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ABSTRACT 

 

Metaheuristics for multiobjective capacitated location allocation on logistics 

networks 

 

Yonglin Ren  

 

Logistics is vital to sustaining many industrial, commercial, and administrative 

activities. It is often composed of the logistics service providers and the customers being 

serviced. The goal of service providers is to maximize revenues by servicing customers 

efficiently within their preferred timelines. To achieve this goal, they are often involved in 

activities of location-allocation planning, that is, which logistics facilities be opened, 

where they should be opened, and how customer allocations should be performed to ensure 

timely service to customers at least delivery costs to logistics operators.  

 

In this thesis, we address the multiobjective capacitated location allocation problem 

on logistics networks. The distinction between the location allocation problem treated in 

this thesis and the traditional location allocation problem lies in its multiobjective and 

dynamic nature. The multiple objectives considered are travel time, travel distance, travel 

cost etc. and developed based on practical constraints such as presence of congestion, 

timing and access restrictions imposed by municipal administrations in urban areas etc. 

The dynamic aspect means the location allocation results are not fixed forever but vary 
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with change in municipal access or timing regulations, congestion, or land, material and 

labor costs on logistics networks. 

 

 Four metaheuristics namely Genetic algorithms (GA), Simulated annealing (SA), 

Tabu search (TS), and Ant colony optimization (ACO) based solution approaches are 

presented to treat the multiobjective facility location allocation problem. Two cases are  

studied. In the first case, opening costs of the facilities and only one criterion (distance) is 

used. In the second case, opening costs of the facilities and multiple criteria (distance, 

travel cost, travel time) are used. The proposed approaches are tested under various 

problem instances to verify and validate the model results. 
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Chapter 1:  

 

Introduction 

 

1.1 Background 

Location planning of logistics depots and customer allocation are important decisions in 

supply chain network design (Ambrosino and Scutella 2005, Drezner and Hamacher, 

2002). A carefully planned network design positively impacts the economics of business 

organizations and their competitivity in national and international markets. Improper 

planning can lead to poor service quality towards customers, long delivery times, and 

high investment and maintenance costs for the logistics operators, which is detrimental to 

their business operations and profitability. 

 

The problem treated in this thesis is motivated by distribution network design in urban 

areas under congestion. The decisions concerned are location planning of logistics depots 

and allocation of clients to the opened logistics depots. In urban environment, opening of 

logistics depots and clients allocation is affected by a number of factors such as presence 

of congestion, land and labor cost, proximity to clients, presence of municipal regulations 

such as time restrictions, access restrictions etc. Therefore, the problem of how many 

logistics depots to be opened, where to locate them, and how to cluster customers and 

allocate them to logistics depots etc. is multiobjective and dynamic in nature and not a 



 

2 
 

static or one-time decision as considered in several studies available in literature in this 

direction. In practice, the LA decision involves consideration of multiple factors such as 

distance, travel cost, travel time etc. which are continually varying over time and 

therefore, the location allocation problem we are treating in this thesis is multi-objective 

and dynamic in nature. 

 

Solutions to location allocation problem have been mainly investigated under two main 

cases. In the first case, the location planning of logistics depots is performed first and 

customer allocations are done. In the second case, the customer zones are formed first 

and then logistical facilities or logistics depots are located at center of zones to ensure 

better coverage and service for customers.  

 

Distributing goods to customers from several logistics depots produces the problem of 

optimizing the delivery process. Managers or Logistics operators face the problem of 

reducing delivery costs, that is, how to ensure efficient delivery processes considering 

multiple factors such as travel cost, travel time, and travel distance, and how to integrate 

them altogether in optimizing overall costs for delivery of goods to customers.  It is 

obvious that these problems are multiobjective in nature and therefore compromise 

solutions have to be found.   

 

Most of the solutions to location & allocation problems have been approached in similar 

ways as those used for combinatorial optimization problems. If the number of logistics 
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depots and customers are small, the optimal solutions can be found using exact 

programming approaches. However, if the scale of problem is large, then exact 

approaches are not enough to provide satisfactory solutions in reasonable amount of time. 

Therefore, new types of solution approaches need to be developed to resolve large sized 

location-allocation problems.  

 

Location-allocation problem is NP-hard problem (Azarmand and Neishabouri, 2009). In 

literature, metaheuristics have been shown to perform better than exact programming 

approaches to tackle larger NP-hard problems. In this thesis, we will address the 

multiobjective capacitated location allocation problem and develop solution approaches 

based on the following four metaheuristics.  

 Genetic algorithms       (GA)  

 Simulated Annealing      (SA)  

 Tabu Search             (TS) 

 Ant Colony Optimization  (ACO) 

 

These metaheuristics will be discussed in detail in Chapter 3 and Chapter 4 of the thesis. 

 

1.2  Problem Statement 

The problem treated in this thesis is capacitated location allocation planning of logistics 

depots for distribution network design. This involves location planning of logistics depots 

and customer allocations considering facility opening costs and distribution costs to 
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customers under given capacity constraints of logistics depots and customer demands. 

 

1.3  Thesis contribution 

The thesis presents four metaheuristics namely GA, SA, TS and ACO for location 

allocation problem on logistics networks. The proposed metaheuristics were tested for 

different problem instances and the results were compared with other existing approaches 

available in literature. The strength of using the proposed metaheuristics is ability to 

generate good solutions under large problem instances.  Besides, consideration of 

multiple criteria in allocation of clients to logistics depots provides practical solution to 

the problem under consideration. 

 

1.4  Thesis outline 

The rest of the thesis is divided as follows.   

In Chapter 2, we present the literature review on the location allocation problem and 

available solution approaches. 

In Chapter 3, we present the problem description with mathematical formulation. 

In Chapter 4, we propose four metaheuristics (GA, SA, TS, and ACO) for capacitated 

location allocation on logistics networks.  

In Chapter 5, we present numerical application of the proposed metaheuristics and 

perform verification and validation of model results. 

In Chapter 6, we present the conclusions and directions for future research. 

Finally, references conclude the thesis. 
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Chapter 2: 

  

Literature Review 

 

The Location-allocation (LA) problem involves locating an optimal set of facilities to 

satisfy customer demand at minimal transportation cost from facilities to customers (Love 

et al 1988, Ninlawan 2008).  They have been applied in a number of areas such as location 

of warehouses, fast food outlets, gas stations, electric transformers, emergency healthcare 

facilities, production plants etc.   

2.1   Classification of location allocation problem 

There are four components that characterize any location allocation problem. According to 

Revelle and Eiselt (2005), they are (1) customers, who are presumed to be already located 

at points or on routes, (2) facilities that will be located, (3) a space in which customers 

and facilities are located, and (4) a metric that indicates distances or times between 

customers and facilities. Based on the studies by Scaparra and Scutellà (2001), Revelle 

and Eiselt (2005), Revelle et al (2008), Azarmand and Neishabouri (2009), Beaumont 

(1981), Love and Juel (1982), we classify the location allocation models into following 

main categories: 
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2.1.1   Classifications on Customers demand 

 

Based on the certainty of information available about the customer demands, the models 

can be classified as deterministic or stochastic. If the number of customers, their locations 

and demands are known with certainty, the model is called deterministic. If the customer 

demands are modeled using probability distributions, the models are termed stochastic. 

 

2.1.2   Classifications on Facilities  

The Location-allocation models can be classified into single-facility or multi-facility 

depending upon the number of facilities to be located. In the contrary case, the number of 

facilities to be placed may not be known in advance. In such case, idea is to find the least 

number of facilities so that all demand points are covered within a prespecified distance 

standard (also called as location set covering model first introduced by Toregas et al. 

(1971). 

If the facilities are limited by their capacities to serve customer demands, the models are 

termed capacitated otherwise called uncapacitated. The models can also be differentiated 

into single-service and multi-service types, based on whether the facilities can provide only 

one or many services.  

 

2.1.3   Classification on the Physical Space or Locations  

 

Based on the representation of space in which facilities are located, the location allocation 



 

7 
 

models can be classified into problems in planar (d-dimensional real space |
d
 ) and network 

location problems each of which can be further sub-divided into continuous or discrete 

location problems (ReVelle and Eiselt, 2005). Distances in |
d 

are most often derived from 

Minkowski distances, which are defined as a family of distances with a single parameter 

p. In particular, the ℓp distance between a point (ai, bi) and a point (aj, bj) with i≠j is 

defined as 
pp

ji

p

ji

p

ij bbaad
/1

. For p=1, we obtain the rectilinear (or rectangular 

or Manhattan or ℓ1) distance jijiij bbaad , and for  p=2, we obtain the 

Euclidean (or straight line or ℓ2) metric with 222 )()( jijiij bbaad and the 

Chebyshev (or “max”, or ℓ∞) metric with dij
∞
=max{ ai−aj ; bi−bj }. In contrast, the 

distances in network location problems are measured on the network itself, typically as 

the shortest route on the network of arcs connecting the two points. 

 

Both planar problems and network problems can be further subdivided into continuous 

and discrete location problems. In continuous problems, the points to be sited can 

generally be placed anywhere on the plane or on the network. For example, placement of 

a helicopter for trauma pickup is a typical application of a continuous problem on a 

network. In discrete problems (Marin 2011), in addition to the points to be positioned, the 

facilities can conceptually be placed only at a limited number of eligible points on the 

plane or network. 
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2.1.4   Classifications based on location objectives  

Traditionally, the location of facilities is done in a way so that the closer they are to the 

customers, the better the value of the objective function. Eiselt and Laporte (1995) call 

this objective to fall into the “pull” category. This normally involves maximizing the 

demands served (capture problem), minimizing sum of transportation costs (median 

problem) or minimizing the largest customer-facility distance (center problem). In contrast 

to facilities where closeness is desirable, there can also be „push‟ objective where the goal 

is to “push” undesirable facilities as far from the customers as possible. Finally, a third 

class of objective is the achievement of equity. In such models, the objectives attempt to 

locate the facilities in such as way that the customer-to-facility distances are as similar to 

each other as possible. This equalization gives rise to the term “balancing objectives”. In 

other words, the distances from clients to the nearest facility may be bounded by some 

generally recognized distance standard.  

ReVelle et al. (1970) proposed the private sector and public sector category for location 

problems. The private sector problems seek the sites that optimize some function of the 

monetary value associated with the location. In contrast, public sector problems seek 

facility sites that optimize the population's access. Clearly, there are many shades of gray 

between the extremes of “private” and “public”.  

Using the above mentioned classifications, the location allocation problem treated in this 

thesis can be categorized into deterministic, multifacility, multiobjective, min-sum, 
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discrete, and capacitated. 

2.2 Models for Location Allocation problem 

The LA problem was first proposed by Cooper (1963) and spread to a weighted network by 

Hakimi (1964). The network LA problem and many models were presented by Badri 

(1999). Numerous approaches (Klose and Drexl 2005, Henrik and Robert 1982, Love et al. 

2008, Bischoff and Dachert, 2009) have been developed over years to solve the location 

allocation problem which can be mainly classified into: 

 Exact approaches 

 Data analysis 

 Simulation 

 Muticriteria decision analysis 

 Heuristics 

 Metaheuristics 

 Hybrid approaches or combinations of the above 

These approaches are presented in detail as follows.  

2.2.1 Exact approaches 

The exact approaches or the mathematical programming approaches involve the use of 

techniques such as linear programming, integer programming, multiobjective optimization 
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etc. to arrive at optimal solutions. Mathematics, computation and business fields refer to 

selection of the best element from a set of available alternatives as Optimization or 

Computational programming. Steuer et al. (1986) simplifies the problem of solving 

minimization or maximization of real functions by systematically choosing values within 

an allowed set and proposes three types of optimizations: Multi-objective optimization, 

multi-model optimization, and dimensionless optimization. The multi-objective 

optimization (or programming), also known as multi-factors or multi-attribute 

optimization, is the process of simultaneously optimizing two or more conflicting 

objectives subject to certain constraints. The multi-modal optimization problems possess 

multiple good solutions. They could all be globally good (same cost function value) or 

there could be a mix of globally good and locally good solutions. Obtaining all (or at 

least some of) the multiple solutions is the goal of a multi-modal optimizer. 

Dimensionless optimization is used when the variables are dimensionless. In certain 

optimization problems the unknown optimal solution might not be a number or a vector, 

but rather a continuous quantity, for example a function or the shape of a body. Such a 

problem is an infinite-dimensional optimization problem, because, a continuous quantity 

cannot be determined by a finite number of certain degrees of freedom. 

Exact solution methods were for a long time restricted to relatively small problem sizes. 

Branch and bound algorithms for LA problems were developed by Kuenne and Soland 

(1972), Ostresh (1973), Drezner (1984) and Rosing (1992), among others. Love and 
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Morris (1975) concentrated on rectilinear distances, and Love (1976) applied dynamic 

programming to problems where all demand points are located on a line. Brimberg and 

Love (1998) later generalized this approach to certain class of planar problems. More 

recently, the application of global optimization techniques has increased the size of 

problem instances that can be solved exactly. Examples are a D.C. programming method 

for the two facility case (Chen et al, 1998) and a column generation approach (Krau, 

1997). Approximation schemes for the problem were developed by Lin and Vitter (1992a 

and 1992b) and by Arora, Raghavan and Rao (1998), who gave a ε-approximation 

scheme for the Euclidean location allocation problem. Bischoff et al (2006) present a 

mixed integer programming approach for multifacility location allocation problem with 

polyhedral barriers.  Fazel-Zarendi and Beck (2009) focus on the Location-Allocation 

Problem with Logic-Based Benders' Decomposition. Kuenne and Soland (1972) present 

branch-and-bound algorithms for location allocation problem. 

