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Abstract 

Parallel job scheduling on cluster computers involves the usage of several 

strategies to maximize both the utilization of the hardware as well as the 

throughput at which jobs are processed. Another consideration is the response 

times, or how quickly a job finishes after submission. One possible solution 

toward achieving these goals is the use of preemption. Preemptive scheduling 

techniques involve an overhead cost typically associated with swapping jobs in 

and out of memory. As memory and data sets increase in size, overhead costs 

increase. Here is presented a technique for reducing the overhead incurred by 

swapping jobs in and out of memory as a result of preemption. This is done in the 

context of the Scojo-PECT preemptive scheduler. Additionally a design for 

expanding the existing Cluster Simulator to support analysis of scheduling 

overhead in preemptive scheduling techniques is presented. A reduction in the 

overhead incurred through preemptive scheduling by the application of standard 

fitting algorithms in a multi-state job allocation heuristic is shown. 
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1. INTRODUCTION 

1.1 Job Scheduling 

Analysis and usage of large data sets in reasonable amounts of time 

necessitates the need for parallelism in computation. This parallel computation is 

often referred to as parallel "jobs" in the context of multi-user clusters. Hardware 

capable of running massively parallel jobs is often prohibitively expensive. This 

means these resources need to be shared amongst several differing users and 

types of jobs. The sharing of computing resources necessitates in turn the need 

for effective scheduling algorithms in which the usage of the shared resources 

can be most effectively optimized. 

Several optimization objectives can be applied to job scheduling. These include: 

• Throughput - the number of jobs completed over time 

• Response times - the time between a jobs submission and time the job 

completes 

• Utilization - percentage of the resources used over time 

• Quality of Service - the upper limit to the amount of time a job should take 

to complete after submission 

• Fairness - guarantees the system makes that the job will complete in a 

reasonable amount of time 

• Deadline Satisfaction - the number of jobs completed before a deadline 
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The predictability of response times for jobs submitted is also associated to 

Quality of Service as well as providing a means to explore further optimization 

methods. 

1.2 Time Sharing, Space Sharing, and Overhead 

Each job upon submission, depending on the jobs characteristics, will be 

given a certain amount of the processing resources. The amount of resources 

and the time at which they are supplied dictate the response time of jobs 

submitted. Response time is the amount of time taken between a job submission 

and the job being completed. Relative response time is the response time 

relative to the runtime of job. For example, if a job's total runtime is 10 minutes 

and the response time is 15 minutes, then the relative response time for that job 

would be 1.5 (i.e., 15 minutes /10 minutes). One strategy for sharing resources 

is to allow jobs certain amounts of time over a period in which to run. In this 

strategy jobs are swapped on and off of the resources so that each job in the 

system gets a chance to make progress and complete. These types of strategies 

are known as "Time Sharing" approaches. In these approaches preemption is 

often used to suspend a currently running job so that another job can utilize the 

resources. Figure 1 shows Job 1 and Job 2 each taking turns running overtime 

(i.e., sharing the available runtime). One of the issues is the overhead incurred 

while swapping the job on and off of resources. This is caused by multiple jobs 

being allocated to the same resources while not being able to fit together in 

memory. This means that one or more jobs must be swapped out in order for the 

job whose turn it is to run. 
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Time 

Figure 1 - Time Sharing 

Another strategy that may be employed is the concept of space sharing. 

This is the case where job types are partitioned over various sections of total 

resources. In this case jobs of a certain type may get 50% of the total resources, 

and jobs of another type may get the other 50%. Some approaches utilize a 

hybrid solution of both time and space sharing. However, the types of jobs that 

can make efficient use of both time and space sharing are limited. Additionally, 

space sharing implies that a job, once started, is able to change its parallelism, 

which is often not the case. The reason for this is that the ability for a job to 

support changes in parallelism must be specifically designed into the job itself. 

The mechanism for this may be dependent upon signals from the job scheduler 

or the system used for running the job. The interpretation of these signals can be 

used to tell the job how to configure itself for either adding more nodes for 

processing, or reducing the number of nodes it uses. This means that jobs with 

this capability become highly dependent on specific systems to run. 

A deviation from this sort of strategy that still employs preemption is that of 

gang scheduling. Gang scheduling is defined as the scheduling of all threads of 
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a process or job at the same time [10] [22]. The threads of the running job are 

allocated to separate nodes. In gang scheduling, all time slices are globally co-

ordinated and all threads of a running job are preempted if another job gets its 

turn to run on the allocated resources. Gang scheduling is always combined with 

space allocation per time slice, organized by use of an Ousterhout matrix [18]. 

Node 1 Node 2 Node 3 Node 4 
Slot 1 Job A Job A Job A Job A 
Slot 2 Job B Job B Job C Job C 
Slot 3 Job A Job A Job A Job A 
Slot 4 Job B Job B Job D Job D 
Repeat cycle 

Figure 2 - Ousterhout Matrix 

In this matrix, as shown in Figure 2, the columns represent the available 

nodes while the row represent the differing time slices, or slots. Each time slice 

has a list of one or more gangs. In Figure 2, slot 1 has a gang consisting of just 

Job A consuming 4 processors. Slot 2 has a gang consisting of Job B, and Job C 

each consuming two processors. Each available slot that has an assigned gang 

gets a period of time in which to run, one after the other. In this approach, there 

is no swap between jobs allocated to the same resources. This means that each 

node incurs high levels of memory pressure due to concurrently allocated jobs. 

Only jobs that all fit into memory can share resources. 

Any scheduling method incurs some overhead in order to implement the 

algorithm. This overhead can, in the case of time-sharing, include the cost to stop 

and restart a running job. This is usually manifested by the memory costs to load 
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a new job into memory. As well, this can be seen in the time taken to swap a 

preempted job out to disk and swap a previously stopped job back in. In the case 

of space sharing, this overhead may be manifested by the time taken to 

reconfigure the parallelism characteristics of a job that is to be given runtime. The 

parallelism characteristics are defined as the number of nodes, or processors, 

required by a running job. Reconfiguration of these characteristics means 

changing the number of nodes a job runs on (e.g., going from 10 nodes to 8 

nodes). This thesis will focus only on a time-sharing based scheduling approach. 

1.3 Objective 

The focus and contribution of this thesis is to detail a new method designed 

to effectively allocate parallel jobs to resources. The design of this method is 

such that the overhead due to memory swap costs is minimized in the context of 

a coarse grained time-sharing job scheduler. Each job to be scheduled 

consumes an amount of memory from the group of nodes over which it is 

running. Several jobs of differing types may be assigned to overlapping groups of 

nodes in which they each receive a share of the total runtime. The overhead is 

manifested when the group of jobs assigned to common processing nodes 

cannot all simultaneously fit into memory. 

Previous exploration into methods designed to increase overall 

performance of the scheduling algorithms did not take into consideration a higher 

fidelity model of memory interaction or ways to reduce the memory swap 

overhead [6][7]. The new algorithms presented are implemented as an extension 

of the existing Scojo-PECT scheduler [6] [7], The Scojo-PECT scheduler is a 
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time-sharing preemptive scheduler for scheduling parallel jobs on computing 

clusters. The Scojo-PECT scheduler and scheduling algorithm is implemented as 

part of a cluster simulator framework used for analysis of scheduling methods 

and algorithms. 

1.4 Paper Structure 

The rest of this thesis is organized as follows. Chapter 2 reviews some 

previous work in the area of memory and overhead reduction for job scheduling. 

Chapter 3 further details the Scojo-PECT Scheduler and Cluster Simulator. This 

cluster simulator has been modified to account for job and processor node 

memory considerations. Chapter 4 explains the mechanism and overall algorithm 

for job allocation. Chapter 5 details the design and implementation of supporting 

additions to the Scojo-PECT simulator. Chapter 6 details the test cases and 

results. Chapter 7 concludes this work with an interpretation of the results and 

mentions possible future work in this area. 
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2. RELATED WORK 

Much of the previously detailed research in parallel systems and job 

scheduling has focused on how to improve the performance of single 

applications running in isolation. The only global concern has been on producing 

feasible schedules that can satisfy release times, deadline constraints, and 

minimization of the total schedule times. While minimization of total schedule 

time may negatively affect the response time of a single job, we still view these 

jobs as separate from each other and not dependent on the processing of other 

jobs on other processors. 

Some areas of research have explored the topic of memory management 

in the context of parallel processing [4]. This research has specified that memory 

management is hardly exercised due to the performance implications on parallel 

jobs and the effect on synchronization. Parallel jobs must be completely memory 

resident in order to execute. Research into this area has been slowed by lack of 

actual information about the memory requirements that are experienced in 

practice. Some observations from this work include that many jobs use a 

relatively small part of the memory available on each node so that there is room 

for preemption among several memory resident jobs. As well, larger jobs tend to 

use more memory but it becomes difficult to characterize the scaling of per-

processor memory usage. 

Other research has produced an approach for real time multiprocessor 

scheduling which reduces preemption related overhead. This is done by reducing 

the number of preemptions as compared to an algorithm that performs 
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preemptions at set time periods [11]. The main idea in this approach is to be 

aware of newly arriving jobs in the queue available for running on a set of 

resources such that if there were no newly arriving jobs, the cost of preemption 

could be eliminated. This would be similar to the way the current Scojo-PECT 

scheduler works in that after a scheduling decision is made as to where jobs will 

run in the next time period after preemption, only jobs that are actually 

preempted incur any overhead costs. 

Further research explores the maximum gain that can be realized by 

increasing the number of preemptions in a multiprocessor system [14]. This 

research considers the possibility of jobs which may be preempted at any point in 

time. Additionally, the job may be split into two parts or relocated to different 

processors. These methods seek to balance the gain that can be realized by 

increasing the number, and timing, of preemptions against the overhead cost of 

the preemption. These preemptions are triggered as jobs finish or new jobs 

arrive. For certain types of systems the cost of preemption in can be relatively 

inexpensive. These systems include shared memory multiprocessor machines. 

However, in other sorts of systems the cost for preemption is high and so the 

decision to preempt must be weighed against keeping the load reasonably 

balanced and the overhead incurred by preemption. These systems include non-

shared memory multi-processor machines and distributed systems. The Scojo-

PECT scheduler uses preemption primarily to allow shorter jobs runtime where 

they would otherwise be blocked by longer running jobs consuming the 
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resources. This provides a better quality of service for shorter jobs as they would 

have quicker access to resources on which to run. 

Other sorts of scheduling methods do not consider preemption but rather 

simply attempt to fill in gaps in the schedule. One method describes a scheduling 

solution which attempts to find the earliest gap in a schedule in which a newly 

arriving job will fit [15]. This is further augmented by use of a Tabu search to fill in 

gaps by using the last job in a schedule of a machine that has the highest 

number of delayed or waiting jobs. Tabu search is an algorithm for solving 

combinatorial optimization problems. It uses an iterative search method which 

proceeds until a stopping criterion has been satisfied. A typical stopping criterion 

may be a certain number of iterations being performed. In order to prevent the 

iterations from producing cycles of similar solutions, an attribute of each solution 

that results from each iteration is kept in a "tabu" list. This is used to prevent 

previously found solutions from reappearing and causing cycles in the search 

space. In this approach, preemption is not supported. Jobs may still experience 

starvation even though this effect is somewhat mitigated by attempting to 

balance deadlines against schedule priority. This is done by placing each job in a 

machine schedule in order of earliest deadline. The net effect is similar to serving 

shorter jobs, with earlier deadlines, in preference of longer jobs, with later 

deadlines. 

