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Abstract
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Our evaluation shows that the proposed overhead-accounting approach is highly accurate, and that gFPca
improves the schedulability of cache-intensive tasksets substantially compared to the cache-agnostic global FP
algorithm. Our evaluation also shows that gFPca outperforms the existing cache-aware non- preemptive
global FP algorithm in most cases. Through our implementation and empirical evaluation, we demonstrate the
feasibility of cache-aware global scheduling with dynamic cache allocation and highlight scenarios in which
gFPca is especially useful in practice.
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Analysis and Implementation of Global Preemptive Fixed-Priority
Scheduling with Dynamic Cache Allocation*

Meng Xu Linh Thi Xuan Phan Hyon-Young Choi Insup Lee
University of Pennsylvania

Abstract—We introduce gFPca, a cache-aware global preemp-
tive fixed-priority (FP) scheduling algorithm with dynamic cache
allocation for multicore systems, and we present its analysis
and implementation. We show that a naı̈ve extension of existing
overhead analysis techniques can lead to unsafe results, and
we introduce a new overhead-aware analysis that integrates
several novel ideas to safely and tightly account for the cache
overhead. Our evaluation shows that the proposed overhead-
accounting approach is highly accurate, and that gFPca not only
improves schedulability of cache-intensive tasksets substantially
compared to the cache-agnostic global FP algorithm but also
outperforms the existing cache-aware non-preemptive global
FP algorithm in most cases. Through our implementation and
empirical evaluation, we demonstrate the feasibility of cache-
aware global scheduling with dynamic cache allocation and
highlight scenarios in which gFPca is especially useful in practice.

I. INTRODUCTION

Multicore processors are becoming pervasive, and it is be-
coming increasingly common to run real-time systems on a
multicore platform. Most modern multicore platforms support
a shared cache between the cores and the memory to deliver
better hit rates and faster memory access latency. Although the
shared cache can help increase the average performance, it also
makes the worst-case timing analysis much more challenging
due to the complex inter-core shared-cache interference: when
tasks running simultaneously on different cores access the
memories that are mapped to the same cache set, they may
evict each other’s cache content from the cache, resulting in
cache misses that are hard to predict.

One effective approach to bounding the inter-core cache
interference is cache partitioning, which can be done using
mechanisms such as page coloring [17] or way partition-
ing [23]. The idea is to divide the shared cache into multiple
cache partitions and assign them to different tasks, such that
tasks running simultaneously on different cores always use
different cache partitions. Since tasks running concurrently
never access one another’s cache partitions in this approach,
the cache interference due to concurrent cache accesses can
be eliminated, thus reducing the overall cache overhead and
improving the worst-case response times of the tasks.

Cache partitioning has recently been explored in the real-
time scheduling context. Most existing work in this line uses a
static allocation for both cache and CPU resources [8, 18, 25],
where cache partitions and tasks are assigned to specific cores
offline. While this approach transforms the multicore analysis
into the single core analysis, it can significantly under-utilize
resources because both the CPU and cache resources of one
core may be left idle while another core is overloaded.

An alternative is to use cache-aware global scheduling,
which dynamically allocates CPU and cache resources to tasks.

*The published version of this paper contains a typo in Table 2 that has
been fixed in this author version

At run time, each executing task locks all cache partitions it
requires, so that the tasks running simultaneously on other
cores cannot interfere with its cache content, and tasks can
migrate among cores to better utilize the system resources.
Guan et al. [15] has proposed a cache-aware non-preemptive
fixed-priority scheduling algorithm with dynamic task-level
cache allocation, which we will refer to as nFPca. Since
nFPca does not allow preemptions, the schedulability analysis
can be simplified; however, the non-preemptive nature can also
lead to increased response times for high-priority tasks and
undesirable priority inversions. In addition, the work in [15]
does not provide any implementation of this algorithm.

In this paper, we investigate the feasibility of global preemp-
tive scheduling with dynamic job-level cache allocation. We
present gFPca, a cache-aware variant of the global preemptive
fixed-priority (gFP) algorithm, together with its analysis and
implementation. gFPca allocates cache to jobs dynamically at
run time when they begin or resume, and it allows high-priority
tasks to preempt low-priority tasks via both CPU and cache
resources. It also allows low-priority tasks to execute when
high-priority tasks are unable to execute due to insufficient
cache resource, thus further improving the cache and CPU
utilizations. Since preemption is allowed, tasks may experience
cache overhead – e.g., upon resuming from a preemption,
a task may need to reload its cache content in the cache
partitions that were used by its higher-priority tasks; therefore,
we develop a new method to account for such cache overhead.

The overhead accounting for gFPca is highly challenging,
due to the extra resumption and preemption events that are
not normally present in existing algorithms. To illustrate this,
let us consider a dual-core system with three tasks: highest-
priority τ1, medium-priority τ2, and low-priority τ3. Since each
task may need different numbers of cache partitions to execute,
under gFPca it is possible that τ1 and τ3 can run concurrently,
whereas τ2 can only run alone. In this scenario, τ3 can be
preempted not only when τ2 is released (while τ1 is having
no job to execute) but also when τ1 completes its execution
(which enables τ2 to resume its execution and thus preempt
τ3). Similarly, the suspended task τ3 can resume not only when
τ2 finishes but also when τ1 is released (which preempts τ2
and frees enough cache space for τ3 to continue). Due to
this behavior, naı̈ve extensions of existing overhead accounting
techniques can lead to unsafe analysis results for gFPca.

To tackle this challenge, we propose a new approach to
safely and tightly account for the cache overhead, and then
derive an overhead-aware schedulability analysis, for gFPca.
The novelty of our approach lies in an integration of various
strategies for overhead accounting: considering the combined
effects of the source events that cause overhead, to mitigate
potential double-accounting; exploiting the necessary condi-



tions of task-preemption events with respect to cache and core
configurations, to avoid accounting for the overhead that does
not actually happen; and incorporating the scheduling behavior
when bounding the overhead. Our evaluation shows that the
new overhead accounting approach is very close to the best
possible accounting approach.1

In summary, we make the following specific contributions:
• the gFPca scheduling algorithm (Section IV);
• an implementation of gFPca, as well as nFPca and gFP,

on an existing multicore hardware platform. (Section V).
• an overhead-free analysis for gFPca (Section VI);
• a demonstration that a naı̈ve extension of existing meth-

ods can lead to invalid results for gFPca (Appendix B);
• an overhead accounting approach and an overhead-aware

schedulability analysis for gFPca (Section VII).
Our evaluation shows that our proposed overhead account-

ing approach is highly accurate. Further, gFPca improves
schedulability substantially compared to the cache-agnostic
gFP for cache-intensive workloads, and it outperforms nFPca
for most cases in our experiments. Through our implementa-
tion and empirical evaluation that compared various schedul-
ing strategies, we demonstrate the feasibility of cache-aware
global scheduling with dynamic (job-level) cache allocation on
real hardware platforms, and we highlight scenarios in which
gFPca is especially needed in practice.

To the best of our knowledge, this work is the first to address
the shared-cache overhead accounting for global preemptive
fixed-priority multicore scheduling with dynamic cache allo-
cation, and to provive an implementation of such an algorithm.

II. RELATED WORK

Several approaches for bounding the cache overhead on
uniprocessor platforms have been developed (e.g., [2]), which
integrate static cache analysis into the schedulability analysis.
Our cache-aware analysis leverages these existing approaches;
however, we show that a naı̈ve extension of these approaches
may lead to invalid results for gFPca, and we present several
ways to tackle the additional challenges in the global schedul-
ing setting with dynamic cache allocation.

The shared cache overhead on multicore platforms has been
considered in the context of WCET analysis, such as [14, 16,
21]. However, this line of work focuses on intrinsic cache
overhead, and it does not consider the extrinsic cache overhead
that arises due to scheduling, which our work addresses.

Scheduling algorithms that aim to reduce the cache ef-
fects on multicore platforms have also been investigated.
For instance, Anderson et al. [4, 5, 13] proposed several
heuristics of co-scheduling the tasks that share the same cache
content to improve the cache performance while meeting real-
time constraints. However, the WCETs of tasks with shared-
cache overhead are assumed to be given a priori in these
approaches. Although experiments show that the improved
cache performance can reduce the average execution cost, the
question of how to bound the shared-cache overhead and to
derive a safe but tight WCET for each task is not addressed
in their approaches (or existing work). In contrast, the cache

1We only make this claim with respect to the overhead accounting approach
but not the schedulability analysis.

overhead due to shared cache inteference is not given a priori
in the task WCET but computed in our analysis.

