
Research Article
Autonomic Obstacle Detection and Avoidance in MANETs
Driven by Cartography Enhanced OLSR

Abdelfettah Belghith,1 Mohamed Belhassen,2 Amine Dhraief,2

Nour Elhouda Dougui,2 and Hassan Mathkour1

1College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia
2HANA Research Laboratory, University of Manouba, 2010 Manouba, Tunisia

Correspondence should be addressed to Abdelfettah Belghith; abdelfettah.belghith@hotmail.com

Received 16 April 2015; Accepted 12 July 2015

Academic Editor: Salil Kanhere

Copyright © 2015 Abdelfettah Belghith et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

The presence of obstructing obstacles severely degrades the efficiency of routing protocols in MANETs. To mitigate the effect of
these obstructing obstacles, routing in MANETs is usually based on the a priori knowledge of the obstacle map. In this paper, we
investigate rather the dynamic and autonomic detection of obstacles that might stand within the network. This is accomplished
using the enhanced cartography optimized link state routing CE-OLSR with no extra signaling overhead. The evaluation of the
performance of our proposed detection scheme is accomplished through extensive simulations using OMNET++. Results clearly
show the ability of our proposed scheme to accurately delimit the obstacle area with high coverage and efficient precision ratios.
Furthermore, we integrated the proposed scheme into CE-OLSR to make it capable of autonomously detecting and avoiding
obstacles. Simulation results show the effectiveness of such an integrated protocol that provides the same route validity as that
of CE-OLSR-OA which is based on the a priori knowledge of the obstructing obstacle map.

1. Introduction

In mobile ad hoc networks (MANETs), nodes cooperate
together to insure an infrastructure-less multihop communi-
cation between distant mobile nodes.Themain advantages of
MANETs consist in the rapidity of their deployment and their
low-cost compared to infrastructure-based networks. How-
ever, their proliferation is still limited by the inefficiency of
current routing protocols to properly handle nodes mobility
while preserving the limited and valuable resources of the
network [1–4]. Resource scarcity of both the mobile nodes
and the wireless medium precludes the use of additional
control messages as it will be at the expense of less data traffic
[5].

MANET routing protocols face an inevitable trade-off
between maintaining valid routes and preserving valuable
network resources (e.g., nodes power, nodes compute resour-
ces, radio resources, etc.). These trade-offs are accentuated
by the presence of obstructing obstacles standing within the
network area, which will increase the network dynamics.

In fact, a link failure between two neighbouring nodes does
occur not only when these nodes leave the range of each other
but also when the line of sight between them is obstructed
by an obstacle. To alleviate the side effect of obstacles, the
underlying routing protocol should either be aware of the
obstacle map or be capable of computing routes that avoid
and get around these obstacles [6, 7].

MANETs, by their nature and according to their purpose,
should rely on efficient routing protocols that are able to
autonomously detect the exact location of obstacles within
the network area. This is indeed a challenging task as the
requirement for additional signaling to detect and share
obstacle locations and contours should be limited to its min-
imum so that resources are left for the effective transmission
of data. In this paper, we propose an autonomous obstacle
detection scheme that relies on the cartography enhanced
OLSR [6, 8]. Our proposed scheme does not require any
additional signaling overhead as it relies completely on the
use of CE-OLSR signaling but induces some additional

Hindawi Publishing Corporation
Mobile Information Systems
Volume 2015, Article ID 820401, 18 pages
http://dx.doi.org/10.1155/2015/820401



2 Mobile Information Systems

computation time at each node that will be identified and
investigated in this paper.

Nodes mobility is another challenge facing the design of
an autonomous obstacle detection strategy. Some obstacle
detection approaches mark nodes lying on the obstacle
boundaries instead of detecting its exact location [9, 10].
After this marking phase, the routing process considers
this piece of information to avoid selecting paths passing
through marked nodes. However, node mobility will rapidly
stale the node marking process. To efficiently handle node
mobility, suchmarking based approaches should significantly
increase their signalling overhead and consequently consume
valuable network resources otherwise left for effective data
communication.

In this paper, we show that every node in the MANET
can dynamically and autonomously infer the obstacle map
without using either a dedicated technology (e.g. laser range
finders, sonar, special optical/infrared sensors, etc.) or an
additional signaling overhead. In fact, we propose a novel
lightweight obstacle detection scheme entirely based on
the original signalling of the cartography enhanced OLSR
(CE-OLSR) protocol [8]. More precisely, we use the joint
awareness of CE-OLSR about the link states and the network
cartography to discover the pairs of nodes (position pairs) in
the network that are unable to communicate due to obstruct-
ing obstacles. Subsequently, we process these position pairs to
infer an approximation of the real obstacle boundary and its
contour. The benefit of our proposal is fourfold. Firstly, our
protocol is not based on any dedicated technology and hence
can be easily integrated in any basic mobile node. Secondly,
the proposed scheme requires no additional overhead since it
uses the very same signalling of CE-OLSR. Thirdly, through
dedicated metrics, we show that our scheme is able to
accurately detect the real obstacle area and contour. Finally,
using the proposed scheme, we reach almost the same routes
validity of CE-OLSR with obstacle location awareness. Our
intention here is not to outperform CE-OLSR with obstacle
awareness (CE-OLSR-OA); rather we aim to relax the hard
assumption considered in our previous protocol (i.e., CE-
OLSR-OA) [6] that consists in imposing the availability of the
obstacle map as an a priori knowledge in every node within
the MANET area.

Obstacle detection and avoidance are well studied in
static networks such as wireless sensor networks (WSNs).
Nevertheless, to the best of our knowledge, there is no
significant work done in the context of MANETs. Unlike
stationary WSNs, MANETs are inherently and purposely
mobile and dynamic. In this paper, we will show that on the
contrary the mobility of nodes and the network dynamics
constitute a real leverage for the obstacle detection efficiency.
Some protocols rely on an a priori knowledge given to nodes
such as obstacle map or street map to avoid the selection of
links crossing obstacles during routing. But, in this paper, we
propose an autonomous scheme that detects the contour of
these obstacles using the underlying routing signalling and
then dynamically integrate these obstacles’ information to
perform efficient routing.

The remainder of the paper is organized as follows.
In Section 2, we review and discuss some relevant related

works. In Section 3, we survey the functioning of the CE-
OLSR protocol as well as the underlying core concepts of
OLSR protocol. In Section 4, we detail our proposed obstacle
detection scheme. In Section 5, we evaluate the performance
of the proposed approach through extensive simulation tests.
Some dedicated metrics are also proposed to assess the
adequacy of our obstacle detection protocol. Furthermore, we
study the computational complexity of the proposed obstacle
detection scheme. In the last section, we conclude the paper.

2. Related Work

The existence of obstructing obstacles in the network area
challenges the design of routing protocols in both static
and mobile ad hoc networks. In the case of static ad hoc
networks, link state routing protocols are less affected by the
existence of obstacles compared to location-based protocols.
Indeed, in link state routing protocols, weak or asymmetric
links could be detected using some dedicated metrics such
as the Expected Transmission Count [11] which measures
the average number of data packet retransmissions for a
specific link. But, in location-based routing protocols such as
Greedy Perimeter Stateless Routing (GPSR) [12] or Greedy
Face Greedy (GFG) [13], nodes do not have a global view
about the network topology. Instead of relying on a global
network topology, location-based routing protocols rely on
the location of packet destination and that of neighbour
nodes to perform routing decisions. In this class of protocols,
the position of distant destination nodes is assumed to be
readily available through some dedicated location services.
So, these protocols do not include any cartography gathering
strategy to collect the location of distant nodes.

Contrary to distant nodes, the locations of direct neigh-
bours are known through the local signalling mechanism.
Each node periodically broadcasts local control messages to
inform its 1-hop neighbours about its position. Given the lack
of the network topology in location-based routing protocols,
nodes may route packets towards directions that lead to
obstructing obstacles or voids in subsequent hops (>1-hop).

Location-based routing protocols like GPSR [12] or GFG
[13] have commonly two operation modes: greedy mode
and recovery mode. A given sender (or a forwarder) node
operates in the greedy mode if it has a neighbour which is
closer to the ultimate packet destination than itself. But when
a sender (or a forwarder) detects that no one of its direct
neighbours could bring the data packet closer to its ultimate
destination, it infers that it is in the vicinity of a void or an
obstacle. In such circumstances, it switches to the recovery
mode. In recovery mode, data packets have to temporarily
roll away from their destination using the right-hand rule to
bypass the detected obstacle or void. Once data packets reach
a node nearer to the destination than the node that initiated
the recovery mode, this node resumes the greedy mode in
order to avoid looping around the obstacle or the void.

The main advantage of GFG and GPSR consists in
guaranteeing the delivery of data packets for static node
and for sufficiently connected network even in the presence
of obstructing obstacles. The main limitations of these two
protocols reside in neglecting the optimality of the selected



Mobile Information Systems 3

routes. In fact, a given packet (routed in the direction of an
obstacle or void) reaches the nodes at the obstacle boundary
before being switched to a rescue path. Therefore, the result-
ing path is longer than the shortest possible path and this
leads to a useless consumption of valuable resources.

In subsequent research work such as [10, 14–17], authors
propose to decrease the selected path length by applying an
early obstacle detection and avoidance scheme. For instance,
in [10], authors make use of a local lightweight reputation
mechanism to distributively find the possible shortest paths
towards the destination while avoiding obstacles. The pro-
posed reputation mechanism works as follows. Periodically,
each node calculates its reputation based on its previous
routing decisions. The reputation is proportional to the ratio
between optimal and nonoptimal previous routing decisions.
A given routing decision is termedoptimal if greedy routing is
used. Otherwise, it is termed nonoptimal. Each node broad-
casts its reputation to its 1-hop neighbours. Therefore, nodes
having bad reputationwill be prevented from forwarding data
packets during the greedy forwarding. Despite the ability of
this obstacle avoidance scheme to progressively reduce the
length of routing paths, it has some limitations. First of all,
this scheme uses a unique trust value and thus it cannot
handle multiple data streams. In fact, a given node𝑁, which
is not optimal for a given source/destination nodes pair, may
be optimal for another pair of nodes. Subsequently, the path
length of the second data stream may be uselessly increased.
Furthermore, this scheme does not take into account node
mobility. In dynamic networks, node reputation will rapidly
change with the mobility of the different nodes. This will
undoubtedly alter the efficiency of subsequent routing deci-
sions. A part from the latter fact, these protocols ([10, 14–17])
succeed in avoiding obstacles while decreasing the length of
resulting routes, but the real obstacle boundary or at least
an approximation of this boundary remains unknown. This
latter issue is addressed by Wang and Ssu in [9].