2.2.2 Data analysis 

Data analysis techniques perform inspecting, cleaning, transforming, and modeling data 

with the goal of highlighting useful information, suggesting conclusions, and supporting 

decision making; Data analysis has multi-facets and approaches, encompassing diverse 

techniques under a variety of names, in different economics, science, and mathematical 

science domains. Examples of data analysis techniques are cluster analysis, 

correspondence analysis, regression analysis etc. In location & allocation problems, data 

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Information
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analysis could be used in allocating customers to logistics facilities using distance based 

clustering.  

 

Hsieh and Tien (2004) use Self-organizing feature maps for solving location–allocation 

problems with rectilinear distances. Lozano et al (1998) apply Kohonen maps for solving 

a class of location-allocation problems. Barreto et al (2007) use clustering analysis in a 

capacitated location-routing problem. Satani et al (1998) developed a commercial facility 

location model using multiple regression analysis. Tsuchiya et al (1996) present a neural 

network approach to facility layout problems. 

2.2.3 Simulation 

Simulation modeling is an experimental and applied methodology used for describing the 

behavior, constructing theories or hypotheses, and applying these theories to predict 

future behavior of systems (Shannon 1975, Banks 1998). It is the use of mathematical 

models to imitate a situation many times in order to estimate the likelihood of various 

possible outcomes. Simulation has been applied in many fields like science, engineering, 

business and social management (Poole and Szymankiewicz, 1977). Barton (1970) 

presents four categories of simulation modeling: analysis, man-model simulation, 

man-computer simulation, and all-computer simulation. 

  

Armour and Buffa (1965) present a heuristic algorithm and simulation approach for 

relative location of facilities. Canbolat and van Massow (2011) present a spreadsheet 
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based simulation model for locating emergency facilities with random demand for risk 

minimization. Greasley (2008) applied simulation for facility design. Vos and Akkermans 

(1996) proposes dynamics of facility allocation using system dynamics simulation models 

that usually comprise a large number of interrelated variables.   

2.2.4 Muticriteria decision analysis 

Multicriteria decision involves evaluation of a set of alternatives using a pre-defined set 

of criteria by a committee of decision makers or experts. Examples of MCDA techniques 

are AHP, ANP, TOPSIS, SAW etc. In location allocation problem, the criteria can be 

minimum cost, distance and travel time etc. and the alternatives are the potential 

locations to be evaluated for final site selection. The location problem was first posed by 

Weber and formed the theory of the Location of Industries (1929). Freek (1999) and Ho 

et al (2008) investigated location & allocation problem using multi-factors decision 

analysis.  

 

Farahani and Helmatfar (2009) provide a review on recent efforts and development in 

multi-factors location allocation problems in three categories including bi-objective, 

multi-objective and multi-attribute problems and their solution methods. Fortenberry and 

Mitra (1986) present a multiple criteria approach to the location-allocation problem. Badri 

(1999) combined the analytic hierarchy process and goal programming for global facility 

location-allocation problem. Ho et al (2008) used Analytic Hierarchy Process (AHP) to 
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optimize the facility location-allocation problem in the contemporary customer-driven 

supply chain. 

2.2.5 Heuristics 

Heuristics methods yield good solutions at reasonable cost and can be used for providing 

good initial solutions in other optimizing methods (Anand and Knott, 1986). A well 

known heuristics approach for the sequential location allocation is by Cooper (1964). The 

method alternates between a location and an allocation phase until no further 

improvements can be made. Brimberg et al (1998) propose heuristics based decomposition 

strategies for large-scale continuous location-allocation problems.  A p-Median plus 

Weber heuristic was proposed by Hansen et al. (1998). Local search methods were 

developed by Love and Juel (1982), and Brimberg and Mladenovic (1996a). The 

modification of the objective function was investigated in the location allocation problem 

by Chen (1983). Gamal and Salhi (2001) present constructive heuristics for the 

uncapacitated continuous location–allocation (UCLA) problem. 

Doerner et al (2009) present a method of multi-factors location planning for public 

facilities. For the optimal solution of the multi-objectives optimization problem, they 

propose a heuristic approach based on the NSGA-II algorithm, which is a kind of GA. 

 

http://www.springerlink.com/content/t4q667j78u27372p/fulltext.html#CR11_5
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2.2.6 Metaheuristics 

A metaheuristic is an approach used for optimization by iteration in the neighborhood of 

solution space. Examples of metaheuristics are simulated annealing, tabu search, genetic 

algorithms etc. Metaheuristics have been applied in many different areas such as science, 

engineering, logistics, management, and defense (Glover and Kochenberger, 2002). 

 

Zhou et al. (2002) use genetic algorithm approach for balanced allocation of customers to 

logistics depots. Zhou et al. (2003) present a genetic algorithm approach to bi-criteria 

allocation of customers to warehouses. Villegas et al (2006) use genetic algorithm 

approach for allocation of logistics depots to customers. Cortinhal and Captivo (2003) 

applied Genetic Algorithms for the Single Source Capacitated Location Problem (SSCLA) 

and propose three algorithms based on the Nondominated Sorting Genetic Algorithm; the 

Pareto Archive Evolution Strategy; and mathematical programming. The problem is 

modeled as a biobjective (cost, coverage) uncapacitated problem under allocation 

constraints of customers for coffee supply network.  

 

Murray and Church (1996) apply simulated annealing for location allocation problem.  

Vecihi et al. (2006) present the evolutionary simulated annealing (ESA) for large-scale 

uncapacitated facility location problem. Land allocation zones for forest management 

were created using an annealing approach by Mark et al. (2004). Their multiobjective 

function comprised of landscape-level targets, size, shape, and all ecosystem types.  
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Tabu search for location allocation problems was investigated by Brimberg and 

Mladenovic (1996) and Ohlemüller (1997). Crainic et al. (1993) apply tabu algorithm for 

multi-commodity location & allocation with balancing requirements. Kulturel-Konak et 

al. (2003) efficiently solve the redundancy allocation problem using tabu algorithm. 

Junjiro et al (2006) tested tabu search for efficient allocation of SVRs optimizing the rate 

of operation for distribution systems. Cordeau and Laporte (2005) apply tabu search and 

models heuristics for the berth-allocation.  

 

Chan and Kumar (2009) apply multi ant colony optimization approach for customers 

allocation. Hua et al (2010) develop ant colony optimization algorithm for computing 

resource allocation based on cloud computing environment. Kwang and Weng (2002) 

apply multiple ant colony optimizations (MACO) for load balancing. Silva et al. (2008) 

apply ant colonies for distributed optimization of a logistic system and its suppliers. 

Comparison of genetic algorithms, random restart and two-opt switching for solving large 

location–allocation problems is presented by Houck et al (1996). 

 

2.2.7 Hybrid Approaches or Combinations of the above 

Some hybrid algorithms have been also suggested, such as the one based on simulated 

annealing and random descent method (Ernst and Krishnamoorthy 1999) and the one 

utilizing the Lagrange relaxation method and genetic algorithm (Gong et al. 1997). 

Brimberg et al. (2000) improved present algorithms and proposed variable neighborhood 

search, which is proved to obtain the best results when the number of facilities to locate is 
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large. Abdinnour-Helm (1998) developed a hybrid heuristic based on Genetic Algorithms 

(GAs) and Tabu Search (TS) for the uncapacitated hub location problem. Chen (2007) 

proposes hybrid heuristics based on simulated annealing, tabu list, and improvement 

procedures for the uncapacitated single allocation hub location problem. Silva and Cunha 

(2009) propose multi-start tabu search heuristic for the uncapacitated single allocation 

hub location problem. A Tabu search and ant colony system approach for the capacitated 

location-routing problem was proposed by Bouhafs et al.(2008). Qin (2006) put forward 

an ant colony arithmetic model for logistics distribution centre allocation problem. 

Kansou and Yassine (2010) use a hybrid approach consisting of ant colony optimization 

and a heuristic saving method for the multi-depots capacitated arc routing problem. 
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Chapter 3: 

 

                        Problem definition  

   

Distribution of goods to customers from logistics depots produces the problem of how to 

construct the network of logistics depots and customers, and to optimize the delivery 

process. That is, how to cluster customers and service them through logistics depots 

considering least distance, cost, time etc. The distinction between the location allocation 

problem treated in this thesis and the traditional location allocation problem lies in its 

multiobjective and dynamic nature. The multiple objectives considered are travel time, 

travel distance, travel cost etc. and developed based on practical constraints such as 

presence of congestion, timing and access restrictions imposed by municipal 

administrations in urban areas etc. The dynamic aspect means the location allocation 

results are not fixed forever but vary with change in municipal access or timing 

regulations, congestion, or land, material and labor costs on logistics networks.  

 

In our problem, each customer should be serviced by a logistics center. It is possible that 

a logistics depot gets no customer allocations, in that case it will be closed down. 

Multiple criteria (factors) such as facility opening costs, travel cost, travel distance, and 

travel time to customers are considered in deciding the opening of logistics depots and 

customer allocations. The solution for location allocation problem should therefore be 
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developed considering these factors, customer demands and capacity constraints of 

logistics depots. Figure 3.1 shows a logistics network comprising of logistics facilities 

(depots) and the customers.   
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Figure3.1 Network of logistics depots and customers 

 

Let us denote the logistics centers by i, (i=1,2,..,m)  and customers by j (j=1,2,..,n). The 

maximum number of depots is denoted by m and the maximum number of customers is 

denoted by n. The cost of opening a facility i is denoted by ci and its capacity by bi. The 

demand for customer j is given by dj. The distance between depot i and customer j is 

given by dij, travel cost by cij, and travel time by tij. The binary variable yi is 1 if facility i 

is opened, otherwise it is set equal to 0. Similarly, binary variable xij is equal to 1 is 

customer j is allocated to depot i and is set equal to 0 in the contrary case.  The quantity 

of goods transported between i and j (if they are connected) is given by qij. The goal is to 
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minimize the total costs, that is, opening costs of facilities and delivery costs of goods to 

customers from logistics depots. The delivery cost for customers is a weighted function 

of travel distance (dij), travel cost (cij) and travel time (tij) where the weights of travel 

distance, travel cost and travel time are represented by w1, w2 and w3 respectively. Since, 

the facility opening costs, travel distance, travel time, travel costs etc. are in different 

units, they are normalized before being used in the objective function. Let us denote the 

normalized values of ci, dij, cij and tij by 
' ' ' ', , ,i ij ij ijc d t c  which are computed as follows:  
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Using the normalized values 
' ' ' ', , ,i ij ij ijc d t c , the mathematical formulation of the problem is 

presented as follows:  
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miybxq ii
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0ijq  

It can be seen from (3.1) that the objective function comprises of multiple factors such as 

facility opening costs ( '

ic ), travel distance ( '

ijd ), travel cost ( '

ijc ) and travel time (
'

ijt ). If w1 

= 1 and w2 = 0, then w3 = 0 and the above objective function reduces to a single factor 

optimization problem based on minimizing the travel distance only. The objective 

function (3.1) now reduces to (3.5) which is given as follows: 

 

Minimize      

n

j

ijij

m

i

n

j

ii dxcy
1

'

11

' **                             (3. 5) 

 

The constraints in single factor optimization model remain the same as in multifactor 

optimization model. Equation (3.2) ensures that each client is served by exactly one 

facility. Equation (3.3) shows the demand satisfaction constraint of the customers. 

Equation (3.4) shows the capacity restriction constraints for the logistics depots. The 

facility location selection variable ijx  and the customer allocation variable to logistics 

facilities 
iy  are binary. The quantity allocations ijq  are non-negative real numbers. 
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Chapter 4: 

              

           Solution Approach  

   

The location & allocation problem treated in this thesis is multi-objective in nature.  

According to Konak et al (2006) and Sawaragi et al (1985), there are two general 

approaches to solve multiple-objective optimization problems.  

1. Combining individual objective functions into a single composite function or move 

all but one objective to the constraint set. In the former case, determination of a 

single objective is possible with methods such as utility theory, weighted sum etc., 

but the problem lies in the proper selection of the weights which is tricky process as 

small perturbations in the weights can sometimes lead to quite different solutions. 

In the latter case, the problem is to move objectives to the constraint set where a 

constraining value must be established which can again be rather arbitrary. In both 

cases, an optimization method would return a single solution rather than a set of 

solutions that can be examined for trade-offs. 

2. The second approach consists of determining Pareto optimal solutions where a 

Pareto optimal set is defined as a set of solutions that are non-dominated with 

respect to each other. Each Pareto solution dominates other in terms of one 

objective function value and there is always a certain amount of sacrifice in this 
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objective value when trying to achieve a certain amount of gain in the other 

objective(s). Pareto optimal solution sets are often preferred to single solutions 

since the final solution of the decision-maker is always a trade-off in practice. The 

Pareto optimal sets can be of varied sizes, usually it increases with the increase in 

the number of objectives. 

In our thesis, since all the functions are minimization type and the weights of the 

objective functions can be obtained using multicriteria decision making approaches such 

as AHP, we have used the weighted sum method (Marler and Arora, 2009) for treating the 

multiobjective problem is used over the Pareto optimal solution. Before applying the 

weighted sum method, we normalize all the factors used in the model to bring them to a 

common unit to avoid discrepancies of scale. If sij represents an element of matrix Sm x n 

where i=1,2,..,m and j=1,…,n, then the normalized values aij can be obtained using any of 

the following four methods: 

aij=sij/∑(sij)                                                (4.1) 

aij = sij / max(sij)                                         (4.2) 

aij =（sij -min sij)/max(sij -min sij)                                 (4.3) 

aij = sij / 2

( )ijs                                               (4.4) 

The normalization method we have chosen for our multiobjective location allocation 

model is given by eqn (4.1). Four types of metaheuristics based solution approaches are 

proposed for solving the multiobjective capacitated location allocation problem on 
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logistics networks. The metaheuristics were developed in Matlab. Jones et al (2002) 

present a detailed overview of multi-objective meta-heuristics. The details of the 

metaheuristics proposed in the thesis are presented as follows.    