Schedulability analysis methods that consider the cache
preemption or migration overhead have been proposed [6, 12,
19, 27, 30, 32]. These methods focus on the cache overhead
associated with the loss of cache affinity as a result of a
preemption or a migration. However, they do not consider
the inter-core shared-cache interference between co-executing
tasks: tasks running concurrently on different cores can still
pollute the cache content of each other without invoking
any preemption or migration event. Our work eliminates this
type of shared cache interference via a combination of cache
partitioning and cache-aware scheduling, and our analysis
accounts for the overhead under this approach.

There exist shared cache management techniques for multi-
core platforms; for instance, Ward et. al [29] proposed cache
locking and cache scheduling mechanisms to manage the
shared cache for partitioned rate-monotonic scheduling. These
mechanisms also support dynamic cache allocation to tasks,
but they assume that tasks are partitioned onto cores. In
contrast, gFPca schedules tasks globally on the cores, and thus
it provides more scheduling flexibility while also presents new
challenges to the overhead analysis.

A number of shared-cache partitioning mechanisms have
also been proposed to reduce the shared-cache interference [8,
18, 24, 25]. Existing work typically considers a partitioned
scheduling, which statically allocates tasks to different parti-
tions of the shared cache and then to different cores. While
this approach reduces the multicore scheduling problem to the
single core scheduling problem, it cannot always be feasibly
applied in practice (as we show in our empirical evaluation);
for instance, when a taskset does not fit in the whole cache at
the same time, different tasks are allowed to share the same
cache partition over time and thus may still pollute each other’s
cache content, which can result in deadline misses. Our work
bridges this gap using a global scheduling approach with a
dynamic allocation of cache partitions to tasks, while also
accounting for the overhead in the analysis.

The only existing work we are aware of that considered
global scheduling with dynamic cache allocation is Guan et
al [15], which proposed a cache-aware global non-preemptive
fixed-priority scheduling algorithm (nFPca). Since preemp-
tions are not allowed, tasks are always executed until comple-
tion and thus do not incur extrinsic cache overhead; therefore,
the analysis in [15] is effectively an overhead-free analysis.
However, this non-preemptive nature can lead to undesirable
priority inversions and high response times for high-priority
tasks. Our work provides an alternative using preemptive
scheduling and dynamic job-level cache allocation, and the key
new contributions compared to [15] lies in the novel approach
to account for the overhead in this setting, as well as an
implementation (of both gFPca and nFPca) on real hardware.

III. SYSTEM MODEL

We consider a multi-core platform with M identical cores and
a shared cache that is accessible by all cores. The cache
is partitioned into A equal cache partitions; we achieved
this using the way partition mechanism [23]. The latency of



reloading one partition is upper bounded by the maximum
cache partition reload time, denoted by PRT. The value of
PRT can be derived from the number of cache lines per
partition and the maximum reloading time of one cache line.

The system consists of a set of independent explicit-deadline
sporadic tasks, τ = {τ1, ...,τn}. Each task τi is defined by
τi = (pi,ei,di,Ai), where pi, ei and di are the minimum inter-
arrival time (which we refer to as the period), worst-case
execution time (WCET) and relative deadline of τi, and Ai
is the number of cache partitions that τi can use2. Note that
although the number of partitions allocated to τi is fixed, under
our scheduling approach, the exact partitions allocated to each
job of τi may change whenever it begins its execution or
resumes from a preemption. We require that 0 < ei ≤ di ≤ pi
and Ai ≤ A for all τi ∈ τ . Each task has a fixed priority3;
without loss of generality, we assume the tasks in τ are sorted
by their priorities, i.e., τi has higher priority than τ j iff i < j.
Cache-related overhead. When two code sections are mapped
to the same cache line, one section can evict the other section’s
cache line from the cache, which causes a cache miss when the
former resumes. If the two code sections belong to the same
task, then the cache miss is an intrinsic cache miss; otherwise,
it is an extrinsic cache miss [7]. The overhead (of reloading
the evicted cache content) due to intrinsic cache misses of a
task can typically be statically analyzed based on the task;
however, extrinsic cache misses depend on the interference
between tasks during their executions.

We assume that the WCET of each task already includes
intrinsic cache-related overhead, and we focus on the extrinsic
cache overhead. By abuse of terminology, throughout the
paper, we refer to one cache overhead of a task as the time
the task takes to reload its evicted cache content when it
resumes from a preemption, and total cache overhead of a
task as the total amount of time the task takes to reload its
evicted cache content throughout the execution of a job of the
task. We assume that the operating system does not affect the
shared cache state of tasks4, and we consider only the shared
cache overhead in this paper and defer the incorporation of
the private cache overhead to future work.
ECP and UCP. As defined in [28], an Evicting Cache Block
(ECB) of a task is a cache line that the task can access
during its execution. Likewise, we define an Evicting Cache
Partition (ECP) of a task to be a cache partition that the
task can access. We denote by ECPk the set of ECPs of τk
during an uninterrupted execution interval of τk; note that
ECPk varies across different continuous execution intervals
of τk, but |ECPk| ≤ Ak by definition. In addition, we define
a Useful Cache Partition (UCP) of τk to be a cache partition
that τk accesses at some time point and later accesses again
as cache hit, when τk executes alone in the system (similar to
UCB notion [3]). The set of UCPs of τk is denoted by UCPk.

2Different values of Ai may lead to different values of ei; our analysis
holds for any given value of Ai (and corresponding ei). For our numerical
evaluation, Ai was chosen to be the smallest number of cache partitions that
leads to the minimum WCET for τi (when it executes alone).

3Ties among tasks with the same priority are broken based on their indices,
where a task with a smaller index has a higher priority.

4One way to avoid the shared cache interference between the OS and tasks
is to dedicate a specific area of the cache to the OS.

IV. gFPca SCHEDULING ALGORITHM

We now present the gFPca algorithm. Like gFP, gFPca also
schedules tasks based on their (fixed) priorities; however, a
task is only executed if there are sufficient cache partitions
for it (including also the partitions obtained by preempting
one or more lower-priority tasks), and low-priority tasks can
execute if all pending high-priority tasks are unable to execute.

Specifically, gFPca makes scheduling decisions whenever a
task releases a new job or finishes its current job’s execution
(or is blocked or unblocked via resources other than cache and
CPU). At each scheduling point, it tries to schedule pending
tasks in decreasing order of priority. For each pending task τi:

Step 1) First, gFPca looks for an idle core; if none exists,
it considers the core that is executing the lowest-priority task
among all currently executing tasks with lower priority than
τi, if such tasks exist. If no such core is found, it returns.

Step 2) Next, gFPca tries to find Ai cache partitions for
τi, considering the idle partitions first and then the partitions
obtained by preempting τi’s lower-priority tasks (chosen in
increasing order of priority). If successful, it will reserve those
Ai partitions5 for τi, preempt the lower-priority tasks that are
using those partitions or using the core chosen in Step 1, and
schedule τi to run on the chosen core. Otherwise, gFPca will
move to the next task and repeat the process from Step 1.6

Observe that under gFPca, cache partitions are allocated to
each job dynamically at run time when it begins its execution
and when it resumes. Whenever this occurs, the system maps
some or all of the memory accesses of the task to the allocated
partitions (which may include those previously belonged to a
preempted task). When a preempted task resumes, it needs to
reload its information from the memory to the cache, if this
information has been polluted by higher-priority tasks or if
it is assigned new cache partitions. Our implementation does
not require any memory page copy for reassigning partitions,
and our analysis considers the costs of mapping the memory
accesses and reloading the memory content into the cache.

V. IMPLEMENTATION

We implemented gFPca within LITMUSRT on the Freescale
I.MX6 quad-core evaluation board, which supports way par-
titioning through the PL310 cache controller. For compari-
son, we also implemented the existing non-preemptive nFPca
in [15] and the cache-agnostic gFP schedulers.

