754 research outputs found

    Coarse-grain time sharing with advantageous overhead minimization for parallel job scheduling

    Get PDF
    Parallel job scheduling on cluster computers involves the usage of several strategies to maximize both the utilization of the hardware as well as the throughput at which jobs are processed. Another consideration is the response times, or how quickly a job finishes after submission. One possible solution toward achieving these goals is the use of preemption. Preemptive scheduling techniques involve an overhead cost typically associated with swapping jobs in and out of memory. As memory and data sets increase in size, overhead costs increase. Here is presented a technique for reducing the overhead incurred by swapping jobs in and out of memory as a result of preemption. This is done in the context of the Scojo-PECT preemptive scheduler. Additionally a design for expanding the existing Cluster Simulator to support analysis of scheduling overhead in preemptive scheduling techniques is presented. A reduction in the overhead incurred through preemptive scheduling by the application of standard fitting algorithms in a multi-state job allocation heuristic is shown

    Parallel job scheduling policies to improve fairness : a case study.

    Full text link

    Order Acceptance and Scheduling: A Taxonomy and Review

    Get PDF
    Over the past 20 years, the topic of order acceptance has attracted considerable attention from those who study scheduling and those who practice it. In a firm that strives to align its functions so that profit is maximized, the coordination of capacity with demand may require that business sometimes be turned away. In particular, there is a trade-off between the revenue brought in by a particular order, and all of its associated costs of processing. The present study focuses on the body of research that approaches this trade-off by considering two decisions: which orders to accept for processing, and how to schedule them. This paper presents a taxonomy and a review of this literature, catalogs its contributions and suggests opportunities for future research in this area

    Analysis and Implementation of Global Preemptive Fixed-Priority Scheduling with Dynamic Cache Allocation

    Get PDF
    We introduce gFPca, a cache-aware global pre-emptive fixed-priority (FP) scheduling algorithm with dynamic cache allocation for multicore systems, and we present its analysis and implementation. We introduce a new overhead-aware analysis that integrates several novel ideas to safely and tightly account for the cache overhead. Our evaluation shows that the proposed overhead-accounting approach is highly accurate, and that gFPca improves the schedulability of cache-intensive tasksets substantially compared to the cache-agnostic global FP algorithm. Our evaluation also shows that gFPca outperforms the existing cache-aware non- preemptive global FP algorithm in most cases. Through our implementation and empirical evaluation, we demonstrate the feasibility of cache-aware global scheduling with dynamic cache allocation and highlight scenarios in which gFPca is especially useful in practice

    Squeaky Wheel Optimization

    Full text link
    We describe a general approach to optimization which we term `Squeaky Wheel' Optimization (SWO). In SWO, a greedy algorithm is used to construct a solution which is then analyzed to find the trouble spots, i.e., those elements, that, if improved, are likely to improve the objective function score. The results of the analysis are used to generate new priorities that determine the order in which the greedy algorithm constructs the next solution. This Construct/Analyze/Prioritize cycle continues until some limit is reached, or an acceptable solution is found. SWO can be viewed as operating on two search spaces: solutions and prioritizations. Successive solutions are only indirectly related, via the re-prioritization that results from analyzing the prior solution. Similarly, successive prioritizations are generated by constructing and analyzing solutions. This `coupled search' has some interesting properties, which we discuss. We report encouraging experimental results on two domains, scheduling problems that arise in fiber-optic cable manufacturing, and graph coloring problems. The fact that these domains are very different supports our claim that SWO is a general technique for optimization

    A Preemption-Based Meta-Scheduling System for Distributed Computing

    Get PDF
    This research aims at designing and building a scheduling framework for distributed computing systems with the primary objectives of providing fast response times to the users, delivering high system throughput and accommodating maximum number of applications into the systems. The author claims that the above mentioned objectives are the most important objectives for scheduling in recent distributed computing systems, especially Grid computing environments. In order to achieve the objectives of the scheduling framework, the scheduler employs arbitration of application-level schedules and preemption of executing jobs under certain conditions. In application-level scheduling, the user develops a schedule for his application using an execution model that simulates the execution behavior of the application. Since application-level scheduling can seriously impede the performance of the system, the scheduling framework developed in this research arbitrates between different application-level schedules corresponding to different applications to provide fair system usage for all applications and balance the interests of different applications. In this sense, the scheduling framework is not a classical scheduling system, but a meta-scheduling system that interacts with the application-level schedulers. Due to the large system dynamics involved in Grid computing systems, the ability to preempt executing jobs becomes a necessity. The meta-scheduler described in this dissertation employs well defined scheduling policies to preempt and migrate executing applications. In order to provide the users with the capability to make their applications preemptible, a user-level check-pointing library called SRS (Stop-Restart Software) was also developed by this research. The SRS library is different from many user-level check-pointing libraries since it allows reconfiguration of applications between migrations. This reconfiguration can be achieved by changing the processor configuration and/or data distribution. The experimental results provided in this dissertation demonstrates the utility of the metascheduling framework for distributed computing systems. And lastly, the metascheduling framework was put to practical use by building a Grid computing system called GradSolve. GradSolve is a flexible system and it allows the application library writers to upload applications with different capabilities into the system. GradSolve is also unique with respect to maintaining traces of the execution of the applications and using the traces for subsequent executions of the application

    Sequencing and scheduling : algorithms and complexity

    Get PDF
    corecore