 

4.1 Genetic Algorithms (GA) for location allocation  

Genetic algorithm is a kind of stochastic search and optimization technique based on 

principles from evolution theory (Holland, 1975). Genetic algorithms form part of the 

larger class of „Evolutionary algorithms’ which generate offsprings for better solution by 

using techniques inspired from genetic evolution such as crossover, inheritance, selection, 

mutation etc. Goldberg (1989) defines genetic algorithm as a search heuristic that mimics 

the process of natural evolution. This heuristic is routinely used to generate useful 

solutions, search and optimize better solution from neighborhood of solution space. 

Genetic selection for crossover and mutation is important and should be carefully done 

because it affects the computational speed and quality of final results of the genetic 

algorithms.  

 The application of GA for location allocation problem has been investigated by several 

researchers. Zhou et al. (2002) use genetic algorithm for balanced allocation of customers 

to logistics depots. Zhou et al. (2003) present a genetic algorithm approach to bi-criteria 

allocation of customers to warehouses. Villegas et al. (2006) use genetic algorithm 

approach for allocation of logistics depots to customers. Cortinhal and Captivo (2003) 

applied Genetic Algorithms for the Single Source Capacitated Location Problem.   

http://en.wikipedia.org/wiki/Evolutionary_algorithm
http://en.wikipedia.org/wiki/Crossover_(genetic_algorithm)
http://en.wikipedia.org/wiki/Heredity
http://en.wikipedia.org/wiki/Selection_(genetic_algorithm)
http://en.wikipedia.org/wiki/Mutation_(genetic_algorithm)
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Search_algorithm
http://en.wikipedia.org/wiki/Optimization_(mathematics)
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4.1.1 Method Description 

The various steps of the genetic algorithm for location allocation problem are presented 

as follows.  

 

Representation Scheme 

The representation scheme for the chromosome is a n-bit string where n represents the 

number of customers. A non-zero value for the i
th

 bit implies that a depot is allocated to 

that customer. If a depot is not present in the string, it implies that this depot was not 

opened or closed for non-feasibility reasons (allocation of zero customers). Let us 

consider a network comprising of 21 customers and 7 logistics depots. The representation 

of an individual chromosome (solution) is illustrated as follows: 

 

Customers         1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19   20   21     

 

Figure 4.1: Solution Representation for Location Allocation problem 

 

Using case (a), we can say that logistics depot 1 is allocated to customers (1,2,3), 

logistics depot 2 to customers (4,5,6), etc. On analyzing results for case (b), we see that 

logistics depot 1 is allocated to customers (1,7,20), logistics depot 3 to (4,6,15,16,17,21). 

However, in case (b) the logistics depot 7 is absent which means it was not opened for the 

reasons of zero allocation of customers. 
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Case (a) 

Customers      1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19   20   21     

Logistics depots  1  1  1  2  2   2  3  3  3   4   4   4   5   5   5   6   6   6  7    7    7       

 

Case (b) 

Customers      1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19   20   21     

Logistics depots  1  6  2  3  5   3  1  4  2   2   2   2   6   4  3   3   3   4    2    1   3    

 

Fitness Function 

The fitness function is same as eqn (3.5) for single factor and eqn (3.1) for multifactor 

subject to constraints (3.2-3.4) (Chapter 3). 

 

Parents Selection Procedure 

Few methods of parent selection as described in Beasley and Chu (1996) and Talbi (2009) 

are ranking (picking the best individuals every time), Roulette wheel or proportionate 

(probability of selection is proportional to fitness), Tournament (initial large number are 

selected via roulette wheel, then the best ranked are chosen), Stochastic (various methods 

of replenishment of less fit stock (useful) or initial selection (not useful)) and Elite (in 

combination with other selection schemes, always keep the fittest individual around). To 

select the parents for crossover, we have chosen the ranking method. 

 

Crossover Operator  

Different cross-over operators are one-point, two-point, uniform, arithmetic, heuristic etc. 

We chose the one-point cross-over in our approach which involves randomly generating 
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one cross-over point and then swapping segments of the two parent chromosomes to 

generate two child chromosomes. Let P1 and P2 be the parent strings P1[1],…, P1[n] and 

P2[1], P2[2],.., P2[n] respectively. Choose a cross-over point k, where 10 k . Then 

the child chromosomes C1 and C2 are given by: 

C1 =P1[1],…, P1[k],P2[k+1],…, P2[n] 

C2 = P2[1], …,P2[k],P1[k+1],…, P1[n]  

 

Mutation Operator 

Mutation is applied to each child after crossover. It works by inverting each bit in the 

solution with some small probability. In our thesis, the mutation operator works by 

selecting randomly one of the customers in the child chromosome and allocating to 

another logistics facility picked at random. 

 

Replacement population method 

The newly generated child solutions are put back into the original population to replace the 

“less fit” members. The average fitness of the population increases as child solutions with 

better fitnesses replace the less fit solutions (“incremental replacement”). Note that when 

replacing a solution, care must be taken to avoid duplicate solutions from entering the 

population as it will severely limit the GAs ability to generate new solutions. Another 

commonly used method is the “generational replacement”, which generates a new 

population of children and replaces the whole parent population (Beasley et al., 1993). In 
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fact, the simple or generational GAs replace entire population per the dictates of the 

selection scheme whereas the steady state or online GAs use different replacement 

schemes such as Replace worst, Replace best, Replace parent, Replace random and 

Replace most similar (crowding). 

In our GA, we have used the incremental replacement method.  

Population size 

The performance of GA is influenced by the population size. Small populations run the 

risk of seriously under-covering the solution space, while large populations are 

computationally intensive [Jaramillo et al, 2002]. Alander [1992] suggests that a value 

between n and 2n is optimal for the problem type considered, where n is the length of a 

chromosome. In our case, we chose a population size equal to n which is equal to the 

number of customers in the LA problem. 

 

4.1.2 High level pseudocode for GA 

The high level pseudocode for implementing GA is presented as follows:  

1. Set iteration counter t = 0. 

2. Generate the initial population, P(t), randomly. 

3. Evaluate fitness of the population P(t) using the objective function. 

4. While (number if iterations t <= Maximum value) or (improvement in objective 

function value <= 10
-5

) do 
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4.1. Set t= t+ 1 

4.2. Select two solutions P1 and P2 from the population using the ranking method. 

4.3. Apply genetic operators to P1 and P2 

4.3.1. If crossover, then combine P1 and P2 using single point crossover to 

generate offspring O1.  

4.3.2. If O1 is identical to any of its parents, then apply mutation operator to 

the parent with the best fitness. 

4.3.2.1. If mutation, then apply mutation operator to the parent with the 

best fitness to form a offspring O1. 

4.3.3. Evaluate the fitness of the new child set using the objective function 

4.3.4. If fitness of chromosome is improved or objective value is reduced (in 

case of minimization) then utilize the incremental replacement method to 

create P(t) and update population size. 

5. Stop. Print final results. 

 

4.1.3 Example 

Let us consider 2 logistics depots D1 and D2 and 6 customers C1, C2, C3, C4, C5, C6 

respectively. The initial population consists of four chromosomes P1, P2, P3, P4 

generated at random (Table 4.1). Please note that each of these chromosomes (solutions) 

satisfies the demand and capacity constraints.  
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Depot Solution String Objective Function 

P1 1 1 1 2 2 2 30 

P2 2 2 2 1 1 1 45 

P3 1 1 2 2 1 2 27 

P4 1 1 2 2 2 1 80 

 

Table 4.1: Initial population for genetic algorithm 

 

Let us select P1 and P3 for cross-over since they have the least objective function value 

(ranking method). One point cross-over is used to generate offspring (s) O1 (1 1 1 2 1 2) 

and O2 (1 1 2 2 2 2) both of which have objective function equal to 25 (lower than the 

parent chromosomes). Therefore, the new offsprings O1 and O2 are returned back to the 

original population to replace P1 and P3. The crossover probability ranges from 0.4-0.7 

and the mutation probability is near 0.1. This process of crossover, mutation, generation 

of offsprings and renewal of parent population continues until the new population size is 

same as the initial population size. Then, the whole procedure of evaluating population 

fitness, chromosome generation, population replenishment etc. continues until number of 

iterations <= Maximum value or improvement in objective function value <= 10
-5

. At this 

point the results are said to be stabilized over time or the algorithm converges and the 

final results are generated.   

 

4.1.4 Advantages of Genetic Algorithms 

The advantages of Genetic algorithms are that it supports multi-objective optimization, 

can be applied to new problems with exploratory type of solutions, always improves 
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solutions over time, and can be easily parallelized or distributed. 

 

4.1.5 Limitations of Genetic Algorithms 

Genetic algorithms require careful selection of chromosomes, cross-over and mutation 

operators to generate better results over time. If they are not carefully planned, there is 

risk of getting trapped into local optima and the algorithm may involve high 

computational times for generating final results. 

 

4.2 Simulated annealing for location allocation 

Simulated annealing is a generalization of the Monte Carlo method for examining the 

equations of state and frozen states of n-body systems (Metropolis et al., 1953). The 

concept is based on the manner in which liquids freeze or metals recrystallize in the 

process of annealing. In an annealing process a melt, initially at high temperature and 

disordered, is slowly cooled so that the system at any time is approximately in 

thermodynamic equilibrium. If the initial temperature of the system is too low or cooling 

is done insufficiently slowly the system may become quenched forming defects or 

freezing out in metastable states. Therefore, the process of optimization should have an 

appropriate speed, or it couldn‟t get the satisfied solution by simulated annealing.   

 

Application of simulated annealing for LA problem has been studied by several 

researchers. Murray and Church (1996) apply simulated annealing for location allocation 

problem. Vecihi et al. (2006) present the evolutionary simulated annealing (ESA) for 
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large-scale uncapacitated facility location problem.  

 

4.2.1 Method description 

The various steps of simulated annealing algorithm for location allocation problem are 

presented as follows: 

 

Generation of initial solution 

The initial solution is generated by opening all facilities and performing random 

allocation of clients to them.  

 

Initialization of annealing parameters 

The initialization process involves the following parameters: 

 An initial temperature 

 A temperature function to determine how the temperature will be changed as the 

algorithm will proceed. 

 The number of iterations to be performed at each temperature 

 A termination condition to stop the algorithm such as maximum number of 

iterations of difference between the old and new objective function values. 

 

Updation of temperature 

There is always a compromise between the quality of the obtained solutions and the 

speed of the cooling schedule. If the temperature is decreased slowly, better solutions are 

obtained but with more computation time. Different ways for updating temperature T are 
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as presented as follows (Talbi, 2009): 

Linear: iTTi 0
,  

Geometric: 
1ii TT ,  

Logarithmic: 
)log(

0

i

T
Ti ,  

Very slow decrease: 
i

i
i

T

T
T

1
1  

In the above formulas, α and β are constants, T0 represents the initial temperature, and Ti 

represents the temperature at iteration i.  

We have used the linear function iTTi 0  for temperature update in our SA for 

location allocation problem. 

 

Generation of neighborhood solutions 

The neighborhood of a solution is generated by some suitable mechanism such as moving 

customers from one logistics depot to another in our location allocation problem and 

recording the change in the objective function value. 

 

Accept solutions 

If a reduction in the objective function occurs, the current solution is replaced by the 

neighborhood solution, otherwise, the neighborhood solution is accepted with a certain 

probability. The probability of accepting an uphill move is normally set to exp(−ΔE/T) 

where T is a control parameter which corresponds to temperature in the analogy with 

physical annealing, and ΔE is the change in the objective function value. The SA starts 
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with a relatively high temperature, attempts a certain number of moves at each 

temperature, and then drops the temperature parameter gradually until a minimal 

temperature Tmin has been reached (Al-khedhairi, 2008). 

 

4.2.2 High level pseudocode for SA 

The high level pseudocode for simulated annealing is presented as follows:  

 

1. Set initial solution s = s0, initial temperature T = Tmax, maximum number of iterations 

= L, iteration counter n = 0, temperature change counter t = 0. 

2. Initialize temperature decreasing rate R and minimal acceptable temperature Tmin.  

3. While (T >= Tmin)  

3.1. While (number of iterations n <= Maximum value L) or (improvement in 

objective function value ΔE <= 10
-5

) do 

3.1.1: Generate a neighboring solution 's . 

3.1.2: Calculate )()'( sfsfE . 

3.1.3 If 0E   then  

3.1.3.1 Set 'ss  

else 

3.1.3.2 Select a random number R from U(0,1). If R < T

E

e  accept s = 

's else update s with next best neighboring solution "s with 0E .  

3.1.4 Set n = n+1; 

   3.2: Set t = t+1 and T = R- (R*t/L); 
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 4.  Stop. Print final results.   

 

4.2.3 Example 

Let us consider 2 logistics depots D1 and D2 and 6 customers C1, C2, C3, C4, C5, C6. 

We generate an initial solution say S1 at random with overall objective function value 

equal to 35 (Table 4.2). Set the initialization parameters β =0.1^(-10), α =0.997, and T0 

=2. Let us generate a neighboring solution S2 with objective function 25. 