A. Dynamic cache control

We utilized the Lockdown by Master (LbM) mechanism,
supported by the PL310 controller, for our cache allocation
(using a similar approach as [23, 29]). The LbM allows certain
ways to be marked as unavailable for allocation, such that the
cache allocation (which allocates cache lines for cache misses)
only happens in the remaining ways that are not marked as
unavailable. Each core Pi has a per-CPU lockdown register
Ri

7, where a bit q in Ri is one if the cache allocation cannot
5When more than Ai partitions are found, gFPca gives preference to the

ones that still hold the cache content of the task τi.
6gFPca imposes no constraints among the partitions allocated to a task;

however, both its cache allocation and analysis can easily be modified to
incorporate potential constraints, e.g., one that imposes contiguous partitions.

7To be precise, each core has two separate registers for instruction and data
access, but we focus on data access in this paper.



Fig. 1: Scheduling architecture. Dotted-line boxes enclose soft-
ware components. Solid-line boxes enclose hardware comp.

happen in the cache way q for the memory access from the
core Pi, and zero otherwise.
Challenge. To reserve the set of cache partitions Sk (rep-
resented as a bitmask) for a task τk on a core, we set the
lockdown register of the core to be the bitwise complement
of Sk. However, this alone cannot guarantee that τk will not
access cache partitions outside Sk, because the LbM cannot
control where the cache lookup (i.e., cache hit) occurs. As a
result, tasks running concurrently on different cores may still
access each other’s cache partitions, even if the register is set.
Approach: One way to address the above challenge is to flush
the partitions allocated to each task τk when it completes a
job or is preempted [29]. However, this approach prevents a
task from reusing its content in the cache when possible: if a
partition reserved for τk has not been used by any other task
when τk resumes or releases a new job, then τk should be
able to reuse the content inside that partition; this will not be
possible if we had flushed the task’s partitions when it was
preempted or finished its previous job.

Since the cost of flushing a cache way is relatively expensive
compared to other scheduler-related overhead8, we minimized
cache flushes through selective flushing. The idea is to select
from the reserved partitions of τk all the partitions that may
hold the content of other tasks, and only flush the selected
partitions when τk resumes or releases a new job.

To flush a cache partition, we leveraged the hardware cache
maintenance operations to clean and invalidate the specific
cache ways that need to be flushed. (This is different from the
approach in [29], which loads pages to the cache partitions
to evict the previous content from the cache.) Our approach
guarantees cache isolation among concurrently running tasks
(since no task can use the reserved cache partitions of another
task), and it helps minimize the cache management overhead
(since a task may use the previously – rather than currently
– reserved partitions until they are reserved and flushed by
another task). Note that when the cache content of a task τk is
flushed from its previous reserved partitions (by another task),
then τk may need to reload its content to its current reserved
partitions; we account for such overhead in our analysis.

B. Scheduling architecture

Fig. 1 shows a high-level overview of the scheduling
architecture for gFPca. Our implementation extended various

8The cost of flushing one cache way depends on the contention on
components of the cache controller. Our measurement shows that the worst-
case cost of flushing one cache way is 0.12ms.

components in LITMUSRT to incorporate gFPca’s cache
management and scheduling behavior. Most notable extensions
include: (1) RT Task: We extended the rt params field, which
holds the timing information of a real-time task, with the
cache information (i.e., the number of cache partitions, the
set of currently used partitions, and the set of previously used
partitions). (2) RT-Context: We extended the cpu entry data
structure, which holds the real-time context of a core, with a
new field called preempting to indicate whether the core is
preempted via cache. (3) Scheduling real-time domain, which
holds all (global) information of the cores and real-time
tasks, such as the release and ready queues (not shown in
Fig. 1). We extended the scheduling domain to include two
new components: CP-bitmap and CPtoTask-map. CP-bitmap
is a bitmap that indicates whether a cache partition is locked
(i.e., reserved for some task). CPtoTask-map maps each
partition to a task that it belongs (if any). The architecture
also includes the PL310 cache controller that controls the 16
cache partitions of the L2 shared cache. For synchronization,
we used three global spin locks: one for the release
queue; one for the ready queue, RT-Context, and CP-bitmap;
and one for CPtoTask-map and the cache controller’s registers.

The gFPca scheduler: The steps in Fig. 1 illustrates how
the scheduler on a core works in a nutshell. Specifically, when
a scheduling event (task-release, task-finish, task-blocked on
other resources such as I/O, or task-unblocked event) arrives
at a core (e.g., P1), the scheduler on that core will be invoked.
Once being invoked, the scheduler performs Steps 1–3:

Step 1) Executes the check for preemption function, which
implements the gFPca algorithm (described in Section IV),
to determine: the highest-priority ready task that can execute
next, the core to execute the task, the cache partitions to
reserve for the task, and the currently running tasks to be
preempted. The scheduler then continues to the next highest-
priority ready task, until no more ready task can be scheduled.
For the example in Fig. 1, the scheduler on P1 decides to
preempt the tasks currently running on P0 and P2 (say τi and
τ j, respectively) and schedule the ready task (say τk) on P0.

Step 2) Updates CP-bitmap to reflect the new locked cache
partitions, and updates the RT-Context of the preempted cores
and the core(s) that will run the scheduled tasks. In Fig. 1,
P1’s scheduler modifies CP-bitmap by unmarking the cache
partitions that were assigned to τi and τ j and then marking the
partitions that will be reserved for τk. In addition, it updates
P0’s linked task (i.e., the real-time task to execute next) to be
τk, P2’s linked task to be NULL and P2’s preempting field to
be true (to indicate that P2 is preempted via cache only).9

Step 3) Sends an Inter-Processor Interrupt (IPI) to each
preempted core and each core that will run a scheduled task,
to notify the preempted core to preempt its currently running
task and the scheduled core to execute its linked task (e.g., P0
to preempt τi and run τk, and P2 to preempt τ j).

When a core receives the above IPI, the scheduler on that
9Since the scheduler running on another core (e.g., P3) may read or modify

the RT-Context of the preempted/scheduled cores (e.g., P0 and P2) after this
scheduler (on P1) finishes Step 3 and releases the global lock of the scheduling
domain, it is important to perform this step before releasing the lock to avoid
race conditions on the RT-Context of the preempted/scheduled cores.



core will be invoked, and it will perform the next three steps:
Step 4) Moves the linked task (configured in Step 2) to the

core, and updates the scheduled task of the core to be the
linked task. (If the linked task is NULL, the scheduler will
pick a non-real-time task to execute on the core.)

Step 5) Determines which of the cache partitions reserved
for the linked task should be flushed (i.e., if used by other
tasks), flushes those partitions, and updates CPtoTask-map to
reflect the new mapping of partitions to tasks.

Step 6) Starts executing the linked task.

C. Run-time overhead

We used the feather-trace tool (with a small modification)
to measure the run-time overhead under gFPca and nFPca
schedulers, and the existing gEDF scheduler in LITMUSRT .
We observed that both gFPca and nFPca schedulers incur
similar average release, scheduling, and IPI delay overheads as
gEDF does. However, they have larger average context switch
overhead; this is due to potential cache flush during a context
switch. The gFPca scheduler incurs higher worst-case over-
heads than the gEDF scheduler, which is expected because the
gFPca algorithm has a higher complexity. (Additional details
are described in Appendix A.)

In the coming sections, we present the schedulability anal-
ysis of gFPca, first assuming the absence of overhead and
then considering the overhead. The overhead-aware analysis
focuses on cache-related preemption and migration delay
(CRPMD) overhead (as this is most challenging), but can
easily be extended to include other overheads (see Appendix
D), and our evaluation considered all these overheads. Due
to space constraints, we omit the proofs here, but they are
available in [31].

VI. OVERHEAD-FREE ANALYSIS

The overhead-free schedulability analysis of gFPca can be
established using a similar idea as that of nFPca [15]. As
usual, the demand of a task τi in any time interval [a,b] is
the maximum amount of computation that must be completed
within [a,b] to ensure that all jobs of τi with deadlines within
[a,b] are schedulable. When τi = (pi,ei,di,Ai) is scheduled
under gFPca, τi has the maximum amount of computation
in a period of another task τk when the first job of τi starts
executing at the release time of τk and the following jobs of
τi execute as early as possible, as illustrated in Fig. 2. Hence,
the worst-case demand of τi in a period of τk is given by [9]:

W k
i = NJk

i × ei +min{dk +di− ei−NJk
i × pi, ei}, (1)

where NJk
i = b

dk+di−ei
pi
c is the maximum number of jobs of τi

that have the entire executions falling within a period of τk.

