1,087 research outputs found

    Tracking discrete off-resonance markers with three spokes (trackDOTS) for compensation of head motion and B0 perturbations: accuracy and performance in anatomical imaging

    Get PDF
    Purpose: To develop a novel approach for head motion and B0 field monitoring based on tracking Discrete Off-resonance markers with Three Spokes (trackDOTS). Methods: Small markers filled with acetic acid were built and attached to a head cap. Marker positions and phase were tracked with fast MR navigators (DotNavs) comprising three offresonance, double-echo orthogonal 1D-projections. Individual marker signals were extracted using optimized coil combinations, and used to estimate head motion and field perturbations. To evaluate the approach, DotNavs were integrated in sub-millimeter MP2RAGE and long-TE GRE sequences at 7T, and tested on six healthy volunteers. Results: DotNav-based motion estimates differed by less than 0.11±0.09mm and 0.19±0.17° from reference estimates obtained with an existing navigator approach (FatNavs). Retrospective motion correction brought clear improvements to MP2RAGE image quality, even in cases with sub-millimeter involuntary motion. DotNav-based field estimates could track deep breathinginduced oscillations, and in cases with small head motion, field correction visibly improved GRE data quality. Conversely, field estimates were less robust when strong motion was present. Conclusion: The trackDOTS approach is suitable for head motion tracking and correction, with significant benefits for high-spatial resolution MRI. With small head motion, DotNav-based field estimates also allow correcting for deep-breathing artifacts in T2 *-weighted acquisitions

    Real Time Structured Light and Applications

    Get PDF

    Motion prediction enables simulated MR-imaging of freely moving model organisms

    Get PDF
    Magnetic resonance tomography typically applies the Fourier transform to k-space signals repeatedly acquired from a frequency encoded spatial region of interest, therefore requiring a stationary object during scanning. Any movement of the object results in phase errors in the recorded signal, leading to deformed images, phantoms, and artifacts, since the encoded information does not originate from the intended region of the object. However, if the type and magnitude of movement is known instantaneously, the scanner or the reconstruction algorithm could be adjusted to compensate for the movement, directly allowing high quality imaging with non-stationary objects. This would be an enormous boon to studies that tie cell metabolomics to spontaneous organism behaviour, eliminating the stress otherwise necessitated by restraining measures such as anesthesia or clamping. In the present theoretical study, we use a phantom of the animal model C. elegans to examine the feasibility to automatically predict its movement and position, and to evaluate the impact of movement prediction, within a sufficiently long time horizon, on image reconstruction. For this purpose, we use automated image processing to annotate body parts in freely moving C. elegans, and predict their path of movement. We further introduce an MRI simulation platform based on bright field videos of the moving worm, combined with a stack of high resolution transmission electron microscope (TEM) slice images as virtual high resolution phantoms. A phantom provides an indication of the spatial distribution of signal-generating nuclei on a particular imaging slice. We show that adjustment of the scanning to the predicted movements strongly reduces distortions in the resulting image, opening the door for implementation in a high-resolution NMR scanner.ISSN:1553-734XISSN:1553-735

    Respiratory organ motion in interventional MRI : tracking, guiding and modeling

    Get PDF
    Respiratory organ motion is one of the major challenges in interventional MRI, particularly in interventions with therapeutic ultrasound in the abdominal region. High-intensity focused ultrasound found an application in interventional MRI for noninvasive treatments of different abnormalities. In order to guide surgical and treatment interventions, organ motion imaging and modeling is commonly required before a treatment start. Accurate tracking of organ motion during various interventional MRI procedures is prerequisite for a successful outcome and safe therapy. In this thesis, an attempt has been made to develop approaches using focused ultrasound which could be used in future clinically for the treatment of abdominal organs, such as the liver and the kidney. Two distinct methods have been presented with its ex vivo and in vivo treatment results. In the first method, an MR-based pencil-beam navigator has been used to track organ motion and provide the motion information for acoustic focal point steering, while in the second approach a hybrid imaging using both ultrasound and magnetic resonance imaging was combined for advanced guiding capabilities. Organ motion modeling and four-dimensional imaging of organ motion is increasingly required before the surgical interventions. However, due to the current safety limitations and hardware restrictions, the MR acquisition of a time-resolved sequence of volumetric images is not possible with high temporal and spatial resolution. A novel multislice acquisition scheme that is based on a two-dimensional navigator, instead of a commonly used pencil-beam navigator, was devised to acquire the data slices and the corresponding navigator simultaneously using a CAIPIRINHA parallel imaging method. The acquisition duration for four-dimensional dataset sampling is reduced compared to the existing approaches, while the image contrast and quality are improved as well. Tracking respiratory organ motion is required in interventional procedures and during MR imaging of moving organs. An MR-based navigator is commonly used, however, it is usually associated with image artifacts, such as signal voids. Spectrally selective navigators can come in handy in cases where the imaging organ is surrounding with an adipose tissue, because it can provide an indirect measure of organ motion. A novel spectrally selective navigator based on a crossed-pair navigator has been developed. Experiments show the advantages of the application of this novel navigator for the volumetric imaging of the liver in vivo, where this navigator was used to gate the gradient-recalled echo sequence

