
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

5-2003

A Preemption-Based Meta-Scheduling System for Distributed A Preemption-Based Meta-Scheduling System for Distributed

Computing Computing

Sathish Vadhiyar
University of Tennessee, Knoxville

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Vadhiyar, Sathish, "A Preemption-Based Meta-Scheduling System for Distributed Computing. " PhD diss.,
University of Tennessee, 2003.
https://trace.tennessee.edu/utk_graddiss/4178

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F4178&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=trace.tennessee.edu%2Futk_graddiss%2F4178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Sathish Vadhiyar entitled "A Preemption-

Based Meta-Scheduling System for Distributed Computing." I have examined the final electronic

copy of this dissertation for form and content and recommend that it be accepted in partial

fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in Computer

Science.

Jack Dongarra, Major Professor

We have read this dissertation and recommend its acceptance:

James Plank, Bradley Vander Zanden, Charles Collins

Accepted for the Council:

Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a dissertation written by Sathish Vadhiyar entitled “A Preemption-
Based Meta-Scheduling System for Distributed Computing.” I have examined the final
electronic copy of this dissertation for form and content and recommend that it be ac-
cepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy,
with a major in Computer Science.

Jack Dongarra

Major Professor

We have read this dissertation
and recommend its acceptance:

James Plank

Bradley Vander Zanden

Charles Collins

Accepted for the Council:

Anne Mayhew

Vice Provost
and Dean of Graduate Studies

(Original signatures are on file with official student records.)

A PREEMPTION-BASED

META-SCHEDULING SYSTEM FOR

DISTRIBUTED COMPUTING

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Sathish Vadhiyar

May 2003

Copyright c© 2003 by Sathish Vadhiyar

All rights reserved.

ii

Dedication

This dissertation is dedicated to my parents, V. R. Santhanam and S. Vathsala.

iii

Acknowledgments

The author expresses immense gratitude to the members of his dissertation com-

mittee, Dr. Jack Dongarra, Dr. James Plank, Dr. Bradley Vander-Zanden and Dr.

Charles Collins for participating in the research and providing valuable comments to-

wards improving the quality of the research.

My profound gratitude to Dr. Jack Dongarra, thesis advisor for his able guidance,

motivation and support throughout the process of research. Thanks to Dr. Dongarra for

the publicity of the research to the different research communities and providing ample

opportunities to the author to share the research ideas in various research forums and

workshops. Thanks also to Dr. Dongarra for patiently reviewing the various research

related publications of the author.

The author acknowledges the support of the research in part by the National Sci-

ence Foundation contract GRANT #EIA-9975020, SC #R36505-29200099 and GRANT

#EIA-9975015.

The research was conducted as part of the Grid Application Development Soft-

ware (GrADS) project. The author expresses gratitude to the members of the GrADS

team for their valuable comments on the research and their support to the research

effort. The author acknowledges the use of machines in the GrADS testbed for the

experiments conducted in the research. The author thanks the research teams from

different institutions, namely the Pablo research group from the University of Illinois,

Urbana-Champaign, the Grid Research and Innovation Laboratory (GRAIL) from the

iv

University of California, San Diego and the Innovative Computing Laboratory (ICL)

from University of Tennessee, for the support and maintenance of the machines in the

GrADS testbed and enabling the conducting of experiments needed for the research.

Special thanks to Martin Swany from University of California, Santa Barbara for the

maintenance and support of Network Weather Service (NWS), a primary component of

the research infrastructure. Special thanks also to Brett Ellis, the system administrator

of Innovative Computing Laboratory, University of Tennessee, for helping with the

reservation of some of the machines in the GrADS testbed. The author also thanks

his GrADS research colleague from University of Tennessee, Asim Yarkhan for useful

discussions and insights to the various aspects of the research and in reviewing parts of

the dissertation.

The author also expresses deep sense of gratitude to various members of his family

for their support and sacrifices.

And, of course, thank God !

v

Abstract

This research aims at designing and building a scheduling framework for distributed

computing systems with the primary objectives of providing fast response times to the

users, delivering high system throughput and accommodating maximum number of ap-

plications into the systems. The author claims that the above mentioned objectives are

the most important objectives for scheduling in recent distributed computing systems,

especially Grid computing environments.

In order to achieve the objectives of the scheduling framework, the scheduler em-

ploys arbitration of application-level schedules and preemption of executing jobs under

certain conditions. In application-level scheduling, the user develops a schedule for his

application using an execution model that simulates the execution behavior of the ap-

plication. Since application-level scheduling can seriously impede the performance of

the system, the scheduling framework developed in this research arbitrates between dif-

ferent application-level schedules corresponding to different applications to provide fair

system usage for all applications and balance the interests of different applications. In

this sense, the scheduling framework is not a classical scheduling system, but a meta-

scheduling system that interacts with the application-level schedulers.

Due to the large system dynamics involved in Grid computing systems, the ability

to preempt executing jobs becomes a necessity. The meta-scheduler described in this

dissertation employs well defined scheduling policies to preempt and migrate executing

applications. In order to provide the users with the capability to make their applications

vi

preemptible, a user-level checkpointing library called SRS (Stop-Restart Software) was

also developed by this research. The SRS library is different from many user-level

checkpointing libraries since it allows reconfiguration of applications between migrations.

This reconfiguration can be achieved by changing the processor configuration and/or

data distribution.

The experimental results provided in this dissertation demonstrates the utility of the

metascheduling framework for distributed computing systems. And lastly, the meta-

scheduling framework was put to practical use by building a Grid computing system

called GradSolve. GradSolve is a flexible system and it allows the application library

writers to upload applications with different capabilities into the system. GradSolve is

also unique with respect to maintaining traces of the execution of the applications and

using the traces for subsequent executions of the application.

vii

Contents

1 Introduction 1

1.1 Scheduling in Distributed Systems . 4

1.2 Problem Statement . 7

1.3 Purpose of Study . 8

1.4 Assumptions and Limitations of the Research 14

1.5 Definition of Terms . 16

1.6 Outline of the Dissertation . 18

2 Background 21

2.1 Grid Computing - An Overview . 22

2.2 Related Work in Scheduling . 25

2.3 GrADS . 29

2.3.1 Resource Selection . 32

2.3.2 Performance Modeling . 33

2.3.3 Contract Development . 34

viii

2.3.4 Application Launching . 35

2.4 GrADS Experiments and Results . 35

2.4.1 Validation of Execution Model for ScaLAPACK LU 36

2.4.2 GrADS Overhead . 42

2.4.3 GrADS Execution across Multiple Clusters 45

2.5 Deficiencies of the GrADS Architecture 47

2.6 Need for a Metascheduler in GrADS . 50

3 Metascheduling Framework 52

3.1 Modified GrADS Architecture . 57

3.2 Metascheduler Components . 61

3.2.1 Database Manager . 63

3.2.2 Permission Service . 67

3.2.3 Contract Negotiator . 73

3.2.4 Rescheduler . 80

3.3 Rescheduling Framework . 82

3.3.1 Related Work in the Field of Migration of Applications 86

3.3.2 The Migration Framework . 88

4 SRS Checkpointing System 98

4.1 Motivation . 99

4.2 Related Work . 104

4.3 SRS Checkpointing Library . 107

ix

4.4 Runtime Support System (RSS) . 115

4.5 Steps for Developing and Executing Malleable Applications 118

4.6 Limitations . 120

4.7 SRS and Metascheduler . 121

5 Experiments and Results 123

5.1 Usefulness of Metascheduling Components 124

5.1.1 Permission Service . 125

5.1.2 Contract Negotiator . 127

5.1.3 Rescheduler . 130

5.2 Predicting Redistribution Cost . 143

5.3 SRS Checkpointing Experiments . 147

5.3.1 SRS Overhead . 147

5.3.2 SRS for Moldable Applications 153

5.3.3 SRS for Malleable Applications 156

5.4 Practical Experiments . 159

5.4.1 Comparison with Plain Application-level Scheduling 159

5.4.2 Behavior of the Metascheduler 165

6 GrADSolve - A Metascheduling-Based Distributed Computing Sys-

tem 172

6.1 Related Work . 180

6.2 NetSolve - A Brief Overview . 181

x

6.3 The GrADSolve System . 184

6.4 GrADSolve Entities . 188

6.4.1 Administrators . 189

6.4.2 Library Writers . 190

6.4.3 End Users . 197

6.5 Execution Traces in GrADSolve - Storage, Management and Usage . . . 204

6.6 Metascheduler in GrADSolve . 209

6.7 Experiments and Results . 212

7 Conclusions and Future Work 216

7.1 Contributions of the Research . 216

7.2 Future Directions of the Research . 220

Bibliography 226

Appendices 246

A Algorithms 247

A.1 Ad-hoc Search Procedure . 247

A.2 Calculation of Approximate Remaining Execution Time of an Executing

Application . 248

A.3 Algorithm for Permission Service . 250

A.4 Algorithm for Contract Negotiator . 252

A.5 Algorithm for Rescheduler . 255

xi

B SRS Library Reference 257

B.1 SRS Init . 257

B.2 SRS Finish . 257

B.3 SRS Restart Value . 258

B.4 SRS Check Stop . 259

B.5 SRS Register . 260

B.6 SRS Read . 262

B.7 SRS StoreMap . 266

B.8 SRS DistributeFunc Create . 267

B.9 SRS DistributeMap Create . 270

B.10 The big picture - A working example . 275

Vita 280

xii

List of Tables

2.1 GrADS testbed resource characteristics 37

3.1 Times for rescheduling phases for ScaLAPACK QR application 97

5.1 Utility of Contract Negotiator . 130

5.2 Details of Periodic Checkpointing used for Figure 5.10 149

5.3 Details of Periodic Checkpointing used for Figure 5.11 151

5.4 Details of Checkpointing used in Figure 5.12 154

6.1 Machines chosen for application execution 214

xiii

List of Figures

2.1 GrADS Architecture for Numerical Libraries 31

2.2 Performance Model Interactions . 33

2.3 Validation of execution model on a homogeneous cluster for matrix size

16000 . 38

2.4 Validation of execution model on a homogeneous cluster for different

matrix sizes . 39

2.5 Validation of execution model on a heterogeneous environment for matrix

size 16000 - Per-Loop iteration times . 40

2.6 Validation of execution model on a heterogeneous environment for matrix

size 16000 - Execution times every 12 loop iterations 41

2.7 GrADS overhead on a homogeneous cluster 43

2.8 GrADS execution across the entire GrADS testbed 45

2.9 Result of deficiency of the GrADS architecture 48

3.1 Modified GrADS Architecture . 58

xiv

3.2 Life cycle of an application in the Grid 62

3.3 Metascheduler and interactions . 63

3.4 Implementation of Contract Negotiator 74

3.5 Interactions in Migration Framework . 89

4.1 A Data Map representing a data distribution of a data of size 4000 units 112

4.2 Original code . 114

4.3 Modified code with SRS calls . 116

4.4 Interactions in SRS . 119

5.1 Free memory available on a opus machine during the execution of app1

and app2 . 126

5.2 Performance loss for app1 . 127

5.3 Effect of Problem Sizes on Migration . 133

5.4 Effect of Amount of Load on Migration 135

5.5 Effect of Load Introduction Time on Migration 137

5.6 Rescheduling gain for app2 . 140

5.7 Opportunistic Migration . 142

5.8 Redistribution Cost Prediction . 146

5.9 Overhead in SRS on a homogeneous cluster (No Checkpointing) 148

5.10 Overhead in SRS on a homogeneous cluster (Periodic Checkpointing) . . 150

5.11 Overhead in SRS on a heterogeneous cluster 152

xv

5.12 Times for Checkpoint Writing and Reading when the application was

restarted on msc machines . 154

5.13 Times for Checkpoint Writing and Reading when the application was

restarted on opus machines . 155

5.14 Times for Checkpoint Writing and Redistribution when the application

was restarted on different number of processors 157

5.15 Times for Checkpoint Writing and Redistribution for different problem

sizes . 158

5.16 Number of rejected applications in the presence and absence of metasched-

uler . 161

5.17 Total times of all applications with and without the metascheduler . . . 162

5.18 Number of contract violations with and without the metascheduler . . . 163

5.19 Extent of contract violations with and without the metascheduler 164

5.20 Different kinds of metascheduling decisions based on the amount of con-

tention . 166

5.21 Mean response times of the jobs for different mean inter-arrival times . . 168

5.22 Number of contract violations . 169

5.23 Extent of contract violations . 170

6.1 Overview of NetSolve system . 182

6.2 Overview of GrADSolve system . 187

6.3 BNF of GrADSolve IDL . 191

xvi

6.4 An example GrADSolve IDL for a ScaLAPACK QR problem 192

6.5 XML document generated for the IDL in Figure 6.4 193

6.6 A Performance Model template generated by the GrADSolve system for

the QR problem . 196

6.7 A QR Performance Model filled with library writer code 198

6.8 GrADSolve C client code for the QR problem 200

6.9 Data staging and other GrADSolve overhead 213

xvii

Chapter 1

Introduction

Over the years, computing environments have evolved from single-user environments to

Massively Parallel Processors (MPPs), networks of workstations, distributed systems

and more recently Grid computing systems. The transition from MPPs to networks

of workstations helped to increase the ability of common users to solve some large

problems. By linking together commodity processors with cheap network connections,

it was possible to submit and solve large problems that were previously solvable only in

costlier MPPs available only at certain privileged locations like super computing centers.

With the advent of Internet, different networks of workstations with different capa-

bilities were connected to each other to form distributed computing systems. These

distributed computing systems possessed both hardware and software capabilities from

disparate sites and were often heterogeneous in terms of the hardware configurations,

operating systems and network connections. Users by utilizing these distributed systems

1

were able to solve problems that required resources that were often not available at their

own sites. The smooth functioning and maintenance of these distributed computing sys-

tems necessitated the provision of system support tools that provided a range of services

like user interfaces, programming environments, programming language tools, operating

system services including file services, storage services, process spawning, process man-

agement, security infrastructures and most important of all, allocation or scheduling of

resources to jobs. The extent and types of theses services provided by a distributed

system defined the characteristics of the system. The users’ perspectives of problem

solving also changed from the traditional sequential programming to parallel program-

ming and distributed computing. New algorithms were developed that leveraged the

vast set of resources available in the distributed computing systems.

Grid computing systems are the latest computing environments and have been

gaining popularity for the past few years. Grid computing systems can be considered as

an extension or abstraction of distributed computing systems, but in which the number

and heterogeneity of the systems are much higher. “In the world of high-performance

computing, a grid is an infrastructure that enables the integrated, collaborative use of

high-end computing systems, networks, data archives, and scientific instruments that

multiple organizations operate” [90]. Users, by plugging their systems to Grid com-

puting systems can potentially use the vast number of services that are available in the

Grid similar to the way in which electrical appliances can draw power from the electrical

power grid. Grid computing also provides an opportunity for collaborative computing

2

in which different users across the grid can collaborate towards solving a large appli-

cation. Thus, for example, it is possible to start a phase of an application at one site,

start another phase of the application at a different site and view the progress of the

application through a graphical output on some other site. Due to the large number

of resources involved in Grid computing, the load dynamics and the instability of the

systems and security violations on the systems can be potentially much higher when

compared to those on distributed computing systems. Hence the development of robust

Grid system software to maintain the resources and jobs assumes great importance.

There have been considerable efforts in developing Grid system software including the

services for resource allocation, job management, stable communication infrastructures,

information services to maintain records of different states of the Grid systems etc. The

Grid has been put to practical use in some situations and have also been demonstrated

to solve some Grand Challenge problems.

One of the visions of the distributed and Grid computing systems is to use systems for

large-scale computing the way World Wide Web has been successfully used for retrieving

information and in some cases solving small-scale problems. In order for this vision to

be realized, robust mechanisms for allocating jobs to resources have to be incorporated

into these distributed and Grid systems. The problem of scheduling jobs to resources has

been studied extensively since the advent of time-sharing operating systems and a large

number of scheduling disciplines have been developed. Different scheduling disciplines

were designed to meet different objectives of scheduling in the systems. With the arrival

3

of dynamic environments like Grid computing, it is necessary to revisit some of the

scheduling objectives and to evaluate the applicability of the scheduling methodologies

to the distributed and Grid computing systems. The next section presents an overview

of the different efforts in the area of scheduling in distributed systems.