Other approaches examine the difference in scheduling methods and 

performance by using algorithms that set broader timeframes [16]. The 

timeframes are called "prime-time" and "non-prime time". Larger jobs are 
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relegated to non-prime times. In the examination of this approach it is determined 

that setting limits for jobs that may run in prime time has beneficial effects for 

batch scheduling in among other backfilling methods such as EASY and first 

come first serve. A problem with this approach is that setting limits for job types 

allowable to be run in prime time is difficult due to competing needs of large and 

small jobs. 

Other research explores a tuneable selective suspension scheduling 

heuristic based on the generation of an expansion factor for jobs [13]. As a job 

waits for runtime its expansion factor increases. Once this factor exceeds a 

threshold, a set of jobs is selected for preemption based on a set of criteria. This 

method does allow the migration of jobs to different nodes in the system and as 

such can offer more options for fitting jobs together. However this relocation does 

incur an overhead. In this research the memory requirement for jobs is estimated 

to be randomly and uniformly distributed between 100MB and 1GB. The actual 

memory size of the computing resource is less important in this research. This is 

because the bulk of the overhead costs are related to migration. Migration 

requires that a job be preempted so the overhead cost is incurred in any case. 

Preemption to disk is required before a job can be migrated to new nodes. This 

means that the ability to keep jobs in memory together is less important to this 

method. The overhead for preemption is calculated as the time taken to write the 

main memory used by the job to disk. The evaluations of this method observed 

that overhead does not significantly affect the performance of the algorithm. 
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Further research states that preemption related overhead may cause 

"undesired high processor utilization, high energy consumption, and in some 

cases, even infeasibility" [5]. Considering this, the approach chosen in this 

research is a method for limiting the number of preemptions in legacy fixed 

priority scheduling. Fixed priority scheduling methods are composed of systems 

consisting of tasks, priorities, periods and offsets. In this case the algorithm 

knows about the tasks or jobs in advance. Priorities and offsets are then 

analyzed and re-assigned. This is done to minimize the number of preemptions, 

and therefore the preemption overhead. This differs from the other approaches in 

that it considers an offline set of jobs. An offline set of jobs is where the 

scheduler has prior knowledge and complete information about the jobs to be 

scheduled. 

11 



3. SCOJO-PECT SCHEDULER 

3.1 Job Submission and Limits of Preemption 

Jobs are simulated to be submitted to the cluster simulator and the 

scheduler at non-deterministic times. This means the scheduler has no prior 

knowledge about when or what type of jobs may arrive. This is in contrast to job 

scheduling systems where we may have all or most of the relevant information. 

Scheduling approaches that have all prior information about the jobs to be 

scheduled falls under the category of "offline" or deterministic scheduling. In 

these cases there exist many algorithms and research addressing the offline 

scheduling problem. In the context of job scheduling on compute clusters, 

completely off-line scheduling problems are usually an analysis of an artificial 

theoretical case. This means that in practical usage, we almost never have all 

knowledge or information about jobs to be scheduled on a computer cluster. The 

case we consider in this thesis is that of "online" or non-deterministic scheduling 

where we do not have all the required information to produce an optimal 

schedule. In these cases, as jobs are submitted we must make decisions based 

upon the state of the schedule at a certain point in time with consideration 

towards certain performance objectives. 

In evaluating the performance of an offline scheduling heuristic it is 

sometimes possible to measure an optimality function or performance objective 

against a hypothetical offline solution for the same job set and measure the ratio 

of performance or competitiveness of the online algorithm to the optimal offline 

solution. In cases where calculating an optimal off-line solution is either NP-Hard 
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or NP-Complete we can still compare an online solution with the best known 

offline algorithm for competitive analysis [21]. Unfortunately, it is often the case 

that scheduling problems become NP-Hard whenever more than two processors 

are utilized [1]. Additionally, in cases where we have no prior knowledge about a 

jobs deadlines, computation time and or start times, then for any sort of 

scheduling algorithm we may use, one can always find a set of jobs which can be 

better scheduled by another algorithm [4]. In the case of preemptive online 

schedulers, at least as far as minimization of schedule completion times, there 

may be limits to how well you can actually schedule jobs, as indicated by work in 

[2] which attempts to derive a lower bound on the competitiveness of preemptive 

online scheduling heuristics. 

In the case of the Scojo-PECT scheduler, the core scheduling algorithm 

used in the simulator is primarily concerned with balancing response time across 

job types in a non-deterministic or online context. Within this framework this 

paper explores preemption overhead minimization within the context of the 

overall scheduling heuristic. As each job is submitted it is sorted into one of three 

categories, short, medium, or long, based on estimated runtime. After this sorting 

each job is scheduled according to the assigned scheduler heuristic 

(implemented as a scheduler object) within the simulator. 

3.2 Core Scheduling Algorithm 

The basic approach of the Scojo-PECT scheduler utilizes coarse-grain time 

sharing. Each time period is divided up into slices in which jobs of differing types 

may be allocated resources and run. As previously mentioned, the only division 
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for scheduling slices is based on a job's estimated runtime. So, jobs are divided 

into short, medium and long categories (Figure 3). 

i ^ 
\ 

Short 

t 
Long 

Figure 3 - Job Sorting by Runtime 

Each category is given an amount of time each interval (Figure 4). An 

interval is an amount of time which is divided into slices for each job category. 

For example, each interval period is divided into a long job slice, a medium job 

slice and short job slice. In the Scojo-PECT scheduler the interval period is 

configurable between 30 minutes and 60 minutes. This allows exploration into 

scheduling methods using more or less frequent preemptions. If the interval time 

is shorter, more slices are scheduled in a shorter amount of time. 
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Time (30min - 1 hr) 

Figure 4 - Job Type Time Slices 

Jobs are scheduled in a first come first serve basis in their respective time 

slice. That is, short jobs are scheduled to run in the short slice, medium jobs are 

scheduled to run in the medium slice, and long jobs are scheduled to run in the 

long slice. Jobs may be backfilled into a slice not of their type to exploit free 

resources, but in all cases jobs of the slice type have priority for the resources in 

that time slice. For example, in a long slice, all long jobs have priority for 

resources over jobs of any other type. Resources refer to computing nodes in the 

cluster unless otherwise specified. Figure 5 shows the scheduling of jobs in 

slices of differing types. 

Short Medium Long 

m i l l B I I I 

Time (30min - 1 hr) 

Figure 5 - Filling Slices with Jobs 
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Backfilling means that jobs may move ahead in the order of submission if 

they do not delay other jobs as specified by the backfilling approach. Scojo-

PECT can utilize either conservative or EASY (the Extensible Argonne 

Scheduling System) backfilling. Conservative backfilling means that none of the 

jobs in the queue are delayed by a job moved ahead of their normal first come 

first serve position. EASY backfilling is less restrictive in that only the first job in 

the waiting queue need not be delayed as compared to its position in the 

schedule at submission time. 

3.3 Non-Type Slice Backfilling 

The Scojo-PECT scheduler implements a unique type of EASY and 

conservative backfilling in the context of separate job slices [6] [7]. Non-type slice 

backfilling refers to backfilling jobs of a different type than the currently scheduled 

slice onto free resources that exist in that slice (e.g., backfilling a short job onto 

free nodes that exist in a long slice). The restrictions on non-type slice backfilling 

are the same as normal backfilling. Any backfilled job must not delay any job of 

its own type that has arrived at the system ahead of it. This means a later arriving 

job may not delay a job of the same type that arrived prior to it as a result of 

being backfilled. The EASY version of this sort of backfilling is less restrictive. 

Under EASY the only restriction is that jobs may not delay the first job of its type 

in that job types queue. For instance, if the first job in the short job queue cannot 

be scheduled due to lack of resources a later arriving short job needing fewer 
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resources may be backfilled ahead of it. Under EASY, this is only allowed if the 

backfilled job does not delay the first job. 

These restrictions are applied even if the job to be backfilled is consuming 

resources in a slice not of its type. For example, a short job may be backfilled 

into free space in a long slice as long as this action does not delay any short job 

arriving previous to the job that is backfilled. Figure 6 shows short jobs being 

backfilled into medium and long slices. 

Medium 

Time (30min - 1 hr) 

Figure 6 - Non-Type Slice Backfilling 

With all backfilling in Scojo-PECT, jobs of the slice type have priority and 

are the first considered backfilling candidates. Any preempted jobs from other 

slices that can fit onto any free resources are the next candidates for backfilling. 

Preempted jobs must only be backfilled onto resources which they were originally 

allocated. Scojo-PECT does not consider migration of jobs to new resources. 

This is then followed by waiting jobs from other slices. Waiting jobs may be 

scheduled on any free resources as long as this does not create resource 

conflicts within the jobs slice type. The consideration is done in order of 
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increasing runtime length. For example, while backfilling into a long slice, short 

preempted jobs are considered as backfill candidates before medium preempted 

jobs. Then short waiting jobs are considered before medium waiting jobs. In all 

cases backfilling is not permitted to create any conflicts over resources with other 

jobs in their own slice type (i.e. the job needs to finish before the end of the slice 

in which it is backfilled, or run on resources which are not yet allocated in the 

slice of their own corresponding type). 

3.4 Intelligent Node Selection 

Previous versions of the Scojo-PECT scheduler assigned nodes in each 

slice based on the first found available nodes, or the "first-free" approach. The 

"first-free" approach is defined as the allocating a job to the first nodes (i.e., 

resources) that are available in the slice on which the job may run. In this 

approach there is no consideration other than the availability of the nodes in the 

slice. An improvement to Scojo-PECT over the first-free method attempts to 

intelligently allocate jobs on nodes which are not yet allocated to any job in any of 

the slices [6]. This is defined as the "intelligent node selection" method. This 

method simply counts the number of jobs allocated to run in other slices on the 

available nodes in the current slice. Nodes are then allocated to the job under 

consideration (i.e., the waiting job to be scheduled) in order of the lowest count 

per node. For example, a node having no other job allocated to it in any other 

slice would be allocated to the job under consideration before a node having one 

or two other jobs allocated to it in other slices. This increases the likelihood of 

jobs being able to backfill into other slices. This is because we are intentionally 

18 



seeking to reduce the possibility of conflict for resources across time slices. A 

side effect not considered in the original design of this method was the saving in 

overhead this would provide over the "first-free" approach. This was due to the 

fact that the original modelling of the cluster did not account for overhead on a 

per job basis, but rather applied a global overhead to all running jobs during slice 

switches. Figure 7 shows preemption overhead as applied universally at slice 

switches. The overhead is incurred during the time represented by the thick lines 

at the end of the time slices. 

Figure 8 shows how jobs across slices would be allocated according the 

first-free approach. With this sort of allocation, there is no possibility for non-type 

slice backfilling as each job consumes the same resources. All jobs must wait 

until their next slice to complete processing. 

Figure 7 - Overhead applied at slice switches 
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Figure 8 - Allocation of Jobs under First-Free 

Figure 9 shows how jobs are allocated using the intelligent node selection 

approach. In this case each job is allocated to nodes that are not in conflict 

across slices. This allows jobs to backfill and complete in other slices rather than 

being blocked. 

Short Medium Long 
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Time (30min - 1 hr) 

Figure 9 - Intelligent Node Allocation Approach 
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4. JOB ALLOCATION HEURISTIC 

4.1 Preliminary Concepts 

As previously mentioned, jobs are submitted to the scheduler at non-

deterministic times. As each job gets submitted to the job scheduler, it is sorted 

into a waiting queue based on its type (short, medium, or long) at which point it 

waits until it is scheduled in a slice corresponding to the job type that is to be run 

As previously mentioned, a waiting job may also be initially started as a result of 

backfilling. In all cases we assume perfect estimates for the runtime of jobs. The 

job types are determined by definition within the scheduler based on runtime. 