Authors of [9] proposed a scheme enabling detecting
obstacles in WSNs. This solution approximates obstacle
boundaries by marking the surrounding sensors nodes. In
order to identify nodes that lie near the boundary of an
obstacle (or void), authors introduced the notion of “cross-
ing.” The term “crossing” relates to the intersection point
of the extremities of the sensing areas of 2 neighbouring
nodes. A given crossing is termed covered if it stands in the
sensing area of a third node. Otherwise, it is termed as an
uncovered crossing. According to the proposed solution, if
a node detects that one of its crossing is uncovered, it tags
itself as a boundary node.This is argued by the fact that nodes
standing near obstacle boundaries have usually an uncovered
crossing. One of themain advantages of the proposed scheme
consists in its low overhead, its robustness regarding ranging
errors, and its general applicability. According to this solu-
tion, sensor nodes rely only on local information to identify
obstacle boundaries. Furthermore, this scheme does not
require any additional hardware or location-aware sensors to
detect obstacles boundaries. However, the proposed scheme

has several drawbacks and limitations. For instance, sensor
nodes are assumed to remain static once they are deployed.
As such, the proposed scheme is not suitable for sensor
networks having somemobile nodes (sinks or regular nodes).
In addition, authors did not explain how the detected obstacle
information could be utilized to improve the operation of the
network and did not mention how the obstacle information
is shared among sensor nodes.

Contrary to static ad hoc networks, obstacle detection
and avoidance strategies are less elaborated in the context of
VANETs andMANETs. To the best of our knowledge, routing
protocols rely on some a priori knowledge such as a street
map or an obstacle map to be able to avoid obstacles. For
instance, in the papers [7, 18–20] that treat routing in urban
VANETs, authors relied on the awareness of street maps to
route packets around obstacles.

In our prior work [6], we proposed an OLSR [21] based
obstacle avoidance protocol named cartography enhanced
OLSR with obstacle awareness (CE-OLSR-OA). We assumed
that each node is aware of all obstacles standing within the
network area.The joint awareness about network cartography
and the map of obstacles made it possible to avoid links
broken because of obstructing obstacles. In fact, two nodes
are able to communicate together if and only if they are in
the stable range of each other and the line of sight between
them does not cross any obstacle. Nevertheless, according
to the nature of MANETs, such information (obstacle map)
is usually not known or not guaranteed to be available.
Therefore, a more practical scheme allowing relaxing this
hard assumption is required.

It is here worthy noting that none of the above routing
protocols but [6] meet the requirements of an efficient obsta-
cle detection scheme. An efficient obstacle detection algo-
rithm should encompass some important features. Firstly,
it has to cope with the scarcity of network resources by
minimizing any required additional signalling. Secondly, it
has to take into account the inherent unreliability of the
wireless medium to be robust against control packet losses.
Thirdly, to gain generality, an obstacle detection scheme uses
neither dedicated devices during its operation nor any a pri-
ori knowledge about the network topography (obstacle/street
map). Fourthly, to be suitable for MANETs, nodes mobility
has to be supported. Finally, the obstacle detection scheme
should deliver an accurate approximation of the obstacle
boundary to insure a viable awareness.

In this paper, we propose an obstacle detection scheme
thatmeets all the above requirements.Our proposed dynamic
and autonomous scheme detects the obstructing obstacle
and its contour and then integrates such information to
perform an efficient routing. To infer the obstacle boundaries,
it relies solely on the CE-OLSR [8], an enhanced version of
OLSR, signalling composed of the links states information
as well as the dynamically computed network cartography.
In this work, we focus only on a single static convex or
lightly concave obstructing obstacle. Further considerations
and investigations have to be undertaken to handle the
presence of several and highly concave moving obstructing
obstacles.



4 Mobile Information Systems

3. Cartography Enhanced OLSR
Protocol (CE-OLSR) Overview

CE-OLSR is an improvement of the well-known optimized
link state routing (OLSR) protocol [21]. In this section, we
start by reviewing the main features of OLSR. Then we
highlight the impact of node mobility on OLSR. Finally, we
survey the enhancements done by CE-OLSR to face problems
resulting from nodes mobility.

OLSR protocol was first conceived to adapt link state
routing to MANETs. As MANETs often suffer from the scar-
city of radio resources, OLSR aims at reducing routing sig-
nalling to its minimum. To this end, OLSR implements two
optimizations compared to basic link state routing protocols.

The first optimization consists in using two different con-
trol messages (Hello messages and Topology Control (TC)
messages), with different frequencies, to track network topol-
ogy. While Hello messages are used to track local topological
change, TC messages are used to disseminate these local
topological changes to distant nodes within the network.
OLSR considers the splitting of the routing signaling into two
types since local topological changes are more important to
be tracked in timelymanner than distant topological changes.

The second optimization introduced in OLSR consists in
using Multipoint Relays (MPRs). MPRs are particular nodes
that broadcast to the remaining nodes a subtopology of the
network. Each node selects a subset of its 1-hope neighbours
as MPRs to reach and cover its 2-hope neighbours. MPR
selection strategies can be implemented in various ways
according to the optimized parameters: nodes having the
minimum ID [22], the coverage degree of 1-hop neighbours
[23], and the bandwidth and/or delay of 1-hop and/or 2-hop
links [24, 25]. Nodes that select a given MPR are termed as
MPR-selectors. MPRs reduce the broadcast overhead of the
OLSR signalling messages such as TC. Despite the success of
OLSR in dealing appropriately with the scarcity of resources
of ad hoc networks, its performance is highly affected by
the increase of nodes mobility. We have demonstrated in
our previous work [8] that once nodes start moving the
routing performance of OLSR deteriorates. In the quest to
mitigate this bad effect of mobility on OLSR performance,
we proposed an enhanced routing protocol called CE-OLSR
that is rather driven by the network cartography than the
network topology. CE-OLSR relies on two main concepts:
network cartography (nodes locations) and stability routing
scheme. CE-OLSR uses the network cartography instead of
link states to build a much precise network topology. We
demonstrate in [2, 4, 8] that building a network topology
based on nodes locations alleviates the mobility problem
of proactive routing protocols. In CE-OLSR, we collect the
network cartography using the very same original signalling
of OLSR (no additional signaling is introduced). We assume
that each node is aware of its location. Each node embeds
in its Hello messages its position as well as the positions of
its neighbours (collected from the received Hello messages).
CE-OLSR also embeds nodes locations in TC messages by
associating with each published link the position of the
corresponding nodes. To enhance the validity of selected
routes, CE-OLSR relies on a stability routing scheme [26]

that avoids using weak links during the routing process. A
given link is stated to be weak if it is established between
two neighbours that are close to leave the range of each
other. Essentially, route stability is accomplished by willingly
underestimating the perceived network topology [2, 4, 26].

Cartography enhanced OLSR with obstacle awareness
(CE-OLSR-OA) [6] is an enhanced version of CE-OLSR
which avoids obstructing obstacles standing within the net-
work area. CE-OLSR-OA requires an obstacle map to be
known and initially fed into the system. More precisely,
when building the network topology based on the collected
network cartography (nodes locations), CE-OLSR-OA filters
out all links that cross through the obstacles. It executes
then a shortest path algorithm (Dijkstra) on the resulting
connectivity graph to select a candidate gateway to each
reachable destination. As we previously stated, the assump-
tion regarding the availability of obstacle map challenges
the usefulness of CE-OLSR-OA in practice for real ad hoc
scenarios. In the following, we propose a dynamic and auto-
nomous obstacle detection scheme that does not require such
a hard assumption but rather is capable of detecting the
obstacle residing within the network with a high accuracy
and detects its boundary (contour) with high precision, yet it
self integrates the resulting obstacle information in its routing
decisions to avoid the obstacle and attain the same route
validity as that of CE-OLSR-OA.

4. Materials and Methods: Obstacle
Detection Scheme Description

Obstacles have several harmful effects on the functioning
of MANETs as outlined in Section 3. In order to avoid
obstacle side effects, MANETs should implement their own
strategies to detect obstructing obstacles exact locations and
boundaries. In this section, we present a novel lightweight
obstacle detection strategy which natively takes into account
the inherent constraints of MANETs. Firstly, it saves the
valuable MANET resources as it does not introduce any
new control traffic and solely relies on the exact CE-OLSR
signalling. Secondly, as MANET wireless channel is noto-
riously unreliable, our strategy tolerates some amount of
control packet losses. Finally, our proposed strategy is suitable
for mobile environments. Indeed, it does not rely on any
node tagging mechanism as it is done in stationary sensor
networks. Instead of detecting nodes surrounding obstacles,
our scheme identifies the location of the obstructing obstacle
and its contour with a high accuracy.

Let us start by defining some terms used in the design and
specification of our obstacle detection scheme.

4.1. Definitions

Definition 1 (obstacle information). Obstacle information is
a position pair ([𝐴

𝐿
, 𝐴
𝑅
]) where two given neighbour nodes

are unable to communicate because of an obstructing obstacle
standing between them. 𝐴

𝐿
and 𝐴

𝑅
denote, respectively,

the left and right extremity of the corresponding obstacle
information (the obstructed link).



Mobile Information Systems 5

AL

AR

BL BR

𝛼

Figure 1: Inner angle between 2 given obstacle pieces of informa-
tion.