    High-resolution diffusion-weighted brain MRI under motion

    Get PDF
    Magnetic resonance imaging is one of the fastest developing medical imaging techniques. It provides excellent soft tissue contrast and has been a leading tool for neuroradiology and neuroscience research over the last decades. One of the possible MR imaging contrasts is the ability to visualize diffusion processes. The method, referred to as diffusion-weighted imaging, is one of the most common clinical contrasts but is prone to artifacts and is challenging to acquire at high resolutions. This thesis aimed to improve the resolution of diffusion weighted imaging, both in a clinical and in a research context. While diffusion-weighted imaging traditionally has been considered a 2D technique the manuscripts and methods presented here explore 3D diffusion acquisitions with isotropic resolution. Acquiring multiple small 3D volumes, or slabs, which are combined into one full volume has been the method of choice in this work. The first paper presented explores a parallel imaging driven multi-echo EPI readout to enable high resolution with reduced geometric distortions. The work performed on diffusion phase correction lead to an understanding that was used for the subsequent multi-slab papers. The second and third papers introduce the diffusion-weighted 3D multi-slab echo-planar imaging technique and explore its advantages and performance. As the method requires a slightly increased acquisition time the need for prospective motion correction became apparent. The forth paper suggests a new motion navigator using the subcutaneous fat surrounding the skull for rigid body head motion estimation, dubbed FatNav. The spatially sparse representation of the fat signal allowed for high parallel imaging acceleration factors, short acquisition times, and reduced geometric distortions of the navigator. The fifth manuscript presents a combination of the high-resolution 3D multi-slab technique and a modified FatNav module. Unlike our first FatNav implementation, using a single sagittal slab, this modified navigator acquired orthogonal projections of the head using the fat signal alone. The combined use of both presented methods provides a promising start for a fully motion corrected high-resolution diffusion acquisition in a clinical setting

    Design and evaluation of an MRI-compatible linear motion stage.

    Get PDF
    PURPOSE: To develop and evaluate a tool for accurate, reproducible, and programmable motion control of imaging phantoms for use in motion sensitive magnetic resonance imaging (MRI) appli cations. METHODS: In this paper, the authors introduce a compact linear motion stage that is made of nonmagnetic material and is actuated with an ultrasonic motor. The stage can be positioned at arbitrary positions and orientations inside the scanner bore to move, push, or pull arbitrary phantoms. Using optical trackers, measuring microscopes, and navigators, the accuracy of the stage in motion control was evaluated. Also, the effect of the stage on image signal-to-noise ratio (SNR), artifacts, and B0 field homogeneity was evaluated. RESULTS: The error of the stage in reaching fixed positions was 0.025 ± 0.021 mm. In execution of dynamic motion profiles, the worst-case normalized root mean squared error was below 7% (for frequencies below 0.33 Hz). Experiments demonstrated that the stage did not introduce artifacts nor did it degrade the image SNR. The effect of the stage on the B0 field was less than 2 ppm. CONCLUSIONS: The results of the experiments indicate that the proposed system is MRI-compatible and can create reliable and reproducible motion that may be used for validation and assessment of motion related MRI applications

    Combining navigator and optical prospective motion correction for high-quality 500 μm resolution quantitative multi-parameter mapping at 7T

    Get PDF
    Purpose: High-resolution quantitative multi-parameter mapping shows promise for non-invasively characterizing human brain microstructure but is limited by physiological artifacts. We implemented corrections for rigid head movement and respiration-related B0-fluctuations and evaluated them in healthy volunteers and dementia patients. Methods: Camera-based optical prospective motion correction (PMC) and FID navigator correction were implemented in a gradient and RF-spoiled multi-echo 3D gradient echo sequence for mapping proton density (PD), longitudinal relaxation rate (R1) and effective transverse relaxation rate (R2*). We studied their effectiveness separately and in concert in young volunteers and then evaluated the navigator correction (NAVcor) with PMC in a group of elderly volunteers and dementia patients. We used spatial homogeneity within white matter (WM) and gray matter (GM) and scan-rescan measures as quality metrics. Results: NAVcor and PMC reduced artifacts and improved the homogeneity and reproducibility of parameter maps. In elderly participants, NAVcor improved scan-rescan reproducibility of parameter maps (coefficient of variation decreased by 14.7% and 11.9% within WM and GM respectively). Spurious inhomogeneities within WM were reduced more in the elderly than in the young cohort (by 9% vs. 2%). PMC increased regional GM/WM contrast and was especially important in the elderly cohort, which moved twice as much as the young cohort. We did not find a significant interaction between the two corrections. Conclusion: Navigator correction and PMC significantly improved the quality of PD, R1, and R2* maps, particularly in less compliant elderly volunteers and dementia patients. <br
    corecore