1.1 Scheduling in Distributed Systems

Existing scheduling systems for distributed computing can be categorized into differ-

ent types based on different characteristics including the architecture for scheduling,

scheduling objectives, the information used for scheduling decisions, the existence of

rescheduling policies etc. In this section, only those categories of scheduling that are

relevant to the research are discussed in brief. For a detailed description of different

categories of scheduling, the reader is referred to [37].

An important categorization of scheduling systems is based on the objectives of

scheduling. Most common objectives of scheduling systems include maintaining load bal-

ance of the systems, improving the system utilization, increasing the overall throughput

of the system and minimizing the response times for individual jobs. Different schedul-

ing systems are built with different sets of objectives and scheduling systems designed

for meeting certain set of objective usually do not meet the other set of objectives.

For example, a scheduling system tuned for increasing the throughput of the system

may not necessarily meet the objective of minimizing the response times for individual

applications.

4

Most of the scheduling systems for distributed and Grid computing are tuned for

maintaining the load balance of the systems [16, 78, 112, 121, 59, 105, 48]. In these

systems, the scheduling decisions are made such that the total load due to the jobs

entering the system are almost equally distributed among all resources of the system.

The assumption is that maintaining load balance in the system will lead to efficient

resource utilization among all the jobs and this will in turn increase the throughput of the

system. Very few scheduling systems are designed for increasing the throughput of the

system [112]. In [112], high system throughput is provided by reducing the interference

to the execution of an application by another application. Though this may lead to

poor response times for the application, many applications can be accommodated in

the system and completed within a given frame of time. There is another category of

schedulers called high-performance schedulers [25] where the emphasis is to minimize the

response or turnaround times of the applications [95, 59, 27, 113]. In these systems, the

application specifies its properties including the total execution cost for the application

and total memory and disk spaces consumed by the application etc. to the scheduling

system. The properties of the application can be specified either by hard limits or by

mathematical formulas or through execution simulation models. The scheduler uses

the properties of the application and generates an application-level schedule which is a

sub-optimal mapping of the application to the system resources aimed to provide high

performance for the application. Though this scheduling strategy may not be beneficial

to the system, it is useful for scheduling high performance applications.

5

Another important categorization of schedulers is based on the ability of the schedul-

ing systems to preempt the executing applications in response to dynamic changes in

system environments. Most of the scheduling systems for distributed computing follow

run-to-completion (RTC) policy for the executing applications. However, the impor-

tance of preemption of applications under different conditions have been studied both

theoretically [42] and through simulations [72, 88] and few preemptive scheduling sys-

tems have been built [80, 77, 46] to preempt the applications in response to changes in

system environments. The main motivation for preemption of executing applications is

to adapt to load changes both in terms of external load and number of jobs in the job

queue thereby increasing throughput of the system. Preemption is also used to minimize

the turnaround time of the applications. Although preemption has been widely used in

traditional operating systems, it is a relatively new field in distributed systems.

And finally, scheduling systems can also be categorized based on their architecture.

Most of the scheduling systems follow a centralized approach in which a central sched-

uler makes scheduling decisions for all jobs based on global information of the system.

Recently, the benefits of multiple levels of scheduling systems have been studied using

simulations [60, 68, 101]. While centralized schedulers can generate better schedules

and involve less communication than multiple layers of schedulers, multiple levels of

scheduling provides flexible scheduling in terms of different levels of scheduling policies

and are more fault resilient than centralized scheduling.

6

1.2 Problem Statement

The focus of this research is to build a preemptive based metascheduling system for

distributed and Grid computing that takes into account both application and system

level considerations. The main objectives of the metascheduling system are to provide

high performance to individual applications within the constraints of the system loads,

to accommodate maximum number of applications into the system without overwhelm-

ing the system resources and to provide high throughput of the overall system. The

dissertation also demonstrates an arbitration system that considers the problem of ne-

gotiating between different application schedulers. The scheduling system also deals

with a framework for providing adaptive and realistic estimation of execution costs of

the applications.

Secondly, this research dwells on building a user-level checkpointing library that

will allow the application library writers to build malleable jobs which can migrate

across distributed system resources and can change processor configuration and data

distribution between migrations. The motivation of this portion of this research is to

provide flexibility to the metascheduling system while scheduling different applications

and reschedule the applications in the middle of the executions. This portion of the

research also discusses the data structure for data map that is necessary for building

the checkpointing library.

Finally, the research builds a flexible distributed computing framework that brings

together the preemptible applications built by the application library writers using the

7

checkpointing library and the metascheduling system that works with the preemptible

jobs. The framework is flexible so as to allow the users to express different capabilities

of the applications. The research also ponders over the special considerations that are

necessary to deal with problems having roundoff error effect and mechanisms necessary

to improve the confidence of the users of such problems in distributed environments.

1.3 Purpose of Study

Of the different objectives for scheduling systems mentioned in an earlier section, the

objectives of providing high performance to the applications, accommodating many ap-

plications into the system and providing high throughput for the system are considered

by our scheduling system. Meeting these objectives is essential for distributed and Grid

computing, especially if the vision of using distributed systems for computing similar

to the way that World Wide Web is used for information has to be realized. There

are few scheduling systems for distributed computing [95, 59, 27, 113] aimed to provide

high performance to individual applications. These scheduling systems are attractive

for distributed and Grid computing since they allow users to get fast response times

for applications that may otherwise execute for long duration on local machines. Also,

there are large number of Grand Challenge problems [4] for which large number of

instantaneous results are absolutely needed. In addition to collating large number of

supercomputing machines for solving these problems, it is also essential for generating

scheduling strategies that are tuned for solution of each instance of the problems. The

8

existing high performance schedulers accomplish this task by requiring the application

to specify problem constraints and complexities. Hence the mechanism of scheduling in

high performance schedulers is called application-level scheduling [27].

While the existing high performance schedulers have been experimentally proven

to provide fast response times, they can potentially hamper the performance of the

system as well as the performance of competing applications especially when a number

of applications are submitted simultaneously to the system in a multi-user distributed

setting. This happens when the different application-level schedulers lay claim on same

set of resources assuming the absence of competing applications. In the worst case,

all the applications will be scheduled to the same resources and this leads to frequent

swapping out of applications between the CPU and disks. This not only overwhelms

the system resources but also defeats the whole purpose of high-performance schedulers

to provide fast response times to applications. Hence there is a need for an arbitration

mechanism that interacts with the application-level schedulers to oversee the progress

of the applications and the smooth functioning of the system. Our research designs and

implements this arbitration mechanism in the form of a metascheduler. The purpose

of our metascheduler is to communicate with the different application-level schedulers

to balance the interests of different applications. The metascheduler can also possess

knowledge of the memory constraints for problem executions. Based on this knowledge

and the total memory available in the system resources at a given point of time, it can

either accept or reject an application-level schedule.

9

The second objective of our scheduling system is to accommodate many applications

into the system. This objective is necessary to provide functionalities in distributed

computing similar to certain Web services like News services that provide information

to many users during certain peak hours. But due to the potential coexistence of

different problems with different sizes in distributed computing systems, some large

problems can occupy most of the system resources and can force our metascheduler

to reject the application-level schedules of the applications that arrive later into the

system. This will lead to increase in probability of applications getting rejected at

a given point of time. In this situation, preemption of executing large applications

to accommodate small incoming applications will be helpful in realizing the second

objective of our scheduling system. Hence our metascheduling system is built as a

preemption based scheduling infrastructure. Since our objective is also to provide high

performance to the applications, preemption of executing applications is based on the

remaining execution times of the application. Hence our metascheduler also depends on

a monitoring framework that monitors the progress of the applications and reports the

remaining execution times of the applications based on the time complexity specified in

the application-level schedules and the progress of the application.

The third and final objective of our scheduling system is to provide high system

throughput. Though this objective may not be critical for individual users of the sys-

tem, throughput is considered an attractive measure of the system for drawing users

to the distributed systems. Though the implementation of our metascheduler to realize

10

the first two objectives of our scheduling system also leads to high system throughput,

this may not necessarily be the case due to the large system dynamics associated with

distributed computing resources. Hence preemption of applications is necessary to es-

cape from heavily loaded resources and to utilize free resources due to completion of

certain applications. Preemption is also necessary to prevent unfair advantage to large

executing applications in the absence of which incoming small applications can be exe-

cuted much faster. A powerful rescheduling framework is necessary to make appropriate

decisions regarding if and when to reschedule the applications. Though the objectives

of our metascheduling system are similar to the objectives of the scheduling systems

like LSF [121] and PBS [9], our metascheduling system employs more robust policies

for preempting and migrating applications than the other scheduling systems.

Since preemption of the executing applications is necessary to meet the different ob-

jectives of our scheduling systems, it is also necessary to enable the application library

writers to easily build preemptible applications. The existing preemption based sched-

ulers [72, 88, 80, 77, 46] either assume preemptible jobs using simulations [72, 88] or

deal with moldable applications in which the applications can be stopped and continued

on the same set of resources [80, 77] or work with less popular parallel programming

languages [46]. Hence our research also focuses on building a user-level checkpointing

library that the library writers can use in their applications to make their applications

preemptible. The main focus of our checkpointing library is to help develop malleable

jobs where applications can reconfigure in terms of processor configuration and data dis-

11

tribution. This flexibility is necessary for our metascheduler to implement its scheduling

policies.

The final focus of our research is to build an actual Grid computing system that

consists of our metascheduling framework and deal with preemptible applications. In

order for the Grid computing system to be usable, this area of research concentrates on

building flexible frameworks where applications with different preemptible capabilities

can coexist. The Grid computing system called GrADSolve is unique in that it helps

maintain execution traces of the problem runs and use the execution traces for problem

runs corresponding to similar problems. This feature is desirable for applications whose

results depend on the processor configuration and data distribution.

Thus, to summarize, the contributions of our research are the following:

1. A scheduling system designed with meeting the objectives of providing high per-

formance of the applications, accommodating many applications into the system

and providing high system throughput.

2. A performance oriented rescheduling framework for distributed system that em-

ploys firm decisions for rescheduling the applications in response to dynamic load

changes of the system.

3. A user-level checkpointing library that helps in the development of malleable ap-

plications.

4. A flexible Grid computing system that employs the policies of our metascheduler

12

and deals with application of different capabilities and properties.

Our research work is different from many relevant areas of existing research.

1. The research builds a first known scheduling system that provides a balance be-

tween providing high performance for the applications and high system through-

put. Most of the existing systems can meet only one of the two objectives.

2. Our research also designs and implements a first known migration framework that

takes into account the remaining execution times of the applications.

3. The user-level checkpointing library developed by this research is the first of its

kind to allow reconfiguration of the parallel applications in terms of changing the

number of processors and data distribution.

4. The Grid computing system implemented in the research allows the application

library writers to express more number of application capabilities than most other

Grid computing systems.

5. The Grid computing systems is Remote-Procedure-Call (RPC) based system. It is

the first RPC system that allows the transportation of application data from the

user’s machine to the target machine based on the data distribution information

provided by the application library writers.

6. And lastly, the Grid computing system built by the research is the first system

that attempts to deal with applications whose results depend on the systems used

for execution.

13

Though our research is different from many existing relevant research areas, it also

offers scope for extending some research efforts and collaborating with certain research

partners. More and more applications in distributed computing systems have realized

the importance of using application-level schedulers and have developed execution mod-

els for the applications to generate application-level schedules. Since our metascheduling

system is not a wholesome scheduling system but interacts with application-level sched-

ules, there is scope for interfacing our metascheduler with existing application level

scheduling systems. Also, our user-level checkpointing library allows reconfiguration

of applications using certain specific data distribution information provided in the Ap-

plication Programming Interface (API). This data information can also be gathered

from the API provided in other systems [63]. Hence it is possible to collaborate with

other systems and enable the applications in those systems to be malleable thus provid-

ing different options to library writers to build malleable applications for use with our

metascheduler. And lastly, the Grid computing system developed by the research that

allows the coexistence of applications with different capabilities is a right start in the

direction and can motivate other developers of Grid computing systems to deal with a

comprehensive set of capabilities of the applications.

1.4 Assumptions and Limitations of the Research

The design, implementation and testing involved in the research have got few limitations

that are worth mentioning.

14

1. The application-level scheduling involved in the research considers the entire set

of resources in making scheduling decisions. In this approach, the local scheduling

policies of the different domains containing the resources and the possible overhead

caused by the local scheduling policies are not considered. This may be a drawback

when the distributed system consists of different supercomputing centers with dif-

ferent administrative domains each implementing its own local scheduling policies

and few of the domains may not be able to communicate to each other. We use a

Grid computing toolkit with the help of which subprocesses of the application can

span across different domains. Currently this Grid computing toolkit supports

few kinds of systems although work is being made to interface the toolkit with

other systems.

2. Currently, the scheduling framework assumes the existence of only regular applica-

tions in which all the sub processes exhibit the same kind of behavior. It does not

take into consideration applications with different topologies like Master-Worker

topology.

3. The applications must adhere to the single program multiple data (SPMD) pro-

gramming model.

4. The user-level checkpointing library can be used with only message passing parallel

programs based on MPI [98, 7]. It cannot be used in other kinds of parallel

applications like shared memory based programs and data parallel applications.

15

5. The testing of the scheduling framework, the user-level checkpointing library and

the Grid computing system were made on the systems available under the GrADS

[26] computing testbed. Though the resources involved in the testbed possessed

network heterogeneity, the heterogeneity of the computing nodes was limited.

1.5 Definition of Terms

API Application Programming Interface.

Application-level scheduling A kind of scheduling strategy where resources are se-

lected for the execution of end application based on the application characteristics.

Application Manager A driver that is invoked by the user and that invokes various

modules leading to the solution of user’s problem.

Checkpointing Storing the various application states including the intermediate data

and other process states in such a way that the application can be continued

from the point when the applications states were stored by retrieving the stored

information.

Contract Violations Conditions when the execution of the end application does not

progress as expected.

Execution Traces Different information corresponding to executions of problems. The

information can include the characteristics of the resources on which the applica-

tions are executed, the set of resources chosen for application execution, the data

16

distribution used for the application etc.

GrADS Grid Application Development Software. A collaborative [26] project on Grid

computing.

Grid An abstraction of a collection of resources and a set of middleware services to

support solution of problems on the resources.

Malleable applications Parallel applications which can be stopped and continued on

a different set of processors with different amount of parallelism.

Metascheduling A methodology where may layers of schedulers that interact with

each other to determine the set of resources for problem solving.

Moldable applications Parallel applications which can be stopped and continued on

the same set of processors.

MPI Abbreviation for Message Passing Interface - a standard for parallel programming

using message passing.

Performance Contract A set of parameters that express the expected performance

of an application.

Rescheduling To change the resource environments for application execution in the

middle of the execution of the application.

Resource Selection The phase where the set of available resources along with the

resource characteristics are retrieved from an information system.

17

RPC Abbreviation for Remote Procedure Call - a model of computing where the user

invokes a procedure call that is executed on a set of remote resources.

1.6 Outline of the Dissertation

In the second chapter, all relevant background information necessary for understand-

ing the other chapters in the thesis are presented. An overview of Grid computing

is presented and some of the Grid computing projects are described in brief. Then,

the different scheduling strategies of the present day schedulers, the definition of the

metascheduling, some of the problems in the current scheduling strategies are explained.

The rest of the chapter deals with a detailed explanation of the original framework of

a Grid Computing project called GrADS, upon which the research is based. The defi-

ciencies of the GrADS architecture are explained by means of experiments and the need

for a metascheduler architecture to overcome the deficiencies in the GrADS framework

is emphasized.

The third chapter first lists the functions and goals of the metascheduler. The

GrADS architecture modified to include the metascheduling strategies is explained. The

third chapter also describes in detail the different components of the metascheduler. One

of the components of the metascheduler, the rescheduler, employs certain unique policies

for rescheduling executing applications and hence described in great detail in a separate

section.