Fig. 2: Worst-case demand of τi in a period of τk scenario.
The length of τk’s busy interval, denoted by Bk, is the total

length of all subintervals in a period of τk during which it
cannot execute. The busy interval of τk can be grouped into
two categories: (1) CPU-busy interval, during which all cores

are busy executing other higher-priority tasks; and (2) cache-
busy interval, during which at least one core is available10 and
at least A−Ak +1 cache partitions are assigned to τk’s higher-
priority tasks. Consequently, the workload of τi in a period of
τk consists of two types: (1) CPU-interference workload, αk

i ,
when τi executes in the CPU-busy interval of τk; and (2) cache-
interference workload, β k

i , when τi executes in the cache-busy
interval of τk. Since τk cannot execute when its higher-priority
tasks collaboratively keep the CPU busy, and because the
system has M cores, the length of the CPU-busy interval of τk
is bounded by 1

M
∑

i<k αk
i . Because each higher-priority task

executes β k
i time units with Ai cache partitions occupied, and

because higher-priority tasks only need to occupy A−Ak +1
cache partitions to prevent τk from execution, the length of
the busy interval of τk is bounded by

∑
i<k

min{Ai,A−Ak+1}
A−Ak+1 β k

i .
Thus, the length of the busy interval of τk is bounded by the
sum of the length of the CPU-busy interval and the length of
the cache-busy interval, which is given by:∑

i<k

(
1
M

α
k
i +

min{Ai,A−Ak +1}
A−Ak +1

β
k
i ).

Further, in each period of τk, the CPU/cache-interference
workload of a higher-priority task τi must satisfy the follow-
ing constraints: (1) the combination of the CPU-interference
workload and cache-interference workload of τi cannot ex-
ceed the workload of τi, i.e., αk

i + β k
i ≤ W k

i ; and (2) the
CPU/cache-interference workload of all τi should be no more
than the length of the CPU/cache-busy interval of τk, i.e.,
αk

i ≤
∑

i<k
1
M αk

i and β k
i ≤

∑
i<k

min{Ai,A−Ak+1}
A−Ak+1 β k

i .
Based on the above discussions, the maximum length of the

busy interval of τk under gFPca can be obtained by solving
the following Linear Programming (LP):

maximize
∑
i<k

(
1
M

α
k
i +

min{Ai,A−Ak +1}
A−Ak +1

β
k
i )

subject to αk
i +β k

i ≤W k
i , ∀i < k

αk
i ≤

∑
i<k

1
M αk

i
β k

i ≤
∑

i<k
min{Ai,A−Ak+1}

A−Ak+1 β k
i

Denote by B̂k the maximum length of the busy interval of τk,
whose value is the optimal solution of the LP problem above.11

We can now establish the gFPca overhead-free analysis:

Theorem 1. A taskset τ is schedulable under the gFPca
algorithm if each task τk in τ satisfies B̂k ≤ dk− ek.

Theorem 2. Given a taskset τ̃ = { τ̃1, ..., τ̃n }, where τ̃i =
(pi, ẽi,di,Ai) for all 1≤ i≤ n. Let τ = {τ1, ...,τn} be any task
set with τi = (pi,ei,di,Ai) and ei ≤ ẽi for all 1≤ i≤ n. Then,
τ is schedulable under the gFPca algorithm if τ̃ satisfies the
gFPca schedulability conditions given by Theorem 1.

VII. OVERHEAD-AWARE ANALYSIS

Insight. We observe that under gFPca, the cache effects τi
has on a lower-priority task τk comes from not only direct
preemption (i.e., τi is released and preempts τk) but also
indirect preemption: when τi is released, it is possible that τi
and τk are scheduled to run whereas an intermediate-priority

10A core is available to τk if it is idle or executing a lower-priority task.
11To obtain B̂k , the solver of the LP problem has to calculate the values of

αk
i and β k

i for each higher-priority task τi.



τ j (i < j < k) is blocked due to insufficient cache for it;
when τi finishes, τk is preempted by τ j because there is now
sufficient cache for τ j to execute. Due to this behavior, existing
approaches cannot be applied, and naı̈ve extensions may lead
to unsafe results for gFPca (see Appendix B for an example).

Our idea is to account for the overhead by analyzing the
source events that cause cache overhead, and analyze the
combined total overhead they cause to a task. As not every
task experiences (extrinsic) overhead, e.g., the highest-priority
task, we also derive the necessary conditions under which a
task may experience overhead. Specifically, we first identify
the cache-related task events and establish the necessary
conditions under which these events cause a task to experience
overhead. These conditions are then used to derive the set of
tasks that may preempt a task τk via CPU or cache resource.
Finally, we analyze the total overhead of τk that is caused
by the cache-related events of other tasks and include it into
τk’s WCET, then we apply the overhead-free schedulability
analysis on the inflated taskset. (For simplicity, we will simply
write ‘overhead’ in place of ‘cache overhead’.)

A. Cache-related task events

Under gFPca, the system has five types of task events:
task-release, task-finish, task-preemption, task-resumption, and
task-migration events. Because the cache is shared by all cores,
no overhead is incurred when a task migrates from one core
to another; therefore, a task-migration event of a task does not
lead to any overhead and we only need to consider the other
four types of task events.

A task-preemption event of τk oc-

Fig. 3: Causal relations
of task events.

curs when the CPU or cache re-
source allocated to τk is reduced.
Because new jobs are released when
task-release events occur and exist-
ing jobs resume when task-resumption events occur, a higher-
priority task τi with the task-release or task-resumption event
may take the CPU and/or cache resource from τk, thus leading
to a task-preemption event of τk. Similarly, because running
jobs may stop at task-preemption and task-finish events, and
the released CPU or cache resource may be allocated to τk,
both task-preemption and task-finish events of τi may lead to a
task-resumption event of τk. Further, a task-preemption event
may lead to a task-resumption event and vice versa.

If the arrival of a task event A may lead to the arrival of
another task event B, then we say A causes B, denoted as
A→ B. The causal relations of task events are illustrated in
Fig. 3. It is clear from the figure that the task-release and task-
finish events are the root causes of the other events. Since a
task experiences overhead only at its task-resumption events,
which are caused by task-release and task-finish events of other
tasks, if the task-release and task-finish events are eliminated,
the overhead will also be eliminated.

Lemma 3. Task-release events and task-finish events are the
source events that cause overhead in a system.

Based on Lemma 3, if we can compute a bound on the
overhead that each task-release event and each task-finish
event of a higher-priority task τi cause to a lower-priority task

τk, then we can safely account for the total overhead of τk.
To derive this bound, we will analyze the set of tasks that
can preempt τk based on the necessary conditions of task-
preemption events, which we now establish.

B. Conditions of task-preemption events

The overhead a task τk experiences come from its preemption-
events, which are caused by the task-release and task-finish
events of its higher-priority tasks. A higher-priority task τi may
preempt τk via either CPU and/or cache resources; however,
no task-preemption event of τk occurs if the number of cores is
larger than the number of tasks in the system and the number
of cache partitions of the platform is sufficient for all tasks.
The next lemmas state the conditions of a preemption via CPU
and cache resources, respectively.

Lemma 4. If a task τi preempts a task τk’s CPU resource
at time t, then τi must have higher priority than τk and the
number of tasks with higher priority than τk must be at least
the total number of cores in the system, i.e.,

∑
j<k 1≥M.

Lemma 5. If τi preempts τk’s cache resource at t, then τi
must have higher priority than τk and the total number of
cache partitions of τ j with j < k must be larger than A−Ak,
where A is the number of cache partitions of the cache.

Let ρk and κk be the maximum sets of tasks that may
preempt τk via CPU and cache resources, respectively. Due
to the above lemmas, we have:

ρk = {τi | i < k and
∑
j<k

1≥M} (2)

κk = {τi | i < k and
∑
j≤k

A j > A} (3)

As a result, the set of tasks that may preempt τk via either
CPU or cache or both resources is ρk ∪κk.

C. Overhead caused by a task-release event

Based on the established conditions of a task-preemption event
of τk, we can analyze the overhead of τk that is caused by one
task-release event of a higher-priority task τi.

