9 research outputs found

    Scalable light field representation and coding

    Get PDF
    This Thesis aims to advance the state-of-the-art in light field representation and coding. In this context, proposals to improve functionalities like light field random access and scalability are also presented. As the light field representation constrains the coding approach to be used, several light field coding techniques to exploit the inherent characteristics of the most popular types of light field representations are proposed and studied, which are normally based on micro-images or sub-aperture-images. To encode micro-images, two solutions are proposed, aiming to exploit the redundancy between neighboring micro-images using a high order prediction model, where the model parameters are either explicitly transmitted or inferred at the decoder, respectively. In both cases, the proposed solutions are able to outperform low order prediction solutions. To encode sub-aperture-images, an HEVC-based solution that exploits their inherent intra and inter redundancies is proposed. In this case, the light field image is encoded as a pseudo video sequence, where the scanning order is signaled, allowing the encoder and decoder to optimize the reference picture lists to improve coding efficiency. A novel hybrid light field representation coding approach is also proposed, by exploiting the combined use of both micro-image and sub-aperture-image representation types, instead of using each representation individually. In order to aid the fast deployment of the light field technology, this Thesis also proposes scalable coding and representation approaches that enable adequate compatibility with legacy displays (e.g., 2D, stereoscopic or multiview) and with future light field displays, while maintaining high coding efficiency. Additionally, viewpoint random access, allowing to improve the light field navigation and to reduce the decoding delay, is also enabled with a flexible trade-off between coding efficiency and viewpoint random access.Esta Tese tem como objetivo avançar o estado da arte em representação e codificação de campos de luz. Neste contexto, são também apresentadas propostas para melhorar funcionalidades como o acesso aleatório ao campo de luz e a escalabilidade. Como a representação do campo de luz limita a abordagem de codificação a ser utilizada, são propostas e estudadas várias técnicas de codificação de campos de luz para explorar as características inerentes aos seus tipos mais populares de representação, que são normalmente baseadas em micro-imagens ou imagens de sub-abertura. Para codificar as micro-imagens, são propostas duas soluções, visando explorar a redundância entre micro-imagens vizinhas utilizando um modelo de predição de alta ordem, onde os parâmetros do modelo são explicitamente transmitidos ou inferidos no decodificador, respetivamente. Em ambos os casos, as soluções propostas são capazes de superar as soluções de predição de baixa ordem. Para codificar imagens de sub-abertura, é proposta uma solução baseada em HEVC que explora a inerente redundância intra e inter deste tipo de imagens. Neste caso, a imagem do campo de luz é codificada como uma pseudo-sequência de vídeo, onde a ordem de varrimento é sinalizada, permitindo ao codificador e decodificador otimizar as listas de imagens de referência para melhorar a eficiência da codificação. Também é proposta uma nova abordagem de codificação baseada na representação híbrida do campo de luz, explorando o uso combinado dos tipos de representação de micro-imagem e sub-imagem, em vez de usar cada representação individualmente. A fim de facilitar a rápida implantação da tecnologia de campo de luz, esta Tese também propõe abordagens escaláveis de codificação e representação que permitem uma compatibilidade adequada com monitores tradicionais (e.g., 2D, estereoscópicos ou multivista) e com futuros monitores de campo de luz, mantendo ao mesmo tempo uma alta eficiência de codificação. Além disso, o acesso aleatório de pontos de vista, permitindo melhorar a navegação no campo de luz e reduzir o atraso na descodificação, também é permitido com um equilíbrio flexível entre eficiência de codificação e acesso aleatório de pontos de vista

    High Efficiency Video Coding (HEVC) tools for next generation video content

    Get PDF

    Video compression algorithms for HEVC and beyond

    Get PDF
    PhDDue to the increasing number of new services and devices that allow the creation, distribution and consumption of video content, the amount of video information being transmitted all over the world is constantly growing. Video compression technology is essential to cope with the ever increasing volume of digital video data being distributed in today's networks, as more e cient video compression techniques allow support for higher volumes of video data under the same memory/bandwidth constraints. This is especially relevant with the introduction of new and more immersive video formats associated with signi cantly higher amounts of data. In this thesis, novel techniques for improving the e ciency of current and future video coding technologies are investigated. Several aspects that in uence the way conventional video coding methods work are considered. In particular, the properties and limitations of the Human Visual System are exploited to tune the performance of video encoders towards better subjective quality. Additionally, it is shown how the visibility of speci c types of visual artefacts can be prevented during the video encoding process, in order to avoid subjective quality degradations in the compressed content. Techniques for higher video compression e ciency are also explored, targeting to improve the compression capabilities of state-of-the-art video coding standards. Finally, the application of video coding technologies to practical use-cases is considered. Accurate estimation models are devised to control the encoding time and bit rate associated with compressed video signals, in order to meet speci c encoding time and transmission time restrictions