Definition 2 (obstacle information accuracy). Obstacle infor-
mation [𝐴

𝐿
, 𝐴
𝑅
] is considered more accurate than obstacle

information [𝐵
𝐿
, 𝐵
𝑅
] if the positions forming its extremities

are closer to the obstacle boundary than those of [𝐵
𝐿
, 𝐵
𝑅
].

Definition 3 (complementary obstacle information). Two
obstacle pieces of information [𝐴

𝐿
, 𝐴
𝑅
] and [𝐵

𝐿
, 𝐵
𝑅
] are

complementary if at least one of them could be used to
enhance the accuracy of the other piece of information.

Definition 4 (obstacle information having similar directions).
Two obstacle pieces of information [𝐴

𝐿
, 𝐴
𝑅
] and [𝐵

𝐿
, 𝐵
𝑅
]

have similar directions if the inner angle 𝛼 formed by their
direct segments is less or equal to a fixed parameter called
𝑀𝑎𝑥𝐴𝑛𝑔𝑙𝑒𝐴𝑝𝑒𝑟𝑡𝑢𝑟𝑒 as shown in Figure 1.

Definition 5 (obstacle information belonging to the same net-
work region). Two obstacle pieces of information [𝐴

𝐿
, 𝐴
𝑅
]

and [𝐵
𝐿
, 𝐵
𝑅
] belong to the same network region if and

only if they satisfy the following two conditions. Firstly,
the orthogonal projection of at least one extremity of one
of these obstacle pieces of information (say [𝐴

𝐿
, 𝐴
𝑅
]) on

the line carrying the second one (say [𝐵
𝐿
, 𝐵
𝑅
]) must be

inside the segment representing the second obstacle piece
of information. Secondly, the distance between the projected
extremity and its orthogonal projection has to be less than the
𝑀𝑎𝑥𝑇𝑜𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝐹𝑎𝑟𝑛𝑒𝑠𝑠 parameter.

Definition 6 (prunable obstacle information). Two given
obstacle pieces of information [𝐴

𝐿
, 𝐴
𝑅
] and [𝐵

𝐿
, 𝐵
𝑅
] are

prunable if they have similar directions and belong to the
same network region.

4.2. Obstacle Detection Overview. Our obstacle detection
strategy is composed of 4 steps (as depicted in Figure 2): (1)
identification of noncommunicating positions, (2) pruning,
(3) filtering, and (4) concave hull construction. In order to
sustain the clarity of the following description, we illustrate
the output of each step by a dedicated figure.

In step (1), we infer the obstacle information. We rep-
resent obstacle information, according to the context, either
by a line segment or by a pair of points. Figure 3 shows the
obstacle information collected by an arbitrary node during
the first 100 s of a performed simulation. During this time, a
huge number of obstacle pieces of information are collected
by all the nodes.

MPR links states + network
cartography

Step 1: identification of noncommunicating positions

List of noncommunicating positions

Step 2: pruning procedure

More accurate list of
noncommunicating positions

Step 3: filtering procedure

List of kept points

Step 4: concave hull construction

Detected obstacle boundary

Figure 2: Building blocks of the proposed obstacle detection
approach.

Figure 3: Step 1: obstacle information collected by an arbitrary node
(simulation time = 100 s).

In step (2) of our obstacle detection scheme, we con-
ceive a dedicated pruning approach. This approach aims at
enhancing the accuracy of the collected obstacle informa-
tion. Figure 4 depicts the obstacle information retained after
performing this second step. By comparing Figure 4 with
Figure 3, we notice that the obstacle information resulting
from the second step is closer to the real obstacle boundaries



6 Mobile Information Systems

1

2

Figure 4: Step 2: obstacle information retained after the pruning
step: (simulation time = 100 s).

(a) (b)

Figure 5: Step 3: (a) before filtering, (b) after filtering (simulation
time = 100 s).

than the original one. Despite the success of the second step
in enhancing the accuracy of collected obstacle information,
the retained data might still include some inaccurate or erro-
neous obstacle information. Inaccurate obstacle information
is generally caused by the absence of pruning opportunities
(see Figure 4 arrow 1). In other words, one or both extremities
of some obstacle information remain far from the obstacle
boundary because of the lack of pruning opportunities with
other collected obstacle pieces of information. Erroneous
obstacle information ismainly caused by successive collisions
of CE-OLSR control messages (see Figure 4 arrow 2).

Step (3) of our strategy eliminates inaccurate or erroneous
obstacle information from the set of retained obstacle pieces
of information. Figure 5 shows the result of this filtering step.

Finally, in step (4), we build the concave hull con-
taining the unfiltered extremities of obstacle information.
Figure 6 illustrates the obstacle boundary inferred by our
obstacle detection scheme. Subsequent subsections provide
the detailed operation of each of the aforementioned steps.

4.3. Step 1: Identification of Noncommunicating Positions
(Obstacle Information). In this step, we use CE-OLSR sig-
nalling to detect positions pairs wherein two given neigh-
bours are unable to communicate together because of
obstructing obstacles standing between them.

When a node N detects that a given MPR node M has a
neighbour V inferred from the network cartography rather
than directly published in a TC message generated by M,
it adds the positions of M and V to the list of noncom-
municating positions pairs. This first step of our obstacle
detection scheme is integrated into CE-OLSR protocol as

Detected obstacle
Real obstacle

Figure 6: Step 4: concave hull construction (simulation time =
100 s).

MPR node
MPR-selector of S
Simple node

A
A

B

BC

C

D DE

E

F
F

A
C
E
F

G

G

S

TC_redundancy = 0 TC_redundancy = 2

Content of TCS

Figure 7: The content of TC message generated by S in the absence
of obstructing obstacle.

follows. We slightly adjust OLSR default behaviour. In OLSR,
when anMPRnode sends aTCmessage, by default, it declares
only its MPR-selector nodes, whereas, in our strategy MPR
nodes send the entire neighbours list. Note that sending the
entire neighbours list in TC messages does not violate the
OLSR specification [21]. Adopting such an adjustment on TC
messages allows the deduction of obstacle information. In
fact, if a given MPR (S) includes only its MPR-selectors in
its TC messages, namely, by putting TC redundacy equal to
zero, then the absence of a link state of a given neighbour (V)
does not necessarily mean that (V) is not a neighbour of (S).
For instance, in Figure 7, if we set TC redundancy parameter
to 0, (S) includes only itsMPR-selector nodes (A, C, E, and F)
in its TC (TCS). In such a case, the absence of links towards
the remaining neighbour nodes (B, D, and G) in TCS does
not mean that they are not neighbours of (S). We may only
conclude that (B), (D), and (G) nodes are not MPR-selectors
of (S).

However, when we impose sending the entire neighbour
list in TC messages (i.e., TC redundancy = 2), such a
deduction becomes possible. For example, in Figure 7 all
nodes within the transmission range of S are included in TCS
(see TC’s content when TC redundancy = 2). In Figure 8, the
direct communication between (S) and (B) (resp., (S) and
(C)) is obstructed by an obstacle. In such a case, (B) and
(C) are not declared in TCS even though they are in the
transmission range of S. Subsequently, each node receiving
TCS could deduce that there is an obstacle between (S) and
(B) (resp., (S) and (C)).



Mobile Information Systems 7

MPR node
MPR-selector of S

Simple node
Obstacle

A
A

B

C

D DE

E

F
F

A

E
F

G

G

S

TC_redundancy = 0 TC_redundancy = 2

Content of TCS

Figure 8:The content of TCmessage generated by S in the presence
of obstructing obstacle.

Upon receiving a TC message (originally generated by a
given MPR (S)), the receiver node (R) operates as follows.
Let 𝐿1 be the neighbours list published in the TC and 𝐿2
the neighbours list of (S) known through the network
cartography collected by the receiver node (R). For each node
(V) existing in 𝐿2 and not in 𝐿1, node (R) has to add a new
pair of positions (𝑃

𝑆
, 𝑃
𝑉
) to the list of noncommunicating

positions pairs. In order to sustain the robustness of our
scheme toward control packet losses, we build 𝐿2 using a
reduced transmission range smaller than the real transmission
range. Indeed, nodes newly entering the range of S and not
yet published in (S) TC messages could be wrongly seen
as obstructed by obstacles. We use a reduced transmission
range in order to minimize such a false obstacle informa-
tion detection. Using this scheme, each node progressively
deduces the positions pairs for which neighbouring nodes
are unable to communicate due to the obstructing obstacle.
Over time, each node will therefore collect a sufficient list of
noncommunicating positions pairs.

Before moving to the algorithmic details, let us focus on
the first step complexity or execution time. Let𝑁 be the num-
ber of nodes and let𝑀 be the average number of MPR nodes
(publishing TC messages). Let ObstacleDetectionPeriod be
the periodicity of our obstacle detection scheme andTcPeriod
be the periodicity of TC messages. In a time window equals
to ObstacleDetectionPeriod, each MPR node generates 𝑁TC
TC messages, where𝑁TC is given by

𝑁TC =
ObstacleDetectionPeriod

TcPeriod
. (1)

For each received TC message, we need to compare 𝐿1
to 𝐿2. Let 𝑃 be the maximum length of these lists. The worst
overall computation time of this step is then

𝑇 = Θ(𝑁TC ∗𝑀 ∗ 𝑃
2
) . (2)

As the length of each list and the number of MPRs are both
bounded by the number of nodes𝑁, the overall computation
time is then

𝑇 = O (𝑁TC ∗ 𝑁
3
) . (3)

The collected obstacle information (i.e., the noncom-
municating position pairs) should be mutually compared,
processed, and pruned so that they are brought closer to the
real obstacle boundaries (contour). This is achieved using a
straightforward pruning procedure detailed next.