Observe that when τi releases a job at time t1, the cache
partitions τi may access and pollute are in ECPi. If τk is
preempted at the task-release event of τi, τi can directly evict
all cache partitions in ECPi that τk may use in the worst case.

Further, another higher-priority task τ j of τk may release a
job at time t1 as well. Although such a task-release event may
also cause overhead to τk, this overhead will be considered as
the overhead caused by τ j’s task-release events (rather than by
τi’s). Further, under gFPca, a lower-priority task τl may also
pollute the cache partitions of τk while τk is being preempted
due to a task-release event of τi. However, not every lower-
priority task τl can pollute the cache partitions of τk.

Lemma 6. When a release-event of τi occurs, if τk is pre-
empted but a lower-priority task τl (k < l) either resumes from
a preemption or releases a new job and this job is executed,
then the number of cache partitions of τl must be less than
that of τk, i.e., Al < Ak.

Let φ r
i,k denote the set of useful cache partitions of τk that

may be polluted due to a task-release event of τi. When a



task-release event of τi occurs, there are three scenarios: (1)
τi does not preempt τk (as there are sufficient CPU and cache
resources for τi), in which case τk experiences no overhead due
to this task-release event of τi; (2) τi preempts τk by taking
only τk’s CPU resource, in which case only the lower-priority
tasks of τk may pollute the UCPs of τk; and (3) τi preempts τk
by taking τk’s cache resource, in which case both τi and lower-
priority tasks of τk may pollute the UCPs of τk. Therefore, φ r

i,k
can be calculated as follows:

φ
r
i,k =


UCPk ∩

(
ECPi∪ ( ∪

k<l,Al<Ak
ECPl)

)
, if τi ∈ κk

UCPk ∩
(
∪

k<l,Al<Ak
ECPl

)
, if τi 6∈ κk ∧ τi ∈ ρk

/0, if τi 6∈ {κk ∪ρk}

(4)

Given any two sets S1 and S2, we have |S1∪S2| ≤ |S1|+ |S2|
and |S1∩S2| ≤min{|S1|, |S2|}. Hence,

|φ r
i,k| ≤


min{|UCPk|, |ECPi|+

∑
k<l,Al<Ak

|ECPl |}, if τi ∈ κk

min{|UCPk|,
∑

k<l,Al<Ak

|ECPl |}, if τi 6∈ κk ∧ τi ∈ ρk

0, if τi 6∈ {κk ∪ρk}
(5)

Denote by ∆r
i,k the overhead of τk that is caused by a task-

release event of τi, where i < k. Then,
∆

r
i,k ≤ PRT×|φ r

i,k|. (6)

D. Overhead caused by a task-finish event

When a task τi finishes its execution at time t2, the overhead
that task τk may experience due to this task-finish event falls
into the following cases:

Case 1) τk is not running at t2: If τk finishes before or at
t2, then clearly the task-finish event causes no overhead to τk.
If it has not finished its execution at t2, this task-finish event
also does not bring any overhead to τk, because even though
τi might have polluted τk’s cache before t2, the pollution is
caused by other task-release or task-finish events of τi and
should be accounted in the cost of those events.

Case 2) τk is running at t2: If τk continues to run after t2,
then it incurs no overhead as it is not preempted. However, if
τk is preempted at t2, then it must be preempted by another
higher-priority task τ j that is resumed at t2 when τi finishes,
in which case τ j can access and pollute any cache partitions
in ECP j. However, as stated in the next two lemmas, at most
one task τ j with i < j < k can resume and preempt τk at t2,
and the number of cache partitions this task can access should
be more than that of τk.

Lemma 7. If a task τ j, where i< j < k, resumes and preempts
τk at a task-finish event of τi, then A j > Ak.

Lemma 8. There exists at most one task τ j with i < j < k that
can resume and preempt τk at a task-finish event of τi.

In addition, when τk is preempted, lower-priority tasks of
τk may also resume or release new jobs and these jobs are
executed, and thus they may pollute the cache partitions of τk.
According to Lemma 6, only lower-priority tasks τl with k < l
and Al < Ak may pollute τk’s cache partitions while τk is being
preempted. When a task τ j (i < j < k) resumes and preempts
τk at the occurrence of the task-finish event of τi, the set of
useful cache partitions of τk that may be polluted, denoted by

φ
f

i, j,k, is the same with the set of useful cache partition of τk
that may be polluted at the task-release event of τ j. Therefore,
φ

f
i, j,k = φ r

j,k and the size of φ
f

i, j,k is |φ f
i, j,k|= |φ

r
j,k|.

Let ∆
f
i,k denote the overhead of τk that is caused by a task-

finish event of τi, where i < k. Because any task τ j ( i < j < k
and Ak < A j) may resume and preempt τk at the task-finish
event of τi, we obtain

∆
f
i,k ≤ max

i< j<k,Ak<A j
PRT×|φ f

i, j,k|. (7)

E. Overhead-aware schedulability analysis

In the previous sections, we have computed the maximum
overhead that each task-release event and each task-finish
event of a higher-priority task τi causes to a lower-priority
task τk. To account for the overall overhead τk experiences,
we need to compute the number of task-release and task-finish
events of higher-priority tasks in each period of τk.

Since each job of a task has one task-release event and one
task-finish event, it may seem at first that an upper bound
on the total number of task-release and task-finish events of
all higher-priority tasks in the period of τk is

∑
i<k 2d dk

pi
e+2.

While this bound is safe, it is not tight because not every task-
release event or task-finish event of each job of higher-priority
tasks can cause overhead to τk, as stated by Lemma 9.

Lemma 9. Suppose the task-release and task-finish events of
the same job of τi occur at time t1 and t2, respectively, and
suppose the lower-priority task τk is preempted at t1 and t2
as well. Then, at least one task-release or task-finish event of
another higher-priority task τ j ( j < k) must occur at time t3,
where t1 < t3 < t2 and τk resumes at t3.

Thus, instead of accounting for the overhead caused by each
task-release and each task-finish event of higher-priority tasks,
we account for the overhead of τk that is caused by each job
of its higher-priority tasks in a period of τk, as follows:

If only one of the task-release and task-finish events of the
same job of τi may cause overhead to τk, the overhead caused
by each job of τi is max{∆r

i,k,∆
f
i,k}. In contrast, if both the task-

release and task-finish events of the same job of τi may cause
overhead to τk, the maximum overhead of τk that is caused
by each job of τi is the total overhead caused by the task-
release and task-finish events of the job minus the minimal
overhead caused by the task-release event or the task-finish
event of a high-priority task τ j ( j < k and j 6= i), i.e., ∆r

i,k +

∆
f
i,k−min j<k, j 6=i{∆r

j,k,∆
f
j,k}. Hence, the overhead of τk that is

caused by one job of a higher-priority task τi is bounded by

δ
k
i

def
= max{∆r

i,k,∆
f
i,k,∆

r
i,k +∆

f
i,k− min

j<k, j 6=i
{∆r

j,k,∆
f
j,k}}.

Further, the number of jobs of τi in a period of τk that have
both release and finish events causing τk to resume is at most
NIk

i
def
= d dk

pi
e. Since the finish event of the carry-in job of τi and

the release event of the carry-out job of τi in a period of τk may
also lead to one task-resumption event of τk, we imply that
the overhead of τk that is caused by all of its higher-priority
tasks is upper bounded by

δ
k =

k−1∑
i=1

δ
k
i ×NIk

i +∆
f
i,k +∆

r
i,k (8)



The overhead-aware analysis can now be done by first
inflating the WCET of each task τk with δ k, and then applying
the overhead-free analysis (Section VI) on the inflated taskset.

Theorem 10. A taskset τ = {τ1, ...,τn}, where τk =
(pk,ek,dk,Ak), is schedulable under gFPca in the presence of
cache overhead if τ ′ = {τ ′1, ...,τ ′n} satisfies Theorem 1, where
τ ′k = (pk,e′k,dk,Ak) and e′k = ek +δ k for all 1≤ k ≤ n.

VIII. NUMERICAL EVALUATION

Our evaluation was based on randomly generated real-time
workloads and our implementation platform, which has four
cores and a 1MB shared cache that is partitioned into 16 equal
partitions. We had two main objectives: (1) Evaluate the accu-
racy of the overhead-aware analysis for gFPca, by comparing
to the overhead-free analysis and a baseline overhead-aware
analysis; intuitively, the closer the overhead-aware schedula-
bility results are to the overhead-free schedulability results,
the closer the overhead accounting is to an optimal overhead
accounting method. (2) Investigate the performance of gFPca
in comparison to gFP and nFPca.

