1109/CVPR.2006.68.

[34] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-

tection with region proposal networks,” in Advances in Neural Information Process-

ing Systems, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, Eds.,

vol. 28, Curran Associates, Inc., 2015. [Online]. Available: https://proceedings.

neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046- Paper.

pdf.

[35] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object

detection with region proposal networks,” IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. 39, no. 6, pp. 1137–1149, 2017. doi: 10.1109/TPAMI.

2016.2577031.

[36] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in 2016 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2016, pp. 779–788. doi: 10.1109/CVPR.2016.91.

[37] W. Liu, D. Anguelov, D. Erhan, et al., “Ssd: Single shot multibox detector,” in

European conference on computer vision, Springer, 2016, pp. 21–37.

[38] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR, vol. abs/1612.08242,

2016. arXiv: 1612.08242. [Online]. Available: http://arxiv.org/abs/1612.08242.

[39] A. Farhadi and J. Redmon, “Yolov3: An incremental improvement,” in Computer vi-

sion and pattern recognition, Springer Berlin/Heidelberg, Germany, vol. 1804, 2018,

pp. 1–6.

[40] A. Bochkovskiy, C. Wang, and H. M. Liao, “Yolov4: Optimal speed and accuracy of

object detection,” CoRR, vol. abs/2004.10934, 2020. arXiv: 2004.10934. [Online].

Available: https://arxiv.org/abs/2004.10934.

https://doi.org/10.1109/CVPR.2006.68
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/14bfa6bb14875e45bba028a21ed38046-Paper.pdf
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/TPAMI.2016.2577031
https://doi.org/10.1109/CVPR.2016.91
https://arxiv.org/abs/1612.08242
http://arxiv.org/abs/1612.08242
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934

74 BIBLIOGRAPHY

[41] T.-Y. Lin, M. Maire, S. Belongie, et al., “Microsoft coco: Common objects in con-

text,” in European conference on computer vision, Springer, 2014, pp. 740–755.

[42] J. Deng, X. Xuan, W. Wang, Z. Li, H. Yao, and Z. Wang, “A review of research on

object detection based on deep learning,” in Journal of Physics: Conference Series,

IOP Publishing, vol. 1684, 2020, p. 012 028.

[43] S. K. Baduge, S. Thilakarathna, J. S. Perera, et al., “Artificial intelligence and smart

vision for building and construction 4.0: Machine and deep learning methods and

applications,” Automation in Construction, vol. 141, p. 104 440, 2022.

[44] R. Boutaba, M. A. Salahuddin, N. Limam, et al., “Uma pesquisa abrangente so-

bre aprendizado de máquina para redes: Evolução, aplicações e oportunidades de

pesquisa,” Jornal de Serviços e Aplicações da Internet, vol. 9, ed. by Springer,

[45] A. Paullada, I. D. Raji, E. M. Bender, E. Denton, and A. Hanna, “Data and its (dis)

contents: A survey of dataset development and use in machine learning research,”

Patterns, vol. 2, no. 11, p. 100 336, 2021.

[46] F. D’Antoni, F. Russo, L. Ambrosio, et al., “Artificial intelligence and computer vi-

sion in low back pain: A systematic review,” International Journal of Environmental

Research and Public Health, vol. 18, no. 20, p. 10 909, 2021.

[47] A. Alblushi, “Face recognition based on artificial neural network: A review,” Arti-

ficial Intelligence & Robotics Development Journal, pp. 116–131, 2021.

[48] “Aprendizado profundo para detecção de objetos e percepção de cena em carros

autônomos: Pesquisa, desafios e problemas em aberto,” vol. 10, ed. by Elsevier,

[49] G. da Silva Vieira, R. T. Parreira, F. A. A. Soares, G. T. Laureano, and R. M.

Costa, “Depth map production: Approaches, challenges and applications,”

[50] Y. Lu, “Artificial intelligence: A survey on evolution, models, applications and future

trends,” Journal of Management Analytics, vol. 6, no. 1, pp. 1–29, 2019.

BIBLIOGRAPHY 75

[51] L. Steffen, D. Reichard, J. Weinland, J. Kaiser, A. Roennau, and R. Dillmann, “Neu-

romorphic stereo vision: A survey of bio-inspired sensors and algorithms,” Frontiers

in neurorobotics, vol. 13, p. 28, 2019.

[52] K. Y. Kok and P. Rajendran, “A review on stereo vision algorithm: Challenges and

solutions,” ECTI Transactions on Computer and Information Technology (ECTI-

CIT), vol. 13, no. 2, pp. 112–128, 2019.