4.4. Step 2: Pruning Procedure. The pruning procedure is
based on a simple complementarity concept that may exist
between two given collected obstacle pieces of information.
For instance, Figure 9(a) represents a case of complementary
obstacle information. In this situation, amore accurate obsta-
cle information pair could be inferred from the noncommu-
nicating positions pairs ([𝐶

𝐿
, 𝐶
𝑅
] and [𝐷

𝐿
, 𝐷
𝑅
]). In fact, from

the first obstacle information ([𝐶
𝐿
, 𝐶
𝑅
]), we deduce that the

obstacle resides somewhere between 𝐶
𝐿
and 𝐶

𝑅
. Similarly,

from the second piece of information ([𝐷
𝐿
, 𝐷
𝑅
]) we conclude

that there is an obstacle between𝐷
𝐿
and𝐷

𝑅
. Since, we assume

that there is only one convex obstacle in the network area,
it is necessarily located in the common area bounded by 𝐷

𝐿

and 𝐶
𝑅
. In this case, the left extremity of [𝐶

𝐿
, 𝐶
𝑅
] could

be pruned up to 𝐷󸀠
𝐿
(orthogonal projection of 𝐷

𝐿
on the

line carrying [𝐶
𝐿
, 𝐶
𝑅
]) and the right extremity of [𝐷

𝐿
, 𝐷
𝑅
]

could be pruned up to 𝐶󸀠
𝑅
(orthogonal projection of 𝐶

𝑅
on

the line carrying [𝐷
𝐿
, 𝐷
𝑅
]). That way, the original obstacle

information pair could be replaced by a more accurate one
([𝐷󸀠
𝐿
, 𝐶
𝑅
] and [𝐷

𝐿
, 𝐶
󸀠

𝑅
]); see Figure 9(b). Similarly, using the

defined complementary concept, in Figure 10(a), the obstacle
information represented by [𝐵

𝐿
, 𝐵
𝑅
] can be pruned up to

[𝐴
󸀠

𝐿
, 𝐴
󸀠

𝑅
] (see Figure 10(b)) as the extremities of [𝐴

𝐿
, 𝐴
𝑅
] are

closer to the obstacle boundaries than those of [𝐵
𝐿
, 𝐵
𝑅
].

For the sake of clarity, obstacle information carried by
vertical lines is ignored. Each collected obstacle information
[𝐴
𝐿
, 𝐴
𝑅
] is iteratively compared to the remaining obstacle

information. Let [𝐵
𝐿
, 𝐵
𝑅
] be the current obstacle information

with which we compare [𝐴
𝐿
, 𝐴
𝑅
]. 𝐴
𝐿
and 𝐵

𝐿
denote the left

extremities of these two obstacle pieces of information, while
𝐴
𝑅
and 𝐵

𝑅
denote their right extremities. If [𝐴

𝐿
, 𝐴
𝑅
] and

[𝐵
𝐿
, 𝐵
𝑅
] have similar directions, we try to prune their left

extremities (resp., right extremities) with each other. Let us
consider the left extremities of [𝐴

𝐿
, 𝐴
𝑅
] and [𝐵

𝐿
, 𝐵
𝑅
] (𝐴
𝐿
and

𝐵
𝐿
). Firstly, we test if we can prune [𝐵

𝐿
, 𝐵
𝑅
] using 𝐴

𝐿
. To do

so, the orthogonal projection 𝐴󸀠
𝐿
of 𝐴
𝐿
on the line carrying

[𝐵
𝐿
, 𝐵
𝑅
] has to be inside [𝐵

𝐿
, 𝐵
𝑅
] (see Figure 10(b)) and the

Euclidean distance between 𝐴
𝐿
and 𝐴󸀠

𝐿
has to be less than

𝑀𝑎𝑥𝑇𝑜𝑙𝑒𝑟𝑎𝑡𝑒𝑑𝐹𝑎𝑟𝑛𝑒𝑠𝑠. [𝐵
𝐿
, 𝐵
𝑅
] can pruned using 𝐴

𝐿
if this

condition is satisfied. So, the left extremity of [𝐵
𝐿
, 𝐵
𝑅
] (𝐵
𝐿
)

is pruned up to 𝐴󸀠
𝐿
(𝐵
𝐿
is replaced by 𝐴󸀠

𝐿
). If [𝐵

𝐿
, 𝐵
𝑅
] could

not be pruned using 𝐴
𝐿
, then we test if [𝐴

𝐿
, 𝐴
𝑅
] could be

pruned using 𝐵
𝐿
(using the same previous procedure applied

to [𝐵
𝐿
, 𝐵
𝑅
] and𝐴

𝐿
). Afterwards, the same pruning procedure

that we applied to [𝐴
𝐿
, 𝐴
𝑅
] and [𝐵

𝐿
, 𝐵
𝑅
] left extremities is

performed for their right extremities. Algorithm 1 describes
the pseudocode of the pruning step.

Let us investigate the pruning procedure execution time.
Let 𝑀 be the number of obstacle pieces of information in
the input list 𝐿. Let 𝑡 be the number of times the ProcessTC



8 Mobile Information Systems

CL CR

DL
DR

(a) Before pruning

CL CR

DL
DRC

󳰀

R

D
󳰀

L

(b) After pruning

Figure 9: A case of complementary obstacle information.

AL
AR

BL
BR

(a) Before pruning

AL
AR

BL
BRA

󳰀

RA
󳰀

L

(b) After pruning

Figure 10: Another case of complementary obstacle information.

algorithm is called during the execution which is bounded by
a constant according to the routing process. Then

𝑀 = Θ(𝑡 ∗ 𝑁
2
) . (4)

Since we need to investigate each couple of obstacle pieces
of information in the list 𝐿, the overall execution time of the
pruning procedure is then

𝑇 = Θ(𝑀
2
) = Θ (𝑁

4
) . (5)

4.5. Step 3: Filtering Procedure. After the execution of the
second step of the proposed obstacle detection procedure, the
accuracy of obstacle information is significantly improved.
Nevertheless, a given number of inaccurate or erroneous
obstacle pieces of information may persist either due to the
absence of pruning opportunity or to an erroneous obstacle
detection. Subsequently, we have to conceive a dedicated
filtering procedure permitting removing these inaccurate or
erroneous obstacle pieces of information.

The proposed filtering procedure is based on the fact that
inside and around the obstacle boundaries (see Figure 5(a))
the points representing the treated extremities of obsta-
cle information are denser than elsewhere. As a result,
we propose to eliminate a small percentage of obstacle
information extremities within the least dense regions,
namely, extremities beyond the contour of the obstacle.
This percentage is controlled by a parameter denoted as
𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑂𝑓𝐹𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝐼𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 which is set by the user.
As portrayed in Figure 5, such a simple heuristic succeeds in
eliminating obstacle information extremities that are far from
the real obstacle boundary.

The proposed filtering procedure works as follows. We
start by calculating the local density of each point (obstacle
information extremity). The local density of a given point
𝑃 corresponds to the number of points (neighbours) whose
distance to 𝑃 is less than 𝑅. Then we calculate the local
density histogram which will give useful statistical data
based on which we select the filtering threshold (localDen-
sityThreshold). Once we found the filtering threshold, we
retain only the points having a local density greater than this

filtering threshold. The complete pseudocode of the filtering
procedure is described in Algorithm 2.

Let us calculate the filtering procedure execution time.
Let 𝑀 be the length of the list containing the pruned
obstacle information. Recall that the length of this list is the
same as that of list 𝐿 of original collected obstacle pieces
of information before pruning. In the beginning of the fil-
tering procedure, the list of obstacle pieces of information
is converted into a list of points (LP) which is performed in
linear time as a function of 𝑀. Then, the LP list is used to
calculate the local density of each point. This latter step has
an execution time that is quadratic as a function of 𝑀. As
MaxLocalDensity is bounded by the total number of points,
then calculating the local density histogram is executed in
linear time of 𝑀. Subsequently, the overall time complexity
of the filtering procedure is

𝑇 = Θ((𝑀)
2
) . (6)

4.6. Step 4: Concave Hull Construction. After the execution
of the filtering step, we obtain a set of points (extremities
of obstacle information) close to the real obstacle boundary.
Then, we execute an algorithm to infer the contour of the
detected obstacle by encompassing the retained points. In
order to appropriately handle obstacles having small concav-
ities, we have willingly chosen to use a concave hull construc-
tion algorithm rather than a convex hull algorithm. Recall
that the proposed pruning scheme is primarily designed to
handle only convex obstacles. But, as we will subsequently
show, it can handle obstacles having small concavities. Con-
trary to convex hull, the construction of concave hull is not
obvious. This is mainly due to the fact that for a given scatter
plot there are usually a large number of possible concave
hulls. In this paper, we have chosen to use a concave hull
construction algorithm based on the one introduced in [27].
Themain idea of this algorithm consists in building a concave
hull starting from a convex hull obtained by any standard
algorithm (in this paper we use the Jarvis March algorithm
[28]). Then, for each edge of this hull, the algorithm decides
whether it should dig inside the encountered concavity or not
using a dedicated criterion called𝑁threshold set by the user and



Mobile Information Systems 9

Require:
𝐿: a list containing pairs of non communicating positions (obstacle information: OI).
MaxAngle: The maximum angle aperture tolerated between two given prunable OI.
MaxFarness: the maximum distance tolerated (i.e. to be prunable) between the projected OI extremity and its
orthogonal projection on the line carrying the other OI.