This means that within the scheduler, jobs are defined as being in one of the 

three categories based on the configuration of the scheduler (e.g., Scojo-PECT 

currently defines short jobs as jobs with runtimes less than 10 minutes). At this 

point each job of that type is placed in a running queue, in first come, first serve 

order on the available resources for that job. In the case where the number jobs 

of that type need more resources than are currently available, the later arriving 

jobs must wait until earlier jobs finish and the resources become free. As 

previously mentioned, jobs may have opportunities to backfill into other slices if 

nodes are available. Before jobs can be set to a running state, they need to be 

allocated resources on which to run. These resources consist of the simulated 

processing nodes on which the "tasks" of the parallel job run. That is, if a job is 

submitted and requires 24 nodes on which to run, the actual 24 nodes of the 

cluster the job will run on must be determined. All "tasks" of a parallel job in this 
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model are assumed to be identical in time required and memory utilized. This 

approximates a situation where the parallelism of the job is good and that all 

running tasks are required to complete the job. All jobs are considered to be 

unique in that a program running with data set A and the same program running 

with data set B are considered to be two distinct jobs. This is because a program 

or application may behave quite differently given two distinct data sets. An 

example of this would be a numerical analysis application which converges to 

local minima quickly given one set of data. With another set of data the same 

program may only converge to local minima after a long period of time. 

All nodes in the system are homogeneous in that each node has identical 

performance and memory characteristics. This means that the memory available 

in each node is consistent and the time to load/swap a job to or from disk is the 

same across all nodes. In this model it is assumed that no migration is possible 

for jobs that have started running. This means that once a job's nodes have been 

decided and some processing has started a job may not switch to other nodes. 

As well, each job may not change the number of nodes it needs for processing. 

If a job requires 12 nodes for processing, but only 10 are available, the job must 

wait until such time as 12 nodes are available to either start, or continue 

processing. Jobs of this sort are characterized as being "rigid". On each node 

only one job may be running at any point in time. Our model and simulator 

considers each node to be a single processing unit capable of processing only a 

single job at any one time. 
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As jobs are preempted, new jobs will be run on the same nodes. The 

preempted jobs may need to be swapped to disk from memory. This would occur 

if there is not enough available space to concurrently keep all jobs allocated to 

that node, or group of nodes, in memory. Additionally there is a load time 

associated with each job corresponding to the amount of time it takes to load 

each job into memory for running. This time is the overhead caused by the 

memory requirements of the job and the performance characteristics of the node, 

namely, the time it takes to swap a job from memory to disk. Overhead can be 

reduced by allocating jobs to nodes such that they do not compete for the 

resources or limit the amount of swaps needed to keep currently running jobs in 

memory. 

Allocating jobs to nodes such that conflict over resources is minimized 

provides more opportunities for jobs to backfill and take advantage of available 

nodes outside their own designated slice. By minimizing conflict across slices, 

there is a higher likelihood that jobs will not be allocated the same nodes. This 

means that a short job may be backfilled into a long slice and thereby be able to 

finish in less time given that the nodes are free in the long slice. This results in 

less overhead since the short job would not be required to preempt or swap to 

disk. As previously mentioned, the preliminary heuristic addressing node conflict 

minimization in Scojo-PECT is the intelligent node selection method. This method 

does not consider the memory requirements or characteristics of running jobs. 

The allocation method presented in this thesis attempts to reduce overhead 

produced by swapping jobs in and out of memory. This is done by attempting to 
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limit the number of cases where the memory requirements of jobs allocated to 

resources exceeds the memory of the resources. 
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Figure 10 - Node Memory Capacity 

Figure 10 shows a series of nodes. Jobs are allocated to these nodes and 

consume an amount of the nodes memory. A group of jobs allocated to a node 

may exceed the memory capacity of the node as shown in Figure 10 on Nodes 7 

and 8. These are the cases we are trying to minimize as they will result in the 

overhead associated with swapping jobs between memory and disk. 

4.2 Node Allocation 

Once a job slice type is started, jobs of that type that have been previously 

preempted are reallocated to the nodes on which they were previously running. 

New waiting jobs that have not had any run time are then allocated to nodes 

based on a first come, first serve allocation. Jobs are only allowed to be started 

out of order if they will not impact the running of jobs ahead of them in the queue. 
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Once the determination is made that a waiting job will be given runtime it is then 

allocated nodes on which to run. The determination that a job be given runtime 

may be made based on position in the queue or by backfilling. 

The first criterion in determining if a job can be allocated nodes is whether 

there are currently enough free nodes available for the job. This means that 

enough nodes are available that do not have currently running jobs already 

assigned to them. If this is the case then the next step is to determine the best 

nodes on which the job should run. From the list of free nodes available (i.e., the 

list of nodes without currently running job), a list of nodes with enough free 

memory to load the job is created. If the job is starting as a result of a backfilling 

decision it is possible that the created list of free nodes contains nodes that are 

already allocated to jobs of the same type as the one to be started. These jobs 

would normally run in their own slice. In this case, these nodes are excluded from 

the newly created list of free nodes. If a job was allowed to be allocated to these 

nodes it would result in conflicts in its own slice. 

Short Medium 
Conflict 

Long Short 

Time (30min - 1 hr) 

Figure 11 - Node Allocation Conflict 
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In Figure 11, Job 2 is a short job and would normally be scheduled to run in a 

short slice. This job has been backfilled into the medium slice and has been 

placed on nodes that are already being utilized by Job 1 in the short slice. 

Neither of these jobs has completed and will require more runtime in the next 

short slice to finish. During the next short slice, both jobs attempt to resume 

running on the same nodes and creates a conflict condition. 

Short Medium L o n g S h o r t 

T i m e ( 3 0 m i n - 1 hr) 

Figure 12 - Node Allocation Conflict Resolution 

In Figure 12, Job 2 is only allowed to be allocated to nodes that are not 

already being used by jobs of the same type (i.e., no nodes being used by other 

short jobs). This ensures that when Job 2 is backfilled into the medium slice it 

does not use the nodes already in use by Job 1. During the next short slice both 

Job 1 and Job 2 can resume running as there is no conflict over the nodes. 

For the nodes remaining in the created list we keep track of the total 

amount of memory is currently used in each node. From the list of initial 

candidate nodes we find a group of nodes with immediately available memory for 
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the job, (i.e., free nodes with enough free memory to hold the job as well as the 

other jobs currently allocated to that node). If there are enough nodes from this 

initial listing for the job, the job is assigned nodes from that grouping based on a 

best-fit allocation. The general best-fit algorithm in described in Appendix C, 

Section 1. 

The best-fit allocation is in relation to the amount of available memory on 

the node such that the amount of free space left after the allocation on the nodes 

in minimized in each node. This is in contrast to a "worst-fit" method. Worst-fit 

allocation attempts to place jobs on nodes such that the remaining free memory 

after job placement is maximized. These two methods are refinements over a 

basic "first-fit" allocation method. First-fit places jobs on the first nodes that are 

identified with enough space to hold the job. Figure 13 shows the allocation of a 

job (i.e., Job 1) according to the three described fitting methods. In Figure 13, 

Job 1 is allocated to Nodes 2 and 6 under the best fit method since these nodes 

provide the best fit for the job and minimizes the available space on those nodes. 

Using worst fit allocation Job 1 is allocated to Nodes 1 and 5. This is because 

these nodes maximize the available space on the individual nodes after the 

allocation. Using first-fit, Job 1 is allocated to Nodes 1 and 2 since these are the 

first nodes discovered in which Job 1 will fit. 
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Figure 13 - Job Fitting Methods 

The reason for the initial choice of "best fit" of jobs is because we seek to 

keep as much free space as possible on nodes for other incoming jobs. 

Therefore, we seek to maximize the total available space on each node. This is 

opposed to evenly balancing the amount of memory used on each node, or 

keeping a little space on each. This is referred to in the test results as the "first 

stage" fitting heuristic. For purposes of experimentation the actual fitting 

algorithm used at this stage of node allocation is configurable in the 

implementation between "best-fit", "worst-fit" and "first-fit". The fitting algorithms 

are described in more detail Appendix C. 

- i r s t Fit Al locat ion 

3 
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If the amount of free nodes found from this initial search is insufficient to run 

the job then we have a case where the job must be allocated to a node where, in 

order to run the job a previously running job must have part of its memory 

allocation swapped out to accommodate the incoming job. In this case we create 

a group of nodes that do not have enough available memory to hold all the jobs 

that have been allocated and the incoming job together in memory. It is important 

to note that generally only jobs of differing types (small, medium, and long) can 

be co-allocated to nodes simultaneously. Jobs of the same type are not allowed 

to interfere with currently running jobs in their own slice. This means that two jobs 

of the same type being scheduled in the same slice cannot overlap on nodes. 

This also means that nodes, during periods of high workloads, will contain in 

memory jobs from small, medium and long types. 

It is known that whatever allocation is chosen at this point will incur the 

expense of loading the job in at least one node. This is because it was previously 

determined that there were insufficient nodes available with enough free memory 

to prevent swapping out jobs. It is also known, according to our model, that jobs 

cannot start processing until all tasks of a job have been loaded into memory. 

Therefore, it makes more sense to try to allocate the job first on nodes which 

cannot contain the job, leaving free nodes available for future incoming jobs. 

Overhead from swap cost is incurred in any case and so an attempt to assign 

nodes exclusive to nodes without enough free memory is made. 

The nodes without enough available memory are then ranked based on the 

time until all jobs currently allocated and the new incoming job all fit together in 
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memory. This is essentially the time until one or more of the jobs finish and the 

remaining jobs, including the incoming job, can all fit into memory. This is 

referred to as the "time until fit". These nodes are allocated even if the number of 

"unfree" nodes is less than the number required by the job. Even though the 

method does not explicitly determine the amount of memory becoming available 

at each time delta, this would not matter as the idea is to minimize the time until 

all the jobs fit. All jobs fitting in the nodes memory reduces the number of swaps 

and the total overhead incurred. 

If the job still is not fully allocated (i.e., still needs nodes to run) then the 

remaining nodes are allocated according to a "worst-fit" memory allocation 

method. This is referred to in the test results as the "second stage" fitting 

algorithm. The reason to use this is that at this stage we know that there is an 

insufficient amount of nodes to fully hold wide jobs consuming a high amount of 

nodes. Otherwise the job would have been allocated to "free" nodes. Any future 

job will in the immediate case encounter the same problem unless it is narrow. 

Narrow jobs consume a low number of nodes. Therefore we initially seek to 

utilize worst fit in order to ensure that as many nodes as possible have free 

memory since narrow jobs tend to use less memory as a general trend. The 

choice of using a worst-fit allocation method versus best-fit allocation method at 

this stage again is configurable in the implementation for experimental purposes. 

The algorithm is detailed in Figure 14. The actual code that corresponds to this is 

contained in Appendix B. 
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Proc 

freeNodes [ ] //Nodes w i t h enough f r e e memory t o hold job 
n o d e L i s t [ ] //Nodes w i thou t enough f r e e memory t o run job 
ex t r aNodeL i s t f ] / * E x t r a node l i s t f o r ho ld ing remaining f r e e nodes a f t e r p a r t i a l 
assignment*/ 
i n d i c i e s [ ] / / A r r a y the s i ze o f the number o f nodes requ i red by the job 
totalMemoryUsedlnNodef] / / A r r a y equal t o the number of nodes i n c l u s t e r 
preemptedDobsf] / / A r r a y f o r con ta in ing the preempted jobs i n the c l u s t e r 
allPreemptedDobs / / L i s t o f a l l preempted Dobs i n c l u s t e r 
c l u s t e r / / the c l u s t e r running the jobs 
j ob / / The job t o a l l o c a t e nodes t o 

runningQueue / / The cu r ren t Running Queue con ta in ing the c u r r e n t l y running j o b s . 