[53] L. E. de Carvalho, A. C. Sobieranski, and A. von Wangenheim, “Revisão da liter-

atura para reconhecimento/classificação de objetos 3d,” 2017.

[54] G. Magalhães, L. Colombini, R. Técnico-IC-PFG, and P. F. de Graduação, “De-

tecção de objetos no futebol de robôs,” Campinas-SP, Brazil, 2017.

[55] N. Werneck, F. Truzzi, and A. Costa, “Medição de distância e altura de bordas

horizontais com visão monocular linear para robôs móveis,” Jan. 2009.

[56] G. Magalhães, L. Colombini, R. Técnico-IC-PFG, and P. F. de Graduação, “De-

tecção de objetos no futebol de robôs,” Campinas-SP, Brazil, 2017.

[57] J. D. Domingues, “Localização de robôs móveis por meio de fluxo ótico e fusão

sensorial em ambientes de mineração.,” 2022.

[58] A. Dennis, Raspberry Pi Computer Architecture Essentials, 1st. UK: Packt Publish-

ing Ltd, 2016, isbn: 1784397970.

[59] D. Pena, A. Forembski, X. Xu, and D. Moloney, “Benchmarking of cnns for low-

cost, low-power robotics applications,” in RSS 2017 Workshop: New Frontier for

Deep Learning in Robotics, 2017, pp. 1–5.

[60] Z. Zhao, Z. Jiang, N. Ling, X. Shuai, and G. Xing, “Ecrt: An edge computing

system for real-time image-based object tracking,” in Proceedings of the 16th ACM

Conference on Embedded Networked Sensor Systems, 2018, pp. 394–395.

76 BIBLIOGRAPHY

[61] K. Manjari, M. Verma, and G. Singal, “Creation: Computational constrained travel

aid for object detection in outdoor environment,” in 2019 15th International Confer-

ence on Signal-Image Technology & Internet-Based Systems (SITIS), IEEE, 2019,

pp. 247–254.

[62] V. Gonzalez-Huitron, J. A. León-Borges, A. Rodriguez-Mata, L. E. Amabilis-Sosa,

B. Ramírez-Pereda, and H. Rodriguez, “Disease detection in tomato leaves via cnn

with lightweight architectures implemented in raspberry pi 4,” Computers and Elec-

tronics in Agriculture, vol. 181, p. 105 951, 2021.

[63] G. Mu, Z. Xinyu, L. Deyi, Z. Tian-lei, and A. Lifeng, “Traffic light detection and

recognition for autonomous vehicles,” The Journal of China Universities of Posts

and Telecommunications, vol. 22, pp. 50–56, 2015.

[64] P. Pydipogu, M. Fahim, and M. Shafique, Robust lane detection and object tracking

in relation to the intelligence transport system, 2013.

[65] K. Horak and L. Zalud, “Image processing on raspberry pi for mobile robotics,”

2016.

[66] M. Malathi and R. Geetha, “A real time image processing based fire safety intensive

automatic assistance system using raspberry pi,” Int. J. Mod. Trends Sci. Technol,

vol. 2, pp. 34–38, 2016.

[67] Raspberry Pi, Raspberry pi 4, Disponível em: https://www.raspberrypi.com/

products/raspberry-pi-4-model-b/. Acesso em: 12 de janeiro 2023, 2023.

[68] Raspberry Pi, Raspberry pi 4 tech specs, Disponível em: https://www.raspberrypi.

com/products/raspberry-pi-4-model-b/specifications/. Acesso em: 12 de

janeiro 2023, 2023.

[69] FILIPEFLOP, Keyboard and mouse raspberry pi: New at filipeflop, Disponível em:

https://www.filipeflop.com/blog/teclado-e-mouse-raspberry-pi/. Acesso

em: 12 de janeiro 2023, 2023.

https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.raspberrypi.com/products/raspberry-pi-4-model-b/specifications/
https://www.filipeflop.com/blog/teclado-e-mouse-raspberry-pi/

BIBLIOGRAPHY 77

[70] Adafruit, Raspberry pi camera board, Disponível em: https://www.adafruit.com/

product/1367. Acesso em: 12 de janeiro 2023.

[71] Raspberry Pi Foundation, Raspberry pi documentation - camera modules, Disponível

em: https://www.raspberrypi.com/documentation/accessories/camera.

html. Acesso em: 12 de janeiro 2023, 2023.