Since 03525E , the solution is accepted. Then, we repeat the process to generate 

another solution S3 in neighborhood of S2. Since the objective function value of S3 (=28) 

is greater than that of S2, we generate a random number R from U(0,1) and check if R 

< T

E

e . Since this condition holds to be true, solution S3 is accepted. This process 

continues for a pre-defined number of iterations N or until very small change in 

magnitude of E (= 10
-5

) is observed. The best solution is recorded at this stage and the 

temperature T is lowered by a fixed amount = R- (R*t/L) and the whole process is 

repeated again until a pre-defined minimum temperature Tmin has been reached. Of course, 

the solution considered at any stage of the algorithm must satisfy the demand and 

capacity constraints of location allocation problem. 

 

Depot Objective Function Solution String 

S1 30 1 1 1 2 2 2 

S2 25 1 1 2 1 2 2 

S3 28 1 2 1 1 2 2 

 

Table 4.2: Solutions for Simulated Annealing 
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4.2.4 Advantages of Simulated Annealing  

Simulated Annealing is a simple, effective, and flexible approach, which could be easily 

understood and applied in many fields without relative inner structure. It can deal with 

arbitrary systems and cost functions and statistically guarantees finding an optimal 

solution. It is relatively easy to code even for complex problems and generally gives a 

“good” solution. 

 

4.2.5 Limitations of Simulated Annealing 

When the speed of decreasing temperature is too fast, the algorithm possibly can‟t get the 

optimized result or a satisfied solution; another disadvantage is the use of large CPU time 

in generating solutions, and lastly, there is the lack of memory which does not prevent the 

procedure from repeating a solution evaluated previously. 

 

 

4.3 Tabu Search for location allocation 

Glover (1989) proposed the tabu search or tabu algorithm for optimizing problems by 

tracking and guiding. It begins by setting up a set of feasible solutions, choosing certain 

solutions in the feasible neighborhood subject to constraints of tabu list for searching the 

objective solution, and finally generating the solution. Tabu search enhances the 

performance of a local search method by using memory structures: once a potential 

solution has been determined, it is marked as "taboo" (tabu) so that the algorithm does 

not visit that possibility repeatedly. TS focuses on how to cut off large computation in the 

http://en.wikipedia.org/wiki/Taboo
http://en.wikipedia.org/wiki/Algorithm
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solution space so as to avoid long computation times and make the search quicker. The 

tabu list length is an important factor in TS for the reason that its length will affect the 

computation speed or the efficiency of the searching process and therefore be decided by 

the condition of problem or other factors that affect the TS process.  

 

Tabu search for location allocation problems was investigated by Brimberg and 

Mladenovic (1996), and Ohlemüller (1997). Crainic et al. (1993) apply tabu algorithm for 

multi-commodity location & allocation with balancing requirements.  

 

4.3.1 Method Description 

Generate Initial Solution 

This step involves generating initial solution (configuration) which comprises of opening 

all facilities, random allocation of clients, and evaluation of objective function for that 

solution. 

 

Initialize memory structures 

This step involves initialization of all memory structures used during the run of the tabu 

search algorithm. The memory structures involved are tabu list, medium-term and 

long-term memories. The difference between short term and long term memory is that the 

short-term memory restricts the neighborhood N(s) of solution s to a subset N‟(s)  N(s) 

whereas the long-term memory may extend N(s) through the inclusion of additional 

solutions (Glover and Laguna, 1997). 
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Generate admissible solutions 

Generate a set of candidate moves from the current configuration. A move describes the 

process of generating a feasible solution to the problem. For example, Add, Drop, Swap 

etc. In our case, all these three kind of moves are involved in allocating customers to 

logistics facilities to generate admissible solutions that satisfy capacity and demand 

constraints. 

 

Select best solution 

This step returns the best admissible move (solution) from the list of candidate moves. If 

the best of these moves is not tabu or if the best is tabu but satisfies the aspiration criteria, 

the pick that move and consider it to be the new current configuration, else pick the best 

move that is not tabu and consider it to be the new current configuration. Repeat the 

procedure for a certain number of iterations. On termination, the best solution obtained so 

far is the solution obtained by the algorithm. 

The tabu status of solution approaches is maintained for tl number of iterations, the 

parameter tl being called the tabu tenure or tabu list length. Normally, tl=(n*(n-1))^0.5. 

Unfortunately, setting tl in advance may forbid moves towards attractive, unvisited 

solutions. To avoid such an undesirable situation, an aspiration criteria is used to override 

the tabu status of certain moves, that is, if a certain move is forbidden by tabu restriction, 

then the aspiration criteria, when satisfied, can make this move allowable.  
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Update memory structures 

To increase the efficiency of simple TS, long-term memory strategies can be used to 

intensify or diversify the search. Intensification strategies are intended to explore more 

carefully promising regions of the search space either by recovering elite solutions (i.e., 

the best solutions obtained so far) or attributes of these solutions. Diversification refers to 

the exploration of new search space regions through the introduction of new attribute 

combinations (Glover and Laguna 1997, Dorigo and Stutzle, 2004). 

 

Parameter setting 

Following parameters need to be set before running the TS: 

 The number of random solutions to be generated from the current one.  

 The tabu list size.  

 The probability threshold, whose value affects the probability assigned to every 

facility to change its status. 

 Maximum number of non-improving iterations before termination.  

 

4.3.2 High level pseudocode for TS 

The high level pseudocode for the proposed tabu search is presented as follows:  

1. Generate initial solution s0. 

2. Initialize the tabu list, medium-term and long-term memories 

3. Set sbest = s0. 
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4. While (number if iterations <= Maximum value) or (improvement in objective function 

value <= 10
-5

) do 

4.1. Generate admissible solutions (s) 

4.2. Select best solution s‟ from the list of admissible solutions (s)  

4.3. Update tabu list, aspiration conditions, medium and long term memories; 

4.3.1. If intensification criterion holds, then intensification;  

4.3.2. If diversification criterion holds, then diversification; 

4.4. If (f(s‟) < f(sbest) and (s‟ is non-tabu)) or ( f(s‟) < f(sbest) and (s‟ is tabu and 

aspiration criteria holds) then  

Set sbest = s‟. 

Pick the best move s” that is non-tabu and set sbest = s”.  

5. Stop. Print final results. 

 

4.3.3 Example 

Let us consider 2 logistics depots D1 and D2 and 6 customers C1, C2, C3, C4, C5, C6. 

An initial solution is generated at random say S0 = {C1(D1),C2(D1),C3(D1),C4(D2), 

C5(D2),C6(D2)} whose overall objective function value is 35. Let us generate a 

neighboring solution S1 = {C1(D1),C2(D1),C6(D1),C4(D2),C5(D2),C3(D2)} with 

objective 29. Since, the new solution is better than the previous one and is not present in 

the tabu list = {C1(D1), C3(D1), C5(D1), C2(D2), C4(D2), C6(D2)}, the new solution is 

accepted and updated as the best solution. The solution S1 is also added to the tabu list to 
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avoid repetitive solutions from entering into the tabu list. Next, we generate solutions in 

the neighborhood of S1 and repeat the whole process again updating best solution each 

iteration. This process continues until maximum number of iterations have been reached 

or very minimal improvement in objective function value (say <= 10
-5

) is observed.  

 

4.3.4 Advantages of Tabu Search 

The advantage of Tabu Search is that it searches over all the solutions space to find the 

optimized solution. Due to the presence of Tabu list, only limited solutions in 

neighborhood are searched which saves lot of computation time and also avoids low 

quality solutions. 

 

4.3.5 Limitations of Tabu Search 

Since Tabu Search repeatedly checks solutions for presence in the Tabu List, it wastes 

much of time as well, or TS process will slow the speed of computation if the computing 

unit entering tabu list requires sorting. Therefore, how to set up the tabu space is very 

important in TS.  

 

4.4 Ant Colony Optimization (ACO) for location allocation 

Marco Dorigo (1992) developed the ant colony approach. The ant colony optimization 

(ACO) is a probabilistic technique for solving computational problems which can be 

reduced to finding good paths through neighborhoods. Ant colony optimization originally 

is a biological swarm intelligent or an evolutionary approach where ants find their food 

http://en.wikipedia.org/wiki/Probability
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using the shortest route by cooperation. ACO are just like other population-based 

metaheuristics that could be used to find approximate solutions to difficult optimization 

problems.  

Alaya et al (2007) apply ant colony optimization for multi-objective optimization 

problems. Chan and Kumar (2009) apply multi ant colony optimization approach for 

customer allocation. Silva et al. (2008) apply ant colonies for distributed optimization of 

a logistic system and its suppliers.  

 

4.4.1 Method description 

The various steps of ACO are described as follows: 

 

Initialization of ACO parameters and pheromone trails 

The first step involves setting the initial values of ACO parameters, such as α, β, q0, etc. 

where α and β are parameters used for controlling the relative weight of the pheromone 

trail and the heuristic value (Dorigo and Stutzle, 2004), ]1,0[0q  is a tunable parameter 

for determining the relative importance between exploitation and exploration.  We also 

compute the value of the initial pheromone trail τ0, and construct the tabu lists of all ants, 

which contain all the unvisited nodes for each ant and the list of optimum paths traversed 

by the ant colonies. The initial pheromone intensity τij or the path from nodes i to j is set 

equal to τ0, that is τij = τ0 and Δτij = 0.  
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Solution (Tour) construction 

In the second step, ant k currently at node i determines the node to visit next, node j, by 

applying the state transition rule 

,

maxarg
)(

J
j

iuiu
iSu k                              (4-1) 

where 
iu

is a heuristic value which equals to the inverse of the length 
iud  from node i to 

node u, iu is the amount of pheromone trail of the path from node i to node u,  and 

are two parameters used for controlling the relative weight of the pheromone trail and 

the heuristic value (Dorigo and Stutzle, 2004), Sk(i) is a tabu list containing those unvisited 

nodes for ant k currently at node i, q is a random number uniformly distributed in [0,1], 

q0 ∈ [0,1] is a tunable parameter for determining the relative importance between 

exploitation and exploration, and J is the node randomly chosen from the list Sk(i) 

according to the pseudo random proportional distribution rule 

,0

)(iSu

iuiu

iuiu

k

ij
k

p             (4-2) 

where 
k

ijp  is the probability that ant k chooses to move from node i to node j.  

Update of pheromone trails 

In this step, local and global update of pheromone trails is performed. The local update of 

the pheromone trail on each edge is performed by applying the rule  

0.).1( ijij          (4-3) 

where )1,0(  is the pheromone evaporating rate used in the local update and τ0 is the 

if q <= q0; 

if q >q0 

if j );(iSk   

if j );(iSk  
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initial value of the pheromone trail. In step 1 of the ACO algorithm, τ0 = 1/dtotal where 

dtotal is the distance between the customer and the logistics depot, which is derived from a 

randomly generated tour of an ant, using the least distance objective function, and subject 

to satisfaction of customer demand and capacity constraints of logistics depots. With this 

updating rule, the chance for ants to stick to a few previously visited paths can be 

reduced. 

After all ants have completed the tours, the global update of pheromone trails is performed. 

The purpose of the global update is to increase the pheromone trails of the paths on the tour 

with the best performance so far. The global update is performed by applying the rule  

bs

ijgijgij .).1(           (4-4) 

where ρg∈ (0,1) is the pheromone evaporating rate for global updating and 
bs

ij , the 

amount of pheromone for the best tour found so far, is given by the equation  

,0

,
1

bsbs

ij C                 (4-5) 

In the above equation, C
bs

 is the cost of T 
bs

, the best tour found so far. The cost of a tour is 

the travel distance between the allocated customers to the logistics depots, each of which is 

derived from a randomly generated tour of an ant, using the least distance objective 

function, and subject to satisfaction of demand and capacity constraints. The initial value 

if the path from nodes i to j belongs to T
bs

; 

otherwise 
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of bs

ij   is equal to 0 in step 1 of the ACO algorithm.  

 

 

4.4.2 High level pseudocode for ACO 

 

The high level pseudocode for the proposed ACO is presented as follows: 

1. Set iteration counter iter: = 0.  

2. Initialize values of ACO parameters, such as α, β, q0, etc. 

3. While (iter <= iter_max) or (improvement in objective function value <= 10
-5

)  

5.1 Set the value of the initial pheromone trail τ0, and initial pheromone intensity 

τij = τ0 for the path from nodes i to j and Δτij = 0 

5.2 Construct the tabu lists of all ants, which contain all the unvisited nodes for 

each ant and the tabu list for the best path found by the ant colonies. 

5.3 Randomly place the m ants on the n nodes. 

5.4 For k: = 1 to m do  

5.4.1 Generate a random number q. 

5.4.2 If q≤q0, choose the node j to move to according to the state transition 

rule defined by equation (4-1). 

5.4.3 If q > q0, choose the node j to move to with the highest probability 

k

ijp given by equation (4-2). 

5.4.4 Delete the chosen node j from the tabu list Sk of ant k. 

5.4.5 Continue moving until the ant k finishes the whole tour. 



 

46 
 

5.4.6 Update the pheromone trail locally with equation (4-3). 

5.5 Evaluate all the feasible tours constructed with respect to objective function 

value and satisfaction of demand and capacity constraints 

5.6 Select the tour with the minimum cost. 

5.7 Perform the global update for pheromone trails using equations (4-4) and (4-5). 

5.8 Re-construct all tabu lists. 

5.9 iter: = iter+ 1. 