Begin 
preemptedDobs.add ( runningQueue.getDobs() ) ; / / Add a l l running jobs 
totalMemoryllsedlnNodef ] = getMemoryUsedInNodefromAllDobs( preempted Jobs) ; 
freeNodes = getL is tOfFreeNodes() ; / /Ge t the l i s t o f f r e e Nodes 

i f ( f reeNodes.s ize > job.nodesRequired) { 

SortByFreeMemorySize(freeNodes); / / Best F i t 

f o r ( i = 0 ; i < job.nodesRequired && i < f reeNodes.s ize ; i++ { 
i n d i c i e s [ i ] = f reeNodes [ i ] .ge tNode lD j 

} 

} e lse i f { 

nodeList = getL is tOfUnfreeNodes() ; / / L i s t o f nodes w i thou t enough f r e e memory 
} 

fo reach ( j o b i n allPreemptedDobs) { 
f o r ( ind = 0; ind < job.nodesRequired ; ind ++ ) { 

fo reach (node i n j ob ) { 
i f (node.soonestReleaseTime > job.estimatedResponseTime ) 

node.soonestReleastTime = job.estimatedResponseTime; 
} 

} 

Sor tNodeL is tByT imeUnt i lRe leased(node l is t ) ; 

f o r ( i = 0; i < n o d e L i s t . s i z e && i < job.nodesRequired ; i++ ) { 
i n d i c i e s [ i ] = n o d e L i s t [ i ] ; / /Ass ign node t o l i s t o f i n d i c i e s . 

} 
I f ( n o d e l i s t . s i ze < job.nodesRequired) { 

fo reach (node i n c l u s t e r ) { 
i f ( ! ( n o d e l i s t conta ins node) ) { 

ex t raNodeLis t .add(node) ; 
} 

} 
} 

SortByFreeMemorySize(extraNodeList) ; / /Wors t F i t 

i n d i c i e s [ ] = assignNodesFromExtraNodeList(); / / A s s i g n the j ob t o nodes 
} 

Dob.ass ignNodes( ind ic ies) ; 

Figure 14 - Job Allocation Heuristic 
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5. DESIGN AND IMPLEMENTATION 

5.1 Cluster Simulator 

The cluster simulator is based on an event-based simulator engine which 

simulates the arrival of jobs to a simulated cluster. In the simulation the complete 

workload model is created, either from a synthetic model based on the Lublin-

Feitelson workload model [17], or from workload traces from the Feitelson 

workload archive [8]. The workload model is used to create a series of job 

submissions and times which are placed on an event queue. Each event in the 

queue is processed, in some cases creating more events, which are then placed 

on the queue and sorted by simulation time of occurrence. Once all the events in 

the event queue have been processed, the simulation has ended. All jobs within 

the cluster simulator are scheduled according to the core Scojo-PECT scheduling 

algorithm [6] [7], 

5.2 Node Design and Implementation 

In order to support the analysis and testing of overhead and simulate the 

effects memory constraints and memory swap costs, the original cluster 

simulator source code was modified to support these simulations. The original 

cluster simulator had a very basic model for node allocation which consisted of 

an array used primarily to mark which nodes were currently occupied. For the 

purposes of the investigations in this paper the simulation of actual nodes was 

redesigned and implemented for the modified cluster simulator. 
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Instead of a simple array representing nodes in the cluster, a node object 

was implemented. Each node object was designed in such a way that they 

possessed attributes such as memory size, and transfer rate. The size of the 

memory is set as a simple integer associated with the transfer rate. Since 

memory size is always relative to job memory requirement and transfer rate the 

representation of these attributes in terms of integers is sufficient for simulation. 

Additionally, each node was given a "state" attribute which indicates the state of 

the node at any time during the running simulation. The possible states include: 

• Free - this indicates merely that the node is not currently performing any 

execution on a running process 

• Loading - this indicates that a node is currently loading a job into memory. 

No other job may be loaded onto this node while in this state. 

• Running - that a node is currently performing execution on job that is 

loaded into memory. 

The reason for separation of state between loading and running is to allow 

for the simulator to determine which jobs make progress at each event in the 

simulation. Each node was also given attributes to keep track of the jobs 

currently loaded on to the node and the amount of memory a job allocated to that 

node currently has resident. Both of these attributes are necessary. A job can be 

simulated to be only partially loaded into memory. This supports cases where 

another job has displaced only part of a job already loaded on the node. This part 

of the displaced job's memory assignment will need to be swapped to disk as a 

result of preemption. The remaining part of the job simulated to still be resident in 
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the node's memory is keep track of in order to determine how much of the job 

needs to be swapped back in. This amount determines the overhead incurred by 

swapping a job back into memory. The java code for the node class 

implementation is contained in Appendix A. 

5.3 Loading and Swapping Jobs 

The loading of jobs is supported by additions to the cluster simulator logic. 

When a job is scheduled to run in the next slice a check is made to see if the job 

is completely loaded in memory. If it is not, then the maximum time required to 

load each job "task" is returned as the load time for the job. Since the job may 

require differing amounts of virtual memory to be swapped back into the node, 

we only consider the maximum time. This is because, according to our model, 

the job must be fully loaded to begin running. Once this time is determined, a 

new event is created to indicate when the job will be finished loading. This event 

is placed on the event queue of the simulator for processing in normal course. 

Additionally, the nodes implicated by the job are set to state "loading". As events 

are processed only jobs that simulate and record actual progress are those on 

nodes not in the "loading" state. Once the finish loading event occurs, those 

nodes are now set to state "running" and normal progress can be made by the 

job. The time spent in the loading state is part of the overhead we are seeking to 

minimize. 

The load time is calculated by examining the amount of memory that needs 

to be swapped back onto the node. This is the difference between the amount of 

a job's memory still contained in the node and the total memory requirement of 
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the job. As jobs are swapped out the cost for the swap 

done during the loading of an incoming job. 

out is considered. This is 
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Figure 15 - Partial Job Swap to Disk 

As a job is loaded into memory, the amount of resident memory remaining 

from a job to be swapped out is stored in the swap map attribute of the node 

class. The swap map attribute of each node associates a job with an amount of 

memory occupied by the job on that node. Figure 15 shows a job (i.e., Job 1) 

about to be swapped from disk into the memory of two nodes (i.e., Nodes 7 and 

8). The bottom part of Figure 15 shows the representation of the memory layout 

of Nodes 7 and 8 after the swap in has occurred. These two nodes now contain 

all of Job 1 and a section of Job 2. The part of Job 2 displaced by Job 1 is 

simulated to be swapped to disk. Once the loading is completed the swap out 

3 5 



overhead is calculated. This is done by using the swap out amounts contained in 

the swap out maps of the nodes allocated to the job that was swapped to disk. 

The maximum amount of memory in any node swapped to disk is divided by the 

transfer rate of the node. This gives the time taken to swap that amount of 

memory to disk. This time is then added to the remaining running time for the job 

swapped out. This simulates the time taken to swap out one job to accommodate 

an incoming job. The maximum time is used since once the job has been 

preempted to swap out one section of the swapped job, no running progress can 

be made by that job. The code for this process is contained in the "loadJob" 

method detailed in Appendix A. 

The swap out map used to calculate the swap costs as applied to each 

preempted job is passed in as a parameter to this method and then used to 

determine the time to add by a simple loop detailed in Figure 16. This loop adds 

the swap out cost to the remaining running time of each swapped job. 

/ / A d j u s t each swapped out job f o r swap out cost 
f o r ( I t e r a t o r i t e r = swapOutMap.entrySetQ . i t e r a t o r ( ) ; i t e r , h a s N e x t ( ) ; ) { 

Map.Entry en t r y = (Map.Entry) i t e r . n e x t Q ; 
Dob j ob = (Dob) e n t r y . g e t K e y ( ) ; 

i n t timeToAdd = ( ( I n t e g e r ) e n t r y , g e t V a l u e ( ) ) . i n t V a l u e ( ) ; 

job.setRemainingRunt ime(job.getRemainingRunt ime() + t imeToAdd); 

} 

Figure 16 - Adjustment according to Swap out Cost 

5.4 Memory Modelling 

Each job created using the Lublin-Feitelson model is assigned a random 

percentage of a node's total memory capacity. This is done by using a memory 
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model object. Each object contains a memory model listing that specifies a range 

of possible percentages or shares of the nodes total memory a job will consume. 

This assignment is based on the length of the job. Jobs of differing lengths 

typically utilize different memory profiles, longer jobs typically being wider (i.e., 

using more nodes) and using a greater share of memory per node than shorter 

jobs. The implementation of this supports a reconfigurable memory model. As 

each job is created it is assigned a memory requirement randomly over a 

distribution of values. The possible memory distribution models used are as 

shown in Figure 17. 

p r i v a t e doub le t ] defaul tModel = { 0 . 3 , 0 . 3 , 0 . 3 , 0 . 4 , 0 . 4 , 0 . 5 , 0 . 5 , 0 . 6 , 1 . 0 , 1 . 8 } ; 
p r i v a t e doub le f ] highMemModel = { 0 . 6 , 0 . 6 , 0 . 7 , 0 . 7 , 0 . 8 , 0 . 8 , 0 . 9 , 0 . 9 , 1 . 0 , 1 . 0 } ; 
p r i v a t e doub le f ] lowMemModel = { 0 . 1 , 0 . 1 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 3 , 0 . 3 , 0 . 4 , 0 . 4 , 0 . 5 } ; 
p r i v a t e doub le f ] veryHighMemModel = { 0 . 7 , 0 . 7 , 0 . 8 , 0 . 8 , 0 . 9 , 0 . 9 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 } ; 
p r i v a t e doub le f ] veryLowMemModel = { 0 . 1 , 0 . 1 , 0 . 1 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 3 , 0 . 3 , 0 . 3 , 0 . 4 } ; 

Figure 17 - Memory Models 

Each value in the vector represents a percentage of the nodes total 

memory that the job will occupy. For example, as a job is created, a memory 

model is assigned based on its type (short, medium, or large). Each job type is 

assigned a vector from the ones described in Figure 17. Then a random number 

between 1 and 10 is used to determine the value selected from the vector. This 

value selected from the vector is assigned as the percentage of a node's total 

memory is that required by that job. For example, in the simulation suppose 

medium jobs are configured to utilize the high memory model vector (i.e., 

highMemModel in Figure 17). When a medium job is created from the synthetic 
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workload a random number between 1 and 10 is chosen. Suppose the number 

chosen is 8. The eighth number in the high memory model vector is 0.9. This 

means that the medium job created will be assigned 90% of the memory capacity 

of a node as the job's memory requirement. The random assignment creates a 

uniform distribution over the values in the vector. This means that if medium jobs 

are assigned the high memory model then 20% of medium jobs will require 60% 

of a nodes memory, 20% will require 70%, 20% will require 80%, 20% will require 

90% and 20% will require 100%. If the medium jobs are assigned the default 

memory model (i.e., defaultModel in Figure 17) then 30% of the medium jobs will 

require 30% of a nodes memory, 20% will require 40%, 20% will require 50% , 

10% will require 60% and 20% will require 100%. 