Ensure: 𝐿: list of non communicating positions with more accurate extremities.
(1) for (𝑖 = 1; 𝑖 ≤ 𝐿.size; 𝑖 = 𝑖 + 1) do
(2) for (𝑗 = 𝑖 + 1; 𝑗 ≤ 𝐿.size; 𝑗 = 𝑗 + 1) do
(3) if (𝐿[𝑖].hasSimilarDirection(𝐿[𝑗], MaxAngle) = false) then
(4) Continue ⊳ go to the next iteration
(5) end if
(6) Let𝐷

𝑖
the line passing through 𝐿[𝑖]

(7) Let𝐷
𝑗
the line passing through 𝐿[𝑗]

(8) Point 𝑝1 ← getOrthogonalProjection(𝐿[𝑖].LeftExtremity,𝐷
𝑗
)

(9) Point 𝑝2 ← getOrthogonalProjection(𝐿[𝑗].LeftExtremity,𝐷
𝑖
)

(10) 𝑑1 ← euclidianDistance(𝐿[𝑖].LeftExtremity, 𝑝1)
(11) 𝑑2 ← euclidianDistance(𝐿[𝑗].LeftExtremity, 𝑝2)
(12) Point 𝑝3 ← getOrthogonalProjection(𝐿[𝑖].RightExtremity,𝐷

𝑗
)

(13) Point 𝑝4 ← getOrthogonalProjection(𝐿[𝑗].RightExtremity,𝐷
𝑖
)

(14) 𝑑3 ← euclidianDistance(𝐿[𝑖].RightExtremity, 𝑝3)
(15) 𝑑4 ← euclidianDistance(𝐿[𝑗].RightExtremity, 𝑝4)
(16) if (𝑝1.isInsideSegment(𝐿[𝑗]) and 𝑑1 ≤MaxFarness) then
(17) 𝐿[𝑗].LeftExtremity ← 𝑝1;
(18) else if (𝑝2.isInsideSegment(𝐿[𝑖]) and 𝑑2 ≤MaxFarness) then
(19) 𝐿[𝑖].LeftExtremity ← 𝑝2;
(20) end if
(21) if (𝑝3.isInsideSegment(𝐿[𝑗]) and 𝑑3 ≤MaxFarness) then
(22) 𝐿[𝑗].RightExtremity ← 𝑝3;
(23) else if (𝑝4.isInsideSegment(𝐿[𝑖]) and 𝑑4 ≤MaxFarness) then
(24) 𝐿[𝑖].RightExtremity ← 𝑝4;
(25) end if
(26) end for
(27) end for
(28) return 𝐿

Algorithm 1: Pruning procedure.

which limits the nonsmoothness (of obstacle border) caused
by the digging procedure.

The complete pseudocode of the concave hull construc-
tion step is detailed in Algorithm 3. In this pseudocode, we
use a function called FindNearestInnerPointToEdge whose
algorithm is described in Algorithm 4.

Now, we turn to calculate the execution time of the con-
cave hull construction procedure. Let 𝑀 be the number of
the extremities of obstacle information retained after the
filtering step.The calculation of the concave hull is initialized
by a computation of the convex hull using the well-known
Jarvis March algorithm. The complexity of the Jarvis March
algorithm is equal toΘ(𝑀∗ℎ)whereℎ is the number of points
(vertices) forming the convex hull [29]. In the worst case, the
complexity of Jarvis March’s algorithm is equal to Θ(𝑀2

).
Then, the concave hull is iteratively refined using a

digging criterion as follows. For each edge, we try to find the
nearest inner point (𝑃) to it. 𝑃 is the nearest point of 𝐺 to
𝐸 such that none of the neighbouring edges of 𝐸 is closer
to 𝑃 than 𝐸. If 𝑃 exists, we test whether the digging crite-
rion ((𝐿/decisionDistance) > 𝑁threshold) is satisfied or not.

If verified, the current edge is exploded into two new edges
(formed by the extremities of the current edge and the point
𝑃). In the worst case, we can dig up to𝑀 times into the con-
cave hull.

On the other hand, the computational time of
Algorithm 4 which permits to find the nearest inner
point 𝑃 (if it exists) is Θ(𝑀). Subsequently, the overall exe-
cution time of the concave hull construction procedure is
then

𝑇 = Θ(𝑀
2
) . (7)

5. Results and Discussion

In this section, we start by describing the different parameters
used in conducted simulations. Then, we define various
evaluation metrics required to assess the performance of
our obstacle detection scheme. After that, we overview
the scheme used to select the best parameters values that
maximize the performance of our obstacle detection scheme.
Finally, we detail and then discuss the results of our simula-
tion scenarios.



10 Mobile Information Systems

Require:
PrunedList: a list of obstacle information (OI) resulting fom the pruning step.
𝑅: Local density radius.
percentageOfObstInfToBeFiltered: percentage of OI to be filtered out.

Ensure: FilteredList: a list containing the kept points (positions).
⊳ convert the list of position pairs (OI) to a list of positions (points)

(1) LP: List ⊳ list of points
(2) for each obstacleInformation 𝑂 in PrunedList do
(3) LP.Add(𝑂.LeftExtremity)
(4) LP.Add(𝑂.RightExtremity)
(5) end for

⊳ For each point we calculate its local density (i.e. the number of points (neighbours) whose distance
with the current point is less than 𝑅

(6) nbOfNeighbours[LP.size] ⊳ array in which we save the local density of each point
(7) for (𝑖 = 1; 𝑖 ≤ LP.size; 𝑖 = 𝑖 + 1) do
(8) nbOfNeighbours[𝑖]← 0
(9) end for
(10) maxDensity← 0
(11) for (𝑖 = 1; 𝑖 ≤ LP.size; 𝑖 = 𝑖 + 1) do
(12) for (𝑗 = 1; 𝑗 ≤ LP.size; 𝑗 = 𝑗 + 1) do
(13) if (euclidianDistance(LP[𝑖], LP[𝑗]) < 𝑅) then
(14) nbOfNeighbours[𝑖]++
(15) end if
(16) end for
(17) if (nbOfNeighbours[𝑖] >maxDensity) then
(18) maxDensity← nbOfNeighbours[𝑖]
(19) end if
(20) end for
(21) locDensHist[maxDensity + 1] ⊳ an array in which we will calculate the local density histogram
(22) for (𝑖 = 1; 𝑖 ≤ locDensHist.size; 𝑖 = 𝑖 + 1) do
(23) locDensHist[𝑖]← 0
(24) end for
(25) for (𝑖 = 1; 𝑖 ≤ LP.size; 𝑖 = 𝑖 + 1) do
(26) locDensHist[nbOfNeighbours[𝑖]]++
(27) end for
(28) nbOfObstacleInformationToBeFiltered← LP.size/100 ∗ percentageOfObstInfToBeFiltered
(29) sumOfObstInf← 0
(30) localDensityThreshold← positiveInfinity
(31) for (𝑖 = 1; 𝑖 ≤ locDensHist.size; 𝑖 = 𝑖 + 1) do
(32) sumOfObstInf += localDensityHistogram[𝑖]
(33) if (sumOfObstInf > nbOfObstacleInformationToBeFiltered) then
(34) localDensityThreshold← 𝑖

(35) break ⊳ leave the loop
(36) end if
(37) end for
(38) FilteredList: List
(39) for (𝑖 = 1; 𝑖 ≤ LP.size; 𝑖 = 𝑖 + 1) do
(40) if (nbOfNeighbours[𝑖] ≥ localDensityThreshold) then
(41) FilteredList.Add(LP[𝑖])
(42) end if
(43) end for
(45) return FilteredList

Algorithm 2: Filtering procedure.

5.1. Simulation Setup. We develop our proposed obstacle
detection scheme under INETMANET Framework within
the OMNeT++ network simulator (Version 4.1). The sim-
ulated MANET area is equal to 500m by 500m. In this
network, 60 mobile nodes are initially scattered.These nodes

follow the RandomWay Pointmobilitymodel [30] with a null
wait time, an update interval of 0.1 s, and a constant speed.
The node transmission range is fixed to 200m. The network
capacity is set to 54Mbps. CE-OLSR protocol parameters are
set as follows. TC redundancy is set to 2, which means that



Mobile Information Systems 11

Require:
𝐺: list of points retained after the filtering step.
𝑁threshold: the threshold based on which we decided to dig or not into the encountered concavities.

Ensure: ConcaveHullEdges: a List containing the edges forming the built concave hull of 𝐺.
(1) ConvexHullPoints←BuildConvexHull(𝐺) ⊳ build the points list forming the convex hull that

encompasses 𝐺 scatterplot using the well known Jarvis March algorithm
(2) ConvexHullEdges: list
(3) for (𝑖 = 1; 𝑖 ≤ ConvexHullPoints.size; 𝑖 = 𝑖 + 1) do ⊳ convert ConvexHullPoints to a list of edges
(4) 𝑗 = (𝑖 + 1)mod ConvexHullPoints.size
(5) Point 𝑐1 ← env𝐶[𝑖]
(6) Point 𝑐2 ← env𝐶[𝑗]
(7) Edge 𝑒 (𝑐1, 𝑐2)
(8) ConvexHullEdges.pushBack(𝑒)
(9) end for
(10) ConcaveHullEdges←ConvexHullEdges
(11) 𝐺 ← 𝐺 − ConvexHullPoints
(12) for each edge 𝐸 in ConvexHullEdges do
(13) 𝑃 ←FindNearestInnerPointToEdge(𝐺, 𝐸)

⊳ 𝑃 is the nearest point of 𝐺 to 𝐸 such as neither of neighbour edges of 𝐸 is closer to 𝑃 than 𝐸
(14) if (𝑃 exists) then
(15) 𝐿 ← length of the edge 𝐸 ⊳ 𝐿 = euclidianDistance(𝐸.ext1, 𝐸.ext2)
(16) decisionDistance← distanceToEdge(𝑃, 𝐸)
(17) if ((𝐿/decisionDistance) > 𝑁threshold) then
(18) insert new edges 𝐸1(𝐸.ext1, 𝑃) and 𝐸2(𝐸.ext2, 𝑃) into the tail of ConcaveHullEdges
(19) delete the edge 𝐸 from the ConcaveHullEdges
(20) 𝐺 ← 𝐺 − 𝑃 ⊳ delete 𝑃 from 𝐺

(21) end if
(22) end if
(23) end for
(24) Return ConcaveHullEdges

Algorithm 3: Concave hull construction step.

Require:
𝐺: List of points.
𝐸: edge for which we try to find the nearest inner point.