For the baseline, since no existing overhead-aware analysis
can be directly applied to gFPca, we used an extension of
existing approach (which is safe for gFPca) that works as
follows: first inflates the WCET of each task τi (i > 1) with
the total overhead it experiences during an entire execution
of a job, and then applies gFPca’s overhead-free analysis.

Types of overhead. Besides CRPMD overhead, our evaluation
considered four other types: release, scheduling, IPI, and con-
text switch. For this, we extended the analysis in Section VII,
in [15], and in [9], to account for all overhead types under
gFPca, nFPca, and gFP, respectively (extension details are
in the appendix). We measured the overhead values of each
scheduler in our implementation.
Workload. Each workload contained a set of randomly gener-
ated implicit-deadline sporadic task sets. The tasks’ utilizations
followed one of four distributions: a uniform distribution
within the range [0.5, 0.9] and three bimodal distributions,
where the utilizations were uniformly distributed in either
[0.001, 0.5) or [0.5, 0.9] with respective probabilities of 8/9
and 1/9 (light), 6/9 and 3/9 (medium), and 4/9 and 5/9 (heavy),
as used in [30, 32]. The number of ECPs of a task was
uniformly distributed in [1, 8] by default, and the number of
UCPs was set equal to the number of ECPs.
Overhead values. For the CRPMD overhead, the latency of
reloading one cache line measured on our board was 90.89ns.
The size of each cache line is 32B, and thus each cache
partition has 1MB

32B×16 = 2048 cache lines. Hence, it takes at most
90.89ns×2048≤ 0.19ms to reload one cache partition. Hence,
we set the cache partition reloading time PRT= 0.19ms.

We measured the remaining overheads for each scheduler
(gFPca, nFPca, gFP), and used monotonic piece-wise linear
interpolation to derive the upper-bounds of each overhead
under each scheduler as a function of the taskset size. For
gFPca, the context switch overhead also includes the overhead
for (re)assigning cache partitions, which we derived from the
measured maximum latency of flushing one cache partition.
(Details of the overhead values are available in [31]).

A. Evaluation of the overhead-aware analysis

We generated 500 tasksets with taskset utilization ranging
from 0.1 to 4, with a step of 0.2. For each taskset utilization,
there were 25 independently generated tasksets; the task
utilizations were uniformly distributed in [0.5,0.9]; the task
periods were uniformly distributed in [10,40]ms. Fig. 4 shows
the fraction of schedulable tasksets under each analysis.

The results show that our overhead-aware analysis (shown
as gFPca) is substantially tighter than the baseline; for exam-
ple, when the taskset utilization is 2.7, the baseline analysis
claimed that no taskset is schedulable, even though 60%
of the tasksets are schedulable under our overhead-aware
analysis. The results also show that the fractions of schedulable
tasksets under our overhead-aware analysis and the overhead-
free analysis are very close across all taskset utilizations. This
means that our overhead-accounting technique is very close
to an optimal overhead-accounting technique, which can be
explained from its novel strategies for bounding the overhead.

We also evaluated the impacts of core and cache configu-
rations, and the results further confirm these observations.

B. Evaluation of gFPca’s performance.

We generated 500 tasksets as before. The number of cache
partitions of each task was uniformly distributed in [1,12]. The
period range that each task chooses was uniformly distributed
in [550,650] (as in [20]). We analyzed the schedulability of
each taskset under gFPca, nFPca, and gFP.

Cache access information for gFP analysis. The overhead-
aware analysis for gFP needs to consider the shared cache
interference among concurrent tasks (which are eliminated
in gFPca and nFPca). We derived the overhead that a task
experiences from the cache hit latency (55.77ns), miss latency
(146.66ns), and the hit time ratio of the task (i.e., the ratio of
the time it spends on cache hit accesses to its execution time
when executing alone). To generate different cache access sce-
narios, the hit time ratio of tasks was uniformly distributed
in [0.1, 0.3] (cache light), (0.3, 0.6] (cache medium), and (0.6,
0.9] (cache heavy). The generated hit time ratio values were
then used for the analysis under gFP.

Fig. 5 shows the fractions of schedulable tasksets under
each algorithm. The lines with the labels gFP-H, gFP-M and
gFP-L represent the results under gFP for the cache light,
cache medium, and cache heavy scenarios, respectively.
Benefits of cache-aware scheduling: As Fig. 5 shows, both
gFPca and gFPca perform much better than the cache-agnostic
gFP under the cache medium and cache heavy configurations,
and for most taskset utilizations under the cache light con-
figuration. This is expected, because gFP does not protect
concurrently running tasks from cache interference, which is
more obvious for more cache-intensive workloads. On the
contrary, both gFPca and nFPca mitigate such interference via
cache partitioning and cache-aware scheduling, and thus they
can significantly improve the schedulability of the tasksets.

Comparing the fractions of schedulable tasksets under
gFP when the hit time ratio of tasks is in the cache light,
cache medium and cache heavy scenarios, we observe that
as the hit time ratio of tasks increases, the performance of
gFP decreases. One reason for this trend is that tasks with a
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Fig. 4: Analysis accuracy
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Fig. 5: Generic.
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Fig. 6: nFPca-favor.
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Fig. 7: nFPca-oppose.
larger hit time ratio have more cache hit accesses when they
execute alone, and hence they are more sensitive to the shared
cache interference under gFP. Note that under gFP, we had to
assume every cache hit access when it executes alone may be
polluted by tasks running concurrently on other cores when
it is scheduled with other tasks; therefore, a higher number
of cache hit accesses leads to a larger extrinsic cache overhead.

Benefits of gFPca over nFPca: We observe that gFPca
outperforms nFPca in terms of the fraction of schedulable
tasksets across all but one taskset utilizations. This is because
gFPca avoids undesirable priority inversions and allows
low-priority tasks to execute if high-priority tasks are unable
to, and thus it can better utilize the system’s resources.

The number of cache partitions and task priority relation:
Because nFPca does not allow lower-priority tasks to execute
when any higher-priority task is blocked by cache resource,
it performs better on tasksets in which higher-priority tasks
require a smaller number of cache partitions and worse on
tasksets in which higher-priority tasks require a higher number
of cache partitions. To investigate the impact of the relation
between the number of cache partitions12 and the task priority
on the performance of the algorithms, we generated two
kinds of tasksets: (1) the so-called nFPca-favor13 tasksets,
in which |Ai| = b pi−min period

max period−min period × 12c for each task τi,
and (2) the so-called nFPca-oppose tasksets, in which |Ai|=
b(1− pi−min period

max period−min period )×12c for each τi. Other parameters
of the tasks were generated in the same manner as above.

The fractions of schedulable tasksets are shown in Fig. 6
and 7. On the nFPca-favor tasksets, nFPca performs better
than gFPca but only slightly, although the tasksets favor
nFPca. We attributed this to the work-conserving nature of
gFPca, which allows it to better utilize the system’s resource.
In contrast, the results in Fig. 7 show that gFPca can schedule
many more tasksets than nFPca does on the nFPca-oppose
tasksets. We can also observe that the performance improve-
ment that gFPca achieves over nFPca increases as higher-
priority tasks use more cache partitions (as the tasksets move
from the nFPca-favor to the nFPca-oppose).

IX. EMPIRICAL EVALUATION

We used synthetic workloads to illustrate the applicability
and benefits of gFPca based on our implementation platform
(with four cores, 16 cache partitions). We focused on tasks
that are sensitive to shared cache interferences (for which
cache isolation is critical), and evaluated four algorithms: gFP
(cache-agnostic global scheduling), pFP (partitioned schedul-

12Recall that the maximum number of partitions a task can have is 12.
13The nFPca-favor tasksets favor nFPca in comparison to gFPca.

ing with static core-level cache allocation), nFPca (cache-
aware non-preemptive global scheduling with dynamic task-
level cache allocation), and gFPca (cache-aware preemptive
global scheduling with dynamic job-level cache allocation).
Workload generation. We first constructed two real-time
programs in our implementation: the first randomly accesses
every 32 bytes (the size of a cache line) in a 960KB array for
200 times, which was used for the highest-priority task; and
the second randomly accesses every 32 bytes in a 192KB array
for 2000 times, which was used for each lower-priority task.
We separately measured the WCET of each program under
the gFPca scheduler when it was allocated different numbers
of cache partitions; the results are shown Fig. 8.