To help the library writers to develop malleable applications, the research has devel-

18

oped a checkpointing system called SRS (Stop Restart Software). Chapter 4 first lists

the motivations of developing the checkpointing system. The different important func-

tions that constitute the checkpointing API are explained and few examples of usages

are given. Finally, the use of the the SRS checkpointing system in the context of the

metascheduler is described.

The fifth chapter presents various kinds of experiments conducted in the research

and the results obtained. In the first section, the experiments and results for demon-

strating the usefulness of the metascheduler components is presented. The comparison

between the actual and the predicted redistribution costs are given. Various experiments

conducted in the context of the SRS checkpointing system are given. The overhead as-

sociated with the checkpointing and the times for reading and writing checkpoints for

different problem scenarios are presented. In the final section, some practical experi-

ments conducted with the metascheduler are explained and the encouraging results are

shown.

The metascheduling framework used for the experiments in Chapter 5 is based on

an ad-hoc infrastructure. The deficiencies of the ad-hoc infrastructure is presented

in the sixth chapter. The implementation of a systematic Grid Computing system

called GrADSolve to overcome the limitations of the ad-hoc infrastructure is explained.

The various entities in the GrADSolve system and the support for the entities in the

GrADSolve system are explained. The section also deals with the detailed description

of the framework of the GrADSolve system. The support in the GrADSolve system for

19

execution traces is explained.

The contributions of the research work are summarized and the important extensions

to the thesis are pondered in the final chapter.

20

Chapter 2

Background

This chapter is a lightly revised version of a paper published in the Journal of High
Performance Computing Applications and Supercomputing, 2001.

A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche and S. Vadhiyar. Nu-
merical Libraries and the Grid: The GrADS Experiments with ScaLAPACK. Journal
of High Performance Applications and Supercomputing. 15(4), pages 359-374, Winter,
2001.

My primary contribution of the paper included (1) conducting experiments and obtain-
ing results (2) contibuting sections for describing the framework used and (3) providing
analysis of few results. This chapter revises the paper by describing some of the prob-
lems in the methodology used in the paper and motivating the need for the extension of
the work. The chapter also gives a detailed background information for the dissertation
not present in the paper.

In this chapter, relevant background information for our research is presented. The

chapter begins with an overview of existing Grid computing projects. In Section 2.2,

the scheduling methodologies that are currently practiced for distributed computing and

their shortcomings are explained. Our research is based on a Grid computing project

called GrADS. The overview of the GrADS project and its initial design are presented

21

in Section 2.3. Some of the results that were obtained with the initial design of GrADS

are presented in Section 2.4 to demonstrate the practical usefulness of the GrADS Grid

computing system. The initial design of GrADS uses plain application-level scheduling.

In Section 2.5, some of the limitations of this approach are explained and demonstrated

with sample set of experiments. Finally in Section 2.6, the need for an arbitration

mechanism or a metascheduler to overcome the limitations is emphasized.

2.1 Grid Computing - An Overview

Computational Grids [58] are powerful abstractions of traditional distributed computing

systems and aimed towards achieving multiple objectives of providing seamless access

to vast set of distributed resources to users, to allow remote access of hardware and

software services, to expand the problem solving capabilities of the users, to allow

efficient scheduling of applications to resources, to provide a framework for collaboration

of different scientists to solve problems spanning different disciplines etc. While there

are many Grid computing projects for realizing different objectives, we review some of

the important Grid computing research in this Section.

Globus [57] is one of the pioneering efforts in Grid computing. The Globus project

provides a toolkit of various tools which Grid computing developers can use either com-

prehensively or partially to build Grid computing systems. The various tools provided

by Globus include tools for resource management, developing security infrastructure,

data management and access and building information services.

22

Legion [65] is an object-oriented metacomputing system developed at the University

of Virginia. Legion represents all kinds of resources including hardware and software

as objects. Hence Legions provides an extensible architecture in which the users can

implement their own objects. Legion also acts as a platform for high performance

computing by its support for parallel applications. The scheduling policy implemented

by Legion is based on reservation of system resources.

Condor [75, 116] is one of the oldest Grid computing systems. It supports high

throughput computing with the objective of executing large number of long running ap-

plications on the system resources. The owners of the workstations can define policies

for executing applications on their systems. Condor executes applications on worksta-

tions only when the owner is not using them and stops and migrates the applications

when the owner wants to reclaim his workstations. Condor supports a flexible Classi-

fied Advertisements (ClassAds) mechanism for the expression of the job and resource

properties. The Condor system with the help of these properties schedules the jobs to

appropriate resources.

NetSolve [34] was developed at University of Tennessee and its main use is to allow

contribution and usage of numerical libraries over the Grid. It follows a client-agent-

server model and follows a Remote Procedure Call (RPC) mechanism where the users

can invoke numerical applications remotely from their C, Fortran or Matlab programs.

Ninf [96] is a system developed in Japan that has objectives, design and usage scenarios

similar to NetSolve.

23

Nimrod [13] is a distributed computing system developed at Monash University,

Australia. It is a tool for distributed parametric modeling where the users can execute

a large number of parametric computational experiments, each specified by different

sets of parameters. These parametric experiments play important roles in the area

of Bioinformatics, Operations Research, Network simulation etc. Their recent version

Nimrod-G [33] follows a model of computational economy for scheduling where costs

are associated for each resource in the system.

GrADS [26] stands for Grid Application Development Software. It is a project in-

volving a number of institutions across United States. It’s goal is to simplify distributed

heterogeneous computing in the same way that the World Wide Web simplified infor-

mation sharing over the Internet. GrADS is explained in greater detail in Section 2.3.

AppLeS [27] provides powerful scheduling concepts for Grid systems. In AppLeS,

application library writers provide execution or simulation models for the application

that predict the execution cost for the application for a given set of resources with a

given set of resource parameters. A search procedure by repeatedly invoking the sim-

ulation models determine a near-optimal application-specific schedule for application

execution. Thus the approach of AppLeS is aimed to provide high performance to indi-

vidual applications and hence falls under the category of high-performance schedulers.

24

2.2 Related Work in Scheduling

There have been number of efforts in devising and/or implementing scheduling strate-

gies for heterogeneous distributed computing systems since the advent of Network of

Workstations (NOWs) [37, 95, 121, 59, 111, 112, 27].

Some of the scheduling systems for distributed computing [16, 78, 105] mainly focus

on maintaining the load balance of the system resources. In these systems, newly

arriving jobs are allocated to a set of resources that are relatively lightly loaded in order

to improve the resource utilization. Though these schemes improve system utilization,

they may not provide good response times for individual application since heavily loaded

supercomputing machines may still give better response times than lightly loaded local

workstations.

The work by Khaled Al-Saqabi et. al [95] considers a 2D array of processors and time

slices and assigns the Virtual Processes (VPs) of the jobs to the array. The 2D array is

updated on processor exit, new virtual process, new processor and virtual process exit

events. Scheduling based on time slices will lead to huge overhead for the scheduling

system when the scheduling strategies have to be invoked frequently in response to

frequent Grid dynamics. Also, this method will involve time consuming updates of the

2D array for large sized problems.

Load Sharing Facility [121] lays emphasis on distributing the jobs among the avail-

able machines based on the workload on the machines. The assumption that load

sharing leads to good response times is not valid in a Grid scenario where the network

25

heterogeneity can significantly affect the execution time of the application. MARS [59],

Prophet [113] and more recently AppLeS [27] provide good approaches for application

level scheduling in meta computing environments. The system and application charac-

teristics are collected in a distributed setting and decisions on task allocations are made.

MARS also provides for task migration based on changing load conditions. AppLeS is

more suitable for Grid environment with its sophisticated NWS [115] mechanism for

collecting system information. However, both MARS and AppLeS do not have power-

ful resource managers that can negotiate with applications to balance the interests of

different applications. For e.g., let us assume that the Grid consists of powerful super-

computer M1 and an ordinary workstation cluster M2. If an application A1 that first

enters the system, through it scheduler occupies the powerful M1, a second application

A2, that enters the system, will detect through its scheduler, that the supercomputer

M1 is loaded and will utilize the cluster M2. If the performance differences between

executing A2 on supercomputer M1 and on the cluster M2 is huge and application A2

can execute in a negligible amount of time if executed on the supercomputer M1, then

a good scheduling strategy will be to stop application A1 on M1, accommodate A2 on

M1, and after A2 completes on M1, continue executing A1 on M1. Another scenario is

when multiple applications are submitted simultaneously to the system, the application-

level scheduling decisions made for each application can assume the absence of other

competing applications and in the worst case, all applications can claim the same set

of resources. Thus few of the resources of the distributed system can become heavily

26

loaded and this in turn can lead to poor performance of both the system and the in-

dividual applications. In this case, an arbitration system is needed that interacts with

the different application-level schedulers. These kinds of metascheduling decisions play

significant roles in scheduling of jobs to Grid and the absence of these decisions will lead

to various kinds of problems like the bushel of AppLeS problem [27].

The term metascheduler generally refers to using different levels of schedulers that

interact with each other to make scheduling decisions [60]. Such a metascheduling

system offers attractive benefits over conventional scheduling systems in terms of fault

resilience where termination of few schedulers will not hamper the progress of the entire

scheduling system and scalability where the scheduling decisions for jobs arriving in

the systems can be distributed among the different schedulers. The metascheduling

algorithms that have been studied [60, 68, 101] are mainly motivated by the existence

of different administrative domains in the distributed system, each implementing its own

local scheduling policy. Thus the top-level scheduler allocates a job to a domain based on

the workload information collected from the different domains while the local scheduler

in the domain allocates the jobs to its resources based on its own local scheduling policy.

The metascheduler investigated in our research [106] is mainly motivated by the presence

of different application-level schedulers and the need to interact with them to balance

the interests of different applications. Thus the objective and hence the design of our

metascheduler is different from those of existing metaschedulers.

Various Grid computing projects including Globus [57], Legion [65], Condor [75],

27

NetSolve [34], Nimrod [33] and Ninf [96] have also considered the process of scheduling

jobs to distributed resources. Globus [57] provides tools for information service, resource

manager, security infrastructure, communication library etc. Globus does not provide

a tool for implementing flexible scheduling policies in the Grid system. Globus team is

working on supporting advance reservation and co-allocation but the scheduling does

not try to minimize application completion time or increase system throughput. Legion

[65] provides scheduling support through its (Collector, Scheduler, Enactor) tuple where

a candidate schedule for a given application run is generated by either application level

scheduling or general-purpose scheduling algorithms. But Legion does not have a nego-

tiating mechanism to balance the interests of different candidate schedules. The Condor

[75] system supports scheduling through the ClassAd mechanism where the application

needs are matched with the system conditions. Although the task allocation policies

implemented by Condor take into account both application-level and system-level con-

siderations, task reallocation policies of Condor is limited in that it does not take into

account the potential performance benefits that can be obtained for the applications due

to reallocation. NetSolve [34] implements scheduling policy to reduce the system work-

load with the assumption that this will lead to improved application’s performance.

This is not always the case in Grid environment. The objectives of Nimrod-G’s [33]

scheduling policies are similar to those of our metascheduler where different users’ re-

quirements are balanced. Nimrod-G uses grid economies to implement its scheduling

policies while our metascheduler uses predicted application time for our scheduling poli-

28

cies. Ninf [96] scheduling through its metascheduler is similar to NetSolve scheduling in

that it tries to achieve load balancing. Though the Ninf scheduler had been evaluated

when multiple clients run their jobs, no substantial mechanism has been implemented

to guarantee performance for each client.

2.3 GrADS

GrADS [26, 3] is a Grid computing research involving number of institutions across

United States. The goal of the Grid Application Development Software (GrADS) project

is to simplify distributed heterogeneous computing in the same way that the World Wide

Web simplified information sharing over the Internet. The GrADS project is exploring

the scientific and technical problems that must be solved to make Grid applications

development and performance tuning for real applications an everyday practice.

The University of Tennessee investigates issues regarding integration of numerical

libraries in the GrADS system. In our previous work [81], we demonstrated the ease

of integration of numerical libraries into the GrADS system and showed some results

regarding the usefulness of the approach. In this section, the framework used in [81] is

presented. For a more detailed description, the reader is referred to [81].

The primary goals of our effort in numerical libraries are to develop a new generation

of algorithms and software libraries needed for the effective and reliable use of dynamic,

distributed and parallel environments, and to validate the resulting libraries and algo-

rithms on important scientific applications. To consistently obtain high performance in

29

the Grid environment will require advances in both algorithms and supporting software.

Current numerical libraries for distributed memory machines are designed for hetero-

geneous computing, and are based on MPI [98, 7] for communication between processes.

One such widely used library is ScaLAPACK [31], designed for dense matrix calcula-

tions. ScaLAPACK assumes a two-dimensional block cyclic data distribution among

the processes. The user must select the number of processes associated with an MPI

communicator, and also select the specific routine/algorithm to be invoked. In addi-

tion, the ScaLAPACK Users’ Guide [31] provides a performance model for estimating

the computation time given the speed of the floating point operations, the problem size,

and the bandwidth and latency associated with the specifics of the parallel computer.

The performance model assumes that the parallel computer is homogeneous with re-

spect to both the processors and communication network. With the Grid both of these

assumptions are incorrect and a performance model becomes much more complex. With

the dynamic nature of the grid environment, the Grid ”scheduler” must assume the task

of deciding how many processors to use and the placement of data. This selection would

be performed in a dynamic fashion by using the state of the processors and the com-

munication behavior of the network within the grid in conjunction with a performance

model for the application. The system would then determine the number and location

of the processors for a given problem for the best ”time to solution” on the Grid.

A framework was developed for the automatic selection of resources when numerical

applications like ScaLAPACK are submitted to the GrADS system. The framework is

30

User Grid Routine Resource
Selector

MDS

NWS

Performance
Modeler

Contract
Developer

Application
Launcher

Contract
Monitor

Application

Figure 2.1: GrADS Architecture for Numerical Libraries

illustrated in Figure 2.1.

Before the user can start his application, the Grid system is assumed to have in

initialized three components - Globus MDS [55], NWS [115] sensors on all machines in

the Globus MDS repository, and the Autopilot Manager/Contract Monitor [93]. We

assume that the user has already communicated with the Grid system (Globus) and

has been authenticated to use the grid environment. The Globus MDS maintains a

repository of all available machines in the Grid, and the NWS sensors monitor a variety

of system parameters for all of the machines contained in the Globus MDS repository.

This information is necessary for modeling the performance of the application, and for

making scheduling decisions of the application on the Grid. Autopilot was designed and

is maintained at the University of Illinois, Urbana-Champaign, (UIUC). It is a system

31

for monitoring the application execution and enabling corrective measures, if needed, to

improve the performance while the application is executing. . The Autopilot Manager

must be running on one of the machines in the Grid prior to the start of the experiment.

After these preliminary steps have been completed, the user invokes a Grid routine

with the problem he wants to solve along with the problem parameters. The Grid

routine routine performs the following operations:

1. Creates the “coarse grid” of processors and their NWS statistics by calling the

resource selector.

2. Refines the “coarse grid” into a “fine grid” by calling the performance modeler.

3. Invokes the contract developer to commit the resources in the “fine grid” for the

problem.

Repeat Steps 1-3 until the “fine grid” is committed for the problem.

4. Launches the application to execute on the committed “fine grid”.

2.3.1 Resource Selection

The Grid routine invokes a component called Resource Selector. The Resource Selector

accesses the Globus MetaDirectory Service (MDS) to retrieve a list of machines that

are alive. The resource selector then contacts the Network Weather Service (NWS) to

obtain machine-specific information pertaining to available CPU, available memory, and

latency and bandwidth between machines. At the end of the resource selection step, a

32

Performance
Modeler

Minimizer

Execution
Model

Candidate
Schedule

Execution
Cost

Coarse Grid − Initial
set of resources

Input

set of resources
Fine Grid − Final

Output

Figure 2.2: Performance Model Interactions

”coarse grid” is formed. This ”coarse grid” is essentially all of the machines available

along with the statistics returned by NWS.

2.3.2 Performance Modeling

The Grid routine then invokes a component called Performance Modeler with problem

parameters, machines and machine information. The Performance Modeler consists of

two components, the minimizer and an execution model. The interactions related to

the Performance Modeler are illustrated in Figure 2.2.