6 Stop the ACO search process and output the best tour. 

4.4.3 Example 

Let us consider the case of 2 logistics depots and 6 customers. Set initialization 

parameters α=1.0, β=0.5,q=0.8. At the beginning, a random solution is generated, say, S0 

= {C1(D1),C2(D1),C3(D1),C4(D2),C5(D2),C6(D2)} whose objective function value is 

{35,34,39,25,28,22,40}. Now we set up six ants, one at each of the customer node. The 

new generated solution S1 for the six ants after the first move is given by S1 = 

{C1(D2),C2(D2),C3(D2),C4(D1),C5(D1),C6(D1)} with objective function value 

{31,35,34,22,28,25}. Since improvement in objective function value is observed for all 

ants but except ants on node C2 and C5. Therefore, local update of pheromones takes 

place on all arcs but except those linking C2(D2) and C5(D1) and list of unvisited nodes 

is updated in the tabu list 1. The solution tour now becomes S3 = 

{C1(D2),C2(D1),C3(D2),C4(D1),C5(D2),C6(D1)} with objective function values 
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{31,34,34,22,22,25} respectively. Since, each customer can be allocated to only one 

depot, and only two depots are available for the ants to visit, any further moves leads to 

violation of tabu list elements. We now move directly to the global update of pheromones 

and best path S3 in the tabu list 2. Since any more changes will lead to no improvement 

in objective function value, the algorithm is terminated and best solution S3 = 

{C1(D2),C2(D1),C3(D2),C4(D1),C5(D2),C6(D1)} is printed.  

 

4.4.4 Advantages of Ant Colony Optimization 

The ACO approach is applicable to a broad range of optimization problems and can be 

used in dynamic applications. Compared to GA, it retains memory of entire colony 

instead of previous generation only and is less affected by poor initial solutions.  

 

4.4.5 Limitations of Ant Colony Optimization 

Like most metaheuristics, sometimes it is difficult to estimate the theoretical speed of 

convergence. Because of probability rule, mistakes can be made by ant colony algorithms. 

Also, if the parameters are not correctly chosen, the approach may result in local 

optimum. 

 

 

 

 

http://en.wikipedia.org/wiki/Metaheuristic


 

48 
 

Chapter 5:  

 

Numerical Application 

 

In this section, we will present numerical examples for location & allocation problem 

under (a) single factor (objective function
n
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xdyc
111
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The normalization method used is aij = sij/ ∑(sij) where sij represents an element of matrix 

Sm x n where i=1,2,..,m and j=1,…,n, and the normalized values is given by aij . Four 

metaheuristics namely GA, SA, TS, and ACO are applied and tested for solving the 

location allocation problem. The results are verified and validated against existing models 

to ensure correctness and assess performance of the proposed approaches.    

 

5.1 Location & allocation using single factor 

5.1.1 Input Data 

Let us consider a logistics network comprising of 7 depots (D1, D2… D7) and 21 

customers (C1, C2 … C21). The demand, distance, and capacity data for location 

allocation problem using single factor “distance” in presented in Table 5.1. The distance 

matrix is presented at the center of the Table 5.1. The customer demands are presented in 

the last column and depot capacities are present in the last row of Table 5.1.  
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Table 5.1: Input distance, capacity and demand data for single factor location allocation problem                                

 

 Table 5.2 presents the opening costs for the logistics depots.             

 

 

                   Table 5.2 Opening costs for logistics depots 

The goal is to minimize the facility opening costs and the allocation costs for customers 

under the demand and capacity constraints of customers and the logistics depots. The 

Customers 

Depots Demand 

D1 D2 D3 D4 D5 D6 D7  

C1 3.4 3.74 4.2 3.2 3.3 4.8 2.1 120 

C2 3.10 3.28 3.3 2.7 4.0 3.1 5.8 200 

C3 3. 8 3. 4 3.2 2.9 3.0 2.4 4.8 80 

C4 3.5 3.6 3.5 4.9 3.6 2.5 4.9 110 

C5 3.7 3.0 3.2 4.6 2.0 3.2 4.6 130 

C6 3.6 3.7 3.6 4.7 3.7 3.8 4.7 90 

C7 2.88 2.97 7.3 3.31 3.5 3.6 4.5 140 

C8 2.5 2.9 3.0 2.83 2.7 3.0 3.2 170 

C9 2.6 2.7 4.82 3.2 3.6 3.7 10.8 90 

C10 5.8 2.8 3.2 5.3 4.74 4.2 6.1 115 

C11 3.1 2.9 6.7 3.0 3.28 3.3 4.4 100 

C12 2.4 2. 7 2.9 5.0 3.24 6.5 2.0 125 

C13 3.5 3.30 3.5 3.6 9.04 2.8 4.5 85 

C14 4.2 2.96 2.7 1.0 3.03 3.0 2.3 180 

C15 3.1 3.2 2.6 2.74 2.82 3.7 4.1 130 

C16 3.2 4.3 2.8 2.88 3.2 3.3 2.8 95 

C17 2.7 5.0 3.1 2.92 5.7 6.0 3.1 175 

C18 5.9 3.0 2.4 2.47 2.9 3.0 2.4 150 

C19 3.5 1.6 3.5 1.30 3.5 3.6 7.5 190 

C20 2.7 3.0 5.2 2.96 2.7 3.0 1.2 95 

C21 2.6 3.7 4.8 3.28 3.6 6.7 3.8 160 

Capacity 800 800 1100 1000 700 1100 900  

Depots D1 D2 D3 D4 D5 D6 D7 

Opening costs 14 21 17 15 25 13 22 



 

50 
 

objective function used is 
n

j

ijij

m

i

ii
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j

xdyc
111

. Since the cost and distance data are in 

different units, they will be normalized before application of metaheuristics GA, SA, TS, 

and ACO. The formula used for normalization is aij = sij/ Sij  where sij represents the 

original data value in matrixij and aij represents the normalized value. The normalized 

values for input distance and facility opening costs are presented in Table 5.3 and Table 

5.4 respectively.  

  

                  Table 5.3 Normalized distance values      

                                                                

          D1       D2       D3       D4       D5       D6       D7 

 C1    0.0064    0.0070    0.0079    0.0060    0.0062    0.0090    0.0039 

 C2    0.0058    0.0061    0.0062    0.0051    0.0075    0.0058    0.0109 

 C3    0.0071    0.0064    0.0060    0.0054    0.0056    0.0045    0.0090 

 C4    0.0066    0.0067    0.0066    0.0092    0.0067    0.0047    0.0092 

 C5    0.0069    0.0056    0.0060    0.0086    0.0037    0.0060    0.0086 

 C6    0.0067    0.0069    0.0067    0.0088    0.0069    0.0071    0.0088 

 C7    0.0054    0.0056    0.0137    0.0062    0.0066    0.0067    0.0084 

 C8    0.0047    0.0054    0.0056    0.0053    0.0051    0.0056    0.0060 

 C9    0.0049    0.0051    0.0090    0.0060    0.0067    0.0069    0.0202 

C10    0.0109    0.0052    0.0060    0.0099    0.0089    0.0079    0.0114 

C11    0.0058    0.0054    0.0126    0.0056    0.0061    0.0062    0.0082 

C12    0.0045    0.0051    0.0054    0.0094    0.0061    0.0122    0.0037 

C13    0.0066    0.0062    0.0066    0.0067    0.0169    0.0052    0.0084 

C14    0.0079    0.0055    0.0051    0.0019    0.0057    0.0056    0.0043 

C15    0.0058    0.0060    0.0049    0.0051    0.0053    0.0069    0.0077 

C16    0.0060    0.0081    0.0052    0.0054    0.0060    0.0062    0.0052 

C17    0.0051    0.0094    0.0058    0.0055    0.0107    0.0112    0.0058 

C18    0.0111    0.0056    0.0045    0.0046    0.0054    0.0056    0.0045 

C19    0.0066    0.0030    0.0066    0.0024    0.0066    0.0067    0.0141 

C20    0.0051    0.0056    0.0097    0.0055    0.0051    0.0056    0.0022 

C21    0.0049    0.0069    0.0090    0.0061    0.0067    0.0126    0.0071 
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Table 5.4 Normalized opening cost values for logistics depots 

 

5.1.2 Application of proposed metaheuristics 

5.1.2.1 Genetic Algorithm (GA): 

Figure 5.1 presents the results obtained from GA for the numerical example on location 

allocation problem under distance constraints. The blue color dots (middle curve) shows 

the normalized facility opening cost values and the green colored dots (lower curve) 

show the normalized distance for customer allocation over time. The red colored dots 

(upper curve) represent the total value of the objective function. It can be seen that the 

results for costs and distance stabilize over time (9287920 iterations) after which the best 

objective function values (1.1118) for opening logistics depots and customer allocations 

are said to have been obtained.  

 

Figure 5.1: Convergence of GA results for single factor location- allocation problem 

      

Depots D1      D2     D3      D4     D5     D6     D7 

Normalized Costs  0.1102  0.1654  0.1339  0.1181  0.1969  0.1024  0.1732   
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Table 5.5 depicts the computation results of GA over number of iterations.  

   

Iteration 

Number  

29 254  255 1460753  460754 7894324 9287920 

Normalized 

distance value 
0.1441     0.1374     0.1346     0.1137     0.1137      0.1132     0.1118     

Normalized 

cost value 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Normalized 

distance plus 

cost distance 

1.1441     1.1374     1.1346     1.1137     1.1137      1.1132     1.1118     

 

Table 5.5 Objective function results for single factor location allocation problem using GA    

 

Table 5.6 shows the difference between the initial and final solutions obtained from GA. 

It can be seen that all logistics are opened and have customer allocations in the final 

results. 

Customers                   1   2    3    4    5    6    7    8    9   10   11   12   13   14   15   16   17   18   19   20   21  

Logistics depots  (Initial Solution)    1   1    1    2    2    2    3    3    3    4    4    4    5    5    5    6    6    6    7    7    7       

Logistics depots  (Final Solution)  7   3    6    6    7   7     2    1    5    6    5    7    7    4    4    7    1    7    2   7    1 

Table5.6 Initial and Final Solution for single factor location allocation problem using GA 

 

5.1.2.2 Simulated Annealing (SA) 

Figure 5.2 presents the results obtained from SA for the numerical example on location 

allocation problem under distance constraints. The blue color dots (middle curve) shows 

the normalized facility opening cost values and the green colored dots (lower curve) 

show the normalized distance for customer allocation over time. The red colored dots 

(upper) represent the total value of the objective function. It can be seen that the results 
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for costs and distance stabilize over time (819721 iterations) after which the best 

objective function values (1.1048) for opening logistics depots and customer allocations 

is said to have been obtained.  

 

 

   

 Figure5.2 Convergence of SA results for single factor location- allocation problem    

 

Table 5.7 provides the numerical values for the objective function results for single factor 

location allocation problem using SA.            

  

Iteration 

Number  

25 27 466 1866 63590 63591 819721 

Normalized 

distance value 

0.1320     0.1237     0.1202      0.1123     0.1091     0.1072     0.1048     

Normalized 

cost value 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Normalized 

distance plus 

cost distance 

1.1320     1.1237     1.1202      1.1123     1.1091     1.1072     1.1048     

  

Table 5.7 Objective function results for single factor location allocation problem using SA 

           

Table 5.8 provides the difference between the initial and final solution obtained using SA. 
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It can be seen that all logistics depots are opened and allocated to customers.  

 

Customers                 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19   20   21     

Logistics depots  (Initial Solution )   1  1  1  2  2   2  3  3  3   4   4   4   5   5   5   6   6   6  7    7    7       

Logistics depots  (Final Solution)    1  4  5  6  5   1   4  5  2  2   5   5   6   4    1   1   3   3  4   7    1 

               

 Table 5.8 Initial and Final Solution for single factor location allocation problem using SA        

 

 

5.1.2.3 Tabu Search (TS) 

Figure 5.3 presents the results obtained from Tabu Search (TS) for the numerical example 

on location allocation problem under distance constraints. The blue color dots (middle 

curve) shows the normalized facility opening cost values and the green colored dots 

(lower curve) show the normalized distance for customer allocation over time. The red 

colored dots (upper curve) represent the total value of the objective function. It can be 

seen that the results for costs and distance stabilize over time (1247890 iterations) after 

which the best values of objective function (1.1114) for opening logistics depots and 

customer allocations are said to have been obtained. Table 5.9 provides the objective 

function results for single factor location allocation problem using TS.  
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   Figure 5.3 Convergence of TS results for single factor location- allocation problem                    

 

 

Iteration 

Number  

1117 2088 2089 1247887 1247888 1247889 1247890 

Normalized 

distance 

value 

0.1433 0.1326 0.1326 0.1114 0.1114 0.1114 0.1114 

Normalized 

cost value 

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Normalized 

distance plus 

cost distance 

1.1433 1.1326 1.1326 1.1114 1.1114 1.1114 1.1114 

    Table 5.9 Objective function results for single factor location allocation problem using TS               

 

Table 5.10 provides the difference between the initial and final solution for single factor 

location allocation problem obtained using TS. It can be seen that all the logistics depots 

are opened and allocated to customers. 

Customers                       1  2  3  4  5  6  7   8   9  10  11  12  13  14  15  16  17  18  19   20  21 

Logistics depots (Initial Solution)    1   1  1  2  2  2  3   3  3   4   4   4   5   5   5   6   6   6   7   7   7      

Logistics depots   (Final Solution)  7   6  6  6  3  7  2   5  1   2   7   7   7   7   1   7   1   4   4   7   5 

             

Table 5.10 Initial and Final Solution for single factor location allocation problem using TS                     
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5.1.2.4 Ant Colony Optimization (ACO) 

Figure 5.4 presents the results obtained from ACO for the numerical example on location 

allocation problem under distance constraints. The blue color dots (middle curve) shows 

the normalized facility opening cost values and the green colored dots (lower curve) 

show the normalized distance for customer allocation over time. The red colored dots 

(upper curve) represent the toal value of the objective function. It can be seen that the 

results for costs and distance stabilize over time (4110026 iterations) after which the best 

values of objective function (0.7704) for opening logistics depots and customer 

allocations are said to have been obtained.  