We then constructed a reference taskset τref with n= 5 tasks,
with τ1 � τ2 � ·· · � τn, where τ1 = (p1 = 5000,d1 = 500) and
τi = (pi = 5000,di = 1550) for all 1 < i≤ n.14
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Fig. 8: Measured WCET vs. Number of cache partitions.
Horizontal line indicates relative deadline.
Analysis of WCET and the number of cache partitions.
Fig. 8 shows that the WCET of τ1 is 430ms with 16 cache
partitions and 501ms with 15 cache partitions. Since its
deadline is 500ms, τ1 needs all 16 cache partitions to meet
its deadline. Each lower-priority task has a WCET of 800ms
with 4 cache partitions, a WCET of 1059ms with 3 cache
partitions and a WCET of 1958ms with 0 cache partition.

From the above analysis, we could feasibly assign the
number of partitions of each task under gFPca and nFPca,
i.e., A1 = 16 and Ai = 4 (i > 1). We set the WCET of each
task to be an upper bound of the WCET measured under the
assigned number of partitions15, i.e., e1 = 500 and ei = 1050;
this was used in our experiment investigating the impact of
task density. (Note that, these WCETs are safe under gFP as
well, since gFP allows every task to access the entire cache.)
Observation: No feasible static partitioning strategy exists.
Under pFP, tasks are statically assigned to cores (e.g., as done
in [18, 29]) and shared-cache isolation is achieved among
tasks on different cores via static cache partitioning. However,
this static approach cannot schedule the example workload.

14We observed similar results when varying the number of tasks.
15The upper bound is to account for potential sources of interference, such

as TLB overhead, and variable actual program execution time.



Specifically, since τ1 requires all of 16 cache partitions to
meet its deadline, if we allocate less than 16 partitions to its
core, then it will miss its deadline. If we allocate all 16 cache
partitions to τ1’s core, then either (i) some lower-priority task
will have zero cache partition (if it is assigned to a different
core) and will miss its deadline, or (ii) all tasks must be
packed onto the same core as τ1’s, in which case the taskset
is unschedulable (since the core utilization is more than 1). In
other words, no partitioning strategy exists for the workload.
Experiment: The reference taskset illustrates the scenario
where the high-priority task has a very high density (ratio
of WCET to deadline) and thus is extremely sensitive to
interference. To investigate the impact of task density on the
performance of the algorithms, we varied the density of τ1
from 1 to 0.1 by increasing its deadline (while keeping all
the other parameters unchanged), which produced 10 tasksets.
The number of cache partitions were assigned for gFPca and
nFPca as above (A1 = 16 and Ai = 4, with i > 1). Although
our analysis shows that no feasible partitioning strategy exists
for pFP, for validation we evenly distributed four low-priority
tasks and 16 cache partitions to the four cores, and assigned
τ1 to any of the four cores. We ran each generated taskset for
one minute under each of the four schedulers (gFPca, nFPca,
gFP, pFP) schedulers, collected their scheduling traces, and
derived the observed schedulability under each scheduler.

TABLE 1: Impact of task density on schedulability.
Density ≥ 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1
gFPca Yes Yes Yes Yes Yes Yes Yes Yes
gFP No No Yes Yes Yes Yes Yes Yes
nFPca No No No No No No No Yes
pFP No No No No No No No No

Results. Table 1 shows the observed schedulability of each
taskset under each scheduler. The results show that the gFPca
scheduler performed best: it was able to schedule all tasksets.
The gFP scheduler performed well when the high-priority
task’s density is low; however, as the task’s deadline becomes
tighter, its tolerance to cache interference from other tasks is
decreased, and thus it began to miss its deadline. The results
also show that the nFPca scheduler performed very poorly
– it was able to schedule only one taskset; we attribute this
to its poor utilization of cache and CPU resources due to its
non-preemptive nature. As predicted in our analysis, the pFP
scheduler could not schedule any tasksets.

X. CONCLUSION

We have presented the design, implementation and analysis
of gFPca, a cache-aware global preemptive fixed-priority
scheduling algorithm with dynamic cache allocation. Our
implementation has reasonable run-time overhead, and our
overhead analysis integrates several novel ideas that enable
highly accurate analysis results. Our numerical evaluation,
using overhead data from real measurements on our implemen-
tation, shows that gFP improves schedulability substantially
compared to the cache-agnostic gFP, and it outperforms the
existing cache-aware nFPca in most cases. Through our empir-
ical evaluation, we illustrated the applicability and benefits of
gFPca. For future work, we plan to enhance both gFPca and
our implementation to improve its efficiency and performance.
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APPENDIX A: gFPca RUN-TIME OVERHEAD

We used the feather-trace tool to measure the overheads, as in
earlier LITMUSRT -based studies (e.g., [11, 12]). Since the tool
uses the timestamp counter to track the start and finish time of
an event in cycles, we first validated that the timestamp counter
on our board has a constant speed (necessary for precise
conversion from cycles to nanoseconds). Since the timestamp
counter on each core of the board is not synchronized, we
also modified the tool to use the system-wide monotonically-
increasing timer (in nanosecond) to trace the IPI delay.

We randomly generated periodic tasksets of size ranging
between 50 to 450 tasks, with a step of 50. We generated 10
tasksets per taskset size (i.e., 90 tasksets in total) under each
scheduler. Under each scheduler, we traced each taskset for
30 seconds, and measured all size types of overhead: release
overhead, release latency, scheduling overhead, context switch
overhead, IPI delay, and tick overhead (as defined in [1]). We
removed the outliers using the method in [11] and computed
the worst-case and average-case overheads.

Taskset size: 50 Taskset size: 450
gEDF gFPca nFPca gEDF gFPca nFPca

Release 5.72 5.86 4.74 7.73 23.92 5.45
Sched 8.64 7.75 7.57 11.88 20.07 15.25
CXS 4.23 138.72 142.46 7.31 159.84 162.93
IPI 4.06 3.64 4.12 3.92 3.84 4.03

TABLE 2: Average overhead (µs) under different schedulers
with cache-read workload.

Table 2 shows the average overheads for taskset size of 50
and 450 under the gFPca and nFPca schedulers, as well as
the existing gEDF scheduler in LITMUSRT for comparison.
The results show that the release, scheduling, and IPI delay
overheads of the gFPca and nFPca schedulers are similar
to that of gEDF . However, gFPca and nFPca have a larger
context switch overhead than gEDF does, which is expected
because they may need to flush cache partitions during a
context switch, as described in the implementation description.
The gFPca scheduler incurs higher worst-case overheads than
the gEDF scheduler, which is not surprising because the
scheduling algorithm gFPca has a higher complexity than
gEDF . All measured overhead values can be found in [31].

APPENDIX B: OVERHEAD ANALYSIS CHALLENGES

Existing overhead accounting approaches [3, 12, 22, 26, 32]
typically work as follows:
• first, analyze for each task τi either (a) the maximum

cache overhead, θi, that τi causes to its lower-priority
tasks, or (b) the maximum cost of one cache overhead,
∆i, that τi incurs upon resuming from a preemption;

• then, incorporate the overhead into the analysis by inflat-
ing the tasks’ WCETs based on the obtained θi or ∆i.

It seems intuitive at first to apply the same approach for gFPca;
unfortunately, a naı̈ve computation of θi or WCET inflation
based on ∆i can lead to unsafe analysis results for gFPca.
(Note: these apply only to gFPca, not gFP.) We will show
this using an example; see [31] for more examples.
Naı̈ve WCET inflation based on θi. We first compute θi
for each task τi (i < n) and then inflate τi’s WCET by the
overhead θi. For this, we extend the method used in the

uniprocessor setting [28]. Specifically, when a higher-priority
task τi preempts τk on a uniprocessor, the cache lines that τi
may evict from the cache must be the cache lines it can access,
i.e., its ECBs (c.f. Section III). Let BRT be the maximum
latency of reloading one cache line and ECBi be the ECBs of
τi. Thus, the private-cache overhead caused by τi is bounded
by [28]: θuni

i = BRT× |ECBi|. It seems intuitive to apply
the same idea to gFPca by using the ECPs of τi, since the
partitions that τi evicts should be the partitions it can access.
Recall that PRT is the latency of reloading one cache partition
and ECPi is τi’s ECPs. Then, the cache overhead caused by
τi is bounded by θi = PRT×|ECPi|. However, this bound is
unsafe when applied to gFPca, as shown in the example below.
Counter Example 1. Consider a taskset τ = { τ1,τ2,τ3 },
with τ1 = (12,2,10,2), τ2 = (12,4,11,7),τ3 = (12,6,12,5)},
and priority order τ1 � τ2 � τ3. Suppose τ is scheduled using
gFPca on a dual-core platform with 8 cache partitions, and
τ1, τ2, and τ3 are released at time 4, 2, and 0, respectively.
Suppose PRT = 0.2. Then, as illustrated in Fig. 9(a), τ3
finishes at t = 12.4 and thus misses its deadline.