The minimizer basically adopts a search procedure where it chooses and passes

different candidate schedules to the execution model. The execution model is built

33

specifically for the application and returns the time that the application would take if

it were to execute on the list of machines passed to the execution model. The execution

model uses simulation of the actual application on the sets of resources to determine

the approximate execution cost of the application and also indicate if the given set of

resources are sufficient to execute the application . Thus, by passing different candidate

schedules to the execution model and collecting execution costs corresponding to the

different schedules, the minimizer determines a near-optimal schedule for the application

and returns a final list of machines for application execution to the Performance Modeler.

By employing the application specific execution model, GrADS follows the AppLeS [27]

approach to scheduling. The search procedure used in the minimizer can be based either

on heuristics or linear programming. The search procedure used in [81] used a ad-hoc

scheduling technique for determining the final set of resources for application execution.

The details of the ad-hoc scheduling methodology is illustrated in Appendix A.1. At

the end of performance modeling, the fine grid, which consists of a subset of machines

for application execution, is returned to the Grid routine.

2.3.3 Contract Development

The problem parameters, the final list of machines and the expected execution times

are passed as a contract to a component called Contract Developer. The concept of

Contract Development was introduced by University of Illinois, Urbana-Champaign. A

performance contract states that given a set of resources (e.g., processors or networks),

with certain capabilities (e.g., floating point rate or bandwidth), for particular prob-

34

lem parameters (e.g., matrix size or image resolution), the application will exhibit a

specified, measurable and desired performance (e.g., render r frames per second or fin-

ish iteration i in t seconds). For more details regarding the concept of performance

contracts, the reader is referred to [110, 108]. The Contract Developer in the original

GrADS framework is primitive in that it approves all the contracts that are passed to

it.

2.3.4 Application Launching

The Grid routine then passes the problem, its parameters and the final list of machines

to Application Launcher. The Application Launcher spawns the job on the given ma-

chines using Globus job management mechanism and also spawns a component called

Contract Monitor. The function of the Contract Monitor is to monitor if the application

execution is meeting its performance guarantees. When the application starts executing,

the sensors associated with the application register with the Autopilot manager. The

contract monitor looks up the autopilot manager to get information about the sensors,

directly gets the application performance data from the sensors and displays the actual

and predicted cost for the application.

2.4 GrADS Experiments and Results

An execution model was built for ScaLAPACK LU factorization. ScaLAPACK LU fac-

torization is an iterative parallel application that involves right-looking LU factorization.

35

In each iteration, a column panel of the input matrix is factored by a process owning

the panel. The factored column is communicated or broadcasted to the other processes

which then perform updates of the matrix elements possessed by the processes. Hence

the primary operations of ScaLAPACK LU factorization are factorizations, broadcasts

and updates. These primary operations are simulated by the execution model. Thus

the execution model predicts the execution times for factorization, broadcast and up-

dates for each iteration. These times are added to obtain the total predicted execution

time for a single iteration. The execution model obtains the sum of the predicted exe-

cution times for the iterations to determine the total predicted execution time for the

ScaLAPACK LU factorization code. The ScaLAPACK factorization code was also in-

strumented with calls to Autopilot so that the actual execution times for the iterations

are reported to the contract monitor.

The experiments were conducted on the machines in the GrADS testbed. GrADS

testbed consists of about 40 machines from University of Tennessee (UT), University of

Illinois, Urbana-Champaign (UIUC) and University of California, San Diego (UCSD).

The characteristics of the machines are specified in Table 2.1.

The torc, msc and cypher clusters are connected to each other by single 100 Mb

Ethernet connections. The rest of the clusters are connected to each other by Internet.

2.4.1 Validation of Execution Model for ScaLAPACK LU

In the first set of experiments, we validate the execution model for ScaLAPACK on

a homogeneous cluster. In these experiments, we use 8 machines from msc cluster

36

Table 2.1: GrADS testbed resource characteristics
Cluster
name

Location Nodes Processor
type

speed
(MHz)

Memory
(MByte)

Network

torc UT 8 Pentium
III

550 512 100 Mb
switched
Ethernet

msc UT 8 Pentium
III

933 512 100 Mb
switched
Ethernet

cypher UT 16 Pentium
III

500 512 1 Gbit
switched
Ethernet

opus UIUC 16 Pentium
II

450 256 1.28
Gbit/sec
full duplex
myrinet

circus UCSD 6 2 Pentium
III, 4 Pen-
tium II

450, 400 256 100 Mb
switched
Ethernet

in UT. In Figure 2.3, the loop iteration times predicted by the execution model are

compared with the actual execution times for a problem of matrix size 16000. From

the shape of the curves in Figure 2.3, we find that the execution model provides a good

approximation of the execution times associated with the application.

In the second set of experiments, we show the behavior of the execution model for

different problem sizes on the homogeneous cluster msc. A total of 8 machines were

made available for the experiments. Due to the scheduler mechanism in GrADS, any

number of processors ranging from 1-8 can be chosen for the execution of end application.

In Figure 2.4, the total predicted execution times are compared with the total actual

execution times for different matrix sizes. The number of processors chosen for the

37

0

1

2

3

4

5

6

7

8

9

10

0 50 100 150 200 250 300 350

E
xe

cu
tio

n
T

im
e

[s
ec

s.
]

Loop Iteration Number

ScaLAPACK LU, Predicted vs Actual performance
(matrix_size=16000, cluster=homogeneous, procs=8)

predicted time
measured time

Figure 2.3: Validation of execution model on a homogeneous cluster for matrix size
16000

38

0

200

400

600

800

1000

1200

1400

2000 4000 6000 8000 10000 12000 14000 16000

E
xe

cu
tio

n
T

im
e

[s
ec

s.
]

Matrix Size

ScaLAPACK LU, Predicted vs Actual performance
(cluster=homogeneous, procs=8)

predicted time
measured time

Processors = 8

Processors = 8

Processors = 3

Processors = 5

Processors = 7

Figure 2.4: Validation of execution model on a homogeneous cluster for different
matrix sizes

end application are also indicated in the figure. From Figure 2.4, we observe that the

execution model is also able to give a good approximation of the relative execution times

for different problem sizes.

In the third set of experiments, the execution model was validated on a heterogeneous

set of machines for matrix size 16000. For these experiments 2 msc, 2 torc and 8 opus

machines were used. In Figure 2.5, the predicted and actual per-iteration times are

compared. We find that the execution model behavior is not satisfactory. This is due

to the difficulty in modeling the communications of each iteration in the application.

39

0

10

20

30

40

50

60

0 50 100 150 200 250 300 350

E
xe

cu
tio

n
T

im
e

[s
ec

s.
]

Loop Iteration Number

ScaLAPACK LU, Predicted vs Actual performance
(matrix size=16000, cluster=heterogeneous, procs=12)

(2 TORC, 2MSC, 8 OPUS)

measured time
predicted time

Figure 2.5: Validation of execution model on a heterogeneous environment for matrix
size 16000 - Per-Loop iteration times

Most communication mechanisms use buffering schemes and it is difficult to predict

the time for storing messages in the buffer. Also, the execution model assumes that

all the processors start each iteration at the same time. Since this is not the case

in ScaLAPACK application and due to the slow Internet bandwidth involved in the

experiments, there are large discrepancies in the per-iteration execution times between

the predicted and the actual values.

However, in ScaLAPACK, there is a natural synchronization for every n number

of iterations, where n is the number of processes. Since the experiment illustrated in

40

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200 250 300 350

E
xe

cu
tio

n
T

im
e

[s
ec

s.
]

Loop Iteration Number

ScaLAPACK LU, Predicted vs Actual performance
(matrix size=16000, cluster=heterogeneous, procs=12)

(2 TORC, 2MSC, 8 OPUS)

measured time
predicted time

Figure 2.6: Validation of execution model on a heterogeneous environment for matrix
size 16000 - Execution times every 12 loop iterations

Figure 2.5 uses 12 processes, the predicted and the actual values for the sums of every

12 iterations are compared in Figure 2.6. As can be observed from Figure 2.6, the

execution model provided good approximations on heterogeneous environments. Thus

from Figures 2.3 - 2.6, we can conclude that the execution model for ScaLAPACK LU

factorization, barring certain deficiencies, mostly provided good approximations of the

actual execution times.

41

2.4.2 GrADS Overhead

The validated execution model for ScaLAPACK LU was integrated into the GrADS

framework. The GrADS framework was then used to schedule and execute applications

over the resources. In the experiments in this section, 8 msc machines were made

available to the GrADS executions. The GrADS scheduling mechanism chose a certain

number of machines, ranging from 1-8, for the execution of the end application. In

Figure 2.7, the non-Grid executions of the ScaLAPACK applications are compared

with the Grid executions of the applications for different matrix sizes. For the non-

Grid executions, the popular MPICH [66, 67] implementation of MPI was used for the

implementation of the ScaLAPACK parallel application. For Grid execution of the

applications, MPICH-G [56] implementation of MPI was used for the end application

and spawning the processes onto the resources.

The left bars in Figure 2.7 represent the non-Grid execution times and the right

bars represent the total Grid execution times. The processors used in the non-Grid and

Grid runs are indicated in the figure. For the non-Grid runs, all the 8 machines in the

msc cluster were made available for execution. For the Grid runs, even though 8 msc

machines were made available, the GrADS scheduling mechanism chose a subset of the

8 machines for the eventual execution of the end application. For the non-Grid runs,

times corresponding to MDS and NWS retrieval, and performance modeling do not

exist. We find that the times for starting and executing the applications over the same

set of resources, e.g., for matrix sizes 12000 and 16000, are better in the non-Grid runs

42

2000 4000 8000 12000 16000

Size of matrices (N)

T
ot

al
 E

la
ps

ed
 T

im
e

(s
ec

)

0
20

0
40

0
60

0
80

0
10

00
12

00

Application execution
Application start
Performance Modeling
NWS retrieval
MDS retrieval

Grid: Non−Grid
execution times
ratios

14.94 6.63 2.51 1.62 1.30

Right bars − with Grid using mpich−g

Left bars − without Grid using mpich

8 procs 8 procs

8 procs

8 procs

8 procs

3 procs
5 procs

7 procs

8 procs

8 procs

Figure 2.7: GrADS overhead on a homogeneous cluster

43

than in the Grid runs. This is due to difference in MPI implementations used in the non-

Grid and Grid executions. Also, we observe that the time for performance modeling

in the Grid runs are negligible. Thus the scheduling mechanism used in GrADS for

determining the near-optimal set of resources incur very little overhead.

The ratios between the total execution times for the Grid and the non-Grid runs

are also given in Figure 2.7. We observe that for small problem sizes using the GrADS

framework is not advisable due to the overhead associated with GrADS. As the problem

sizes increase, the impact of the overhead on the Grid runs decreases and hence the ratio

between the execution times for the Grid and non-Grid runs also decreases. For the

largest problem size that was solvable on the msc cluster, matrix size 16000, the overhead

was only 30%. For matrix sizes beyond 16000, GrADS did not allow the application

into the system since the application execution will involve frequent access to disks and

also heavy intrusion into the other processes on the shared set of resources.

The results in Figure 2.7 indicate that it is advisable to use the GrADS framework

for only large problem sizes. Though the results indicate that better results can be

obtained when using a non-GrADS framework, GrADS relieves the burden of the user

to chose the resources for his application. Also, GrADS determines the threshold of

problem size for the application beyond which there will be severe degradation in the

performance of the application and the system.

44

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 5000 10000 15000 20000 25000 30000

T
ot

al
 E

xe
cu

tio
n

T
im

e
[s

ec
s.

]

Matrix Size

ScaLAPACK LU over multiple clusters

Execution time

5 mscs

7 mscs 7 mscs

8 mscs

8 mscs

8 mscs

8 mscs, 7 torcs

8 mscs, 8 torcs

8 mscs, 8 torcs

MSC cluster MSC & TORC cluster

Figure 2.8: GrADS execution across the entire GrADS testbed

2.4.3 GrADS Execution across Multiple Clusters

In this section, all the machines available in the GrADS testbed, namely machines

in msc, torc, opus and circus clusters were made available for the execution of the

ScaLAPACK LU application. Different problems corresponding to different matrix sizes

were input to GrADS framework. The GrADS scheduler determined the final set of

resources for the execution of the end application for each run. Figure 2.8 indicates

total execution times including the GrADS overhead for different problem sizes.

Since the msc machines have high processing power, the mscs were chosen for small

45

problem sizes. For ScaLAPACK LU application of matrix size 21000 to be executed on

8 machines, the per-machine memory required is about 440 MB. Though the memory

capacity of the msc machines is 512 MB, the memory available at the time of the

experiments was less than 440 MB due to the presence of other processes on the shared

resources. Execution of problem size of 21000 in this scenario will lead to frequent disk

accesses and will result in severe degradation of the system performance for the other

processes using the system. Hence, beyond matrix size 18000, GrADS chose machines

from both msc cluster and the next best cluster in terms of computing power, torc. The

maximum problem size that was solvable on the entire GrADS testbed was for matrix

size 27000. Beyond this problem size, for e.g.. matrix size of 30000, the per-processor

memory needed for the execution of the application on 16 processors is 450 MB which

was not available at the time of conducting the experiments. We also find that the

opus and circus machines were not used for any of the problem runs. This is due to

the superior computing power of the msc and torc clusters. For problems of matrix

sizes greater than 27000, e.g., matrix size of 30000, the per-processor memory needed

to execute the application on the entire GrADS testbed, i.e. 29 machines, is 248 MB.

This memory capacity was not available on some opus and circus machines due to the

presence of other applications on the resources.

46

2.5 Deficiencies of the GrADS Architecture

Although GrADS has been proven to be useful in the previous sections, there are some

deficiencies in the GrADS framework that prevent it from being completely useful in

Grid environments. The major deficiency is the use of only application level scheduling

by employing an execution model for the application. The application level scheduling

does not take into account other competing application due to the lack of knowledge

of the existence of the other applications. Thus when applications are executed in

a competing environment, the resulting actual performance of the applications may be

much less than the expected performance. Also, large number of competing applications

can severely degrade the performance of the entire system.

To prove the deficiencies in the GrADS architecture, an experiment was conducted

where two problems corresponding to matrix size 16000 were input to the GrADS system

at almost the same time. For this experiment, 8 msc machines were utilized. Thus the

experimental setup is similar to the setup used for obtaining the Figure 2.3. Figure

2.9 plots the actual and predicted values for per-iteration times for the ScaLAPACK

LU factorization of matrix size 16000 in the presence of a competing application whose

matrix size was also 16000.

Unlike in Figure 2.3, the predicted per-iteration execution times in Figure 2.9 do

not correspond satisfactorily with the actual per-iteration execution times. This is

because, when both the applications are input to the GrADS system at the same time,

the GrADS framework obtains information about the machines from NWS at the same

47

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300 350 400

E
xe

cu
tio

n
T

im
e

[s
ec

s.
]

Loop Iteration Number

ScaLAPACK LU, Predicted vs Actual performance
in the presence of competing application

(matrix size=16000, cluster=homogeneous, procs=8)

measured time
predicted time

Figure 2.9: Result of deficiency of the GrADS architecture

48

time. Hence the performance modelers for the two applications use the same information

about the resources and make the same decisions for determining the final schedule for

the execution of end application. The machine information obtained from the NWS and

used by the performance modeler correspond to the scenario when the resources do not

execute either of the two applications. When the Application Launchers corresponding

to the two applications launch the applications on the same set of resources at about

the same time, the two applications execute in the presence of each other and hence

contend for the resources. Since the memory capacity of the msc machines is less than

the memory capacity needed to execute two problems of matrix sizes 16000, the two

applications frequently access disks for data. This leads to severe performance loss for

both the applications and the system resources. This loss in performance is manifested

as the spikes seen in Figure 2.9 for the measured per-iteration execution times. If

the contract monitor employs a rescheduler to migrate applications when it notices

performance loss for the application, unnecessary overhead is incurred in invoking the

rescheduling decisions.

Another deficiency of the GrADS framework, as illustrated in Figure 2.5 is that

the execution model provided by the application library writers may not closely match

the behavior of the application. In these cases, the contract monitor may assume the

interference of the external load on the executing applications and may invoke the

rescheduler, leading to unnecessary rescheduling overhead.