Figure 18 gives an indication of the percentage of jobs that have various 

memory requirements in the LANL-CM5 workload trace. The LANL-CM5 

workload trace is from a 1024 node cluster where each node has a memory 

capacity of 32 MB. It shows that a low percentage of jobs use more than half the 

memory capacity of the nodes. Approximately 50% of the jobs in the workload 

require less than 5000 kB of memory, or 15% of the total capacity. This 

distribution can be simulated by assignment of the very low memory model 

vector (i.e., veryLowMemModel in Figure 17) to short job types when using the 

synthetic (i.e., Lublin-Feitelson) workload model. Approximately 64% of jobs 

generated by the synthetic workload model are of type short. Assignment of 

memory model vectors with higher percentages to long and medium job types 

produces a distribution curve similar in shape to the LANL-CM5 model. 
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Figure 18 - LANL-CM5 Workload Memory Requirements 

The assignment of a percentage of a nodes total memory is suitable for 

the purposes of this analysis. This is because we are examining the effects of the 

algorithm on reducing overhead given the assumption that our job workload is 

such that jobs may or may not fully occupy the memory available in a node. The 

importance is in evaluation of the allocation algorithm in the context of jobs which 

require different amounts of a nodes total memory. This type of design and 

implementation was chosen in order to support reconfigurability of the memory 

model. This supports analysis of more accurate workloads and memory profiles. 

The code for the memory model implementation is detailed in Appendix D. 
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5.5 Fitting Allocator Classes 

The implementation for sorting nodes by memory space based on worst fit 

and best fit were implemented as extensions of a super class "NodeAllocator". 

This design was chosen to provide a standard interface for development of 

different types of node allocators based on differing criteria. The current 

implementation of the simulator supports three variations: 

• Best-Fit Allocator 

• Worst-Fit Allocator 

• First-Fit Allocator 

In the simulation implementation each allocator implements a standard interface. 

This interface takes the job to be allocated and a list of nodes on which to 

allocate the job according to the algorithm contained in the allocation classes. 

This allows for analysis of differing allocation methods at the different stages in 

the overall allocation algorithm. The specific details for each allocation algorithm 

are described in Appendix C. 
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6. TESTS 

6.1 Experimental Setup 

This section describes the general experimental setup used in the 

evaluation of the algorithm in reducing overhead. The experiments were 

performed using the previously mentioned Lublin-Feitelson model for the creation 

of synthetic workloads. In the evaluations 10 random workload schedules were 

utilized, with all workload schedules showing utilization between 80% and 85% 

during the tests. These workload schedules are lists of jobs, the jobs 

characteristics, and the arrival time of each job to the simulator. For example, job 

1 requires 10 nodes and arrives at time 100 seconds after start. 

Actual workload traces were also utilized from the Feitelson workload 

archive [5], these being SDSC-BLUE and LANL-CM5 workloads. In determining 

the memory characteristic for each real workload trace the memory requirements 

in the SDSC-BLUE trace do not consume the total memory per node in any 

combination of three jobs. In fact the SDSC-BLUE trace does not contain 

memory information except the amount requested by the running process. The 

memory per processing node of the SDSC-BLUE trace is 512 MB per node. No 

combination of three jobs in the trace exceeds one third of the available memory 

and therefore when this trace is used we assign memory to these jobs according 

to the randomized model. In the LANL-CM5 trace, the jobs in the workload do in 

some cases consume the total memory of the node. When using this workload 

trace the actual percentages of the total memory per node as requested by the 

job are used. 
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The workload parameters for the synthetic and real workloads are 

described in Table 1. Runtime estimates, which are used for classification (short, 

medium, long) are assumed to be accurate. While this is not the case with most 

job scheduling, there is research indicating jobs may be profiled to have an 

indication of the runtime [3]. In our case we assume all jobs to have perfect 

estimation 

The type of job determines which slice the jobs are allocated to run in. The 

amount of runtime each job gets is based on the method presented in [6] [7] and 

does not change as a result of the modified node allocation algorithm. Jobs are 

also classified according to width (narrow, medium, wide); however, this is 

unimportant in the evaluation of overhead produced for a global schedule and 

workload. The percentage of jobs in each category is shown in Table 2, along 

with the percentage of the total workload each job type represents. The transfer 

rate per node was set at 1 % of the total node memory per second can be 

transferred. This is consistent with the speed and transfer rates of modern cluster 

computer systems which typically can contain 16 GB of memory per node. 

Typical disk transfer rates approach an average read/write speed of 100 MB/s [4] 

and so the simulated transfer time is slightly faster than that based on nodes 

having 16 GB of memory with a 100 MB/s transfer rate (16 384 MB /100 MB/s = 

163 seconds. We currently model 100 seconds for complete transfer of 

memory). The previous versions of the scheduler specified a global slice switch 

overhead of 60 seconds which would be similar to an average case in the 

42 



updated simulation where all jobs may not completely fit into memory but only 

part of the memory would need to be swapped out at any interval [22]. 

Parameter Value 

Number of jobs in workload 10000 
Classification of short jobs Runtime < 10 minutes 
Classification of medium jobs 10 minutes < Runtime < 3 hours 
Classification of long jobs 3 hours < Runtime 
Backfilling Heuristic Conservative - Non-Type Slice 

Backfilling Enabled 
Interval 24 Intervals per day (1 per hour) 

Table 1 - Scheduling Parameters 

Lublin-Feitelson SDSC BLUE LANLCM5 
Machine Size 128 1152 1024 
Percentage of Short 64% 73.75% 61.4% 
Jobs 
Percentage of 19.5% 17.7% 34.2% 
Medium Jobs 
Percentage of Long 
Jobs 

16.5% 8.5% 4.3% 

Workload 0.5% 1.0% 2.5% 
Percentage for Short 
Jobs 
Workload 26.0% 15.0 % 40.7% 
Percentage for 
Medium Jobs 
Workload 73.5% 84.0% 56.8% 
Percentage for Long 
Jobs 

Table 2 - Workload Characteristics 

Several test cases were constructed and the resulting overhead incurred 

was measured in each case over each of the 10 random workload schedules. 
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The test cases compared the use of the previous intelligent node allocation 

method as detailed in [6] [7] and the separate "first free" nodes available method 

against different variations of the memory aware allocation algorithm presented 

here. The first free nodes available method simply is the case where a job is 

allocated on nodes not currently being used in the running slice without 

consideration as to memory usage or swap costs. 

The previously described intelligent node allocation algorithm used in [6] [7] 

seeks to reduce the number of jobs of differing types (short, medium, long) which 

share the same nodes. It does not take into consideration memory usage or 

swap costs in the determination, only commonly used nodes and can be seen as 

a very basic approximation of the modified allocation algorithm presented here. 

The new allocation algorithm is then varied by using different fitting methods (i.e., 

best-fit and worst-fit) in the two stages of the algorithm. This is done to find the 

best configuration of the algorithm. Each configuration is also tested against 

varying memory models to examine how different memory characteristics of jobs 

impact the new allocation algorithm and how it compares to the other allocation 

methods. 

Overhead time is defined as the total time spent either loading or unloading 

a job to and from the memory of a node. Modifications to the cluster simulation 

allow for accounting of the overhead of each job individually regardless of the 

scheduler object used. Relative response time is calculated using a bound on the 

runtime for short jobs. This prevents short jobs from having a very large relative 

response time when the actual response time may be very short compared to 
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longer jobs in the schedule. For example, a job needing 1 seconds of runtime 

may wait 5 minutes (i.e., 300 seconds) to run and then finish. That job's relative 

response time would then be 300 which is a very high value when compared to 

the actual response time. This is appropriate since from a typical users point of 

view the responsiveness of a job should be relative to the computation performed 

(i.e., runtime). However, it is also reasonable to expect users to wait a short time 

for a job to finish even if the ratio of response time to runtime is very high, as in 

the example above. The relative response time for jobs is calculated as shown in 

Figure 19. 

if Runtime > Bound 

if Runtime < Bound & Response Time > Bound 

if Response Time <= Bound 

Figure 19 - Relative Response Time Calculation 

The reduction in overhead and any improvement in relative response time are 

calculated as shown in Figure 20. 

J 
•Response Time / Runtime 

Relative Response Time = ^ Response T ime/ Bound 

•1 
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Overhead Reduction = 1 - Overhead"] ime ot Allocation Algorithm 

Overhead Time otT est Algorithm 

Relative Response Time Improvement = 1 - Relative Response Time of Allocation Algorithm 

Relative Response Time of Test Algorithm 

Figure 20 - Improvement Calculation Equations 

6.2 Results and Interpretation 

Tables 4 - 9 show the overhead reduction of the presented algorithm as 

compared to the basic "first free" allocation and the intelligent node allocation 

algorithm from [6] [7]. Tables 4 - 7 also show the relative response time 

improvement of the allocation algorithm as compared to the same previously 

used methods. Relative response time improvement was shown to examine the 

impact of overhead reduction on improving the overall schedule. The results from 

the synthetic environment represent the averages from the individual test runs. In 

all cases the relative response times were similar to that of the previous versions 

of the scheduler. The graph shows the relative improvement of the presented 

heuristic over the two alternative heuristics. Tables 4, 5, 6 and 7 detail the 

percentage improvement of the new job allocation algorithm over the previous 

"first-free" and intelligent node allocation algorithms. Each table represents a 

different configuration of the new algorithm where the best-fit and worst-fit 

algorithms were utilized in either the first stage or second stage respectively. 

Figure 20 shows the percentage improvement over 5 different memory model 
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assignments as detailed in Table 3. Each memory-model assignment represents 

which memory-model vector as shown in Figure 17 that was assigned to which 

job type. In Figure 20, the improvement over the first free allocation method is 

indicated by the "FF" designation for each memory model assignment. The 

improvement over the intelligent node allocation method is indicated by the "AL" 

designation for each memory model assignment. All the results in Tables 4 -7 

and Figure 21 are the average of the improvements observed over all ten 

generated synthetic workloads. Tables 8 and 9 show the improvements of the 

new allocation algorithm over the actual workload traces LANL-CM5 and SDSC-

BLUE. 

Memory Model Assignment Job Size to Model Vector 

MM1 Long = highMemModel 
Medium = defaultModel 
Short = lowMemModel 

MM2 Long = lowMemModel 
Medium = defaultModel 
Short = highMemModel 

MM3 Long = veryHighMemModel 
Medium = defaultModel 
Short = veryLowMemModel 

MM4 Long = veryLowMemModel 
Medium = defaultModel 
Short = veryHighMemModel 

MM5 Long = defaultModel 
Medium = defaultModel 
Short = defaultModel 

Table 3 - Memory Model Assignment 
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Test 
Case 
ID 

Test Case 
Description 
(Synthetic 
Workload) 

Memory 
Model 
Used 
for Job 
Type 

Overhead 
Reduction 
over first 
free 
allocation 

Overhead 
Reduction 
over 
basic 
Node 
Allocation 

Relative Response 
Improvement over 
first free 

Relative Response 
Improvement over 
basic Allocation 

1 
Best Fit - First 
Stage 
Worst Fit -
Second Stage 

MM1 6.04% 2.91% 

L 2.31% 
M 0.01% 
S0.01% 
A 1.01% 

L 3.9% 
M 0.1% 
S0.01% 
A 1.42% 

2 

Best Fit - First 
Stage 
Worst Fit -
Second Stage 

MM2 3.95% 2.62% 

L 2.21% 
M 0.02% 
S 0.04% 
A 1.07% 

L 1.9% 
M 0.1% 
S 0.30% 
A 0.09% 

3 

Best Fit - First 
Stage 
Worst Fit -
Second Stage 

MM3 2.31% 0.23% 

L 1.31% 
M 0.01% 
S 0.21% 
A 1.91% 

L 0.92% 
M 0.00% 
S0.11% 
A 0.72% 

4 

Best Fit - First 
Stage 
Worst Fit -
Second Stage 

MM4 2.75% 0.81% 

L 2.01% 
M 0.61% 
S0.01% 
A 1.00% 

L 0.94% 
M 0.1% 
S0.01% 
A 0.56% 

5 

Best Fit - First 
Stage 
Worst Fit -
Second Stage 

MM5 13.84% s thesL 

L 3.31% 
M 0.01% 
S0.01% 
A 1.01% 

L 2.9% 
M 0.01% 
S0.01% 
A 0.98% 

Table 4 - Synthetic Load Test Results - Best-Fit/Worst-Fit 

Test 
Case 
ID 

Test Case 
Description 
(Synthetic 
Workload) 