    Towards Computational Efficiency of Next Generation Multimedia Systems

    Get PDF
    To address throughput demands of complex applications (like Multimedia), a next-generation system designer needs to co-design and co-optimize the hardware and software layers. Hardware/software knobs must be tuned in synergy to increase the throughput efficiency. This thesis provides such algorithmic and architectural solutions, while considering the new technology challenges (power-cap and memory aging). The goal is to maximize the throughput efficiency, under timing- and hardware-constraints

    Methods for Light Field Display Profiling and Scalable Super-Multiview Video Coding

    Get PDF
    Light field 3D displays reproduce the light field of real or synthetic scenes, as observed by multiple viewers, without the necessity of wearing 3D glasses. Reproducing light fields is a technically challenging task in terms of optical setup, content creation, distributed rendering, among others; however, the impressive visual quality of hologramlike scenes, in full color, with real-time frame rates, and over a very wide field of view justifies the complexity involved. Seeing objects popping far out from the screen plane without glasses impresses even those viewers who have experienced other 3D displays before.Content for these displays can either be synthetic or real. The creation of synthetic (rendered) content is relatively well understood and used in practice. Depending on the technique used, rendering has its own complexities, quite similar to the complexity of rendering techniques for 2D displays. While rendering can be used in many use-cases, the holy grail of all 3D display technologies is to become the future 3DTVs, ending up in each living room and showing realistic 3D content without glasses. Capturing, transmitting, and rendering live scenes as light fields is extremely challenging, and it is necessary if we are about to experience light field 3D television showing real people and natural scenes, or realistic 3D video conferencing with real eye-contact.In order to provide the required realism, light field displays aim to provide a wide field of view (up to 180°), while reproducing up to ~80 MPixels nowadays. Building gigapixel light field displays is realistic in the next few years. Likewise, capturing live light fields involves using many synchronized cameras that cover the same display wide field of view and provide the same high pixel count. Therefore, light field capture and content creation has to be well optimized with respect to the targeted display technologies. Two major challenges in this process are addressed in this dissertation.The first challenge is how to characterize the display in terms of its capabilities to create light fields, that is how to profile the display in question. In clearer terms this boils down to finding the equivalent spatial resolution, which is similar to the screen resolution of 2D displays, and angular resolution, which describes the smallest angle, the color of which the display can control individually. Light field is formalized as 4D approximation of the plenoptic function in terms of geometrical optics through spatiallylocalized and angularly-directed light rays in the so-called ray space. Plenoptic Sampling Theory provides the required conditions to sample and reconstruct light fields. Subsequently, light field displays can be characterized in the Fourier domain by the effective display bandwidth they support. In the thesis, a methodology for displayspecific light field analysis is proposed. It regards the display as a signal processing channel and analyses it as such in spectral domain. As a result, one is able to derive the display throughput (i.e. the display bandwidth) and, subsequently, the optimal camera configuration to efficiently capture and filter light fields before displaying them.While the geometrical topology of optical light sources in projection-based light field displays can be used to theoretically derive display bandwidth, and its spatial and angular resolution, in many cases this topology is not available to the user. Furthermore, there are many implementation details which cause the display to deviate from its theoretical model. In such cases, profiling light field displays in terms of spatial and angular resolution has to be done by measurements. Measurement methods that involve the display showing specific test patterns, which are then captured by a single static or moving camera, are proposed in the thesis. Determining the effective spatial and angular resolution of a light field display is then based on an automated analysis of the captured images, as they are reproduced by the display, in the frequency domain. The analysis reveals the empirical limits of the display in terms of pass-band both in the spatial and angular dimension. Furthermore, the spatial resolution measurements are validated by subjective tests confirming that the results are in line with the smallest features human observers can perceive on the same display. The resolution values obtained can be used to design the optimal capture setup for the display in question.The second challenge is related with the massive number of views and pixels captured that have to be transmitted to the display. It clearly requires effective and efficient compression techniques to fit in the bandwidth available, as an uncompressed representation of such a super-multiview video could easily consume ~20 gigabits per second with today’s displays. Due to the high number of light rays to be captured, transmitted and rendered, distributed systems are necessary for both capturing and rendering the light field. During the first attempts to implement real-time light field capturing, transmission and rendering using a brute force approach, limitations became apparent. Still, due to the best possible image quality achievable with dense multi-camera light field capturing and light ray interpolation, this approach was chosen as the basis of further work, despite the massive amount of bandwidth needed. Decompression of all camera images in all rendering nodes, however, is prohibitively time consuming and is not scalable. After analyzing the light field interpolation process and the data-access patterns typical in a distributed light field rendering system, an approach to reduce the amount of data required in the rendering nodes has been proposed. This approach, on the other hand, requires rectangular parts (typically vertical bars in case of a Horizontal Parallax Only light field display) of the captured images to be available in the rendering nodes, which might be exploited to reduce the time spent with decompression of video streams. However, partial decoding is not readily supported by common image / video codecs. In the thesis, approaches aimed at achieving partial decoding are proposed for H.264, HEVC, JPEG and JPEG2000 and the results are compared.The results of the thesis on display profiling facilitate the design of optimal camera setups for capturing scenes to be reproduced on 3D light field displays. The developed super-multiview content encoding also facilitates light field rendering in real-time. This makes live light field transmission and real-time teleconferencing possible in a scalable way, using any number of cameras, and at the spatial and angular resolution the display actually needs for achieving a compelling visual experience