Ensure: Nearest inner point to 𝐸.
(1) function FindNearestInnerPointToEdge(𝐺, 𝐸)
(2) minDistance← positiveInfinity
(3) nearestPoint←Null
(4) for each point 𝑃 in 𝐺 do
(5) previousEdge← 𝐸.previousEdge
(6) nextEdge← 𝐸.nextEdge
(7) distToPreviousEdge← distanceToEdge(previousEdge, 𝑃)
(8) distToNextEdge← distanceToEdge(nextEdge, 𝑃)
(9) distTo𝐸 ← distanceToEdge(𝐸, 𝑃)
(10) if ((distTo𝐸 <minDistance) and (distTo𝐸 < distToPreviousEdge) and (distTo𝐸 < distToNextEdge)) then
(11) minDistance← distTo𝐸
(12) nearestPoint← 𝑃

(13) end if
(14) end for
(15) return nearestPoint
(16) end function

Algorithm 4: FindNearestInnerPointToEdge function.



12 Mobile Information Systems

(a) Convex obstacle (b) Concave obstacle

Figure 11: Two MANETs with an obstacle in the middle.

MPR nodes publish the entire list of their neighbours in their
TC messages. The TC message periodicity is set to 8 s and
that of Hello messages is equal to 2 s.The OLSR sending jitter
is randomly picked from the [0, 0.5] interval. The CE-OLSR
stability distance parameter is fixed to 50m.

The performance of obstacle detection is assessed using
dedicatedmetrics (precision ratio and coverage ratio) that we
detail in the following section. The unique parameter which
is not subject to parameter optimization is the reduced range
parameter. Recall that this reduced range is used to build the
𝐿
2
list in the first step of our obstacle detection scheme.Omit-

ting this parameter from optimization procedure returns to
the fact that it is mainly related to nodes’ speed. We willingly
set the reduced range value to 150m; simulation results
show that such a value is suitable for node speeds ranging
up to 10m/s. Further details about parameter selection and
optimization will be later detailed in Section 5.2.4.

During the conducted simulations, each node runs the
obstacle detection procedure every 50 s in order to assess
the time effect on our scheme. But, in practice, the period-
icity of obstacle detection could be much more relaxed to
preserve network resources. Finally, we consider a network
containing only one static obstacle (convex or concave) as
portrayed in Figures 11(a) and 11(b). For each obstacle type
(convex/concave), we consider 3 different sizes that we name
a large, a medium, and a small obstacle. For the convex
obstacle case, the bounding boxes of the 3 considered sizes
are as follows: 120m by 120m, 60m by 60m, and 30m by
30m. For the concave obstacle case, we consider also 3 sizes
whose bounding boxes are as follows: 216m by 180m, 108m
by 90m, and 54m by 45m.

5.2. Evaluation Metrics. The ultimate goal of our obstacle
detection scheme consists in inferring the obstacle bound-
aries solely using CE-OLSR signalling. To the best of our
knowledge, there is no other research work that attempted
to infer the obstructing obstacle boundaries using basic
routing messages or another usual signalling of MANETs.
For that reason we self assess our obstacle detection scheme
using dedicated metrics. The first metric called coverage
ratio reflects the completeness of the obstacle detection
process. The second metric named precision ratio reveals the
closeness of the obstacle detection output to the real obstacle
boundaries. We also use the route validity metric to assess
the impact of our obstacle detection strategy on the overall
performance of CE-OLSR.

5.2.1. Coverage Ratio. The coverage ratio metric highlights
the completeness of the obstacle detection. It measures the
ability of our obstacle detection approach to cover the real
obstacle area. According to (8), the coverage ratio is defined
as the ratio of the correctly detected obstacle area (CDOA) to
the real obstacle area (ROA):

Coverage Ratio = CDOA
ROA

. (8)

Figure 12 schematically depicts the different areas used
in our proposed metrics. In the left part of Figure 12(a), we
portray a case of nonoptimal parameters values (MaxToler-
atedFarness = 40m, MaxAngleAperture = 10, LocalDensi-
tyRadius = 6m, 𝑁threshold = 6, and PercentageOfFilteredIn-
formation = 6%) in order to highlight the different regions
accounted in our metrics. In this figure, ROA relates to the
network area in which the real obstacle resides. The CDOA
corresponds to the common area (i.e., the intersection)
between the total area detected as obstacle (TADO) and the
real obstacle area (ROA).When the real obstacle area is totally
covered by the TADO, the coverage ratio is equal to 1.

5.2.2. Precision Ratio. The precision ratio quantifies the pre-
cision of an obstacle detection strategy. As it is shown in (9),
the precision ratio is calculated by subtracting the detection
error from 1.The detection error is quantified by dividing the
sumof the detected area outside the obstacle (DAOO) and the
nondetected area of the real obstacle (NDA) by the union of
the areas of TADO and ROA.The precision ratio ranges from
0 to 1. Values close to 0 reflect a weak obstacle detection, while
values close to 1 mean a good obstacle detection:

Precision Ratio = 1− DAOO + NDA
∪ (TADO,ROA)

. (9)

5.2.3. Routes Validity. In addition to the aforementioned
metrics (precision and coverage ratio), we define a third
metric that measures the impact of our obstacle detection
scheme on the performance of CE-OLSR routing decisions.
The performance of routing decisions is assessed using the
routes validity metric which measures the consistency of
the routing table of a given node compared to the real
network topology. Note that, in both OLSR and CE-OLSR,
each routing table entry points only to the next gateway that
leads to the ultimate destination. So, to know the whole route
toward a given destination, we have to warp through the
routing tables of intermediate gateways until reaching the
destination. A given route is termed valid if it does exist in
the real network topology (as maintained by the simulator).
The routes that aremarked as unreachable in the routing table
of a given node are also termed valid if they do not exist in
the real network topology. In the remaining cases, the route
is considered invalid. The validity of the routes of a given
node is defined as the percentage of valid routes retained in
its routing table.

5.2.4. Selection of Obstacle Detection Parameters. In our
obstacle detection scheme, we use several parameters that



Mobile Information Systems 13

ROA: real obstacle area
TADO: total area detected as obstacle
CDOA: correctly detected obstacle area
NDA: nondetected area
DAOO: detected area outside obstacle

(a)

ROA: real obstacle area
TADO: total area detected as obstacle
CDOA: correctly detected obstacle area
NDA: nondetected area
DAOO: detected area outside obstacle

(b)

Figure 12: Different areas considered in evaluationmetrics (large hexagone, speed = 5m/s): (a) simulation time = 100 s, MaxToleratedFarness
= 40m,MaxAngleAperture = 10, LocalDensityRadius = 6m,𝑁threshold = 6, and PercentageOfFilteredInformation = 6%; (b) simulation time =
1000 s, MaxToleratedFarness = 5m, MaxAngleAperture = 5, LocalDensityRadius = 9m,𝑁threshold = 6, and PercentageOfFilteredInformation
= 6%.

Require: 𝐿: a list containing pairs of non communicating positions.
Ensure: List of obstacle detection parameters values leading to the best performance.
(1) CN← 0 ⊳ CN: CombinationNumber
(2) 𝑇 ← 800 ⊳ 𝑇: Time (seconds)
(3) for each PercentageOfFilteredInformation (POI) from 2 to 6 step 2 do
(4) for eachMaxAngleAperture (Ang) from 5 to 20 step 5 do
(5) for each LocalDensityRadius (𝑅) from 3 to 9 step 3 do
(6) for eachMaxToleratedFarness (𝐹) from 5 to 45 step 5 do
(7) for each 𝑁threshold from 4 to 10 step 2 do
(8) CN←CN + 1
(9) for each run from 1 to 35 step 1 do
(10) detectedObstcle← detectObstcle(POI, Ang, 𝑅, 𝐹,𝑁threshold, 𝑇)
(11) Precision[run]← calculatePrecision(detectedObstcle, realObstcle)
(12) Coverage[run]← calculateCoverage(detectedObstcle, realObstcle)
(13) end for
(14) AveragePrecision← average(Precision{1, ⋅ ⋅ ⋅ , 35})
(15) AverageCoverage← average(Coverage{1, ⋅ ⋅ ⋅ , 35})
(16) optimizationCriteria[CN]← (AveragePrecision + AverageCoverage)/2
(17) end for
(18) end for
(19) end for
(20) end for
(21) end for

bestPerformanceCombination← indexOf(maximum (optimizationCriteria{1, . . . , 1296}))
(22) return Parameters corresponding to bestPerformanceCombination

Algorithm 5: Selection procedure.

control the operation of the pruning, the filtering, and the
concave hull construction procedures. For each parameter,
we have to find the value which optimizes the performance
of our obstacle detection scheme.

To perform this selection/optimization procedure, we
need a ground truth on which we measure the quality of
obstacle detection. In this work, we use the conceivedmetrics
(precision/coverage ratios) as a ground truth on which we
perform parameter selection procedure. We iteratively test
several combinations of all parameters values.Then we retain

the combination that leads to the best performance in terms
of the average of precision and coverage ratio. Overall, we
tested 1296 combinations for each obstacle size, each node
speed, and each obstacle type (convex/concave).

The pseudocode of the parameter selection procedure is
depicted in Algorithm 5. Table 1 summarises the values of
the different parameters that lead to the best performance in
every case considered in this paper. We note that the follow-
ing parameters combination operates well in several obstacle
sizes and nodes speeds: “MaxToleratedFarness” = 45m,



14 Mobile Information Systems

Table 1: Obstacle detection parameters leading to the best performance.

Obstacle type Obstacle size Speed 𝑅 MaxAngleAperture MaxToleratedFarness PercentageOfFilteredInformation 𝑁threshold

Hexagone Small 5 6 5 45 6 8
Hexagone Medium 2 6 5 45 6 8
Hexagone Medium 5 6 5 45 6 6
Hexagone Medium 10 6 5 45 6 6
Hexagone Large 5 9 5 5 6 6
Concave Medium 5 9 5 5 2 8

“MaxAngleAperture” = 5 degrees, “LocalDensityRadius”
(𝑅) = 6m, “PercentageOfFilteredInformation” = 6%, and
“𝑁threshold” = 8.