Memory 
Model 
Used 
for Job 
Type 

Overhead 
Reduction 
over first 
free 
allocation 

Overhead 
Reduction 
over 
basic 
Node 
Allocation 

Relative Response 
Improvement over 
first free 

Relative Response 
Improvement over 
basic Allocation 

6 

Best Fit - First 
Stage 
Best Fit -
Second Stage 

MM1 6.02% 2.89% 

L 2.37% 
M 0.42% 
S0.01% 
A 1.01% 

L 0.54% 
MO.13% 
S0.01% 
A 0.45% 

7 

Best Fit - First 
Stage 
Best Fit -
Second Stage 

MM2 1.73% 0.42% 

L 1.91% 
M 0.41% 
S 0.14% 
A 1.01% 

L 0.85% 
M 0.18% 
S 0.14% 
A 0.45% 

8 

Best Fit - First 
Stage 
Best Fit -
Second Stage 

MM3 3.74% 1.41% 

L 1.32% 
M 0.72% 
S 0.41% 
A 1.81% 

L 3.9% 
M 0.63% 
S 0.435% 
A 1.42% 

9 

Best Fit - First 
Stage 
Best Fit -
Second Stage 

MM4 2.71% 0.77% 

L 2.31% 
M 1.51% 
S 0.71% 
A 1.04% 

L 2.01% 
M 0.31% 
S 0.31% 
A 0.92% 

10 

Best Fit - First 
Stage 
Best Fit -
Second Stage 

MM5 8.02 % 1.65% 

HD&DDDD 
M 2.01% 
S 1.41% 
A 1.71% 

L 3.01 % 
M 1.17% 
S 1.21% 
A 1.42% 

Table 5 - Synthetic Load Test Results - Best-Fit/Best-Fit 
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Test 
Case 
ID 

Test Case 
Description 
(Synthetic 
Workload) 

Memory 
Model 
Used 
for Job 
Type 

Overhead 
Reduction 
over first 
free 
allocation 

Overhead 
Reduction 
over 
basic 
Node 
Allocation 

Relative Response 
Improvement over 
first free 

Relative Response 
Improvement over 
basic Allocation 

11 

Worst Fit - First 
Stage 
Worst Fit -
Second Stage 

MM1 2.84% 0.79% 

L 1.41% 
M 0.01% 
S 0.01% 
A 1.11% 

L 0.09% 
M 0.01% 
S0.01% 
A 1.01% 

12 

Worst Fit - First 
Stage 
Worst Fit -
Second Stage 

MM2 1.24% 0.31% 

L 1.21% 
M 0.02% 
S 0.70% 
A 1.17% 

L 0.08% 
M 0.01% 
S 0.70% 
A 0.64% 

13 

Worst Fit - First 
Stage 
Worst Fit -
Second Stage 

MM3 2.22% 1.18% 
L 1.33% 
M 0.01% 
S 0.23% 
A 1.93% 

L 0.95% 
M 0.00% 
S0.14% 
A 0.75% 

14 

Worst Fit - First 
Stage 
Worst Fit -
Second Stage 

MM4 5.96% 3.96% 

L 1.91% 
M 0.58% 
S 0.01% 
A 1.01% 

L 0.90% 
M 0.11% 
S 0.01% 
A 0.54% 

15 

Worst Fit - First 
Stage 
Worst Fit -
Second Stage 

MM5 4.82 % 0.11% 
L 1.30% 
M 0.98% 
S0.01% 
A 1.01% 

L 0.90% 
M 0.01% 
S0.01% 
A 0.98% 

Table 6 - Synthetic Load Test Results - Worst-Fit/Worst-Fit 

Test 
Case 
ID 

Test Case 
Description 
(Synthetic 
Workload) 

Memory 
Model 
Used 
for Job 
Type 

Overhead 
Reduction 
over first 
free 
allocation 

Overhead 
Reduction 
over 
basic 
Node 
Allocation 

Relative Response 
Improvement over 
first free 

Relative Response 
Improvement over 
basic Allocation 

16 
Worst Fit - First 
Stage 
Best Fit -
Second Stage 

MM1 2.37% 0.32% 
L 2.12% 
M 0.42% 
S 1.61% 
A 1.01% 

L 1.54% 
M 0.13% 
S 0.01% 
A 0.45% 

17 
Worst Fit - First 
Stage 
Best Fit -
Second Stage 

MM2 0.68% 0.11% 

L 1.78% 
M 0.71% 
S 0.14% 
A 1.02% 

L 0.85% 
M 0.48% 
S 0.14% 
A 0.46% 

18 
Worst Fit - First 
Stage 
Best Fit -
Second Stage 

MM3 5.45% 3.08% 

L 2.32% 
M 0.72% 
S 0.41% 
A 1.81% 

L 1.91% 
M 0.63% 
S 0.29% 
A 1.42% 

19 

Worst Fit - First 
Stage 
Best Fit -
Second Stage 

MM4 2.59% 0.66% 

L 1.31% 
M 1.51% 
S 0.71% 
A 1.04% 

L 1.01% 
M 0.31% 
S 0.31% 
A 0.92% 

20 

Worst Fit - First 
Stage 
Best Fit -
Second Stage 

MM5 8.94 % 2.52% 

L 1.31% 
M 1.41% 
S 1.21% 
A 1.61% 

L 0.81% 
M 1.17% 
S 1.11% 
A 1.40% 

Table 7 Synthetic Load Test Results - Worst-Fit/Best-Fit 
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Figure 21 - Synthetic Load Comparative Results 

Test Case 
ID 

Test Case 
Description 
(Synthetic 
Workload) 

Overhead 
Reduction 
over first 
free 
allocation 

Overhead Reduction over 
basic Node Allocation 

1 
Best Fit - First Stage 
Worst Fit - Second 
Stage 

5.50 % 0.25% 

2 
Best Fit - First Stage 
Best Fit - Second 
Stage 

4.45% 0.80% 

3 

Worst Fit - First 
Stage 
Worst Fit - Second 
Stage 

7.70% 2.58% 

4 

Worst Fit - First 
Stage 
Best Fit - Second 
Stage 

6.16% 0.95% 

Table 8 - SDSC-BLUE Workload Test Results 
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Test Case ID Test Case 
Description 
(Synthetic 
Workload) 

Overhead 
Reduction 
over first 
free 
allocation 

Overhead Reduction 
over basic Node 
Allocation 

1 Best Fit - First Stage 
Worst Fit - Second 
Stage 

5.45% 1.99 % 

2 Best Fit - First Stage 
Best Fit - Second 
Stage 

8.62% 5.27% 

3 Worst Fit - First 
Stage 
Worst Fit - Second 
Stage 

6.59% 3.17% 

4 Worst Fit - First 
Stage 
Best Fit - Second 
Stage 

3.99% 0.47% 

Table 9 - LANL-CM5 Workload Test Results 

6.3 Overall Test Results 

From the test runs we can see that in all cases the presented algorithm 

reduces the amount of overhead incurred in the running system. The algorithm 

seems especially effective if the memory required by jobs does not trend 

according to job size. That is, the amount of memory required by a job does not 

indicate the amount of nodes or degree of parallelism required by the job. The 

general trend seems to be that inclusion of the "best-fit" fitting technique in either 

the first or second stages of the allocation heuristic improves the reduction of 

overhead. There was no real significant improvement in relative response times 

observed over the previous allocation methods. This is due to the simulation 

attributing a small percentage the total time to overhead as compared with the 

total running time of the simulation. Small jobs in particular, for the most part, 
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either finish within the slice in which they first receive runtime or experience very 

little additional overhead as a result. For medium and large jobs the overhead 

modelled was insignificant to make an appreciable difference in improvement 

toward relative response times. Additionally, in some individual test runs the 

relative response times were worse for certain job types even though the amount 

of accumulated overhead was less. The average relative response times over all 

test runs remained relatively unchanged as shown in Tables 4 - 7 . Though not 

shown in Tables 8 and 9, the relative response times also remained relatively 

unchanged. This is most likely due to the fact that different orders of jobs present 

different opportunities for backfilling. If a job cannot fit on nodes it incurs no 

overhead. The job just simply waits in a queue. This adds further evidence that if 

overhead does not represent a significant amount of the total processing time 

then it is of minor concern as compared to backfilling choices made during the 

scheduling process. Even though response times may behave slightly differently 

than relative response times, no significant response time improvement was 

observed. 

In general the technique improves the reduction of overhead over the 

original intelligent node allocation method as well as over the "first nodes free" 

type of allocation. There still is no guarantee that this method provides the best 

packing of jobs given the other concern of fairness implied with the initial first-

come, first-serve consideration of the SCOJO-Pect scheduler. 
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7. CONCLUSIONS AND FUTURE WORK 

The test results show that the presented algorithm is effective in reducing 

the overhead by amounts ranging from 0.11% - 7.13 % over the previous 

intelligent node selection heuristic. The presented algorithm is most effective 

where the job runtime does not indicate the memory requirements for that job. 

However, even in this context the overhead compared to the actual work or 

processing done on the nodes still accounts only for about 1.5% of the total 

processing time in the workload models. This amount is lower than previous 

simulations and models since overhead is calculated on a per job basis and only 

when jobs preempt. Previous simulation models imposed higher levels of 

overhead in the 5-10% range [6] [7]. This was due to modelling the preemption 

overhead globally across all jobs instead of individually as in the updated 

simulator. As the overhead costs for preemption increase, the performance of the 

algorithm in reducing incurred preemption cost would likely become more 

effective. Increasing overhead costs could be caused by larger memory 

reguirements for running jobs or slower transfer rates from memory to disk. In the 

future, if job memory requirements grow faster than memory to disk transfer rates 

then overhead costs will increase. 

The improvement is only notable when compared against the overhead 

from a very basic allocation method that does not consider memory swap times. 

In the case that overhead times become a significant factor in the processing of 

parallel jobs, a better method may be toward the design of a purpose built 

system. In this case the jobs to be run and the hardware would each be designed 
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to complement the other. That is parallel jobs and tasks are designed from the 

outset to run in a particular environment with efficiency under constraints that 

guarantee achieving the desired optimality criteria. An example of this would be a 

system designed such that all jobs have a specific degree of parallelism (e.g., all 

jobs require 16 nodes). The hardware would then be designed to support these 

specific job types to achieve maximum use of the processing nodes. 

The modelling of the performance of overhead characteristics also depends 

on the speed of the hardware for which the overhead is incurred. An advance in 

hardware and increased memory sizes may make overhead costs a non-factor. 

On the other hand if there is advancement in the amount of data to be processed 

along with increasingly accurate estimates of runtime then techniques that 

consider overhead costs may be of value. 