49

2.6 Need for a Metascheduler in GrADS

The problems with the GrADS architecture mentioned in the previous section illustrate

the need for a robust contract development and arbitration mechanism that balances

the interests of different applications. For the experiments in the previous section,

one possibility is for the contract development system to accept the contract of one

application and to reject the contract of the other application. This gives satisfactory

performance for one of the applications without degrading the system and present a

true picture of the system resources to the other application.

Besides simply acting as a queuing system, the arbitration mechanism can also make

intelligent decisions for accepting or rejecting the application contracts. For e.g., the

arbitrator can reject the contract of the applications if it determines that the addition

of the application to the system can severely degrade the performance of the already ex-

ecuting applications on the system. Also, to meet the original objectives of the schedul-

ing system in our research, i.e. to provide high performance to individual applications

within the constraints of the system loads, to accommodate maximum number of ap-

plications into the system without overwhelming the system resources and to provide

high throughput of the overall system, preemption of executing applications is desirable.

In this case, firm scheduling policies can be built into the arbitration mechanism for

preempting executing applications.

In spite of the arbitration mechanism, performance loss of the executing applications

due to the interference by executing applications is unavoidable in Grid systems. The

50

Contract Monitor can be extended to contact a rescheduler on noticing performance

losses of the applications and the rescheduler can employ firm rescheduling policies

to migrate executing applications from heavily loaded systems or to newly available

resources. The Contract Monitor can also be extended to dynamically adjust the ex-

pected performance levels in order to avoid contacting the rescheduler frequently and

to reduce the resulting rescheduling overhead. The dynamic adjusting of contract limits

is necessary especially in cases when better resources are not available for rescheduling

or when the execution model of the application is not accurate.

These arbitration, contract development and rescheduling policies are implemented

in the form of a metascheduler discussed in the next chapter.

51

Chapter 3

Metascheduling Framework

This chapter includes lightly revised sections of the following three papers.

Sathish S. Vadhiyar and Jack J. Dongarra. A Metascheduler For The Grid. Proceedings
of 11th IEEE International Symposium on High Performance Distributed Computing.
pages 343-351. July, 2002.

Sathish S. Vadhiyar and Jack J. Dongarra. A Performance Oriented Migration Frame-
work for the Grid. To appear in the Proceedings of The 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2003).

Sathish S. Vadhiyar and Jack J. Dongarra. Self Adaptivity in Grid Computing. Submit-
ted to the special issue of Concurrency: Practice and Experience on Grid Performance,
2003.

I was the primary contributor of the papers and was involved in the design and im-
plementation of the frameworks and verification by experiments. This chapter revises
the papers by providing a detailed motivation of the work and more detailed descriptions
of the sections in the papers.

In order to overcome the potential problems in the GrADS architecture and to re-

alize the objectives of providing high performance to individual applications within the

constraints of the system loads, accommodating maximum number of applications into

52

the system without overwhelming the system resources and providing high throughput

for the overall Grid system, a metascheduler was developed for the GrADS framework.

Conventional schedulers take as inputs, problem parameters and machine characteris-

tics and generate a schedule which is the final list of machines on which the application

will execute. The metascheduler designed and developed in this research is different

from conventional schedulers in that it takes as inputs, schedules generated for individ-

ual applications by conventional schedulers, especially application-level schedulers and

accepts or rejects the schedules based on current system conditions and the presence of

other competing applications in the system. Thus the metascheduler negotiates between

different application-level schedulers to balance the interests of different applications.

The functions and goals of the metascheduler include

1. trying to accommodate new applications by waiting for long running

applications to complete.

An individual application-level scheduler for an application can determine by

means of the problem constraints expressed for the application that the current

resources are not sufficient for the application execution. Hence the application

may be prevented from making further progress in the Grid system. But a large

application that occupies the resources may complete its execution within a rea-

sonable amount of time and the completion of the large application can facilitate

the execution of the new application for which the application-level schedule is

determined. In this case, waiting for the large application to complete and ac-

53

commodating the new application will help increase the number of jobs that are

accommodated into the Grid system.

2. accommodating new applications by stopping long running jobs in the

presence of which new applications will not be able to execute.

There may be some long running jobs in the system in the presence of which the

system resources may be insufficient for the execution of a new application. The

long running jobs may have large remaining execution times. Waiting for the long

running jobs to complete in this case will lead to poor response time to the user who

has submitted the new job to the system. If the new application has a relatively

shorter execution time compared to the remaining execution times of the long

running jobs, then few of the long running jobs can be preempted from the system,

the new application can be allowed to execute and after the short job completes,

the long running jobs can be reaccommodated into the system and continued

from the previous point in execution. Since, the new application has a short

execution time, the performance loss incurred for the long running application

due to preemption will be minimal. The pro-active preemptive strategy allows to

increase the number of short jobs that can be accommodated into the system.

3. verifying that the applications made their scheduling decisions based

on conditions of the system when competing applications are executing.

Since the application-level schedulers make their scheduling decisions indepen-

dently, the information about resource properties used for the different application-

54

level schedules may be the same in situations when multiple applications are ex-

ecuted simultaneously. This may lead to contention for resources by different

applications due to the lack of knowledge of the existence of competing appli-

cations by the application-level schedulers. Eventually, this will result in overall

performance degradation of the system. Hence an arbitration mechanism is needed

that accepts few application-level schedules, accommodates few applications onto

the system, and rejects the other application-level schedules prompting the cor-

responding applications to generate new application-level schedules taking into

account the change in resource information caused by the execution of applica-

tions accommodated into the system by the arbitration mechanism.

4. facilitating new applications to execute faster by stopping certain com-

peting applications.

A large application may be executing on the system. The system resources may

be sufficient to accommodate a small application that enters the system. But the

execution time of the small application if it were to execute in the presence of the

large application may be much larger than the execution time of the same small

application if it were to execute in the system free of the large application. This

may be due to the allocation of inferior system resources to the small application

due the occupation of superior resources by the large application. In this scenario,

the large application may be removed from the resources and the small applica-

tion can be accommodated on the superior system resources. After the small

55

application completes, the large application can be allowed to continue. Since

the large application has long remaining execution time, the performance loss for

the large application due to preemption may be minimal when compared to the

performance loss for the small execution if it were to execute in the presence of

large application. Thus penalizing large applications in favor of small applications

will lead to increased throughput for the overall system.

5. minimizing the impact that new applications can create on already

running applications.

An application-level scheduler for an application may generate an application-

level schedule which when approved will lead to severe performance losses of some

executing applications. An arbitration mechanism can suggest a new application-

level schedule for the application that is beneficial for the application and also

reduces the interference caused by the application on executing resources. This

may be accomplished by removing few resources that are used by few executing

applications, from the original application-level schedule of the new application.

6. migrating executing applications.

In some cases, migration is necessary when performance expectations are not being

met for an executing application due to the change in resource characteristics of

the machines on which the application is executing. The change in resource char-

acteristics may happen due to sudden increase in external load on the resources.

In these situations, the application may be stopped, a new application-level sched-

56

ule may be developed for the application and the application may be migrated to

the set of resources determined by the new application-level schedule.

In other cases, an executing application may complete thereby making available

few free system resources. Some of the executing applications may be migrated

to make use of the free resources to improve the performance of the applications.

These kinds of migrating decisions help to maintain load balance in the system

thereby resulting in high system throughput.

The metascheduling and arbitration mechanisms are implemented by the addition

of four components, namely database manager, permission service, contract negotiator

and rescheduler to the GrADS architecture. In this chapter, the modified GrADS

architecture is discussed and the behavior of the GrADS applications in the modified

setup is elaborated. The components of the metascheduler are described in detail. One

of the components, the rescheduler for migrating executing applications is robust and

unique in many ways. A separate section is devoted to the description of the rescheduling

framework.

3.1 Modified GrADS Architecture

The modified GrADS architecture with the metascheduling components is depicted in

Figure 3.1. The metacheduling components are shown shaded in the figure.

As in the original architecture, the user submits his problem to the Grid routine

or Application Manager. The Application Manager registers the problem with the

57

User Grid Routine

Resource
Selector

MDS

NWS

Modeler

Permission
Service

PerformanceContract
Developer

Application
Launcher

Contract
Monitor

Application

Contract
Negotiator

Database
Manager

Expander

RSS

Database

Rescheduler

Manager

Contract
Negotiator

Service
Permission

Figure 3.1: Modified GrADS Architecture

58

Database Manager. The Application Manager then invokes the Resource Selector. The

Resource Selector invokes the Globus Metadirectory Service (MDS) to get a list of

available resources. The Application Manager retrieves the information about resource

characteristics from Network Weather Service (NWS). The list of machines and the

resource information of the machines are stored in the DataBase Manager corresponding

to the entry for the application.

The Application Manager passes the problem parameters and resource information

to a metascheduler component called Permission Service. The Permission Service can

grant permission for the application to proceed to the next stages of the GrADS applica-

tion or can reject permission to the application in which case the Application Manager

aborts. The Permission Service can also prompt the application to pass through the

Resource Selection phase again.

If the permission is granted, the Application Manager proceeds to Performance

Modeling phase. The Performance Modeler accepts problem parameters and resource

characteristics from the Application Manager. It then uses an application-specific exe-

cution model to generate an application schedule which is the final list of machines for

application execution. The application schedule along with the predicted performance

cost are returned to the Application Manager. These parameters are stored by the

Application Manager in the Database Manager.

The Application Manager passes the application schedule and the predicted per-

formance cost as a contract to the Contract Developer. Unlike the original GrADS

59

architecture, the Contract Developer does not approve all contracts. It passes the in-

coming contract to a metascheduling service component called Contract Negotiator.

The Contract Negotiator can either approve or reject the contract. If the contract is

approved, the Application Manager proceeds to the next stages of the GrADS execution.

If the contract is rejected, the Application Manager goes back to the Resource Selection

phase. In either case, the Application Manager stores the Contract Development result

in the Database Manager.

The Application Manager passes the problem, its parameters and the final list of

machines to Application Launcher. The Application Launcher spawns three compo-

nents - the end application on the final set of machines using Globus job management

mechanism, a component called Contract Monitor and a supporting component for the

end application called Runtime Support System (RSS). The Contract Monitor monitors

the progress of the application and compares with the predicted behavior. If the actual

behavior of the application differs from its predicted behavior, the Contract Monitor

contacts a metascheduling component called Rescheduler. The Rescheduler can decide

to migrate the application in which case it contacts the RSS to stop the application. The

various application states are stored by the end application in the Database Manager.

After spawning the numerical application through the Application Launcher, the

application manager waits for the job to complete. The job can either complete or

suspend its execution due to intervention by Permission Service, Contract Negotiator

or Rescheduler. These application states are passed to the application manager through

60

the Database Manager. If the job has completed, the Application Manager exits, passing

success values to the user. If the application is stopped, the Application Manager waits

for a resume signal and then collects new machine information by starting from the

Resource Selection phase again.

The life cycle of an application and its interactions with the metascheduler is shown

in Figure 3.2.

3.2 Metascheduler Components

The Database Manager, the Permission Service, the Contract Negotiator and the Resched-

uler together form the Metascheduler. The interactions between these different metasched-

uler components and the interactions between the applications and the metascheduler

are illustrated by Figure 3.3.

Most of the metascheduling components can possibly preempt executing application.

Before preempting an executing application, the metascheduler checks if the application

is preemptible. An executing application is preemptible if it has made atleast 20%

progress since its last preemption or the beginning of its execution. Also, for the sake of

simplicity, applications that are executing due to preemption of other applications are

not preempted.

The following subsections describe each of the metascheduler components.

61

��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

User

Selection
Resource

the grid, machine parameters
current list of machines in

Requesting
Permission

Problem and machine
parameters

Permission

Selector
Resource

Permission
Service

Permission? Abort
No

Yes

The Permission Service
stopped another application,

Get new resource information

Application
Specific

Scheduling

Problem and machine
parameters

Modeler
Performance

Contract
Development

Contract output

Application specific schedule

Negotiator
Contract

Contract
approved?

No
Get new resource information
and develop a new contract

Application
Launching

Problem parameters,

final schedule

Application
Completion? Completed

Application Exit

Application
Launcher

Application was stopped
by Permission Service

Initial list of machines

Problem
Parameters

Permission

Application
specific schedule

Problem parameters,
final schedule

or by Contract Negotiator

Application specific schedule

signal
Wait for restart

Yes

or by Rescheduler

Figure 3.2: Life cycle of an application in the Grid

62

Metascheduler

 Applications

Permisson
 Service

 Contract
 Negotiator

permission to execute on the Grid from the applications
Application level schedules

the states of applications
Storing and retrieval of

Database
Manager

Rescheduler

Requests from applications for

Application migration
Request for

Figure 3.3: Metascheduler and interactions

3.2.1 Database Manager

Database Manager is a daemon listening for requests from the clients. The various

requests correspond to storing and retrieving of information for the GrADS applica-

tions. The Database Manager also maintains a global clock and sends the global time

maintained by the clock to clients on requests. The Database Manager also has event

notification capabilities where the clients can register their interests on the occurrence

of particular events and the Database Manager notifies the clients when the events oc-

cur. In addition to the database for storing information about GrADS applications,

the Database Manager also maintains a database to keep track of the activities in the

63

metascheduler.

The GrADS application and the metascheduler components store and retrieve var-

ious information to and from the Database Manager respectively. The information

include the different states of the application as it passes through the different phases

of the GrADS execution, the problem parameters, the constraints for the problem, the

initial set of machines available for the application execution, the resource information

including the memory, current load, peak performance and network characteristics of

the machines, the predicted performance cost for the end application, the location of

the application-level scheduler, the Contract Monitor and the Runtime Support System

(RSS) and the performance behavior information of the application including the aver-

age of the ratios between the measured and expected performance and the number of

times the measured performance values crossed the thresholds of expected performance

or the number of contract violations. In addition to the above information passed by

the clients to the Database Manager for a GrADS application, the Database Manager

stores its own information for the applications including the global times when the

end application started and completed. When an application stops or completes, the

Database manager calculates the percentage completion time, percent completion time

for the application from the average of the ratios of the actual and predicted perfor-

mance costs for the application, avg ratio, the difference between the current time and

the time when the application started execution, time diff and the predicted execution

64

time for the application, predicted time using the following equation.

percent completion time = percent completion time +
time diff × 100.0

predicted time × avg ratio

(3.1)

The various states of the GrADS application stored in the Database Manager include

the states corresponding to when the application initially registers with the Database

Manager, after the application performs Resource Selection, the result of Contract De-

velopment, i.e. approval or rejection of the contract and the states of the end application

including when it started, stopped and resumed. The Database Manager also stores in-

formation regarding if another GrADS application is waiting for the current GrADS

application to complete.

In addition to storing and retrieving capabilities, the Database Manager also pos-

sesses event notification capabilities. The events mostly include the change of states

for the GrADS application (for e.g., when the end application completes). The clients,

mainly the GrADS application and the metascheduler components register their interest

in certain change of states of the GrADS applications and the end applications. During

this process, the Database Manager stores the information necessary for communication

to the clients. The clients wait for notification from the Database Manager. Later, when

the state of a GrADS application is updated, the Database Manager checks if there is

any client waiting for notification of the particular update of the state. If it finds such

a client, it communicates with the client using the communication information previ-

ously stored. The client gets the notification from the Database manager and resumes

65

its operation. As an example, a metascheduler component may inform the Database

manager that it wants to be notified when a particular GrADS application completes.

The GrADS application may be currently executing on the system resources. Later,

the GrADS application will complete and store the completion state in the Database

Manager in the entry corresponding to the application. When the Database Manager

stores the completion state, it finds that a metascheduler component has expressed

interest in the completion state of the application, retrieves the communication infor-

mation for the metascheduler component previously stored and communicates to the

metascheduler component. The metascheduler component on receiving the notification

information resumes its operation.

The Database Manager also maintains a global clock. Since the resources are dis-

tributed, there can be potential out-of-synchronization of the local clocks for the indi-

vidual resources. To perform some calculations based on times, for e.g., when a client

wants to calculate the total time elapsed in an executing end application by subtracting

the current time and the start time of the application, a component may want to deter-

mine the current time. Since the current time cannot be gathered from local clocks, the

component requests the global current time from the Database Manager and retrieves

it.

