20 research outputs found

    Self-organized fuzzy system generation from training examples

    Full text link

    Model fusion using fuzzy aggregation: Special applications to metal properties

    Get PDF
    To improve the modelling performance, one should either propose a new modelling methodology or make the best of existing models. In this paper, the study is concentrated on the latter solution, where a structure-free modelling paradigm is proposed. It does not rely on a fixed structure and can combine various modelling techniques in ‘symbiosis’ using a ‘master fuzzy system’. This approach is shown to be able to include the advantages of different modelling techniques altogether by requiring less training and by minimising the efforts relating optimisation of the final structure. The proposed approach is then successfully applied to the industrial problems of predicting machining induced residual stresses for aerospace alloy components as well as modelling the mechanical properties of heat-treated alloy steels, both representing complex, non-linear and multi-dimensional environments

    Cognitive design of products for engineering and vibromechanics by criterion of minimization labor input of their manufacturing

    Get PDF
    The basis of the algorithm for determining the labor input are user-configured according to the parameters of its real production. It is shown that in the early stages of designing the designer can minimize the expected cost of the product by changing the design solutions, its head by a reporting engine will evaluate the range of materials and assortments and will issue guidelines to reduce it, and the technology and setters will calculate the final demand for materials and labor. Developed labor regulation system, built on the theory of fuzzy decision trees

    A hierarchical Mamdani-type fuzzy modelling approach with new training data selection and multi-objective optimisation mechanisms: A special application for the prediction of mechanical properties of alloy steels

    Get PDF
    In this paper, a systematic data-driven fuzzy modelling methodology is proposed, which allows to construct Mamdani fuzzy models considering both accuracy (precision) and transparency (interpretability) of fuzzy systems. The new methodology employs a fast hierarchical clustering algorithm to generate an initial fuzzy model efficiently; a training data selection mechanism is developed to identify appropriate and efficient data as learning samples; a high-performance Particle Swarm Optimisation (PSO) based multi-objective optimisation mechanism is developed to further improve the fuzzy model in terms of both the structure and the parameters; and a new tolerance analysis method is proposed to derive the confidence bands relating to the final elicited models. This proposed modelling approach is evaluated using two benchmark problems and is shown to outperform other modelling approaches. Furthermore, the proposed approach is successfully applied to complex high-dimensional modelling problems for manufacturing of alloy steels, using ‘real’ industrial data. These problems concern the prediction of the mechanical properties of alloy steels by correlating them with the heat treatment process conditions as well as the weight percentages of the chemical compositions

    Improving the accuracy while preserving the interpretability of fuzzy function approximators by means of multi-objective evolutionary algorithms

    Get PDF
    AbstractThe identification of a model is one of the key issues in the field of fuzzy system modeling and function approximation theory. An important characteristic that distinguishes fuzzy systems from other techniques in this area is their transparency and interpretability. Especially in the construction of a fuzzy system from a set of given training examples, little attention has been paid to the analysis of the trade-off between complexity and accuracy maintaining the interpretability of the final fuzzy system. In this paper a multi-objective evolutionary approach is proposed to determine a Pareto-optimum set of fuzzy systems with different compromises between their accuracy and complexity. In particular, two fundamental and competing objectives concerning fuzzy system modeling are addressed: fuzzy rule parameter optimization and the identification of system structure (i.e. the number of membership functions and fuzzy rules), taking always in mind the transparency of the obtained system. Another key aspect of the algorithm presented in this work is the use of some new expert evolutionary operators, specifically designed for the problem of fuzzy function approximation, that try to avoid the generation of worse solutions in order to accelerate the convergence of the algorithm

    Structure identification in complete rule-based fuzzy systems

    Full text link

    Adaptive Neuro-Fuzzy Systems

    Get PDF

    Online Global Learning in Direct Fuzzy Controllers

    Full text link
    corecore