5.3. Simulation Results. Our simulation scenarios target the
following:

(i) investigating the ability of our obstacle detection
scheme to detect either convex obstacles or obstacles
having slight concavities;

(ii) studying the impact of nodes velocity as well as
obstacle size on the accuracy of the obstacle detection;

(iii) assessing the impact of our obstacle detection scheme
on the routes validity of CE-OLSR;

(iv) evaluating the storage complexity of our proposed
scheme.

5.3.1. Obstacle Boundaries Detection Capabilities. In the first
simulation set, we assess the ability of our obstacle detection
scheme to detect convex obstacles and obstacles having slight
concavities. Recall that our obstacle detection scheme is not
conceived in the first place to handle concave obstacles.
However, we will show that our scheme is able to cope with
obstacles having slight concavities.

Figure 13 (resp., Figure 14) portrays the evolution of the
coverage and precision ratios over time in a MANET that
contains a single convex (resp., concave) obstacle having a
medium size which is situated in the center of the network.
The node speed here is set to 5m/s. Obtained results show
that both of the coverage ratio and the precision ratio metrics
progressively increase over time. But the coverage ratio
metric converges faster than the precision ratio.

According to Figures 13 and 14, for both obstacle types
(convex/concave), we reach a coverage ratio greater than or
equal to 0.98 in just 50 seconds. Note that, for a convex
obstacle, the coverage ratio slightly drops (beyond 50 s) to
0.95.This slight decrease is coupledwith a noticeable increase
of the precision ratio which reaches 0.8 in just 200 s. We also
notice that the precision ratio is better and it converges faster
in the case of a convex obstacle. Indeed, as depicted in Figures
13 and 14, the stationary regime of both metrics is reached
in just 400 s in the case of convex obstacle (precision ratio
= 0.85). But in the case of concave obstacle, it is required
to run up to 900 s to reach this stationary regime (precision
ratio = 0.71). Figure 15 shows the result of our single obstacle

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Pr
ec

isi
on

/c
ov

er
ag

e r
at

io
s

Time (s)

Coverage ratio
Precision ratio

Figure 13: Coverage and precision ratios: medium convex obstacle,
speed = 5m/s.

Coverage ratio
Precision ratio

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Pr
ec

isi
on

/c
ov

er
ag

e r
at

io
s

Time (s)

Figure 14: Coverage and precision ratios: medium concave obstacle,
speed = 5m/s.

detection schemeobtained for a simulation time equal to 1000
seconds.

Notice that our obstacle detection scheme provides an
excellent coverage ratio with an adequate precision ratio.



Mobile Information Systems 15

Detected obstacle
Real obstacle

Detected obstacle
Real obstacle

(b) Convex obstacle(a) Concave obstacle

Figure 15: Obstacle detection result: nodes speed = 5m/s, simula-
tion time = 1000 s, and obstacle size = medium.

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

C
ov

er
ag

e r
at

io

Time (s)

Speed = 2m/s
Speed = 5m/s
Speed = 10m/s

Figure 16: Speed effect on coverage ratio: medium convex obstacle.

Recall that our objective is to avoid the hard assumption
considered in our previously conceived CE-OLSR protocol
with obstacle awareness [6]. In such a protocol, every node
is supposed to be aware of the map of obstacles that reside in
the network area. Our proposed obstacle detection scheme
shows a slight overestimation of the obstacle area but this is
not critical and could only further shield the obstacle. On the
contrary, underestimating the obstacle area is critical as the
routing protocol may select links that cross the obstructing
obstacle.

5.3.2. Node Velocity Impact. Wenow investigate the impact of
the nodes speed on the precision and coverage ratio metrics.
According to Figure 16, the coverage ratio metric is affected
by the decrease in nodes speed. Such behaviour could be
explained by the fact that for low speeds the probability to
detect noncommunicating positions that are closer to the
obstacle boundary is higher. So, after running the concave
hull construction step, the risk of digging into the real
obstacle area is higher than in the case of high speeds. In
addition, the periodicity of Hello messages which is set to 2 s
participates in delaying the perception of the nodes locations

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Pr
ec

isi
on

 ra
tio

Time (s)

Speed = 2m/s
Speed = 5m/s
Speed = 10m/s

Figure 17: Speed effect on precision ratio: medium convex obstacle.

changes. Subsequently, the higher the speed is, the more our
obstacle detection scheme is subject to overestimating the
obstacle area. This observation is confirmed by the results
obtained in Figure 17. Indeed, the precision ratio metric
degrades with the increase in nodes speed. For a low speed of
2m/s, the precision ratio metric increases progressively over
time up to reaching 0.85 within 1000 s simulation time. But
for a high speed equal to 10m/s the precision ratio hardly
reaches 0.71 for the same simulation time (1000 s). For a
medium speed of 5m/s, we obtain an average performance
in terms of the precision ratio similar to that of of 2m/s.

5.3.3. Obstacle Size Impact. In the third simulation set, we
study the impact of obstacle size on the considered evaluation
metrics. Figure 18 shows that our obstacle detection scheme
is able to reach a coverage ratio greater than 0.95 in just
50 s, for all considered convex obstacle sizes. For large
convex obstacle, we obtain a high coverage (>0.99) ratio
during almost the whole simulation time that follows the
convergence time. Figure 19 shows that obstacle size impacts
the precision ratio metric. Indeed, for large and medium
obstacle sizes, we obtain a precision ratio greater than 0.83.
But for small obstacles the precision is just about 0.74. In
addition, the convergence time of the precision ratio metric
in the case of small and medium obstacles is better than that
of a large obstacle. For a small andmedium obstacle, we reach
the steady state in about 400 s but for a large obstacle the
precision continues increasing up to the end of the simulation
time.

5.3.4. Impact on Route Validity. In the fourth simulation set,
we assess the after effect of our obstacle detection scheme
on the routes validity of CE-OLSR. Figure 20 portrays the
performance of CE-OLSR with obstacle detection against the
performance of CE-OLSR with and without obstacle aware-
ness. In these simulations, obstacle detection is performed by



16 Mobile Information Systems

0

0.2

0.4

0.6

0.8

1

 1.2

0 200 400 600 800 1000

C
ov

er
ag

e r
at

io

Time (s)

Large obstacle
Medium obstacle
Small obstacle

Figure 18: Effect of obstacle size on coverage ratio: convex obstacle,
speed = 5m/s.

Large obstacle
Medium obstacle
Small obstacle

0

0.2

0.4

0.6

0.8

1

1.2

0 200 400 600 800 1000

Pr
ec

isi
on

 ra
tio

Time (s)

Figure 19: Effect of obstacle size on precision ratio: convex obstacle,
speed = 5m/s.

each node every 20 s. We willingly reduced the periodicity
of obstacle detection to see in a timely manner the impact
of obstacle detection on the routes validity. As we men-
tioned earlier, in practice, obstacle detection period could
be increased to preserve nodes resources. Note that each
point of Figure 20 denotes the average validity of the routes
calculated by all nodes of the MANET at the corresponding
simulation instants. As we can see in Figure 20, the routes
validity of CE-OLSR without awareness about the obstacle
map is highly affected compared to CE-OLSR with obstacle
awareness. In CE-OLSR with obstacle awareness, the routes
validity ranges between 96% and 100% almost all the time.
In CE-OLSR without prior knowledge of the obstacle map,

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160 180

Ro
ut

es
 v

al
id

ity

Time (s)

CE-OLSR without obstacle awareness
CE-OLSR with obstacle awareness
CE-OLSR with obstacle detection

Figure 20: After effect of obstacle detection on the routability of
CE-OLSR: medium convex obstacle, speed = 5m/s.

routes validity drops down to 74% many times during the
simulation. When we apply our obstacle detection scheme,
the validity of the routes achieved by CE-OLSR becomes
similar to that of CE-OLSR with obstacle awareness. Notice
that for a simulation time less than 60 s mobile nodes do
not have sufficient obstacle information to perform obstacle
detection. In some curve plots (time = 140 s, 160 s, and 180 s),
the routes validity achieved by our newly conceived protocol
(CE-OLSR with obstacle detection) is even better than that
of CE-OLSR with obstacle awareness. This is essentially due
to the slight overestimation of the obstacle area which avoids
using weak links (i.e., links that pass near the obstacle area).
Indeed, such weak links may be broken rapidly due to nodes
mobility.

5.3.5. Storage Complexity Impact. Now we turn to investigate
the storage complexity of our proposed obstacle detection
scheme. Even though our obstacle detection scheme does
not add any signalling overhead to the underlying protocol,
its operation requires some additional storage capabilities
in every node participating in the MANET. In fact, at the
reception of a TCmessage, each node may infer new obstacle
information that it has to be stored locally for a later usage.
The list of inferred obstacle pieces of information grows over
time. Each piece of information is composed of a pair of
node positions. As such, each obstacle piece of information
requires 4 times the size required to store an integer. Note
that the position of nodes is by default double in OMNET++.
But, for our usage, we keep only the integer part. Figures
21 and 22 portray the effect of speed (resp., obstacle size)
on the number of collected obstacle pieces of information.
Figure 21 shows that for a low speed of 2m/s nodes collect
more obstacle information than at higher speeds. This is an
expected result because, for such a low speed, nodes spend
more time in the vicinity of the obstacle. Subsequently, it
is more likely to discover new obstacle information than



Mobile Information Systems 17

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000N
um

be
r o

f c
ol

le
ct

ed
 o

bs
ta

cle
 p

ie
ce

s o
f i

nf
or

m
at

io
n

Time (s)

Nodes speed = 2m/s
Nodes speed = 5m/s
Nodes speed = 10m/s

Figure 21: Nodes speed effect on the number of collected obstacle
pieces of information: medium convex obstacle.