Lastly, the Database Manager keeps track of the states of the metascheduler com-

ponent activities. This information acts as database locks to prevent race conditions

among the metascheduler components. For e.g., the Contract Negotiator may be making

66

decisions regarding preempting an executing application. At that time, it is desirable

that the Rescheduler does not make preempting decisions for the same executing ap-

plications. By retrieving the lock information from the database, the Rescheduler may

find that the Contract Negotiator is making decisions for the end application and hence

not make its own decisions.

3.2.2 Permission Service

Permission Service is a daemon that receives requests from the GrADS applications to

grant them permission to proceed with the usage of the Grid system. The Application

Manager, after getting resource information from NWS, passes the resource information,

the problem requirements and the problem parameters to the Permission Service.

The Permission Service, based on the constraints of the problem , for e.g., the

memory needed for the GrADS application, and the resource parameters of all the

resources available in the GrADS system, checks if the resources are sufficient for the

execution of the problem. If the resources are sufficient, the Permission Service grants

permission by returning PERMISSION to the GrADS application. In this case, the

GrADS application proceeds to the next phases in GrADS execution.

If the resources are not sufficient for the execution of the end application, the Per-

mission Service retrieves a list of end applications that have started executing on the

GrADS resources from the Database Manager. If no problems are executing on GrADS

resources, then the Permission Service rejects permission to the GrADS application by

returning NO PERMISSSION NO RS. Thus the Permission Service ensures that ap-

67

plications whose memory requirements exceed the resource capacity of the resources

do not execute on the resources since this will lead to frequent accesses to disks and

eventual degradation of the entire system. The GrADS application immediately aborts,

displaying information about lack of sufficient resources for execution of end application

to the GrADS user.

If some GrADS problems are executing on the resources, the Permission Service

tries to find a list of executing applications, sub list, in the absence of which the re-

sources will be sufficient enough to execute the current GrADS application for which

permission decision is being made. The Permission Service sorts the list of executing

applications based on the starting time of the applications. For each application in the

list, the Permission Service retrieves the initial resource parameters used for deriving the

application-level schedule for the GrADS application. For application i in the list, the

Permission Service calculates the change in resource parameters caused by the execution

of application i, resource changei by

resource changei = resource parametersi+1 − resource parametersi (3.2)

where resource parametersi+1 is the set of resource parameters used for scheduling

in GrADS application i+1 and resource parametersi is the set of resource parameters

used for scheduling in GrADS application i. The Permission Service then determines

the resource parameters for the present conditions assuming the absence of application

68

i, resource absencei by

resource absencei = resource parameters current + resource changei (3.3)

where resource parameters current is the set of resource parameters passed to the Per-

mission Service by the current GrADS application. The Permission Service then deter-

mines if resources with parameters indicated by resource absencei are sufficient for the

execution of end application for the current GrADS application. If the resources are

sufficient, then the end application will be able to execute in the absence of application

i. If no executing application, whose absence will enable the execution of the current

application, is found, the Permission Service sends NO PERMISSION NO RS to the

application.

For each executing application i in the sub list, the Permission Service determines

the remaining execution time of application i, remaining execi, and the predicted ex-

ecution time of the current application in the absence of application i, predicted time

by contacting the respective application-level schedulers. The Permission Service then

calculates, ratioi as

ratioi =
remaining execi

predicted time
(3.4)

ratioi indicates the relative execution times between the executing application i and the

current application. More the ratio, greater the remaining execution time of application

i and/or smaller the predicted cost for the execution of current application in the absence

69

of application i.

The Permission Service checks if any of the executing applications in the sub list has

short remaining execution times. For the sake of simplicity, the time for short remain-

ing time is fixed at 5 minutes. If such an executing application exists, the Permission

Service waits for the application to complete by registering its interest for the notifi-

cation of application completion in the Database Manager. The completion of such an

application will free the resources for the execution of current application. When the

application with the short remaining execution time completes, the Permission Service

sends NO PERMISSION RS to the current GrADS application for which permission

decision is being made. This prompts the current GrADS Application Manager to pass

through Resource Selection phase and retrieve new resource information from NWS.

If no executing application in sub list has short remaining execution time, the Per-

mission Service chooses the application, big application, from the sub list that has the

maximum of the ratios determined in equation 3.4 for all executing applications. The

Permission Service determines if the big application is preemptible. If the big application

is not preemptible, the Permission Service sends NO PERMISSION NO RS to the

GrADS application for which the permission decision is being made. If the big application

is preemptible, the Permission Service stops the application by sending STOP signal

to the Runtime Support System (RSS) for the application and waits for the applica-

tion to stop by waiting for a notification message from the Database Manager. After

the big application stops, the Permission Service sends NO PERMISSION RS to the

70

GrADS application for which the permission decision is being made. The GrADS ap-

plication gets new resource information by passing through Resource Selection phase

again, gets permission for the new set of resources from the Permission Service, deter-

mines a final schedule using Performance Modeler and executes the end application on

the final set of resources. When the end application completes, the Permission Service

sends a RESUME signal to the preempted application. This prompts the preempted

application to start from Resource Selection phase again and continue its execution on

possibly a new configuration of machines.

At the core of the metascheduling decisions made in the Permission Service and in the

other metascheduling components is the ability to determine the approximate remaining

execution time of an application. The Contract Monitor maintains the ratios between

the actual and predicted costs of the end application at different points of the execution

of the application. When a metascheduling component for e.g., the Permission Service,

wants to determine the approximate remaining execution time for an application, it

retrieves the location of the Contract Monitor corresponding to the GrADS application

from the Database Manager. It contacts the Contract Monitor and requests for the

ratios of the actual and predicted costs of the end application. It then calculates the

remaining execution time for the application from the total percentage completion time

of the application, predicted execution cost for the application and the average of the

ratios between the actual and predicted costs for the end application. The details of

the algorithm for calculating the remaining execution time for the application is given

71

in Appendix A.2.

The Permission Service uses heuristics in its metascheduling decisions rather than

any definite criteria. For.e.g., equations 3.2 and 3.3 assume a dedicated and quiet envi-

ronment where no external non-GrADS applications execute on the resources between

the submissions of applications i and i+1. This assumption may lead to over-estimation

of resource change, i.e. the change in resource characteristics caused by the execution

of application i. In Grid environments, there can be change in resource characteristics

caused by external loads. Even though this over-estimation is mitigated to a certain

extent by the calculation of ratioi in equation 3.4, there may be situations when the

Permission Service can cause unnecessary preemptions of executing applications. Also,

the approximations in calculating the remaining execution times of the executing appli-

cations can cause further deficiencies in the metascheduling decisions of the Permission

Service. By requiring that the applications make atleast 20% progress between pre-

emptions, the probability of faulty preemptions of the executing applications due to the

deficiencies in the Permission Service is greatly reduced.

In general, by requiring that the resources meet the criteria expressed by the con-

straints for GrADS applications, the Permission Service meets our metascheduling ob-

jective of maintaining a consistent system performance. Also, by pro-actively preempt-

ing large executing applications and accommodating small applications, the Permission

Service increases the number of requests serviced by the system and maintain high

throughput of the overall system.

72

The functions of the Permission Service are summarized by the pseudo code in

Appendix A.3.

3.2.3 Contract Negotiator

The Contract Negotiator component of the metascheduler is a daemon that receives

application level schedules from the GrADS applications. An application level schedule

of an application is the final list of machines that the GrADS application obtains from

the Performance Modeler through the employment of the application specific execution

model. These are the list of machines on which the end application can potentially

execute. The application passes the problem parameters, the application level schedule

and predicted execution cost for the end application as a contract to the Contract De-

veloper. The Contract Developer, instead of approving the contracts of the applications

under all conditions, contacts the Contract Negotiator for obtaining approval of the

application contract.

The Contract Negotiator is implemented as a threaded program containing atmost

three threads of execution at any point in time. These are the main thread, input

control thread and process thread. The Contract Negotiator maintains two global data

structures, namely input queue and process queue. The implementation of the Contract

Negotiator is illustrated by Figure 3.4.

The main thread initially spawns the input control thread and waits for entries in

the input queue. The Contract Monitors of the GrADS applications contact the input

control thread, passing to it the application-level schedule and the predicted performance

73

Main
Thread

Input

Input Queue Process Queue

Thread
Process Control

Thread

Application−level Schedules

from Contract Monitors of

GrADS applications

Contract results to the

Contract Monitors of
GrADS applications

Figure 3.4: Implementation of Contract Negotiator

74

cost for the application. The input control thread stores these parameters in the input

queue. The main thread, on noticing entries corresponding to GrADS applications in

the input queue, moves an entry corresponding to a GrADS application to the process

queue and spawns a process thread for processing the contract corresponding to the

stored entry in the process queue.

The Contract Negotiator first tries to find GrADS applications for which the con-

tracts have been approved and for which the application-level schedules consists of some

machines in the application-level schedule of the current GrADS application for which

contract is being processed. If such GrADS applications exist and if the end appli-

cations corresponding to the GrADS applications have not started executing on the

resources, the Contract Negotiator waits for the end applications to start executing and

then sends CONTRACT NOT OK as a contract result to the Contract Monitor of the

current GrADS application. This prompts the current GrADS Application Manager to

start from the Resource Selection phase again and evolve a new performance contract.

Thus when competing applications are submitted to the GrADS system simultaneously

and claims the same set of resources due to the lack of knowledge of the competition

from other GrADS applications, the Contract Negotiator ensures an ordering of the

applications whereby contract is approved for one GrADS application allowing the end

application for the GrADS application to use the system resources and possibly modify

the resource characteristics while contacts are rejected for other GrADS applications

thereby making those applications to generate a new application-level schedule using

75

the latest resource characteristics for scheduling decisions.

The Contract Negotiator then tries to retrieve a list of executing applications, exe-

cuting list executing on some of the machines that are in the application-level schedule

of the current GrADS application. It then tries to determine a subset of executing list

of applications that started executing after the current GrADS application completed

its Resource Selection phase. In this case, the current GrADS application generated

its application-level schedule with outdated resource characteristics. Hence the Con-

tract Negotiator sends CONTRACT NOT OK to the Contract Monitor of the current

GrADS application, prompting the Application Manager to generate a new application-

level schedule. As in the precious case, this behavior of the Contract Negotiator ensures

that applications do not make conflicting claims on the same sets of resources.

The Contract Negotiator sorts the applications in executing list in the order of their

starting times to form a sorted list, sorted list. For each GrADS application, i in

the sorted list, the Contract Negotiator retrieves the resource characteristics, resourcei

with which the application-level schedule for the application i was generated. The

Contract Negotiator contacts the application-level scheduler of the current GrADS ap-

plications and retrieves the predicted execution cost, predictedi of the end application

using resourcei as the initial set of resources. Thus predictedi gives the approximate

predicted execution cost of the end application corresponding to the current GrADS

application if it were to execute in the absence of application i. The Contract Nego-

tiator then calculates ratioi corresponding to GrADS application i. ratioi is the ratio

76

between predictedi+1 and predictedi corresponding to GrADS applications i+1 and i

respectively in the sorted list. If ratioi is greater than 1.5, then the Contract Negotiator

chooses executing application i as the application, big application, whose absence will

lead to significant reduction in the execution time of the end application corresponding

to the current GrADS application for which contract decision is being made.

The Contract Negotiator calculates the remaining execution time, remaining exec time,

of the executing application, big application. The Contract Negotiator also calcu-

lates impact time which is the increase in execution time that can be incurred by

big application if the end application corresponding to the current GrADS application

is allowed to execute on the resources proposed by the application-level schedule for

the application. The impact time is calculated using the slowdown model by Figueira

[54, 53, 52, 51]. In this model, the impact in execution time of a parallel application

executing on a set of resources is modeled using the impact in execution time of sub

processes of the parallel applications executing on an individual resource. Processes

executing on a single resource are assumed to be scheduled in a round-robin fashion.

Though the assumption used in the model is not valid for all environments, it has been

proven to be valid for most of the environments.

The Contract Negotiator calculates average of the completion times of the execut-

ing application, big application, and the end application corresponding to the current

GrADS application for three different scenarios. t1 is the average of the completion

times when the big application is preempted from the resources, the end application for

77

the current GrADS application is executed, and the big application is continued after

the completion of the current application. t2 is the average of the completion times

when the Contract Negotiator waits for the big application to complete and then sched-

ules the current application. t2 is the average of the completion times when the current

application is executed in the presence of the big application. These times are calculated

as:

t1 =
(predicted absence) + (predicted absence + remaining exec time)

2
(3.5)

t2 =
(remaining exec time) + (remaining exec time + predicted absence)

2
(3.6)

t3 =
(predicted presence) + (remaining exec time + impact time)

2
(3.7)

where predicted absence is the predicted execution cost of the current application if

it were to execute in the absence of the big application and predicted presence is the

predicted execution cost of the current application if it were to execute in the presence

of the big application.

If t1 is less than 25% of the minimum of t2 and t3, the Contract Negotiator stops

big application, sends CONTRACT NOT OK to the current GrADS application prompt-

ing it to generate a new application-level schedule, approves the contract of the new

schedule, waits for the approved application to complete its application and continues

big application on possibly a new set of resources. If t2 is less than t1 and t3, the Contract

Negotiator waits for the big application to complete, sends CONTRACT NOT OK to

78

the current GrADS application prompting it to generate a new application-level sched-

ule and approves the contract of the new schedule. If t3 is less than t1 and t2, then the

Contract Negotiator can possibly approve the contract of the current application thereby

allowing the application to execute on the resources indicated by the application-level

schedule.

If during the previous operations, the Contract Negotiator has not sent CON-

TRACT NOT OK to the Contract Monitor for the current GrADS application, the

Contract Negotiator approves the contract for the current GrADS application by send-

ing CONTRACT OK to the Contract Monitor. Before approving the contract, the

Contract Negotiator tries to reduce the impact on already executing applications that

can be caused by the execution of the end application. It uses the slowdown model

by Figueira to calculate the maximum of the percentage increase in execution times of

the executing applications, max percent due to the addition of the end application for

the current GrADS application. If max percent is greater than 30%, the Contract Ne-

gotiator removes a resource from the application-level schedule for the current GrADS

application and calculates max percent again. It continues to remove resources from

the application-level schedule for the current GrADS application until the percentage

increase in predicted cost of the end application for the current GrADS application

becomes greater than twice the max percent. Finally, the Contract Negotiator approves

the contract of the current GrADS application by sending CONTRACT NOT OK to

the Contract Monitor.

79

Thus the Contract Negotiator acts as a major metascheduling component balancing

the interests of the different applications. To summarize, its main functions are:

1. verifying if the GrADS applications generated application-level schedules with

most recent resource characteristics,

2. preempting executing applications if the presence of those applications can severely

degrade the performance of the end application for the current GrADS application

for which contract decision is being made and

3. reducing the impact that can be caused by the execution of end application on

executing applications.

These metascheduling decisions help to increase the overall throughput of the system

and providing high performance to the individual applications.

The actions of the Contract Negotiator are summarized by the pseudo code in Ap-

pendix A.4.

3.2.4 Rescheduler

Rescheduler is a service that maintains load balance in the system and improves the

performance of executing end applications. It performs migration of executing appli-

cations both when the executing applications do not meet the expected performance

levels and when few system resources are freed due to the completion of certain GrADS

applications. The executing applications can be migrated to a new set of resources and

80

executed on possibly different number of resources. This ability to dynamically recon-

figure the application in terms of the number of resources that the application is using

makes the Rescheduler adopt flexible rescheduling mechanisms.

Though the Contract Negotiator balances the interests of different GrADS applica-

tions to ensure that the performance contracts for the end applications are met, the

presence of external loads in the system in the form of non-GrADS applications can

degrade the performance of the end applications. The Contract Monitor that moni-

tors the actual performance of the end applications is initially set with tolerance limits

for performance degradation of the end application it monitors. On noticing the drop

in performance of the executing applications, the Contract Monitor compares the ra-

tios between the actual and the predicted performance with the tolerance limits that

were previously set. Contract violations occur when the ratios become greater than the

tolerance limits. On noticing few contract violations, the Contract Monitor contacts

the Rescheduler requesting for rescheduling the application. The Rescheduler evaluates

the benefit of rescheduling the application and if it determines that potential perfor-

mance benefits can be obtained for the application, migrates the application by sending

STOP signal to the end application and storing RESUME flag in the Database Manager

prompting the Application Manager to evolve a new schedule where the application can

be continued.