Future work continuing from this point could include expanding the job 

modelling to include jobs that can relocate to differing nodes as well as jobs that 

can alter their degree of parallelism upon preemption. These processes would 

also incur overhead that may need to be managed and a determination made as 

to whether any change is necessary. Another future direction could include 

analysis of patterns which may appear in the schedule that indicate future 

opportunities for advantageous backfilling. However, even this would be limited 

by each set of hardware and job types having a unique advantageous pattern 

types which would need to be modelled in advance of any sort of optimization. 
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Appendix A Node.java 

package hpcSimulation; 

import hpcSimulation. jobs.Job; 
import j a v a . u t i l . A r r a y L i s t j 
import java.ut i l .HashMap; 
import j a v a . u t i l . I t e r a t o r ; 
import j a v a . u t i l . M a p ; 

/ * * 
* 

* @author Bryan Esbaugh 
* / 

public class Node { 

public State ge tS ta te ( ) { 
return s ta te ; 

} 

public void se tSta te (Sta te s ta te ) { 
t h i s . s t a t e = s ta te ; 

} 

* @return the jobMemorySwapMap 
* / 

public HashMap<Integer, Integer> getDobMemorySwapMap() { 
return jobMemorySwapMap; 

} 

public s t a t i c enum State { 

FREE, LOADING, RUNNING 
}; 
pr iva te s t a t i c i n t memorySize = 400; / / S i z e of memory in the node 
p r i va te s t a t i c i n t t ransferRate = 4 ; / / T h e speed in MB/s of t r a n s f e r 

between disc and node memory\ 
p r i va te ArrayList<Dob> jobsInMemory; 
p r i va te i n t nodelD = 0; 
p r i va te i n t currentlyRunningDobID = -1 ; 
p r i va te boolean ava i l ab le = t r u e ; 
p r i va te State s ta te ; 
p r i va te HashMapcInteger, Integer> jobMemorySwapMap; 
/ * * 

* Constructor fo r a node object 
* 

* 
* / 

public Node() { 
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jobsInMemory = new ArrayList<Job>() ; 

jobMemorySwapMap = new HashMap<Integer, I n t e g e r > ( ) ; 

s ta te = State.FREE; 

} 
/ * * 

* Loads jobs in to the memory of the node. This happens at the end of 
* the loading so tha t in the simulation t h i s method would be ca l led 
* when the job has completed loading. 
* 

* (Sparam j The job the load in to memory 
* (Sparam swapOutMap The swap out map used to ca lcu la te the time cost of 

swapping out jobs. 
* (Slreturn I f the job was successful ly loaded return t r u e , else return 

f a l s e 
* / 

public boolean loadDob(Dob j , HashMap<Job, Integer> swapOutMap) { 

i f ( this.getFreeMemory() >= j.getMemoryReq()) { 
th is . jobsInMemory.add( j ) ; 
this.getDobMemorySwapMap() .put( j .get ld() , j .getMemoryReq()) j 

return t r u e ; 
} else { 

/ /Rout ine to handle loading job to displace memory, 
while (this.getFreeMemory() < j .getMemoryReq()) { 

/ / F i n d the amount of memory remaining from displaced job. 
i n t memRemaining = 0j 
i n t memFree = this.getFreeMemory() j / / F r e e memory before 

removing job 

Dob job = this. jobsInMemory.remove(0); / / D o n ' t remove job from 

map. 

i f ( this.getFreeMemory() >= j.getMemoryReqQ) { 

memRemaining = j.getMemoryReq() - memFreej / /Remaining amount of job memory 
th is . jobsInMemory.add( j ) ; 

/ / F i n d the time to swap out the job and that tha t time to 
the remaining runtime to simulate the swap out cost. 

i n t timeForSwapOut = memRemaining / 
Node.getTransferRate() ; 

i f (!swapOutMap.containsKey(job)) { 
swapOutMap.put(job, timeForSwapOut); 

} e lse i f (swapOutMap.get( job) . intValue() < 
timeForSwapOut) { 

56 



swapOutMap.put(job, timeForSwapOut); 
} 

this.getDobMemorySwapMap() .put( job.getld() , memRemaining); 
this.getDobMemorySwapMapQ.put( j .get ld() , 

j .getMemoryReq()); 
return t r u e ; 

} e lse { 

this.getDobMemorySwapMapQ.put( job.getId() , 0 ) ; 
} 

} 
i f ( I th is . jobs InMemory .conta ins ( j ) ) { 

throw new RuntimeException("Dob not sucessful ly loaded"); 
} 
return f a l s e ; 

} 

} 
!** 

* This checks t o see i f a c e r t a i n job is loaded in to the memory of the 
node 

* 

* @param j - Dob to check 
* @return t rue i f job is in memory, or f a l s e otherwise 
* / 

public boolean jobInMemory(Dob j ) { 

f o r (Dob jn : this. jobsInMemory) { 
i f ( j n . g e t l d ( ) == j . g e t l d ( ) ) { 

re turn t r u e ; 
} 

} 

return f a l s e ; 
} 
/ * * 

* Removes a job from the memory of the node 
* 

* @param j Dob to be removed 
* ^return Returns t rue i f job removed, f a l s e otherwise 
* / 

public boolean removeDobFromMem(Dob j ) { 

i f ( th is . jobs InMemory .conta ins ( j ) ) { 
th is . jobsInMemory.remove( j ) ; 
this.getDobMemorySwapMapQ.remove(j .getld()); 
return t r u e ; 

} e lse { 

return f a l s e ; 
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} 

} 

public s t a t i c i n t getMemorySize() { 
return memorySize; 

} 

public s t a t i c void setMemorySize(int memorySize) { 
Node.memorySize = memorySize; 

} 

public s t a t i c i n t getTransferRate( ) { 
return t ransferRate ; 

} 

public s t a t i c void setTransferRate( int t ransferRate ) { 
Node.transferRate = t ransferRate ; 

} 
/ * * 

* Quick f i x fo r keeping the remaining runtimes consistent with 
* those in the Preemptive scheduler preemption queues. * 
* 

* (Sparam job 
* / 

public void setNodeDobRuntimeRemaining(Dob job) { 

f o r (Dob j : this.jobsInMemory) { 

i f ( j . e q u a l s ( j o b ) ) { 
j .setRemainingRuntime(job.getRemainingRuntime()); 

} 
} 

} 

protected i n t getFreeMemory() { 
i n t memory = Node.memorySize; 

f o r (Dob j : this.jobsInMemory) { 

memory -= j .getMemoryReqQ; 
} 

return memory; 
} 

public i n t getNodelDQ { 
return nodelD; 

} 

public void setNodeID(int nodelD) { 
th is .nodelD = nodelD; 

} 
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public i n t getCurrentlyRunningDob() { 
re turn currentlyRunningDobID; 

} 

public void setCurrentlyRunningDob(Dob currentlyRunningDob) { 

i f (currentlyRunningDob.getldQ == - 1 ) { 
throw new RuntimeException("Trying to s t a r t a negative Dob"); 

} 
i f ( this. joblnMemory(currentlyRunningDob)) { 

this.currentlyRunningDobID = current lyRunningDob.get Id( ) ; 
th is .setState(State .RUNNING); 
t h i s . s e t A v a i l a b l e ( f a l s e ) ; 

} e lse { 
this.currentlyRunningDobID = current lyRunningDob.get ldQ; 
th is .setState(State .LOADING); 
t h i s . s e t A v a i l a b l e ( f a l s e ) ; 
/ / throw new RuntimeException("Trying to s t a r t job not loaded in 

Memory"); 
} 

} 

public void setCurrentlyRunningDob(int currentlyRunningDob) { 
i f (currentlyRunningDob == - 1 ) { 

throw new RuntimeException("Trying to s t a r t a negative Dob"); 
} 
i f ( this. jobsInMemory.contains(currentlyRunningDob)) { 

this.currentlyRunningDobID = currentlyRunningDob; 
th is .setState(State .RUNNING); 
t h i s . s e t A v a i l a b l e ( f a l s e ) ; 

> else { 
this.currentlyRunningDobID = currentlyRunningDob; 
th is .setState(State .LOADING); 
t h i s . s e t A v a i l a b l e ( f a l s e ) ; 

} 
} 

public void stopCurrentlyRunningDob() { 

this.currentlyRunningDobID = - 1 ; 
t h i s . a v a i l a b l e = t r u e ; 
th is .se tS ta te (S ta te .FREE) ; 

} 
/ * * 

* Returns t rue i f the node already has a job running on i t or i f i t has 
been marked 

* as unavai lable fo r the current scheduling phase. 
* 

* (Sreturn 
* / 

public boolean i s A v a i l a b l e ( ) { 
i f ( this.currentlyRunningDobID != - 1 ) { 
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re turn f a l s e ; 
} else { 

re turn t h i s . a v a i l a b l e ; 
} 

} 
/ * * 

* Sets whether the node is ava i l ab le or not. Does not al low a node with a 
job current ly 

* running to be set to a v a i l a b l e . 
* 

* @param a - t rue or f a l s e i f the node i s ava i l ab le 
* / 

public void setAvai lable(boolean a) { 
i f ( th is .current lyRunningJobID != - 1 ) { 

t h i s . a v a i l a b l e = f a l s e ; 
} else { 

t h i s . a v a i l a b l e = a; 
> 

} 

ArrayList<Dob> getDobsInMemory() { 

return this. jobsInMemory; 

} 
} 
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Appendix B Cluster.allocateJob() 

* Memory A l loca t ion heur is t i c which a l locates jobs to nodes based on 
memory pressure 

* 

* @param j s - The job to a l l o c a t e to resources. 
* / 

pr iva te i n t [ ] allocateDob(Dob j s ) { 

BestF i tA l locator bfa = new B e s t F i t A l l o c a t o r ( ) ; 
WorstFi tAl locator wfa = new Wors tF i tA l loca to r ( ) ; 

ArrayList<Node> freeNodes = new ArrayList<Node>(); / / L i s t of f r e e 
nodes with ava i l ab le memory 

ArrayList<Node> nodeList = new ArrayList<Node>(); / / L i s t of nodes 

i n t [ ] ind ic ies = new i n t [ j s . g e t N o p t ( ) ] ; 

i n t [ ] totalMemoryUsedlnNode = new 
int [ th is .Simulat ionParameters.getNODES() ] ; / / The number of nodes in the 
c lus te r 

ArrayList<Dob> preemptedDobs = ((PreemptionScheduler) 
scheduler) .getAl lPreemptDobsQ; 

f o r ( i n t i = 0; i < getRunningQueueQ.size() ; i++) { 
preemptedDobs.add(getRunningQueue ( ) . g e t D o b ( i ) ) ; 

} 

/ / G e t the memory used in t o t a l fo r each node. This would mean tha t the 
node, f o r comparison 

/ / a g a i n s t what i s in memory at the time of the schedul ing /a l locat ion 
phase. 

fo r (Dob j : preemptedDobs) { 

fo r ( i n t i : j . ge tNode Ids ( ) ) { 
totalMemoryUsedInNode[i] += j .getMemoryReqQ; 

} 
} 

/ / G e t the l i s t of nodes with immediately ava i l ab le memory fo r the job 
/ / T h i s l i s t should be reduced by the t o t a l amount of memory used by 

jobs, 
/ / S i n c e i t makes no sense to t r y to assign jobs to nodes tha t do not 

have enough memory to hold 
/ / a l l cur rent ly assigned jobs, 
f o r (Node n : th is .nodes) { 

i f ((n.getFreeMemoryQ >= js.getMemoryReq()) && n . i s A v a i l a b l e Q ) { 
i f (Node.getMemorySize() -

totalMemoryUsedlnNode[n.getNodelDQ] >= js.getMemoryReqQ) { 
freeNodes.add(n); 
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} 
} / /End I f 

} / /End For 

/ /Check i f we have enough nodes with enough a v a i l a b l e memory 
/ / f o r the job we wish to a l l o c a t e 
/ /The node a l loca t ion i s switchable between BestFi t and WorstFit 

i f ( f reeNodes.s ize( ) >= j s . g e t N o p t Q ) { 
ind ic ies = b f a . a l l o c a t e ( j s , freeNodes); 

