490 research outputs found

    Smart vest for respiratory rate monitoring of COPD patients based on non-contact capacitive sensing

    Get PDF
    In this paper, a first approach to the design of a portable device for non-contact monitoring of respiratory rate by capacitive sensing is presented. The sensing system is integrated into a smart vest for an untethered, low-cost and comfortable breathing monitoring of Chronic Obstructive Pulmonary Disease (COPD) patients during the rest period between respiratory rehabilitation exercises at home. To provide an extensible solution to the remote monitoring using this sensor and other devices, the design and preliminary development of an e-Health platform based on the Internet of Medical Things (IoMT) paradigm is also presented. In order to validate the proposed solution, two quasi-experimental studies have been developed, comparing the estimations with respect to the golden standard. In a first study with healthy subjects, the mean value of the respiratory rate error, the standard deviation of the error and the correlation coefficient were 0.01 breaths per minute (bpm), 0.97 bpm and 0.995 (p < 0.00001), respectively. In a second study with COPD patients, the values were -0.14 bpm, 0.28 bpm and 0.9988 (p < 0.0000001), respectively. The results for the rest period show the technical and functional feasibility of the prototype and serve as a preliminary validation of the device for respiratory rate monitoring of patients with COPD.Ministerio de Ciencia e Innovación PI15/00306Ministerio de Ciencia e Innovación DTS15/00195Junta de Andalucía PI-0010-2013Junta de Andalucía PI-0041-2014Junta de Andalucía PIN-0394-201

    Special Issue “Body Sensors Networks for E-Health Applications”

    Get PDF
    Body Sensor Networks (BSN) have emerged as a particularization of Wireless Sensor Networks (WSN) in the context of body monitoring environments, closely linked to healthcare applications. These networks are made up of smart biomedical sensors that allow the monitoring of physiological parameters and serve as the basis for e-Health applications. This Special Issue collects some of the latest developments in the field of BSN related to new developments in biomedical sensor technologies, the design and experimental characterization of on-body/in-body antennas and new communication protocols for BSN, including some review studies

    Collaborative Localization Algorithms for Wireless Sensor Networks with Reduced Localization Error

    Get PDF
    Localization is an important research issue in Wireless Sensor Networks (WSNs). Though Global Positioning System (GPS) can be used to locate the position of the sensors, unfortunately it is limited to outdoor applications and is costly and power consuming. In order to find location of sensor nodes without help of GPS, collaboration among nodes is highly essential so that localization can be accomplished efficiently. In this paper, novel localization algorithms are proposed to find out possible location information of the normal nodes in a collaborative manner for an outdoor environment with help of few beacons and anchor nodes. In our localization scheme, at most three beacon nodes should be collaborated to find out the accurate location information of any normal node. Besides, analytical methods are designed to calculate and reduce the localization error using probability distribution function. Performance evaluation of our algorithm shows that there is a tradeoff between deployed number of beacon nodes and localization error, and average localization time of the network can be increased with increase in the number of normal nodes deployed over a region

    Simultaneous ranging and self-positioning in unsynchronized wireless acoustic sensor networks

    Get PDF
    Automatic ranging and self-positioning is a very desirable property in wireless acoustic sensor networks (WASNs) where nodes have at least one microphone and one loudspeaker. However, due to environmental noise, interference and multipath effects, audio-based ranging is a challenging task. This paper presents a fast ranging and positioning strategy that makes use of the correlation properties of pseudo-noise (PN) sequences for estimating simultaneously relative time-of-arrivals (TOAs) from multiple acoustic nodes. To this end, a proper test signal design adapted to the acoustic node transducers is proposed. In addition, a novel self-interference reduction method and a peak matching algorithm are introduced, allowing for increased accuracy in indoor environments. Synchronization issues are removed by following a BeepBeep strategy, providing range estimates that are converted to absolute node positions by means of multidimensional scaling (MDS). The proposed approach is evaluated both with simulated and real experiments under different acoustical conditions. The results using a real network of smartphones and laptops confirm the validity of the proposed approach, reaching an average ranging accuracy below 1 centimeter.This work was supported by the Spanish Ministry of Economy and Competitiveness under Grant TIN2015-70202-P, TEC2012-37945-C02-02 and FEDER funds

    A Review of Radio Frequency Based Localization for Aerial and Ground Robots with 5G Future Perspectives

    Full text link
    Efficient localization plays a vital role in many modern applications of Unmanned Ground Vehicles (UGV) and Unmanned aerial vehicles (UAVs), which would contribute to improved control, safety, power economy, etc. The ubiquitous 5G NR (New Radio) cellular network will provide new opportunities for enhancing localization of UAVs and UGVs. In this paper, we review the radio frequency (RF) based approaches for localization. We review the RF features that can be utilized for localization and investigate the current methods suitable for Unmanned vehicles under two general categories: range-based and fingerprinting. The existing state-of-the-art literature on RF-based localization for both UAVs and UGVs is examined, and the envisioned 5G NR for localization enhancement, and the future research direction are explored

    A survey of fuzzy logic in wireless localization

    Get PDF

    Battery-Less Industrial Wireless Monitoring and Control System for Improved Operational Efficiency

    Get PDF
    An industrial wireless monitoring and control system, capable of supporting energyharvesting devices through smart sensing and network management, designed for improving electrorefinery performance by applying predictive maintenance, is presented. The system is self-powered from bus bars, and features wireless communication and easy-to-access information and alarms. With cell voltage and electrolyte temperature measurements, the system enables real-time cell performance discovery and early reaction to critical production or quality disturbances such as short-circuiting, flow blockages, or electrolyte temperature excursions. Field validation shows an increase in operational performance of 30% (reaching 97%) in the detection of short circuits, which, thanks to a neural network deployed, are detected, on average, 10.5 h earlier compared to the traditional methodology. The developed system is a sustainable IoT solution, being easy to maintain after its deployment, and providing benefits of improved control and operation, increased current efficiency, and decreased maintenance costs.The authors would like to thank the Technological Corporation of Andalusia (CTA) and Atlantic Copper S.L.U. company for funding this research under projects 19/1008 and 22/1077

    Autonomic Obstacle Detection and Avoidance in MANETs Driven by Cartography Enhanced OLSR

    Get PDF
    corecore