 

 
                          

  Figure 5.4 Convergence of ACO results for single factor location- allocation problem             

 

 

Table 5.11 provides the numerical values of the objective function for single factor 

location allocation problem using ACO. 
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Iteration 

Number  

2 10 17 3195 59308 598023 4110026 

Normalized 

distance 

value 

0.1244 0.1191 0.1072 0.1047 0.1039 0.1018 0.1011 

Normalized 

cost value 

1.0000 1.0000 1.0000 0.8031 0.8031 0.6693 0.6693 

Normalized 

distance plus 

cost distance 

1.1244 1.1191 1.1072 0.9079 0.9070 0.7711 0.7704 

    

 Table 5.11 Objective function results for single factor location allocation problem using ACO          

 

Table 5.12 provides the difference between the initial and final solution obtained 

using ACO. It can be seen that some logistics depots (for example, depot 3 and depot 5) 

do not get any customer allocations and therefore considered as closed.   

 

Customers                      1  2  3  4  5  6  7   8   9  10  11  12  13  14  15  16  17  18  19   20  21 

Logistics depots (Initial Solution)   1  1  1   2  2  2  3   3   3   4  4   4   5   5    5   6   6   6   7   7    7    

Logistics depots                 7  4  6   6  2  1  4   7   1   2  2   7   6   4    2   4   7   4   2   7   1 

 

 Table 5.12 Initial and Final Solution for single factor location allocation problem using ACO     

 

 

5.1.2.5 Comparison of GA, SA, TS, and ACO for single factor location allocation 

                

Table 5.13 presents a relative comparison of the final results obtained from the four 

metaheuristics for the single factor location allocation problem under distance constraints. 

It can be seen that ACO results propose opening of only 5 logistics depots followed by 

GA (6 depots), whereas all the depots are open in SA and TS which also justifies their 
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least total objective function value shown in Table 5.14. . 

 

 

 

   Table 5.13 Comparison of Location allocation results for single factor problem 

 

Table 5.14 presents a relative comparison of the computation time and objective function 

values for the final results obtained from the four metaheuristics for the single factor 

location allocation problem under distance constraints. It can be seen that ACO performs 

the fastest in terms of computation time used for generating the results and gives least 

value for the total objective function equal to 0.7704 when compared to other three 

metaheuristics. 

 

 

 

 Initial 

Solution 

GA    SA TS ACO 

D1 C1, C2, C3 C8, C17, C21 C21 C9, C15, C17   C6, C9, C21 

D2 C4, C5, C6 C7, C19 C10, C19 C7, C10   C5,C10,C11

,C15, C19 

D3 C7, C8, C9 C2 C4   C5   - 

D4 C10,C11,C12 C14,C15 C9, C14, C17 C18, C19 C2,C7,C14, 

C16, C18 

D5 C13,C14, 

C15 

C9,C11 C5,C15   C8,C21 - 

D6 C16,C17, 

C18 

C3,C4,C10 C2,C3,C6,C7, 

C8, C13 

C2,C3,C4   C3,C4,C13   

D7 C19,C20, 

C21 

C1,C5,C6,C12, 

C13,C16,C18,C20 

C1,C11,C12, 

C16, C18, C 20 

C1,C6,C11,C12, 

C13,C14,C16,C20 

C1,C8,C12,

C17,C20 
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Table 5.14 Comparison of performance results for single factor location allocation problem 

 

5.2 Location and allocation using multifactors 

5.2.1 Input Data 

Let us consider the input data for location allocation problem using multiple factors 

“distance”, “time” and “cost” for a logistics network comprising of 7 logistics depots (D1, 

D2… D7) and 21 customers (C1, C2 … ,C21). The distance matrix, customer demands, 

and depot capacities are same as presented in Table 5.1. The time matrix is presented in 

Table 5.15 and the cost matrix in Table 5.16. The depot opening costs are same as in 

Table 5.2. 

 

 

 GA SA TS ACO 

Number of Iterations 10000000 10000000 10000000 10000000 

Objective function 

 value distance by 

normalized 

0.1079 0.1050 0.1550 0.1011 

Objective function 

 value cost by normalized 

0.8898 1.0000 1.0000 0.6693 

Objective function value 

cost plus distance by 

normalized 

0.9977 1.1050 1.1550 0.7704 

Computation time 4696.801189 

seconds 

4965.391465 

seconds 

5093.268974 

Seconds 

4296.178412  

seconds 
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                      Table 5.15 Time Matrix 

 

 

 

 

 

 

 

Customers  

  

 Depots 

D1 D2 D3 D4 D5 D6 D7 

C1 1.0 4.83 3.00 2.7 5.0 3.0 2.1 

C2 3.0 2.88 2.86 3.3 4.9 4.1 5.8 

C3 4.6 3.76 3.74 4.2 6.1 3.6 4.8 

C4 3.4 3.10 3.28 3.3 4.4 2.6 4.9 

C5 4.0 3.38 3.24 4.2 6.0 3.4 4.6 

C6 13.3 3.4 3.1 3.04 3.63 8.5 4.0 

C7 3.1 3.3 3.8 3.31 3.28 3.9 1.8 

C8 7.2 3.3 2.8 2.88 2.97 3.3 9.4 

C9 2.7 3.0 7.1 2.92 3.0 2.8 2.7 

C10 2.9 4.0 8.4 2.47 2.65 2.9 3.5 

C11 1.5 2.6 3.5 6.30 3.38 3.7 5.2 

C12 2.7 3.0 3.0 2.6 3.1 3.2 2.6 

C13 3.6 9.7 5.8 3.28 3.2 4.3 6.8 

C14 3.0 3.2 8.6 3.18 2.7 3.0 8.1 

C15 3.1 3.2 3.4 3.1 3.04 3.13 3.5 

C16 3.2 13.3 1.3 13.8 13.31 3.28 3.2 

C17 6.7 13.0 0.3 6.8 2.88 2.97 7.3 

C18 2.92 3.05 23.0 3.1 2.92 3.05 2.8 

C19 8.47 2.65 3.0 12.4 12.47 2.65 2.9 

C20 3.30 3.38 3.6 3.5 3.30 3.38 3.7 

C21 9.96 8.14 3.0 3.2 2.96 23.1 3.2 
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         Table 5.16 Cost matrix                                                           

The goal is to minimize the facility opening costs and the allocation costs for customers 

under multifactors and the demand and capacity constraints of customers and the logistics 

depots. The objective function used for the multifactor location allocation problem is 

given by
n

j

ijijijijijijij

m

i

ii

n

j

xccwwttwddwyc
1

2121

11

)/*)1(/*/*( . 

Since the cost, travel time and distance data are in different units, they will be normalized 

before application of metaheuristics GA, SA, TS, and ACO. The formula used for 

 Customers 

  

Depots 

D1 D2 D3 D4 D5 D6 D7 

C1 2.9 3.2 3.5 3.14 3.15 3.0 2.1 

C2 3.9 4.0 4.3 3.62 3.60 4.1 5.8 

C3 3.5 3.6 3.5 3.14 3.12 3.6 4.8 

C4 3.5 3.6 3.6 3.19 3.17 3.6 4.9 

C5 3.3 3.4 3.0 2.99 3.07 3.4 4.6 

C6 3.3 3.4 3.1 3.04 3.13 3.5 4.7 

C7 3.1 3.3 3.8 3.31 3.28 3.2 1.8 

C8 2.5 2.9 3.0 2.83 3.00 2.7 3.0 

C9 3.2 3.3 3.0 2.88 2.86 3.3 4.1 

C10 4.0 4.1 4.6 3.76 3.74 4.2 6.1 

C11 3.1 3.3 3.4 3.10 3.28 3.3 4.4 

C12 3.1 3.4 4.0 3.38 3.24 3.2 2.0 

C13 2.8 3.0 3.2 2.95 3.04 2.8 2.5 

C14 3.0 3.2 3.6 3.18 3.03 3.0 2.3 

C15 3.1 3.2 2.6 2.74 2.82 3.2 4.1 

C16 3.2 3.3 2.8 2.88 2.97 3.3 4.4 

C17 2.7 3.0 3.1 2.92 3.05 2.8 2.7 

C18 2.9 3.0 2.4 2.47 2.65 2.9 3.5 

C19 3.5 3.6 3.5 3.30 3.38 3.7 5.2 

C20 2.7 3.0 3.2 2.96 3.14 3.0 3.5 

C21 3.6 3.7 3.8 3.28 3.27 3.7 5.1 
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normalization is aij = sij/ 
ijs  where sij represents the original data value in matrixij and 

aij represents the normalized value. Using w1=0.2, w2=0.3, and w3=1-w1-w2, the total 

objective function values obtained are presented in Table 5.17.   

 

 

Table 5.17 Normalized data for multifactor cost, time and distance 

 

5.2.2 Application of metaheuristics 

5.2.2.1 Genetic Algorithm (GA) 

Figure 5.5 presents the results obtained from Genetic algorithm for the multifactor 

location allocation problem where multifactors considered are cost, time and distance. 

         D1      D2      D3     D4      D5     D6       D7    

  C1     0.0052    0.0068    0.0068    0.0058    0.0066    0.0067    0.0039 

  C2     0.0066    0.0068    0.0071    0.0062    0.0074    0.0071    0.0109 

  C3     0.0071    0.0067    0.0065    0.0061    0.0067    0.0061    0.0090 

  C4     0.0066    0.0066    0.0066    0.0070    0.0066    0.0059    0.0092 

  C5     0.0066    0.0062    0.0058    0.0069    0.0060    0.0063    0.0086 

  C6     0.0094    0.0066    0.0061    0.0066    0.0064    0.0082    0.0086 

  C7     0.0057    0.0060    0.0091    0.0062    0.0063    0.0065    0.0049 

  C8     0.0061    0.0056    0.0056    0.0053    0.0055    0.0054    0.0077 

  C9     0.0055    0.0058    0.0079    0.0056    0.0058    0.0063    0.0111 

  C10    0.0082    0.0069    0.0090    0.0075    0.0073    0.0075    0.0107 

  C11    0.0054    0.0058    0.0083    0.0067    0.0062    0.0063    0.0085 

  C12    0.0053    0.0059    0.0066    0.0070    0.0060    0.0079    0.0039 

  C13    0.0059    0.0078    0.0070    0.0060    0.0091    0.0057    0.0071 

  C14    0.0063    0.0059    0.0078    0.0048    0.0056    0.0056    0.0061 

  C15    0.0058    0.0060    0.0051    0.0053    0.0054    0.0063    0.0075 

  C16    0.0060    0.0098    0.0048    0.0087    0.0088    0.0062    0.0070 

  C17    0.0063    0.0098    0.0050    0.0066    0.0072    0.0071    0.0067 

  C18    0.0071    0.0057    0.0107    0.0048    0.0052    0.0056    0.0058 

  C19    0.0081    0.0054    0.0064    0.0078    0.0091    0.0066    0.0104 

  C20    0.0053    0.0058    0.0073    0.0057    0.0057    0.0058    0.0053 

  C21    0.0081    0.0083    0.0075    0.0061    0.0062    0.0144    0.0083 
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The blue color dots (middle curve) shows the normalized facility opening cost values and 

the green colored dots (lower curve) show the normalized multifactors used for customer 

allocation to logistics facilities. The red colored dots (upper curve) represent the total 

value of the objective function. It can be seen that the results for costs and distance 

stabilize over time (4854673 iterations) after which the best values of objective function 

(1.1182) for opening logistics depots and customer allocations are said to have been 

obtained. Table 5.18 provides the numerical values for the costs and distances over time.  

 

       Figure 5.5 Convergence of GA results for multifactor location- allocation problem  

 

Iteration Number   6               8   9 1243586 3685608 4854673 

Normalized multifactor 

value 

0.1453     0.1426     0.1399     0.1197     0.1184       0.1182     

Normalized cost value 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Normalized cost plus 

multifactor value 

1.1453     1.1426     1.1399     1.1197     1.1184       1.1182     

 

Table 5.18 Objective function results for multifactor location allocation problem using GA  

 



 

64 
 

Table 5.19 provides the difference between the initial and final solution obtained using 

GA for the multifactor case. It can be seen that all logistics depots are opened and 

allocated to customers using the proposed GA. 

 

Customers                    1   2   3   4   5   6  7   8  9  10  11  12  13  14  15  16  17  18  19  20  21 

Logistics depots (Initial solution)  1   1   1   2   2   2  3   3  3   4   4   4   5   5   5   6   6    6  7   7   7       

Logistics depots (final result)    7  4   4   6   2   3   7   5   5  6   5   7   1   2    5   3   1   4   2   7   5 

 

 Table 5.19 Initial and Final Solution for multifactor location allocation problem using GA  

 

5.2.2.2 Simulated Annealing (SA) 

Figure 5.6 presents the results obtained from Simulated Annealing algorithm for the 

multifactor location allocation problem where multifactors considered are cost, time and 

distance. The blue color dots (middle curve) shows the normalized facility opening cost 

values and the green colored dots (lower curve) show the normalized multifactors used 

for customer allocation to logistics facilities. The red colored dots (upper curve) represent 

the total value of the objective function. It can be seen that the results for costs and 

distance stabilize over time after (4194943 iterations) after which the best objective 

function values (1.1259) for opening logistics depots and customer allocations are said to 

have been obtained.  
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        Figure 5.6 Convergence of SA results for multifactor location- allocation problem            

 

Table 5.20 provides the objective function values for multifactor location allocation 

problem over time.  