} / /End i f 
e lse { 

/ / I f we have not found enough nodes with a v a i l a b l e memory we t r y 
to a l l o c a t e to nodes 

/ /w i thou t enough ava i lab le memory in rank order of increasing time 
remaining u n t i l the 

/ / j o b s f ree memory resources. 

for (Node n : th is .nodes) { 
i f (totalMemoryUsedInNode[n.getNodeID()] < js.getMemoryReq() 

&& n . i s A v a i l a b l e ( ) ) { 
/ /node doesn't have enough f ree memory 
nodeList .add(n); 

} / / end i f 
} / / e n d fo r 

sortByTimeUnti lAHDobsFit(nodeList j j s ) ; 

i n t index = 0; 
fo r (index = 0; index < nodeL is t . s i zeQ && index < j s . g e t N o p t Q ; 

index++) { 
ind ic ies f index] = nodeLis t .get ( index) .getNodeID( ) ; 

} 

/ / I f the number of nodes in the node l i s t was i n s i f f i c i e n t to 
a l l o c a t e 

/ / t h e job, then we add nodes to the l i s t of ind ic ies such tha t the 
job 

//may be f u l l y a l located . 

i n t [ ] sublndicies = n u l l ; 
i f (nodeL is t . s i zeQ < j s . g e t N o p t Q ) { 

ArrayList<Node> extraNodeList = new ArrayList<Node>(); 

f o r (Node n : th is .nodes) { 
i f ( ( I n o d e L i s t . c o n t a i n s ( n ) ) && ( n . i s A v a i l a b l e ( ) ) ) { 

extraNodeList .add(n); 
} 

} 
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sublndicies = w f a . a l l o c a t e ( j s , extraNodeList ) ; 

i n t sublndex = 0j 
whi le (index < j s . g e t N o p t Q ) { 

ind ic ies [ index ] = sublndicies[sublndex]; 
index++; 
sublndex++; 

} 
} 

} / / end else 

return i n d i c i e s ; 

} 
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Appendix C Fitting Algorithms 

C.I Best Fit 

The best fit algorithm is used for on-line bin packing where the goal is to 

place items in "bins" as they arrive such that the number of bins used is a 

minimum [12]. As applied to our overhead minimization methods, we utilize this 

general idea to assign jobs to nodes, which have enough available memory to 

contain all jobs currently assigned, where the amount of available memory on the 

node is minimized. The effect of this is to group jobs together on already utilized 

nodes in order to leave room for other more memory intensive jobs. The 

expected effect would be that narrow jobs (i.e., jobs requiring a small number of 

nodes) having less memory requirements would group together on nodes leaving 

room for wider jobs (i.e., jobs requiring large numbers of nodes) elsewhere in the 

cluster. The implementation of the best fit job allocator is in Figure 22. 
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package hpcSimulation.nodeAllocation; 

import hpcSimulation.NodeFreeMemoryComparator; 
import hpcSimulation.jobs.Dob; 
import java.util.ArrayList; 
import java.util.Collections; 

* Best Fit Node Allocator for HPC Cluster Dobs 
* 

* Packs jobs according to "Best Fit Algorithm" , that is attempts to pack 
* jobs onto nodes such that the job fits onto nodes with the least amount 
* of free space available such that jobs still fit in the available memory. 
* 

* (Sauthor Bryan Esbaugh 
*/ 

public class BestFitAllocator extends NodeAllocator { 

^Override 

public int[] allocate(Dob js, ArrayList<hpcSimulation.Node> freeNodes) { 

int[] indicies = new int[js.getNopt()]; 
NodeFreeMemoryComparator comparator = new NodeFreeMemoryComparator(); 
Collections.sort(freeNodes, comparator); 

for (int i = 0; i < js.getNoptQ && i < freeNodes.size(); i++) { 

indicies[i] = freeNodes.get(i).getNodeID(); } 
return indicies; 

} 
} 

Figure 22 - Best Fit Allocator Implementation 

C.ll Worst Fit 

The worst fit heuristic attempts to put any newly arrived object into any open 

bin where there is the most extra space. In this case the free space in each bin is 

keep at a maximum and objects are spread across all bins. In the allocation 

method, this means that jobs will be allocated to nodes where after allocation 

there will be a maximum amount of free space. This means that instead of 
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grouping jobs together, jobs are spread across empty nodes. The implementation 

is shown in Figure 23. 

package hpcSimulation.nodeAllocation; 

import hpcSimulation.Node; 
import hpcSimulation.NodeFreeMemoryComparator; 
import hpcSimulation.jobs.3ob; 
import java.util.ArrayList; 
import java.util.Collections; 
/** 

* Implements "Worst Fit" Alogorithm, this algorithm attempts to place job on 
* nodes with the most available space. 
* 

* (Sauthor Bryan Esbaugh 
*/ 

public class WorstFitAllocator extends NodeAllocator{ 

^Override public int[] allocate(3ob js, ArrayList<Node> freeNodes) { 

int[] indicies = new int[js.getNopt()]; 
NodeFreeMemoryComparator comparator = new NodeFreeMemoryComparator(); 
Collections.sort(freeNodes, comparator); 

int sizeOfFreeNodes = freeNodes.size(); 

for ( in t i = 0; i < js.getNoptQ && i < freeNodes.size(); i++) { 

indicies[i] = freeNodes.get(sizeOfFreeNodes - i -1).getNodelDQ; 

} 
return indicies; 

} 
> 

Figure 23 - Worst Fit Allocator Implementation 

C.lll First Fit 

First fit simply maintains a list of current bins, or nodes in our case, and 

upon arrival of a job, puts that object in the first bin in which it fits [12]. This 

method for job allocation to nodes is not utilized for the purposes of 
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experimentation in this paper, but is supported by the updated scheduler. The 

implementation is shown in Figure 24. 

package hpcSimulation.nodeAllocation; 
import hpcSimulation.Node; 
import hpcSimulation.jobs.Dob; 
import java.util.ArrayList; 

/public class FirstFitAllocator extends NodeAllocator{ 

^Override 
public int[] allocate(Dob js, ArrayList<Node> freeNodes) { 

int[] indicies = new int[js.getNopt()]; 
for (int i = 0; i < js.getNopt() && i < freeNodes.size(); i++) { 

indicies[i] = freeNodes.get(i).getNodeID(); 
} 
return indicies; 

} 

Figure 24 - First Fit Allocator Implementation 
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Appendix D MemoryModel.java 

package hpcSimulation; 

import edu.Cornell . lassp.houle.RngPack.Ranmar; 
import j a v a . i o . * ; 
import j a v a . u t i l . * ; 

/ * * 

* Class representing the memory model to be used in the assignment of 
memory requirements 

* to jobs. 
* 

* @author Bryan Esbaugh 

public class MemoryModel { 

p r i va te i n t seed; 
Random gen; 
p r iva te i n t maximumMemory; 

p r iva te double[] defaultModel = 
{ 1 . 0 , 0 . 3 , 0 . 3 , 0 . 4 , 0 . 5 , 0 . 4 , 0 . 3 , 0 . 6 , 1 . 0 , 0 . 5 } ; 

p r iva te double[] highMemModel = 
{ 0 . 6 , 0 . 6 , 0 . 7 , 0 . 7 , 0 . 8 , 0 . 8 , 0 . 9 , 0 . 9 , 1 . 0 , 1 . 0 } ; 

p r i va te doublef] lowMemModel = 
{ 0 . 1 , 0 . 1 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 3 , 0 . 3 , 0 . 4 , 0 . 4 , 0 . 5 } ; 

p r iva te doublef] veryHighMemModel = 
{ 0 . 7 , 0 . 7 , 0 . 8 , 0 . 8 , 0 . 9 , 0 . 9 , 1 . 0 , 1 . 0 , 1 . 0 , 1 . 0 } ; 

p r iva te doublef] veryLowMemModel = 
{ 0 . 1 , 0 . 1 , 0 . 1 , 0 . 2 , 0 . 2 , 0 . 2 , 0 . 3 , 0 . 3 , 0 . 3 , 0 . 4 } ; 

p r iva te double usedModelf] = defaultModel; 

MemoryModel(int SEED) { 
th is .seed = SEED; 
gen = new Random(seed); 
this.maximumMemory = Node.getMemorySize(); 

} / * * 

* Gets the randomly generated memory requirement f o r a job. 
* 

* @return 
* / 

public i n t getMemoryRequirement(){ 
i n t memory =0; 
gen.next Int (usedModel . length) ; 
memory = ( i n t ) (this.maximumMemory * usedModel [gen.next In t (10) ] ) ; 
re turn memory; 

public void setSeed( 

i n t seed) { 
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th is .seed = seed; 
} 

public i n t getMaximumMemory() { 
return maximumMemory; 

} 
/ * * 

* Set the maximum memory a v a i l a b l e to 
* 

* @param MaximumMemory 
* / 

public void setMaximumMemory(int MaximumMemory) { 
this.maximumMemory = MaximumMemory; 

> 
* Set the d i s t r i b u t i o n model for the job memory requirement 
* 

* @param model 

public void setDistr ibut ionModel(double [ ] model){ 

this.usedModel = model; 

} 

i n t getMemoryRequirement(int nopt) { 

/ /Conf igurab le memory model changable based on job width. 

i f (nopt < 13){ 
usedModel = th is .de fau l tMode l ; 

> else i f (nopt < 65){ 
usedModel = th is .de fau l tMode l ; 

} 
else{ 

usedModel = th is .de fau l tMode l ; 
} 

i n t memory =0; 
gen.next Int (usedModel . length) ; 
memory = ( i n t ) (this.maximumMemory * usedModel [gen.next Int (10) ] ) ; 
return memory; 

} 
} 
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Appendix E Job Scheduling Visualization 

An additional feature added to the Cluster Simulator was the addition of a 

job schedule visualization engine. Figure 25 shows the main interface and 

display panel for the visualization engine. The main design of this feature 

consists of a number of objects that are created and displayed on a visualization 

panel. Initially space on the visualization panel along the y axis is divided into 

horizontal bands which represent the nodes of the cluster. The x-axis along the 

visualization panel is used to represent time. As each event in the simulation 

occurs, a determination is made as to whether this can be visually represented 

on the panel. If so, then an object representing the event overtime is drawn. 

In the case of jobs on nodes at each job finish or preemption, a rectangle 

filling part of the band is displayed in the x-y space representing that jobs 

occupancy overtime on that node. Each job is given a distinct colour based on 

the jobs characteristics (i.e. estimated length). Other events, such as slice 

switches, or preemptions, are represented by vertical lines across all the node 

bands placed along the x -axis corresponding to the time at which the event 

occurred. As the simulation progresses, the user is able to see jobs progressing 

and a very high level view of how the jobs are laid out on the simulated cluster 

resources. One of the problems with this approach is to be able to define a set, 

or the assignment, of colours such that patterns can be seen at a glance. 

Additionally, if the job mix consists of a wide range in the length of jobs it is very 

difficult to discern patterns as the user must zoom in very close to see shorter 
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jobs and zoom out to see longer jobs in the same context. Colouring of the jobs 

based on more global criteria such as increasing wait times may give better 

indications as to patterns in the job mix. 

JobGeneratiwu ;lub&n-Fe&ebonW... * SeedVatas'. • Scheduler' f*empti« -» • | ietTrace ] Nodes: -liQ 

Number rf Jobs : 1000 ! Zoom f ) • Trace: none > Collect 5*ats j Print Queues rJ Find Daly Averages 

Figure 25 - Cluster Simulator Visualization 
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