The Rescheduler also proactively preempts executing applications to utilize free

resources that were made available by the completion of few end applications. The

81

Rescheduler continuously queries the Database Manager for completed applications.

If an application completes, the Rescheduler retrieves a list of executing applications

from the Database Manager. For each application in the list, it determines the new

application-level schedule and predicted remaining execution cost with the recent re-

source conditions by contacting the application-level scheduler. The rescheduler then

determines the potential rescheduling gain that can be obtained by migrating the execut-

ing application. It chooses the executing application for which maximum rescheduling

gain can be obtained and migrates the application if the rescheduling gain is greater than

an acceptable rescheduling threshold. Thus by utilizing free resources in the system,

the Rescheduler tries to maintain load balance of the system resources.

The working of the Rescheduler is summarized by the pseudo code in Appendix A.5.

The framework used for monitoring the executing applications, conditions for con-

tacting the Rescheduler and the policies used in the Rescheduler for migrating the end

applications make the Rescheduler a unique and robust metascheduling component.

The next Section gives a detailed description of the Rescheduling framework compar-

ing the migration decisions used in the Rescheduler with relevant work in the area of

rescheduling.

3.3 Rescheduling Framework

Migration of executing applications onto different sets of resources is an interesting re-

search area since it involves issues regarding techniques for application migration and

82

also regarding scheduling decisions for migration. There have been many research ef-

forts that built migration systems which migrate applications under different conditions

including load changes on machines, availability of new machines, non-availability of

existing machines due to reclaiming by owners, providing fault tolerance etc. At least

three factors in the existing migrating systems make them less suitable in Grid systems

especially when the goal is to improve the response times for individual applications -

separate policies for suspension and migration of executing applications employed by

these migration systems, the use of pre-defined conditions for suspension and migration

and the lack of knowledge of the remaining execution time of the applications. The

Rescheduling framework developed in this research implements a migration framework

for performance oriented Grid systems that implements tightly coupled policies for both

suspension and migration of executing applications. The suspension and migration poli-

cies take into account both the load changes on systems as well the remaining execution

times of the applications thereby taking into account both system load and application

characteristics. The main goal of the migration framework is to improve the response

times for individual applications.

Computational Grids [58] involve large system dynamics that the ability to migrate

executing applications onto different sets of resources assumes great importance. Specif-

ically, the main motivations for migrating applications in Grid systems are to provide

fault tolerance and to adapt to load changes on the systems. The main focus of the

migration framework in this research is on migration of applications executing on the

83

distributed and Grid systems when the loads on the system resources change.

4 issues have to be dealt to build efficient migration systems.

1. When - The scheduling and migrating systems have to define the conditions under

which migration of executing applications will take place. These conditions can be

few key strokes on the executing systems, sudden non-availability of the systems

on which the applications are executing, availability of new sets of resources, load

imbalance on the systems etc.

2. Where - After the decision to migrate, the scheduling system should determine

the new sets of resources on which the applications will be migrated. These new

sets of resources can be determined based on different sets of criteria.

3. How - Different migrating systems employ different methods for migrating appli-

cations for different kinds of applications. Some migrations can be simple context

switches while some migrations can involve complex checkpointing mechanisms.

4. Who - The migration decisions and the migration process can be implemented by

the system automatically or can be specified by the user.

There are at least two disadvantages in using the existing migration systems [78, 47,

75, 107, 121, 59, 30] for improving the response times of executing applications. Due

to the separate policies employed by these migration systems for suspension of execut-

ing applications and migration of the applications to different systems, the applications

can incur lengthy waiting times between when they are suspended and when they are

84

restarted on new systems. Secondly, due to the use of pre-defined conditions for suspen-

sion and migration and due to the lack of knowledge of the remaining execution time of

the applications, the applications can be suspended and migrated even when they are

about to finish execution in a short period of time. This is certainly less desirable in per-

formance oriented Grid systems where the large load dynamics will to lead to frequent

satisfaction of the pre-defined conditions and hence will lead to frequent invocation of

suspension and migration decisions.

The Rescheduler implements a migration framework that defines and implements

scheduling policies for migrating applications executing on distributed and Grid systems

in response to system load changes. In the framework, the migration of applications

depends on

1. the amount of increase or decrease in loads on the resources,

2. the time of the application execution when load is introduced into the system,

3. the performance benefits that can be obtained for the application due to migration.

Thus the migrating framework takes into account both the load and application

characteristics. The policies are implemented in such a way that the executing applica-

tions are suspended and migrated only when better systems are found for application

execution thereby invoking the migration decisions as infrequently as possible. In the

following subsections, the related work in the field of migration is described and the

migration architecture is explained in detail.

85

3.3.1 Related Work in the Field of Migration of Applications

Different systems have been implemented to migrate executing applications onto dif-

ferent sets of resources. These systems migrate applications either to efficiently use

under-utilized resources [78, 95, 36, 35, 120, 107, 46], to provide fault resilience [16] or

to reduce the obtrusiveness to workstation owner [16, 75].

The work by Mirchandaney et. al. [78] deals with migration of executing applica-

tions to efficiently use under-utilized resources. The Dome system [16] performs data

redistribution for load balancing and migrates executing applications to provide fault

resilience. Khaled Al-Saqabi et. al [95] discusses migration of applications in the con-

text of gang scheduling. MPVM/MIST [36], [35] projects and the work by Zhang et.

al. [120] have built migration systems that uses the concept of gang scheduling to

utilize system resources. MIST also deals with migration under increasing loads but

the scheduling policy has not been defined clearly. The HMF system [30] uses a graph

model to define migration policies. The efficiency of this model in Grid systems is still

to be proven.

The particular projects that are closely related to our work are Dynamite [107],

MARS [59], LSF [121] and Condor [75]. The Dynamite system [107] based on Dynamic

PVM [46] migrates applications when the loads of certain machines gets under-utilized

or over-utilized as defined by application-specified thresholds. Although this method

takes into account application-specific characteristics it does not necessarily evaluate

the remaining execution time of the application and the resulting performance benefits

86

due to migration. MARS [59] migrates applications taking into account both the system

loads and application characteristics. But the migration decisions are made only at dif-

ferent phases of the applications unlike our migration framework where the applications

are continuously monitored and migration decisions are made whenever the applications

are not making sufficient progress.

In LSF [121], jobs can be submitted to queues which have pre-defined migration

thresholds. A job can be suspended when the load of the resource increases beyond a

particular limit. When the time since the suspension becomes higher than the migration

threshold for the queue, the job is migrated and submitted to a new queue. Thus

LSF suspends jobs to maintain the load level of the resources while our migration

framework suspends jobs only when it is able to find better resources where the jobs

can be migrated. By adopting a strict approach to suspending jobs based on pre-defined

system limits, LSF gives less priority to the stage of the application execution whereas

our migration framework suspends an application only when the application has large

enough remaining execution time so that performance benefits can be obtained due to

migration. And lastly, due to the separation of the suspension and migration decisions,

a suspended application in LSF can wait for a long time before it restarts executing on a

suitable resource. In our migration framework, a suspended application is immediately

restarted due to the tight coupling of suspension and migration decisions.

Of the Grid computing systems, only Condor [75] seems to migrate applications

under workload changes. Condor provides powerful and flexible ClassAd mechanism by

87

means of which the administrator of resources can define policies for allowing jobs to

execute on the resources, suspending the jobs and vacating the jobs from the resources.

The fundamental philosophy of Condor is to increase the throughput of long running

jobs and also respect the ownership of the resource administrators. The main goal of our

migration framework is to increase the response times of individual applications. Similar

to LSF, Condor also separates the suspension and migration decisions and hence has the

same problems mentioned for LSF in taking into into account the performance benefits

of migrating the applications. Unlike our metascheduler framework, the Condor system

does not possess the knowledge about the remaining execution time of the applications.

Thus suspension and migrating decisions can be invoked frequently in Condor based on

system load changes. This may be less desirable in Grid systems where system load

dynamics are fairly high.

3.3.2 The Migration Framework

The ability to migrate applications in the GrADS system is implemented by adding

the metascheduling component called Rescheduler to the GrADS architecture. The

migrating numerical application, migrator, the contract monitor that monitors the ap-

plication’s progress and the rescheduler that decides when to migrate, together form the

core of the migrating framework. The interactions between the different components

involved in the migration framework is illustrated in Figure 3.5. These components are

described in detail in the following subsections.

88

Application
Launching

Application
Completed?

Exit

Application was stopped
by the rescheduler

Wait for
restart signal

Application
Manager

Rescheduler

GrADS
Information
Repository

(GIR)

Application

Runtime
Support
System
(RSS)

Contract
Monitor

Launch

Launch

LaunchExecution
time

Query for
STOP signal

Query
for application

status

Query
for application

status

Request for migration

STOP

RESUME status
Storing STOP and

No Yes

Database
Manager

Figure 3.5: Interactions in Migration Framework

89

The Migrator

We have implemented a user-level checkpointing library called SRS (Stop Restart

Software). The application by making calls to SRS gets the ability to checkpoint data,

to be stopped at a particular point in execution, to be restarted later on a different

configuration of processors and to be continued from the previous point of execution.

The SRS library is implemented on top of MPI and hence can be used only with MPI

based parallel programs. Since checkpointing in SRS is implemented at the application

layer and not at the MPI layer, migration is achieved by clean exit of the entire appli-

cation and restarting the application over a new configuration of machines. Due to the

clean exit of the application during migration, no interaction with the resource alloca-

tion manager is necessary during rescheduling. The application interfaces for SRS look

similar to CUMULVS [63], but unlike CUMULVS, SRS does not require a PVM virtual

machine to be setup on the hosts. Also, SRS allows reconfiguration of applications

between migrations.

The SRS library consists of 6 main functions:

1. SRS Init()

2. SRS Finish()

3. SRS Restart Value(),

4. SRS Check Stop()

5. SRS Register()

90

6. SRS Read().

The user calls SRS Init() and SRS Finish() in his application after MPI Init() and before

MPI Finalize() respectively. Since SRS is a user-level checkpointing library, the appli-

cation may contain conditional statements to execute certain parts of the application

in the start mode and certain other parts in the restart mode. In order to know if the

application is executed in the start or restart mode, the user calls SRS Restart Value()

that returns 0 and 1 on start and restart modes respectively. The user also calls

SRS Check Stop() at different phases of the application to check if an external com-

ponent wants the application to be stopped. If the SRS Check Stop() returns 1, then

the application has received a stop signal from an external component and hence can

perform application-specific stop actions.

SRS library uses Internet Backplane Protocol(IBP)[82] for storage of the checkpoint

data. IBP depots are started on all the machines of the GrADS testbed. The user calls

SRS Register() in his application to register the variables that will be checkpointed by

the SRS library. When an external component stops the application, the SRS library

checkpoints only those variables that were registered through SRS Register(). The user

reads in the checkpointed data in the restart mode using SRS Read(). The user, through

SRS Read(), also specifies the previous and current data distributions. By knowing

the number of processors and the data distributions used in the previous and current

execution of the application , the SRS library automatically performs the appropriate

data redistribution. Thus, for example, the user can start his application on 4 processors

91

with block distribution of data, stop the application and restart it on 8 processors with

block-cyclic distribution. The details of the SRS API for accomplishing the automatic

redistribution of data is explained in Chapter 5.

An external component(e.g., the rescheduler) wanting to stop an executing appli-

cation interacts with a daemon called Runtime Support System (RSS). RSS exists for

the entire duration of the application and spans across multiple migrations of the ap-

plication. Before the actual parallel application is started, the RSS is launched by the

Application Launcher on the machine where the user invokes the GrADS Application

Manager. The actual application through the SRS library knows the location of the RSS

from the Database Manager and interacts with RSS to perform some initialization, to

check if the application needs to be stopped during SRS Check Stop(), to store pointers

to the checkpointed data, to retrieve pointers to the checkpointed data and to store the

present processor configuration and data distribution used by the application.

The SRS library is explained in detail in Chapter 5.

Contract Monitor

As mentioned in the previous sections, Contract Monitor is a component that uses

the Autopilot infrastructure to monitor the progress of the applications in GrADS.

Autopilot [93] is a real-time adaptive control infrastructure built by the Pablo group

at University of Illinois, Urbana-Champaign. An autopilot manager is started before

the launch of the numerical application. The numerical application is instrumented

with calls to register to autopilot. The Contract Monitor retrieves the registration

92

information of the application through the autopilot. The numerical applications are

also instrumented with calls at different points of the program to send the times taken

for the different phases of the execution to the Contract Monitor. The Contract Monitor

compares the actual execution times with the predicted execution times and calculates

the ratio between them. The tolerance limits of the ratio are specified as inputs to the

Contract Monitor.

When a given ratio is greater than the upper tolerance limit, the Contract Monitor

calculates the average of the computed ratios. If the average is greater than the upper

tolerance limit, it contacts the rescheduler, requesting for migrating the application.

The average of the ratios is used by the Contract Monitor to contact the rescheduler

due to the following reasons:

1. A competing application of short duration on one of the machines may have in-

creased the load on the machine and hence the loss in performance of the appli-

cation. Contacting the rescheduler for migration on noticing few losses in per-

formance will result in unnecessary migration in this case since the competing

application will end soon and the application’s performance will be back to nor-

mal.

2. The average of the ratios also captures the history of the behavior of the machines

on which the application is running. If the application’s performance on most of

the iterations has been satisfactory, then few losses of performance may be due to

sparse occurrences of load changes on the machines.

93

3. The average of the ratios also takes into account the percentage completed time

of application’s execution.

4. Contacting the rescheduler for migration only when the average of ratios is greater

than the upper tolerance limit significantly reduces the overhead of migrating

decisions.

If the rescheduler refuses to migrate the application, the Contract Monitor adjusts

its tolerance limits to new values. Similarly when a given ratio is less than the lower

tolerance limit, the Contract Monitor calculates the average of the ratios and adjusts

the tolerance limits if the average is less than the lower tolerance limit. The dynamic

adjusting of tolerance limits serves three purposes:

1. It reduces the overhead involved in Contract Monitor when the ratios between

actual and predicted times are not the original expected ratios.

2. It reduces the amount of communication between the Contract Monitor and the

rescheduler.

3. It hides the deficiencies in the application-specific execution time model.

Rescheduler

Rescheduler is the metascheduling component that evaluates the performance benefits

that can be obtained due to the migration of an application and initiates the migration

of the application. The rescheduler is a daemon that operates in two modes: migration

94

on request and opportunistic migration. When the Contract Monitor detects intolerable

performance loss for an application, it contacts the rescheduler requesting it to migrate

the application. This is called migration on request. In other cases when no Contract

Monitor has contacted the rescheduler for migration, the rescheduler periodically queries

the Database Manager for recently completed applications. If a GrADS application was

recently completed, the rescheduler determines if performance benefits can be obtained

for an executing application by migrating it to use the resources that were freed by the

completed application. This is called opportunistic rescheduling.

In both cases, the rescheduler first contacts the Network Weather Service (NWS)

to get the updated information for the machines in the Grid. It then contacts the

application-specific Performance Modeler to evolve a new schedule for the application.

Based on the total percentage completion time for the application and the total predicted

execution time for the application with the new schedule, the rescheduler calculates

the remaining execution time, ret new, of the application if it were to execute on the

machines in the new schedule. The rescheduler also calculates ret current, the remaining

execution time of the numerical application if it were to to continue executing on the

original set of machines. The rescheduler then calculates the rescheduling gain as

rescheduling gain =
(ret current − (ret new + rescheduling cost))

ret current

The rescheduling cost is the cost of rescheduling and includes cost for redistribution

of data and other fixed overhead. If the application uses conventional data distributions

95

like block-cyclic data distribution, the Rescheduler by interaction with the Runtime

Support System (RSS) retrieves the parameters used for the data distribution and uses

these parameters to determine the data mapping for the new schedule. By the knowledge

of data distributions in the old and new schedules and the network information between

the resources in the old and new schedule, the Rescheduler calculates the time for data

redistribution from the old to the new schedule.