 

Iteration Number  29 112 89070 466276 4194943 

Normalized 

multifactor value 

0.1432     0.1353     0.1290     0.1280     0.1259     

Normalized cost 

value 

1.0000 1.0000 1.0000 1.0000 1.0000 

Normalized cost 

plus multifactor 

value 

1.1432     1.1353     1.1290     1.1280     1.1259     

                         

  Table 5.20 Objective function results for multifactor location allocation problem using SA 

 

Table 5.21 provides final solution obtained using SA for the multifactor case. It can be 

seen that all logistics depots are opened and allocated to customers. 
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Customers                      1  2  3   4   5  6  7   8  9  10  11  12  13   14  15  16  17  18  19  20  21     

Logistics depots  (Initial solution)  1  1  1   2   2  2  3   3  3   4   4   4    5   5   5    6   6   6  7   7  7      

Logistics depots (final solution)     7  3  6  1   6  7  7   5   1   6   5   7    7   4   2   7   1   7   2   7   4 

                

  Table 5.21 Initial and Final Solution for multifactor location allocation problem using SA  

 

5.2.2.3 Tabu Search  

Figure 5.7 presents the results obtained from Tabu Search algorithm for the multifactor 

location allocation problem where the multifactors are cost, time and distance. The blue 

color dots (middle curve) shows the normalized facility opening cost values and the green 

colored dots (lower curve) show the normalized multifactors used for customer allocation 

to logistics depots. The red colored dots (upper curve) represent the total value of the 

objective function. It can be seen that the results for costs and distance stabilize over time 

(6003819 iterations) after which the best values of objective function (0.9483) for 

opening logistics depots and customer allocations are said to have been obtained.  

 

 

        Figure 5.7 Convergence of TS results for multifactor location- allocation problem     
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Table 5.22 provides the numerical values for the total costs over time.        

 

Iteration 

Number  

1 10 935084 935085 2349407 6003819 

Normalized 

multifactor 

value 

0.1388 0.1388 0.1229 0.1229   0.1227   0.1215 

Normalized 

cost value 

0.8268 0.8268 0.8268 0.8268 0.8268 0.8268 

Normalized 

cost plus 

multifactor 

value 

0.9656 0.9656 0.9497 0.9497 0.9494 0.9483 

 

   Table 5.22 Objective function results for multifactor location allocation problem using TS 

 

Table 5.23 provides the difference between the initial and final solution obtained using 

TS for the multifactor case. It can be seen that some logistics depots (example, depot 7) 

are closed since they do not get any customer allocations. 

 

Customers                       1  2  3  4  5  6  7  8   9  10  11  12  13  14   15  16  17  18  19  20  21 

Logistics depots  (Initial solution)   1  1  1  2  2   2  3  3   3  4   4   4   5   5    5   6   6   6   7   7   7     

Logistics depots (final solution)      1  6  2  3  5   3  1  4  2   2   2   2   6   4  3   3   3   4    2    1   3 

               

    Table 5.23 Initial and Final Solution for multifactor location allocation problem using TS  

 

5.2.2.4 Ant Colony Optimization (ACO) 

Figure 5.8 presents the results obtained from ACO algorithm for the multifactor location 

allocation problem where multifactors considered are cost, time and distance. The  blue 

color dots (middle curve) shows the normalized facility opening cost values and the green 

colored dots (lower curve) show the normalized multifactors used for customer allocation 
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to logistics depots. The red colored dots (upper curve) represent the total value of the 

objective function. It can be seen that the results for costs and distance stabilize over time 

(6959966 iterations) after which the best objective function values (1.000) for opening 

logistics depots and customer allocations are said to have been obtained.  

        

        Figure 5.8 Convergence of ACO results for multifactor location- allocation problem     

Table 5.24 provides the numerical values for the total objective function cost values over 

time.  

Iteration Number  1 2 1044459 2441079 4580238 6959966 

Normalized multifactor 

value 

0.1386      .1307     0.1197     0.1188     0.1182     0.1181     

Normalized cost value 1.0000     1.0000     1.0000     1.0000     1.0000     0.8819     

Normalized cost plus 

multifactor value 

1.1386      .1307     1.1197     1.1188     1.1182     1.0000 

 

Table 5.24 Objective function results for multifactor location allocation problem using ACO 

 

Table 5.25 provides the difference between the initial and final solution obtained using 
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ACO for the multifactor case. It can be seen that some logistics depots (example, depot 4) 

do not get any customer allocations and are therefore closed. 

 

Customers                    1  2  3  4  5  6  7  8  9  10 11 12  13 14 15  16 17 18  19 20  21 

Logistics depots  (Initial solution) 1  1  1  2  2  2  3  3  3  4  4  4  5  5  5  6  6  6  7  7  7                            

Logistics depots (Final solution)   7  2  6  6  3  3  7  2  5  5  1  7  3  6  5  3  3  6  2  5  5                   

           

  Table 5.25 Initial and Final Solution for multifactor location allocation problem using ACO  

 

 

5.2.2.5: Comparison of GA, SA, TS, and ACO for multifactor location allocation 

 

Table 5.26 presents a relative comparison of the final results obtained from the four 

metaheuristics for the multifactor location allocation problem. It can be seen that only 6 

depots are opened in ACO and TS making them least costly solutions (Table 5.27) for 

location allocation as compared to GA and SA. 

 

 Table 5.26 Comparison of model results for multifactor location allocation problem  

Depots Initial 

Solution 

GA SA TS ACO 

D1 C1,C2,C3 C2,C8,C11 C4,C9,C17 C1,C7 ,C20 C11   

D2 C4,C5,C6 C10,C15 C15,C19 C3,C9,C10, 

C11,C12, C19 

C2,C8,C19 

D3 C7,C8,C9 C5  C2 C4,C6,C15, 

C16,C17, C21 

C5,C6,C13,  

C16,C17 

D4 C10,C11,C12 C3,C14 C14,C21 C8,C14,C18 - 

D5 C13,C14,C15 C4,C21 C8,C11 C5   C9,C10,C15,  

C20,C21 

D6 C16,C17,C18 C9,C17,C19 C3,C5,C10 C2,C13   C3,C4,C14, 

C18 

D7 C19,C20,C21 C1,C6,C7C2, 

C13,C16,C18  

C20 

C1,C6,C7,C12

,C13,C16,C1,

C20 

- C1,C7,C12 
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Table 5.27 presents a relative comparison of the computation time and objective function 

values for multifactor location allocation problem. It can be seen that TS performs the 

best followed by ACO in terms of objective function value. The metaheuristic SA is the 

fastest in terms of computation time followed by GA. 

 

 

 

 

 

 

Table 5.27 Comparison of model performance for multifactor location allocation problem 

 

5.3 Model Verification 

To verify the model results, we tested our model under three difference scenarios for the 

same numerical example presented in section 5.1 (multifactor case).  

 Scenario 1: In the scenario 1, the opening cost is same for all the 7 logistics 

facilities and is equal to $100,000. Demand and capacity constraints are not 

considered. 

 Scenario 2: In the scenario 2, we ignore the facility opening costs by setting them 

equal to 0, in other words all facilities are considered open and customers are 

allocated to them using different metaheuristic approaches. Demand and capacity 

 GA SA TS ACO 

Iteration times 10000000 10000000 10000000 10500000 

Objective multifactor value  0.1271  0.1259     0.1215 0.1181     

Objective normalized cost  1.0000 1.0000 0.8268 0.8819     

Objective normalized cost 

plus multifactor value 

1.1271 1.1259 0.9483 1.0000 

Computation time 4844.64 

seconds 

3142.55 

seconds 

6702.69 

seconds 

10867.25 

Seconds 
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constraints are not considered. 

 Scenario 3: In the scenario 3, the opening costs for facilities are different. 

Demand and capacity constraints are considered. 

 

The demand data for customers, opening costs of logistics facilities and their capacities 

and average transit time between the logistics facilities and the customers is presented in 

Table 5.28-5.30. 

 

 Customers 

  

Depots 

  D1 D2 D3 D4 D5 D6 D7 

Wallingford (C1) 104795 102450 93708 95787 95414 106554 113644 

Ankeny (C2) 33370 35380 39670 39887 40267 113644 253360 

Posen (C3) 101682 106509 115836 117401 118249 104356 82507 

W.Chicago (C4) 99334 104161 113488 114988 115901 102008 80159 

Indianapolis (C5) 94008 98196 110421 107535 104309 96611 75274 

Louisville (C6) 147009 153570 170860 165540 160131 149225 116064 

Boston (C7) 134765 1311487 119613 122454 124202 137169 329263 

Baltimore (C8) 396064 382395 345242 176126 165874 190847 162106 

Westland (C9) 175591 183075 197843 199866 201282 179738 151417 

Blaine (C10) 55259 58877 65821 66995 67631 57264 40833 

Charlotte (C11) 126005 128567 126005 126213 117697 123028 97758 

Auburn (C12) 52472 51189 46318 47543 50589 53435 63643 

Kenvil (C13) 376864 374128 344212 351326 340564 388174 367397 

Menands (C14) 25422 249092 229615 234783 248297 261547 276387 

Columbus (C15) 103026 107812 119972 116538 113610 106235 85180 

W.Chester (C16) 98128 102294 114455 111077 107812 100774 79662 

Philadelphia (C17) 136459 132669 121044 246385 234508 271781 122560 

Pittsburgh (C18) 126983 131658 138986 285553 269759 259651 106198 

Nashville (C19) 77868 80993 88301 852203 82203 76961 57305 

Richmond (C20) 148193 146717 131820 134912 126340 142361 119524 

Milwaukee (C21) 75505 78587 85880 87319 87832 76892 60096 

 Total 2918303 2939805 2919111 3033453 2972370 3019095 2612318 

 

Table 5.28: Customer Demand data 
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S.No. Depots Opening Costs Capacity 

1 D1 (Baltimore ) 3215569 2000000 

2 D2 (Williamsport ) 3327844 2000000 

3 D3 (Wheeling) 3000000 2000000 

4 D4 (Pittsburgh ) 3197605 2000000 

5 D5 (Erie ) 3094311 2000000 

6 D6 (Harrisburg ) 3251497 2000000 

7 D7 (Boston ) 1500000 2000000 

 

Table 5.29: Opening costs of facilities 

 

 

  D1 D2 D3 D4 D5 D6 D7 

       

Wallingford (C1) 269 323 474 440 485 251 127 

Ankeny (C2) 955 885 734 733 722 916 1154 

Posen (C3) 652 582 440 429 419 613 927 

W.Chicago (C4) 699 629 487 476 466 660 974 

Indianapolis (C5) 548 478 291 344 395 515 877 

Louisville (C6) 565 495 318 371 427 541 904 

Boston (C7) 389 444 595 560 524 372 0 

Baltimore (C8) 0 76 263 232 347 78 386 

Westland (C9) 495 425 284 273 262 456 770 

Blaine (C10) 1050 980 839 827 817 1011 1121 

Charlotte (C11) 426 376 419 428 554 451 808 

Auburn (C12) 434 489 640 606 561 417 81 

Kenvil (C13) 188 215 367 332 368 144 247 

Menands (C14) 322 356 507 462 358 285 172 

Columbus (C15) 384 314 127 180 227 350 713 

W.Chester (C16) 194 248 399 365 415 177 195 

Philadelphia (C17) 100 174 324 290 392 104 298 

Pittsburgh (C18) 230 160 61 0 127 191 554 

Nashville (C19) 658 597 475 528 584 671 1034 

Richmond (C20) 149 169 347 325 440 227 531 

Milwaukee (C21) 749 679 537 529 516 710 1024 

 

 Table 5.30: Average transit time (in minutes) between the depot i and customer j 
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The unit shipping cost between the logistics facilities/depots and customers is shown in 

Table 5.31. 

 

  D1 D2 D3 D4 D5 D6 D7 

Wallingford (C1) 2.9 3.2 3.5 3.14 3.15 3 2.1 

Ankeny (C2) 3.9 4 4.3 3.62 3.6 4.1 5.8 

Posen (C3) 3.5 3.6 3.5 3.14 3.12 3.6 4.8 

W.Chicago (C4) 3.5 3.6 3.6 3.19 3.17 3.6 4.9 

Indianapolis (C5) 3.3 3.4 3 2.99 3.07 3.4 4.6 

Louisville (C6) 3.3 3.4 3.1 3.04 3.13 3.5 4.7 

Boston (C7) 3.1 3.3 3.8 3.31 3.28 3.2 1.8 

Baltimore (C8) 2.5 2.9 3 2.83 3 2.7 3 

Westland (C9) 3.2 3.3 3 2.88 2.86 3.3 4.1 

Blaine (C10) 4 4.1 4.6 3.76 3.74 4.2 6.1 

Charlotte (C11) 3.1 3.3 3.4 3.1 3.28 3.3 4.4 

Auburn (C12) 3.1 3.4 4 3.38 3.24 3.2 2 

Kenvil (C13) 2.8 3 3.2 2.95 3.04 2.8 2.5 

Menands (C14) 3 3.2 3.6 3.18 3.03 3 2.3 

Columbus (C15) 3.1 3.2 2.6 2.74 2.82 3.2 4.1 

W.Chester (C16) 3.2 3.3 2.8 2.88 2.97 3.3 4.4 

Philadelphia (C17) 2.7 3 3.1 2.92 3.05 2.8 2.7 

Pittsburgh (C18) 2.9 3 2.4 2.47 2.65 2.9 3.5 

Nashville (C19) 3.5 3.6 3.5 3.3 3.38 3.7 5.2 

Richmond (C20) 2.7 3 3.2 2.96 3.14 3 3.5 

Milwaukee (C21) 3.6 3.7 3.8 3.28 3.27 3.7 5.1 

Table 5.31: Unit shipping cost (in dollars) and demand (in units of products) 

 

The data used for the three scenarios are shown in Table 5.32.  