    Architectures for Adaptive Low-Power Embedded Multimedia Systems

    Get PDF
    This Ph.D. thesis describes novel hardware/software architectures for adaptive low-power embedded multimedia systems. Novel techniques for run-time adaptive energy management are proposed, such that both HW & SW adapt together to react to the unpredictable scenarios. A complete power-aware H.264 video encoder was developed. Comparison with state-of-the-art demonstrates significant energy savings while meeting the performance constraint and keeping the video quality degradation unnoticeable

    Multi-frame reconstruction using super-resolution, inpainting, segmentation and codecs

    Get PDF
    In this thesis, different aspects of video and light field reconstruction are considered such as super-resolution, inpainting, segmentation and codecs. For this purpose, each of these strategies are analyzed based on a specific goal and a specific database. Accordingly, databases which are relevant to film industry, sport videos, light fields and hyperspectral videos are used for the sake of improvement. This thesis is constructed around six related manuscripts, in which several approaches are proposed for multi-frame reconstruction. Initially, a novel multi-frame reconstruction strategy is proposed for lightfield super-resolution in which graph-based regularization is applied along with edge preserving filtering for improving the spatio-angular quality of lightfield. Second, a novel video reconstruction is proposed which is built based on compressive sensing (CS), Gaussian mixture models (GMM) and sparse 3D transform-domain block matching. The motivation of the proposed technique is the improvement in visual quality performance of the video frames and decreasing the reconstruction error in comparison with the former video reconstruction methods. In the next approach, student-t mixture models and edge preserving filtering are applied for the purpose of video super-resolution. Student-t mixture model has a heavy tail which makes it robust and suitable as a video frame patch prior and rich in terms of log likelihood for information retrieval. In another approach, a hyperspectral video database is considered, and a Bayesian dictionary learning process is used for hyperspectral video super-resolution. To that end, Beta process is used in Bayesian dictionary learning and a sparse coding is generated regarding the hyperspectral video super-resolution. The spatial super-resolution is followed by a spectral video restoration strategy, and the whole process leveraged two different dictionary learnings, in which the first one is trained for spatial super-resolution and the second one is trained for the spectral restoration. Furthermore, in another approach, a novel framework is proposed for replacing advertisement contents in soccer videos in an automatic way by using deep learning strategies. For this purpose, a UNET architecture is applied (an image segmentation convolutional neural network technique) for content segmentation and detection. Subsequently, after reconstructing the segmented content in the video frames (considering the apparent loss in detection), the unwanted content is replaced by new one using a homography mapping procedure. In addition, in another research work, a novel video compression framework is presented using autoencoder networks that encode and decode videos by using less chroma information than luma information. For this purpose, instead of converting Y'CbCr 4:2:2/4:2:0 videos to and from RGB 4:4:4, the video is kept in Y'CbCr 4:2:2/4:2:0 and merged the luma and chroma channels after the luma is downsampled to match the chroma size. An inverse function is performed for the decoder. The performance of these models is evaluated by using CPSNR, MS-SSIM, and VMAF metrics. The experiments reveal that, as compared to video compression involving conversion to and from RGB 4:4:4, the proposed method increases the video quality by about 5.5% for Y'CbCr 4:2:2 and 8.3% for Y'CbCr 4:2:0 while reducing the amount of computation by nearly 37% for Y'CbCr 4:2:2 and 40% for Y'CbCr 4:2:0. The thread that ties these approaches together is reconstruction of the video and light field frames based on different aspects of problems such as having loss of information, blur in the frames, existing noise after reconstruction, existing unpleasant content, excessive size of information and high computational overhead. In three of the proposed approaches, we have used Plug-and-Play ADMM model for the first time regarding reconstruction of videos and light fields in order to address both information retrieval in the frames and tackling noise/blur at the same time. In two of the proposed models, we applied sparse dictionary learning to reduce the data dimension and demonstrate them as an efficient linear combination of basis frame patches. Two of the proposed approaches are developed in collaboration with industry, in which deep learning frameworks are used to handle large set of features and to learn high-level features from the data
    corecore