[72] A. Annamaa, “Introducing thonny, a python ide for learning programming,” in

Proceedings of the 15th Koli Calling Conference on Computing Education Research,

ser. Koli Calling ’15, Koli, Finland: Association for Computing Machinery, 2015,

pp. 117–121, isbn: 9781450340205. doi: 10 . 1145 / 2828959 . 2828969. [Online].

Available: https://doi.org/10.1145/2828959.2828969.

[73] Microsoft, Code editing.redefined. Disponível em: https://code.visualstudio.

com/. Acesso em: 04 de fevereiro 2023, 2023.

[74] The Apache Software Foundation, Apache netbeans, Disponível em: https : / /

netbeans.apache.org/download/index.html. Acesso em: 04 de fevereiro 2023,

2022.

[75] Simon Long (Raspberry Pi blog), A raspbian desktop update with some new program-

ming tools, Disponível em: https://www.raspberrypi.com/news/a-raspbian-

desktop - update - with - some - new - programming - tools/. Acesso em: 04 de

fevereiro 2023, 2017.

[76] K. R. Chowdhary, “On the evolution of programming languages,” CoRR, vol. abs/2007.02699,

2020. arXiv: 2007.02699. [Online]. Available: https://arxiv.org/abs/2007.

02699.

[77] Raspberry Pi Foundation, Getting started with the camera module, Disponível em:

https://projects.raspberrypi.org/en/projects/getting-started-with-

picamera/2. Acesso em: 12 de janeiro 2023, 2023.

https://www.adafruit.com/product/1367
https://www.adafruit.com/product/1367
https://www.raspberrypi.com/documentation/accessories/camera.html
https://www.raspberrypi.com/documentation/accessories/camera.html
https://doi.org/10.1145/2828959.2828969
https://doi.org/10.1145/2828959.2828969
https://code.visualstudio.com/
https://code.visualstudio.com/
https://netbeans.apache.org/download/index.html
https://netbeans.apache.org/download/index.html
https://www.raspberrypi.com/news/a-raspbian-desktop-update-with-some-new-programming-tools/
https://www.raspberrypi.com/news/a-raspbian-desktop-update-with-some-new-programming-tools/
https://arxiv.org/abs/2007.02699
https://arxiv.org/abs/2007.02699
https://arxiv.org/abs/2007.02699
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/2
https://projects.raspberrypi.org/en/projects/getting-started-with-picamera/2

78 BIBLIOGRAPHY

[78] Jacob Solawetz, Joseph Nelson, Samrat Sahoo, How to train yolov4 on a custom

dataset, Disponível em: https://blog.roboflow.com/training-yolov4-on-a-

custom-dataset/. Acesso em: 13 de fevereiro 2023, 2020.

https://blog.roboflow.com/training-yolov4-on-a-custom-dataset/
https://blog.roboflow.com/training-yolov4-on-a-custom-dataset/

Appendix A

Article Produced

ROBOT2022
Fifth Iberian Robotics Conference
Zaragoza November 23-25, 2022

The Organizing Committee of the Fifth Iberian Robotics Conference (ROBOT2022), held in Zaragoza
on November 23-25, 2022, hereby declares that the paper entitled

#8284 Robot at Factory Lite - A step-by-step educational approach to the robot
assembly

authored by

Luiz Luiz, Leonardo Pilarski, Käis Baidi, João Braun, André Oliveira, José Lima and Paulo Costa

has been presented at this edition of the conference

Danilo Tardioli
General Chair

On behalf of the Organizing Committee

Figure A.1: Certificate of participation in the production of an academic article during
the development of this work.

79

	Acknowledgement
	Abstract
	Resumo
	Acronyms
	Introduction
	RobotAtFactory Competition
	Motivation
	Objective
	Document Structure

	State of Art
	Object Detection and Classification
	Detection Based on Region Proposal
	Regression/Classification-Based Framework
	Analysis of the methods

	Artificial Vision
	Localization

	Methodology
	Definition of the Problem
	Concepts
	Digital Image
	Pinhole Model

	Solution Components
	Hardware
	Software

	Development
	Module Assembly
	Location Module Algorithm
	Detection
	Coordinate Location
	Main Function

	Detection of Objects
	Creating the Dataset
	Custom Model Training

	Tests and Results
	Detection of Boxes
	Initial Applicability Test
	Parameterized Lengths
	Position variation tests
	Operating Distance Measurement
	Identification in different angle and distances

	Conclusion and Future Works
	Future Works

	Article Produced