 

 D1 D2 D3 D4 D5 D6 D7 

Scenario 1 100,000 100,000 100,000 100,000 100,000 100,000 100,000 

Scenario 2 0 0 0 0 0 0 0 

Scenario 3 100,000 70,000 20,000 40,000 80,000 120,000 60,000 

 

Table 5.32: Scenarios for verification 
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The scenarios were run for 100,000 iterations. The results for the three scenarios are 

presented in Table 5.33-5.35 respectively. It can be seen from the results of Table 5.33 

that Ant Colony provides the least cost objective function value for the three scenarios. 

Besides, the results of the four meta-heuristics for scenario 1 and 2 follow identical 

pattern since they consider equal facility opening costs or zero costs and therefore do not 

contribute towards the total objective function value. This verifies the correctness of our 

model results with respect to the objective function. 

 

Scenario Initial 

Solution 

GA SA TS ACO 

1 1.1541 1.105 1.1084 0.96 0.9454 

2 0.1631 0.0999 0.1025 0.1073 0.0879 

3 1.1542 1.1135 1.1141 0.9602 0.9264 

 

Table 5.33: Objective function value 

 

 

Table 5.34 presents the computation time for the four metaheuristics. It can be seen that 

SA takes the least computation time in first two scenarios. Besides, the results of the four 

meta-heuristics for scenario 1 and 2 follow identical pattern in terms of computation 

times since they consider equal facility opening costs or zero costs and therefore do not 

contribute towards the total objective function value. The GA algorithm performs fastest 

in scenario 3. This verifies the correctness of our model results with respect to the 

computation time. 
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Scenario GA SA TS ACO 

1 378.22 203.37 1779.21 528.91 

2 351.49 208.57 1431.79 1083.93 

3 492.528 505.389 1251.28 1145.89 

 

Table 5.34 Computation Time (in seconds) 

 

The location-allocation results for scenario 1, 2 and 3 can be seen in Table 5.35-5.37 

respectively. It can be seen in Table 5.35 that only 6 logistics facilities(depots) are open 

when applying Tabu Search and Ant Colony Optimization which also confirms their least 

cost objective function values (Row 1, Table 5.33) 

 

 

Depots Initial 

Solution 

Final Solution 

GA  SA TS  ACO  

D1 C3,C17 C13, C16 C1,C2,C8, 

C17 

C20 C8,C11, 

C16,C20 

D2 C4,C8 C5,C8 C3,C4,C5,C6, 

C11,C14 

 - - 

D3 C5,C10 C11,C19 C15,C18,C19 C5,C17 C5,C6,C9, 

C15,C19 

D4 C2,C7 C18,C21 C9 C9 C2,C21, 

C18 

D5 C1,C6,C9, 

C11,C13, 

C15 

C2,C3,C4,C6, 

C9,C10 

C10 C2,C3,C4,C6, 

C10,C15,C19 

,C21 

C3,C4,C10 

D6 C12,C14 C1,C12,C14 

C15,C17,C20 

C13,C16,C20,

C21 

C11,C13,C18 C13,C14, 

C17 

D7 C16,C18, 

C19,C20, 

C21 

C7 C7,C12 C1,C7,C8, 

C12 ,C14,C16 

C1,C7,C12 

 

Table 5.35 Location Allocation Results for Scenario 1 (in seconds) 
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Form the results of scenario 2 (Table 5.36), it can be seen that only 6 logistics 

facilities(depots) are open when applying Ant Colony Optimization which also confirms 

its least cost objective function value (Row 2, Table 5.33). 

 

 

Table 5.36 Location Allocation Results for Scenario 2 (in seconds) 

 

 

From the results of scenario 3 (Table 5.37), it can be seen that only 6 logistics 

facilities(depots) are open when applying Ant Colony Optimization which also confirms 

its least cost objective function value (Row 2, Table 5.33). 

 

 

 

 

 

 

 

Depots Initial 

Solution 

Final solution 

GA SA  TS  ACO  

D1 C2,C9,C19 C8,C13,C20 C18,C20 C8,C16,C20 C8,C11,C17

,C20 

D2 C4,C8 C2,C3 C4,C11,C13 C7,C11,C19 - 

D3 C6,C18 C4,C19 C3,C5,C15, 

C19 

C6 C5,C6,C15 

D4 C12,C14, 

C20 

C11,C18,C21 C9,C10 C4,C15,C21 C9,C10,C18

,C21 

D5 C11,C13, 

C16 

C9,C10,C15 C21 C2,C3,C9,C1

4,C18 

C2,C3,C4, 

C19 

D6 C1,C5,C7, 

C10 

C5,C6,C16, 

C17 

C2,C6,C8,C16 C1,C5,C10, 

C13,C17 

C13 

D7 C3,C15,C17

,C21 

C1,C7,C12, 

C14 

C1,C7,C12, 

C14,C17 

C12 C1,C7,C12, 

C14,C16 
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Table 5.37 Location Allocation Results for Scenario 3 (in seconds) 

 

5.4 Model Validation 

To perform validation of model results, we took the numerical case study presented in 

Zhou et al (2003) which is described as follows: 

Let us denote V as a set of nodes representing m customers, U as a set of nodes 

representing r warehouses, and E as a set of edges representing a connection between 

customers and warehouses. On each edge (i, j) there are two objective coefficients cij 

denoting unit shipping cost and tij denoting transit time between warehouse j and its 

customer i. At each customer node i, customer demand is denoted as νi, and at each 

warehouse j, its capacity is denoted as qj. Using the above notations, the bi-criteria 

Depots Initial 

Solution 

Final solution 

GA SA TS ACO 

D1 C3,C6,C16 C8,C19,C20 C4,C5,C8 C13,C15, 

C17 

C8,C16,C17, 

C20 

D2 C7,C11 C2,C3 C2,C20 C5,C11,C16, 

C18,C19, 

C20,C21 

- 

D3 C17 C6 C6 - C5,C15 

D4 C8,C14 C15,C21 C15,C19 C4,C10 C4,C6,C10, 

C18,C19 

D5 C5,C21 C4,C9 C5 C3,C6,C9 C2,C3,C9, 

C21 

D6 C18,C19, 

C20 

C10,C11, 

C18 

C11,C17,C18 C2,C8 C11,C13 

D7 C1,C2,C4, 

C9,C10,C12, 

C13,C15 

C1,C5,C7, 

C12,C13,C1

4,C16,C17 

C1,C7,C9, 

C10,C12,C13,

C14, C16,C21 

C1,C7,C12, 

C14 

C1,C7,C12, 

C14 
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multiple warehouse allocation problem is formulated as follows: 

Minimize f(x)=w1·f1(x)+w2·f2(x) 

where  

w1 and w2 are constants representing weights for f1(x) and f2(x), respectively.  

m

i

r

j

ijiji xcvxf
1 1

1 )( (Minimize shipping costs) 

m

i

r

j

ijij xtxf
1 1

2 )( (Minimize total transit time between warehouses an customers 

allocated to them) 

Subject to 

mix
r

j

ij ,..,2,1,1
1

   (Each customer is allocated to only one warehouse)  

m

i

jiji rjqxv
1

,..,2,1,   (Total demand of customers does not exceed the capacity 

of warehouses serving them) 

0

1
ijx  

 

The shipping cost data and transit time data is same as in Table 5.31 and Table 5.30. The 

demand of customers and capacity of warehouses is obtained from Table 5.28 and Table 

5.29 respectively. The 4 metaheuristics and Zhou et al (2003) were compared under 7 

problem scenarios where each scenario allocates different weight values to the shipping 

cost and transit time functions. Table 5.38 presents the details of these scenarios. 

 

If customer i is allocated to warehouse j, i=1,2,..,m;j=1,2,..,r 

otherwise 



 

79 
 

Scenario Weight w1 Weight w2 

1 0.1 0.9 

2 0.25 0.75 

3 0.4 0.6 

4 0.55 0.45 

5 0.7 0.3 

6 0.85 0.15 

7 0.95 0.05 

 

Table 5.38 Weights scenario description  

 

In their approach, Zhou et al (2003) propose 7 Pareto optimal solutions. We have 

compared our results with each one of them in terms of cost and time. The metaheuristics 

were run for 100000 iterations and the results obtained are presented in Table 5.39 and 

5.40 respectively. It can be seen in Table 5.39 that our four metaheuristics perform better 

than the results of Zhou et al (2003) in terms of transit time (objective function f1) for all 

the 7 Pareto optimal solutions with ACO performing best in 5/7 scenarios. 

 

Scenario Initial 

Soln 

GA SA TS ACO Zhou et 

al (2003) 

1 
(w1 =0.1, w2=0.9) 

175.29 110.41 104.71 103.20 97.95  
 
 
128.49 
126.13 
125.97 
125.65 
123.62 
123.30 
121.09 

2 
(w1 =0.25, 2=0.75) 

175.29 103.77 104.71 101.90 101.21 

3 
(w1 =0.4, w2 =0.6) 

175.29 101.21 102.02 110.17 97.22 

4 
(w1 =0.55, w2 =0.45) 

175.29 105.50 103.98 109.22 101.17 

5 
(w1 =0.7, w2 =0.3) 

175.29 106.10 100.85 115.36 98.46  

6 
(w1 =0.85, w2=0.15) 

175.29 102.06 98.64 105.85 98.99 

7 
(w1 =0.95, w2 =0.05) 

175.29 99.60 98.67 96.47 102.16 

 

Table 5.39: Transit Time Results (in seconds) 
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From the results of Table 5.40, we can say that that our four meta-heuristics perform 

better than the results of Zhou et al (2003) in terms of shipping cost (objective function f2) 

for all the 7 Pareto optimal solutions with SA performing best in 6/7 scenarios. 

 

Scenario 
Initial 
Soln 

GA SA TS ACO Zhou et al 
(2003) 

1 
(w1 =0.1,w2 =0.9) 

8783300 7162000 6836400 7038000 6884000  
 
 
7,924,037.50 
7,930,047.50 
7,931,645.50 
7,943,386.00 
7,952,062.50 
7,963,803.00 
7,977,486.50 

2 
(w1 =0.25, 2=0.75) 

8783300 7240200 6863400 6962100 6870500 

3 
(w1 =0.4, w2 =0.6) 

8783300 6870500 6844100 7048100 6898700 

4 
(w1 =0.55, w2=0.45) 

8783300 7209200 6836400 7129100 6868200 

5 
(w1 =0.7, w2 =0.3) 

8783300 7054500 6863000 7073900 6890800 

6 
(w1 =0.85, w2=0.15) 

8783300 6862900 6894800 7268600 6904500 

7 
(w1 =0.95, w2=0.05) 

8783300 6877500 6876500 6910900 6949900 

 

Table 5.40:  Shipping Cost Results 

 

The comparison of our results with Zhou et al (2003) for all the 7 Pareto optimal 

solutions in Table 5.39-5.40 show better performance of the proposed metaheuristics in 

terms of transit time and shipping costs under the seven weight scenarios listed in Table 

5.38. This validates the results of our study. 
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Chapter 6:  

 

Conclusions and future works 

 

6.1 Conclusions 

In this thesis, we address the problem of multiobjective capacitated location allocation 

problem on logistics networks. The distinction between the location allocation problem 

treated in this thesis and the traditional location allocation problem lies in its 

multiobjective and dynamic nature. The multiple objectives considered are travel time, 

travel distance, travel cost etc. and  developed based on practical constraints such as 

presence of congestion, timing and access restrictions imposed by municipal 

administrations in urban areas etc. The dynamic aspect means the results of location 

allocation are not fixed forever but vary with change in municipal access or timing 

regulations, congestion, or land, material and labor costs on logistics networks. 

The multiobjective capacitated location allocation problem can be categorized into two 

sub-problems firstly, the location problem, that is which logistics facilities should be 

opened and where and secondly, the allocation problem, that is how to perform customer 

allocations to logistics depots to ensure timely service for customers. The problem is 

studied under two cases. In the first case, opening costs of the facilities and only one 

criterion (distance) is used. In the second case, opening costs of the facilities and multiple 

criteria (distance, travel cost, travel time) are used.  
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Four metaheuristics namely Genetic algorithms (GA), Simulated annealing (SA), Tabu 

search (TS), and Ant colony optimization (ACO) are proposed to address the problem.  

Since, the problems involve multiple criteria (factors), normalization is performed before 

aggregating them into the objective function using the weighted sum method. The models 

are tested under various problem instances and results compared with some existing 

models to ensure validity of results. From our computational experiments, it emerged that 

no metaheuristic performs best under all circumstances; it depends upon the nature of the 

problem, its size and the level of details involved. However, in majority of the test cases 

considered in our study, Ant colony optimization (ACO) showed better performance over 

others.  

 

6.2 Future work 

To extend the research work performed in this thesis, we propose the following future 

works: 

 Testing of proposed metaheuristics on real problem instances. 

 More rigorous model verification and validation on large network sizes 

 Develop hybrid approaches based on the proposed metaheuristics and other 

approaches available in the literature. For example, screening of facility locations 

using multicriteria decision making approaches such as AHP and then allocation 

using heuristics, metaheuristics or exact approaches. 

 Combining routing with location-allocation problem 
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 Modeling location allocation under stochastic demand  

 Integration of barriers in location planning of logistics facilities. 
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