However, from θi = PRT×|ECPi|, we obtain θ1 = 0.4 and
θ2 = 1.4. If we inflate τ1 and τ2 with θ1 and θ2, respectively,
then their inflated WCETs are e′1 = 2.4 and e′2 = 5.4. As
illustrated in Fig. 9(b), this leads to τ3 finishing at t = 11.4
and meeting its deadline. Clearly, the inflated WCETs are
insufficient to account for the actual overhead τ3 experiences.

Alternatively, if we inflate the WCET of each low-priority
task (τ2 and τ3) with the total cache overhead caused by all
of its higher-priority tasks, the inflated WCET of each task
will be: e1 = 2, e′2 = e2 + dp2/p1e×θ1 = 4.4; and e′3 = e3 +
dp3/p1e× θ1 + dp3/p2e× θ2 = 7.8. Then τ3 would finish at
t = 12.2 which is earlier than its actual finish time.

As Fig. 9(a) illustrates, under gFPca the cache effects τi
has on a lower-priority task τk comes from not only direct
preemption (i.e., when τi is released and preempts τk) but
also indirect preemption: when τi is released, it is possible
that τi and τk are scheduled to run whereas an intermediate-
priority τ j (i < j < k) is blocked due to insufficient cache;
when τi finishes, τk is preempted by τ j because there is now
sufficient cache for τ j to execute. Therefore, the number of
cache partitions of τk that are evicted can be as large as
|ECP j ∪ECPi| (which is more than |ECPi|).

APPENDIX C: BASELINE ANALYSIS

We describe the overhead-aware analysis for gFPca that
was used as the baseline in our numerical evaluation. This
baseline method performs WCET inflation based on the cache
overhead ∆i that each task τi incurs upon resuming from a
preemption. However, instead of inflating the WCET of each
high-priority task with the maximum of one cache overhead
of its lower-priority tasks (which is unsafe), it inflates the
WCET of each τi with its total cache overhead (i.e., the
overhead it experiences during the entire execution of a job).

Computing the total overhead of τi: The cache overhead that
τi experiences when it resumes from a preemption is upper
bounded by ∆i ≤ PRT×|UCPi|. Since a cache partition of τi
may be evicted from the cache only when another task τ j uses



(a) Actual execution in the presence of overhead. (b) Inflating WCETs of high-priority tasks τi with θi.

Fig. 9: Actual execution and unsafe overhead accounting scenarios for Counter Example 1.

the same cache partition, we can tighten ∆i by considering the
cache partitions used by other tasks:

Lemma 11. The cache overhead a task τi experiences when it
resumes from one preemption is upper bounded by ∆i =PRT×
|UCPi∩∪ j 6=iECP j| ≤ PRT×min{|UCPi|,

∑
j 6=i |ECP j|}.

To bound the total cache overhead of τi, we next derive the
maximum number of times that τi resumes (i.e., number of
resumption events of τi) in each job’s execution.

Lemma 12. A task τi resumes only when one of the following
two events happens: a higher-priority task of τi finishes its
execution, or a higher-priority task of τi releases a new job.

Lemma 13. The maximum number of task-resumption events
of τi during each period is at most NSi =

∑
j<i 2d di

p j
e+2.

Since τi only incurs (extrinsic) cache overhead whenever it
resumes, the total overhead of τi is therefore at most NSi×∆i.

Overhead-aware analysis: Since the total overhead of τi
is at most NSi × ∆i, the WCET of τi in the presence of
cache overhead is at most e′i = ei +NSi×∆i. As a result, the
overhead-aware analysis can be established by applying the
overhead-free analysis on the inflated workload.

APPENDIX D: EXTENSION TO OTHER OVERHEAD TYPES

Real-time tasks typically experience six major sources of
overhead [10]: release, scheduling, context-switching, IPI
overhead, cache related preemption and migration (CRPMD),
and tick overheads. We specify the cost of each of these six
overheads as ∆rel ,∆sched ,∆cxs,∆ipi,∆crpmd , and ∆tick. Since the
tick overhead is quite small (< 11µs for 450 tasks on our
board) and does not involve any scheduling-related logic under
all three (event-driven) schedulers (gFPca, nFPca, and gFP),
we exclude it from the analysis and focus on the other five
types of overhead. (Our analysis does not consider blocking
overhead.) We first analyze the overhead when a task executes
alone, and then account for all types of preemption-related
overhead. We then perform WCET inflation, and apply the
overhead-free schedulability analysis on the inflated taskset.
Overhead accounting when a task executes alone. We
observe that a task τk always incurs one release overhead,
one IPI delay overhead, one scheduling overhead, and one
context switch overhead, when it executes alone in the system
under any of the three schedulers. Therefore, the execution
time ēk = ek +∆rel +∆ipi+∆sched +∆cxs is a safe bound on the
execution time ek of τk in the presence of the overhead when
the task executes alone.
Overhead accounting under gFPca. Fig. 10 illustrates the
preemption-related overhead under gFPca. We observe that at

Fig. 10: Overhead scenario when four tasks, τ1 � τ2 � τ3 � τ4, are
scheduled under gFPca on three cores. Task τ1, which requires all
system’s cache partitions, releases a job and preempts τ2,τ3 and τ4
at t1. When τ1 finishes execution at t3, the other three tasks resume.
Note that the cost of the context switch overhead and the CRPMD
overhead depends on the task that releases a new job or that resumes.

each task-resumption event of τk, τk experiences all three types
of overhead, CPRMD, scheduling, and context switch once.
Hence, we can account for preemption-related scheduling and
context switch overheads using the same approach as the
CRPMD overhead accounting in Section VII. Specifically, the
number of task-resumption events of a task τk in each of
its period is bounded by NRk =

∑k−1
i=1 (d

dk
pi
e+ 2). The total

preemption-related scheduling and context switch overhead is
thus at most γk = NRk× (∆sched +∆cxs). Hence, the execution
time of τi with all five overhead types is bounded by

e′k = ek +∆
rel +∆

ipi +∆
sched +∆

cxs +δ
k + γk. (9)

Overhead accounting under gFP. When a preemption event
of τk occurs under gFP, τk incurs one scheduling overhead,
one context switch overhead, and one CRPMD overhead,
similar to the preemption-related overhead scenario under
gEDF shown in [10]. Since gFP does not provide cache
isolation, concurrently running tasks may still evict out the
cache content of each other. Since it is difficult to predict
or analyze which cache content of a task may be evicted
out by another currently running task, we assume all cache
accesses incur cache misses to safely account for the shared-
cache overhead under gFP. Let αk be the fraction of the WCET
of a task τk that is spent on cache hit without the shared-cache
interference, and hit latency and miss latency be the cache hit
and miss latency of the shared cache, then the shared-cache
overhead of τk under gFP is
δk = d(αk× ek)/hit latencye× (miss latency−hit latency)

Therefore, the inflated execution time of τk that accounts
for five types of overhead is bounded by
e′k = ek +∆

rel +∆
ipi+2×∆

sched +2×∆
cxs+∆

crpmd +δk (10)
Overhead accounting under nFPca. Because no preemption
occurs under nFPca, the WCET of each task τk that accounts
for all five types of overhead under nFPca is bounded by
e′k = ek +∆rel +∆ipi +∆sched +∆cxs.



Overhead-aware analysis. For each scheduler (i.e., gFPca,
nFPca and gFP), the overhead-aware analysis can now be
achieved by applying its overhead-free analysis to the inflated
taskset with the inflated WCET computed above.
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