0

1000

2000

3000

4000

5000

0 200 400 600 800 1000N
um

be
r o

f c
ol

le
ct

ed
 o

bs
ta

cle
 p

ie
ce

s o
f i

nf
or

m
at

io
n

Time (s)

Small hexagone
Medium hexagone
Large hexagone

Figure 22: Obstacle size effect on the number of collected obstacle
pieces of information: medium convex obstacle, nodes speed =
5m/s.

higher speeds. Figure 22 shows that for a medium obstacle
nodes collect more obstacle information than the case of
large or small convex obstacle. This behaviour is essentially
due to the transmission range (150m) which is close to
the obstacle diameter (bounding box = 120m × 120m).
It follows that the likelihood of detection of new obstacle
information decreases, whereas in the case of a small obstacle
the decrease of obstacle size lowers the likelihood of finding
noncommunicating positions pairs.

6. Conclusions

The signalling of CE-OLSR, which is the same as that of
OLSR, is used to automatically and dynamically infer the
contour of static obstacles standing within the network.
We developed an autonomous obstacle detection scheme to
delimit static convex obstacles. Simulation results showed
that such a scheme is also capable of delimiting obstacles with
slight concavities.

We defined dedicated metrics, namely, the coverage ratio
and the precision ratio, respectively, measuring the ability
of our obstacle detection scheme to cover the real obstacle
area and the precision of such a detection. Obtained results
showed the effectiveness of our proposal as it nicely covers
the entire obstacle area for all considered sizes and types (con-
vex/concave) of obstacles regardless of node speeds.The pro-
posed detection scheme provides an adequate precision ratio
sufficient to efficiently fulfill our objective of autonomously
avoiding broken links caused by the obstructing obstacle
without “a priori” knowledge of the obstacle map.

Our proposed detection scheme is then integrated into
CE-OLSR to allow the automatic detection and avoidance
of obstacles that might exist in the network. Simulation
results showed that CE-OLSR augmented with our proposed
detection scheme provides the exact same route validity as
the CE-OLSR-OA which has the a priori knowledge of the
obstacle map.

Further investigations are underway for detecting multi-
ple mobile obstacles and general concave obstacle contours.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors extend their appreciation to the Deanship of
Scientific Research at King Saud University for funding this
work through research group no. RGP-1436-002.

References

[1] M. Conti and S. Giordano, Multihop Ad Hoc Networking: The
Evolutionary Path, John Wiley & Sons, 2013.

[2] M. A. Abid and A. Belghith, “Period size self tuning to enhance
routing in MANETs,” International Journal of Business Data
Communications and Networking, vol. 6, no. 4, pp. 21–37, 2010.

[3] M. Conti and S. Giordano, “Mobile ad hoc networking: mile-
stones, challenges, and new research directions,” IEEE Commu-
nications Magazine, vol. 52, no. 1, pp. 85–96, 2014.

[4] A. Belghith and M. A. Abid, “Autonomic self tunable proactive
routing in mobile ad hoc networks,” in Proceedings of the 5th
IEEE International Conference on Wireless and Mobile Comput-
ing Networking and Communication (WiMob ’09), pp. 276–281,
October 2009.

[5] A. Goldsmith, M. Effros, R. Koetter, M. Médard, A. Ozdaglar,
and L. Zheng, “Beyond Shannon: the quest for fundamental
performance limits of wireless ad hoc networks,” IEEE Commu-
nications Magazine, vol. 49, no. 5, pp. 195–205, 2011.



18 Mobile Information Systems

[6] A. Belghith and M. Belhassen, “CE-OLSR: a cartography and
stability enhanced OLSR for dynamicMANETs with obstacles,”
KSII Transactions on Internet and Information Systems, vol. 6,
no. 1, pp. 290–306, 2012.

[7] Y. Xiang, Z. Liu, R. Liu, W. Sun, andW. Wang, “Geosvr: a map-
based stateless vanet routing,” Ad Hoc Networks, vol. 11, no. 7,
pp. 2125–2135, 2013.

[8] M. Belhassen, A. Belghith, and M. A. Abid, “Performance eval-
uation of a cartography enhanced OLSR for mobile multi-hop
adhoc networks,” inProceedings of theWireless Advanced (WiAd
’11), pp. 149–155, IEEE, London, UK, June 2011.

[9] W.-T. Wang and K.-F. Ssu, “Obstacle detection and estimation
in wireless sensor networks,” Computer Networks, vol. 57, no. 4,
pp. 858–868, 2013.

[10] L. Moraru, P. Leone, S. Nikoletseas, and J. D. P. Rolim, “Near
optimal geographic routing with obstacle avoidance in wireless
sensor networks by fast-converging trust-based algorithms,” in
Proceedings of the 3rd ACM Workshop on QoS and Security for
Wireless and Mobile Networks (Q2SWinet ’07), pp. 31–38, ACM,
October 2007.

[11] D. S. J. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” in Pro-
ceedings of the 9th Annual International Conference on Mobile
Computing and Networking (MobiCom ’03), pp. 134–146, ACM,
New York, NY, USA, September 2003.

[12] B. Karp andH. T. Kung, “GPSR: greedy perimeter stateless rout-
ing for wireless networks,” in Proceedings of the 6th Annual
ACM/IEEE International Conference on Mobile Computing and
Networking (MobiCom ’00), pp. 243–254, Boston, Mass, USA,
August 2000.

[13] P. Bose, P. Morin, I. Stojmenović, and J. Urrutia, “Routing with
guaranteed delivery in ad hoc wireless networks,” Wireless
Networks, vol. 7, no. 6, pp. 609–616, 2001.

[14] L. Moraru, P. Leone, S. Nikoletseas, and J. Rolim, “Geographic
routing with early obstacles detection and avoidance in dense
wireless sensor networks,” in Proceedings of the 7th International
Conference on Ad-Hoc,Mobile andWireless Networks (ADHOC-
NOW ’08), pp. 148–161, Springer, Sophia-Antipolis, France,
September 2008.

[15] A. Koutsopoulos, S. Nikoletseas, and J. D. P. Rolim, “Near-opti-
mal data propagation by efficiently advertising obstacle bound-
aries,” in Proceedings of the 6th ACM International Symposium
on Performance Evaluation of Wireless Ad-Hoc, Sensor, and
UbiquitousNetworks (PE-WASUN ’09), pp. 15–22, ACM,Canary
Islands, Spain, October 2009.

[16] F. Huc, A. Jarry, P. Leone, L. Moraru, S. Nikoletseas, and J.
Rolim, “Early obstacle detection and avoidance for all to all tra-
ffic pattern in wireless sensor networks,” in Algorithmic Aspects
of Wireless Sensor Networks, S. Dolev, Ed., vol. 5804 of Lecture
Notes in Computer Science, pp. 102–115, Springer, Berlin, Ger-
many, 2009.

[17] F. Huc, A. Jarry, P. Leone, and J. Rolim, “Brief announcement:
routing with obstacle avoidance mechanism with constant
approximation ratio,” in Proceedings of the 29th ACM SIGACT-
SIGOPS Symposium on Principles of Distributed Computing
(PODC ’10), pp. 116–117, ACM, New York, NY, USA, July 2010.

[18] B. C. Seet, G. Liu, B.-S. Lee, C.-H. Foh, K.-J. Wong, and K.-K.
Lee, “A-STAR: a mobile ad hoc routing strategy for metropolis
vehicular communications,” in Proceedings of the 3rd Interna-
tional IFIP-TC6 Networking Conference (Networking ’04), pp.
989–999, Athens, Greece, May 2004.

[19] C. Lochert, H. Hartenstein, J. Tian, H. Fübler, D. Hermann, and
M. Mauve, “A routing strategy for vehicular ad hoc networks in
city environments,” inProceedings of the IEEE Intelligent Vehicles
Symposium (IV ’03), pp. 156–161, June 2003.

[20] C. Lochert, M. Mauve, H. Füßler, and H. Hartenstein, “Geo-
graphic routing in city scenarios,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 9, no. 1, pp. 69–
72, 2005.

[21] T. Clausen and P. Jacquet, “Optimized link state routing proto-
col (olsr),” Experimental RFC 3626, 2003.

[22] C.Adjih andL.Viennot, “Computing connected dominated sets
with multipoint relays,” Journal of Ad Hoc and Sensor Wireless
Networks, vol. 1, pp. 27–39, 2002.

[23] A. Qayyum, L. Viennot, andA. Laouiti, “Multipoint relaying for
flooding broadcast messages in mobile wireless networks,” in
Proceedings of the 35th Annual Hawaii International Conference
on System Sciences (HICSS ’02), vol. 9, pp. 3866–3875, IEEE
Computer Society, Washington, DC, USA, January 2002.

[24] Y. Ge, T. Kunz, and L. Lamont, “Quality of service routing in
ad-hoc networks using olsr,” in Proceedings of the 36th Annual
Hawaii International Conference on System Sciences (HICSS ’03),
p. 300, 2003.

[25] H. Badis and K. A. Agha, “QOLSR, QoS routing for ad hoc
wireless networks using OLSR,” European Transactions on Tele-
communications, vol. 16, no. 5, pp. 427–442, 2005.

[26] M. A. Abid and A. Belghith, “Stability routing with constrained
path length for improved routability in dynamic manets,”
Personal and Ubiquitous Computing, vol. 15, no. 8, pp. 799–810,
2011.

[27] J.-S. Park and S.-J. Oh, “A new concave hull algorithm and con-
caveness measure for n-dimensional datasets,” Journal of Infor-
mation Science and Engineering, vol. 28, no. 3, pp. 587–600, 2012.

[28] R. A. Jarvis, “On the identification of the convex hull of a finite
set of points in the plane,” Information Processing Letters, vol. 2,
no. 1, pp. 18–21, 1973.

[29] M. M. Atwah, J. W. Baker, S. Akl, and J. W. B. S. Akl, “An associ-
ative implementation of classical convex hull algorithms,” in
Proceedings of the 8th IASTED International Conference on Par-
allel and Distributed Computing and Systems, pp. 435–438, 1996.

[30] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models
for ad hoc network research,” Wireless Communications and
Mobile Computing, vol. 2, no. 5, pp. 483–502, 2002.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