In cases when the end application uses its own data distribution strategies, the

Rescheduler uses 900 seconds for the rescheduling cost. This time is the worst case

time in seconds needed to reschedule the application. The various times involved in

rescheduling is given in Table 3.1. The times shown in Table 3.1 were obtained by

conducting a number of experiments with ScaLAPACK QR factorization problems of

different problem sizes and obtaining the maximum times for each phases of reschedul-

ing. Thus the rescheduling strategy adopts pessimistic approach for rescheduling where

migration of applications will be avoided in certain cases where migration can yield

performance benefits.

If the rescheduling gain is greater than 30%, the rescheduler sends STOP signal to

the application, and stores the stop status in the Database Manager. The Application

Manager then waits for the RESUME signal. The Rescheduler stores the RESUME

value in the Database Manager thus prompting the Application Manager to evolve a

new schedule and restart the application on the new schedule. If the rescheduling gain is

less than 30% and if the rescheduler is operating in the migration on request mode, the

96

Table 3.1: Times for rescheduling phases for ScaLAPACK QR application
Rescheduling Phase Time

(seconds)
Writing checkpoints 40
Waiting for NWS to update resource information 90
Time for application manager to get new resource informa-
tion from NWS

120

Evolving new application-level schedule 80
Other grid overhead 10
Starting application 60
Reading checkpoints and Data redistribution 500
Total 900

rescheduler contacts the Contract Monitor prompting the Contract Monitor to adjust

its tolerance limits.

The rescheduling threshold [114] which the performance gain due to rescheduling

must cross for rescheduling to yield significant performance benefits depends on the

load dynamics of the system resources, the accuracy of the measurements of resource

information and may also depend on the particular application for which rescheduling

is made. Since the measurements made by NWS are fairly accurate, the reschedul-

ing threshold for our experiments depended only on the load dynamics of the system

resources. By means of trail-and-error experiments we determined the rescheduling

threshold for our testbed to be 30%. Rescheduling decisions made below this threshold

may not yield performance benefits in all cases.

97

Chapter 4

SRS Checkpointing System

This chapter includes lightly revised version of a paper submitted to a journal.

Sathish S. Vadhiyar and Jack J. Dongarra. SRS - A Framework for Developing Malleable
and Migratable Parallel Applications for Distributed Systems. Submitted to Parallel
Processing Letters, 2003.

I was the primary contributor of the paper and was involved in the design and im-
plementation of the frameworks and verification by experiments. This chapter revises
the paper by providing a more detailed description of the framework developed and also
adds a section to the paper describing the relevance of the effort to the overall research.

The metascheduling framework described in the previous chapter assumes the ex-

istence of parallel applications that can be stopped and continued on a different set of

processors. Due to the existence of multiple applications and the high failure rate of

the resources in the Grid framework, the parallel application that was stopped may not

be able to continue on the same number of processors. Hence it is necessary that the

parallel applications have the ability to be stopped and continued on a possibly different

number of processors. Such reconfigurable parallel applications are called malleable

98

applications.

The ability to produce malleable parallel applications that can be stopped and re-

configured during the execution can offer attractive benefits for both the system and

the applications. The reconfiguration can be in terms of varying the parallelism for

the applications, changing the data distributions during the executions or dynamically

changing the software components involved in the application execution. In distributed

and Grid computing systems, migration and reconfiguration of such malleable appli-

cations across distributed heterogeneous sites which do not share common file systems

provides flexibility for scheduling and resource management in such distributed envi-

ronments. For e.g., the Rescheduler in the metascheduling framework can shrink an

executing parallel application to run on fewer machines, if some of the machines on

which the application was executing become heavily loaded. The present reconfigura-

tion systems do not support migration of parallel applications to distributed locations.

In this chapter, we discuss a framework for developing malleable and migratable MPI

message-passing parallel applications for distributed systems. The framework includes a

user-level checkpointing library called SRS and a runtime support system that manages

the checkpointed data for distribution to distributed locations.

4.1 Motivation

Distributed systems and computational Grids [58] involve large system dynamics that

it is highly desirable to reconfigure executing applications in response to the change

99

in environments. Specifically, reconfiguration of executing applications is useful in the

following cases:

1. Application migration

The machines in a cluster on which the application is currently executing may

become unavailable after a period of time. After knowing this information from

the system administrators, the user may determine that the application will not

be able to complete within the period of time. Hence he may want to stop the ap-

plication and move the application to another cluster and continue the application

from the point where the application was stopped.

Application migration is also useful for resource management systems like Condor

[75] where an application has to be migrated when the workstation owner returns

to using the machine. Also, parallel applications execute on large number of

shared systems in distributed environments. The performance of the applications

will be degraded if there is increase in external load on the resources caused by

other applications. In this situation, the scheduling system may want to migrate

the executing application to a different site to avoid the impact in performance of

the application caused by the heavy loads on the machines.

2. Trial-and-Error experiments

In many cases, it is difficult for users of parallel applications to determine the

amount of parallelism to be used for their applications. The users may want

100

to determine the amount of parallelism by means of trial-and-error experiments.

Hence he can start the application on initial set of processors, determine that his

application is not running at sufficient speed, stop the application, restart and

continue it with more number of processors, stop the application again and so on.

Like with the number of processors, the user of parallel programs is at a loss re-

garding the type of data distribution he has to use for the data in his program.

The user can use a initial data distribution, e.g., block data distribution, and

execute his application. If the performance of his application is not satisfactory,

he can stop his application, compile his application with a new data distribu-

tion, e.g., block cyclic, restart the application and continue from the point when

it was stopped, but this time with the block-cyclic data distribution, note the

performance change, stop his application again and so on.

3. Reducing the processor set

The user may want to reduce the number of processors he is using for the applica-

tion either to increase the performance of the application or due to non-availability

of some resources.

4. Fault tolerance

Due to the large number of machines involved in the distributed computing sys-

tems, the mean single processor failure rate and hence the failure rate of the set

of machines where parallel applications are executing are fairly high [24]. Hence,

101

for long running applications involving large number of machines, the probability

of successful completion of the applications is low. In this case, a mechanism in

the application for withstanding the failures is needed.

In the above situations, it will be helpful for the users or the scheduling system to

stop the executing parallel application and continue it possibly with a new configuration

in terms of the number of processors used for the execution. In cases of the failure of

the application due to non-deterministic events, restarting the application on a possibly

new configuration also provides a way of fault tolerance. Reconfigurable or malleable

and migratable application provide added functionality and flexibility to the scheduling

and resource management systems for distributed computing.

In order to achieve starting and stopping of the parallel applications, the state of

the applications have to be checkpointed. Elonazhy [49] and Plank [83] have surveyed

several checkpointing strategies for sequential and parallel applications. Checkpointing

systems for sequential [84, 104] and parallel applications [46, 35, 16, 99, 63] have been

built. Checkpointing systems are of different types depending on the transparency

to the user and the portability of the checkpoints. Transparent and semi-transparent

checkpointing systems [84, 39, 99] hide the details of checkpointing and restoration

of saved states from the users, but are not portable. Non-transparent checkpointing

systems [70, 64, 79, 63] involves the users to make some modifications to their programs

but are highly portable across systems. Checkpointing can also be implemented at the

kernel level or user-level.

102

In this research, a checkpointing infrastructure was developed that helps in the devel-

opment and execution of malleable and migratable parallel applications for distributed

systems. The infrastructure consists of a user-level semi-transparent checkpointing li-

brary called SRS (Stop Restart Software) and a Runtime Support System (RSS). Our

SRS library is semi-transparent because the user of the parallel applications has to insert

calls in his program to specify the data for checkpointing and to restore the application

state in the event of a restart. But the actual storing of checkpoints and the redistribu-

tion of data in the event of a reconfiguration are handled internally by the library. Also,

SRS library provides for modifying the data distribution from one application run to

another. Here a single application run refers to the period in the application from when

the application began or when it was continued to when the application was stopped or

terminated execution. Any native MPI versions can be used with SRS library. Though

there are few checkpointing systems that allow changing the parallelism of the parallel

applications [64, 79], our system is unique in that it allows for the applications to be

migrated to distributed locations with different file systems without requiring the users

to manually migrate the checkpoint data to distributed locations. This is achieved by

the use of a distributed storage infrastructure called IBP [82] that allows the appli-

cations to remotely access checkpoint data. Our checkpointing infrastructure provides

both proactive preemption and restarts of the applications and tolerance in the event

of failures.

The contributions of our checkpointing infrastructure are:

103

1. providing an easy-to-use checkpointing library that allows reconfiguration of par-

allel applications.

2. allowing checkpoint data to be ported across heterogeneous machines and

3. providing migration of the application across locations that do not share common

file systems without requiring the user to migrate data.

4.2 Related Work

Checkpointing parallel applications have been widely studied in [49, 83, 73] and check-

pointing systems for parallel applications have been developed [39, 35, 94, 118, 86, 46,

63, 99, 15, 70, 63, 16, 69, 64, 79]. Some of the systems were developed for homoge-

neous systems [39, 36, 94, 99] while some checkpointing systems allows applications to

be checkpointed and restarted on heterogeneous systems [46, 63, 15, 16, 21, 70, 64, 79].

Calypso [21] and Plinda [70] require application writers to write their programs in terms

of special constructs and cannot be used with third-party software. Systems including

Dynamic PVM [46] and CUMULVS [63] use PVM [23, 61, 62, 11] mechanisms for fault

detection and process spawning and can only be used with PVM environments. Cocheck

[99] and Starfish [15] provide fault tolerance with their own MPI implementations and

hence are not suitable for distributed computing and Grid systems where the more

secure MPICH-G [56] is used. CUMULVS [63], Dome [16, 24], the work by Hofmeis-

ter [69] and Deconick [40, 41, 29], DRMS [79] and DyRecT [14, 64] are closely related

to our research in terms of the checkpointing API, the migrating infrastructure and

104

reconfiguration capabilities.

The CUMULVS [63] API is very similar to our API in that it requires the applica-

tion writers to specify the data distributions of the data used in the applications and it

provides support for some of the commonly used data distributions like block, cyclic etc.

CUMULVS also supports stopping and restarting of applications. But the applications

can be stopped and continued only on the same number of processors. Though CU-

MULVS supports MPI applications, it uses PVM as the base infrastructure and hence

poses the restriction of executing applications on PVM.

Dome [16, 24] supports reconfiguration of executing application in terms of changing

the parallelism for the application. But the data that can be redistributed for recon-

figuration have to be declared as Dome objects. Hence it is difficult to use Dome with

third-party software like ScaLAPACK where native data is used for computations. Also

Dome uses PVM as the underlying architecture and cannot be used for message passing

applications.

The work by Hofmeister [69] supports reconfiguration in terms of dynamically re-

placing a software module in the application, moving a module to a different processor

and adding or removing a module to and from the applications. But the package by

Hofmeister only works on homogeneous systems. The work by Deconinck [40, 41, 29]

is similar to SRS in terms of the checkpointing API and the checkpointing infrastruc-

ture. Their checkpoint control layer is similar to our RSS in terms of managing the

distributed data and the protocols for communication between the applications and the

105

checkpoint control layer is similar to ours. By using architecture-independent check-

points, the checkpoints used in their work are heterogeneous and portable. But the

work by Deconick does not support reconfiguration of application in terms of varying

the parallelism of the applications.

The DyRecT [14, 64] framework for reconfiguration allows dynamic reconfiguration

of applications in terms of varying the parallelism by adding or removing the proces-

sors during the execution of parallel application. The user-level checkpointing library

in DyRecT also supports the specification of data distribution. The checkpoints are

system-independent and MPI applications can use the checkpointing library for dy-

namic reconfiguration across heterogeneous systems. But DyRecT uses LAM MPI [6]

for implementing the checkpointing infrastructure to use the dynamic process spawning

and fault detection mechanisms provided by LAM. Hence DyRecT is mainly suitable

for workstation clusters and not distributed and Grid systems where the more secure

MPICH-G is used [56]. Also, DyRecT requires the machines to share a common file sys-

tem and hence applications cannot be migrated and reconfigured to distributed locations

that do not share common file systems.

The DRMS [79] checkpointing infrastructure uses DRMS programming model to

support checkpointing and restarting parallel applications on different number of pro-

cessors. It uses powerful checkpointing mechanisms for storing and retrieving checkpoint

data to and from permanent storage. It is the closest related work to SRS in that it

supports a flexible checkpointing API for reconfiguring MPI message passing applica-

106

tions implemented on any MPI implementations to be reconfigured on heterogeneous

systems. But DRMS also does not support migrating and restarting applications on

environments that do not share common file systems with the environments where the

applications initially executed.

A more recent work by Kalé et. al [71] achieves reconfiguration of MPI-based mes-

sage passing programs. But reconfiguration is achieved by using a MPI implementation

called AMPI [28] that is less suitable to Grid systems than MPICH-G.

4.3 SRS Checkpointing Library

SRS (Stop Restart Software) is a user-level checkpointing library that helps to make

iterative parallel MPI message passing applications reconfigurable. Iterative parallel

applications cover a broad range of important applications including linear solvers, heat-

wave equation solvers, partial differential equation (PDE) applications etc. The SRS

library has been implemented in both C and Fortran and hence SRS functions can be

called from both C and Fortran MPI programs. The SRS library consists of 6 main

functions:

1. SRS Init,

2. SRS Restart Value,

3. SRS Read,

4. SRS Register,

107

5. SRS Check Stop and

6. SRS Finish.

The user calls SRS Init after calling MPI Init. SRS Init is a collective operation

and initializes the various data structures used internally by the library. SRS Init also

reads various parameters from a user-supplied configuration file called srs.config. These

parameters include the location of the Runtime Support System (RSS), a flag indicat-

ing if the application needs periodic checkpointing and the location of the Database

Manager. SRS Init, after reading these parameters, contacts the RSS and sends the

current number of processes that the application is using. It also receives the previous

configuration of the application from the RSS if the application has been restarted from

a previous checkpoint. SRS Init, then contacts the Database Manager registering the

status of the end application as STARTED.

In order to stop and continue an executing application, apart from checkpointing

the data used by the application, the execution context of the application also needs to

be stored. For e.g., when the application is initially started on the system, various data

needs to be initialized, whereas when the application is restarted and continued, data

needs to be read from a checkpoint and the initialization phase can be skipped. Most

checkpointing systems [84] restore execution context by storing and retrieving execution

stack. This solution compromises on the portability of the checkpointing system. Since

the main goal of the SRS library is to provide heterogeneous support, the task of restor-

ing the execution context is implemented by the user by calling SRS Restart Value.

108

SRS Restart Value returns 0 if the application is starting its execution and 1 if the ap-

plication is continued from its previous checkpoint. By using these values returned by

SRS Restart Value, the user can implement conditional statements in his application to

execute certain parts of the code when the application begins its execution and certain

other parts of the code when the application is continued from its previous checkpoint.

SRS library uses Internet Backplane Protocol(IBP)[82] for storage of the checkpoint

data. IBP depots are started on all the machines the user wants to use for the execution

of his application. SRS Register is used to mark the data that will be checkpointed by

the SRS library during periodic checkpointing or when SRS Check Stop is called. Only

the data that are passed in the SRS Register call are checkpointed. The user specifies the

parameters of the data including the size, data type and data distribution when calling

SRS Register. The data distributions supported by the SRS library include common

data distributions like block, cyclic and block-cyclic distributions. For checkpointing

data local to a process of the application or for data without distribution, a distribution

value of 0 can be specified. SRS Register stores the various parameters of the data in a

local data structure. SRS Register does not perform actual checkpointing of the data.

SRS Read is the main function that achieves reconfiguration of the application.

When the application is stopped and continued, the checkpointed data can be retrieved

by invoking SRS Read. The user specifies the name of the checkpointed data, the

memory into which the checkpointed data is read and the new data distribution when

calling SRS Read. The data distribution specified can be conventional distributions or

109

0 for no distribution or SAME if the same data has to be propagated over all processes.

The value SAME is useful for retrieving iterator values when all the processes need to

start execution from the same iteration. The SRS Read contacts the RSS and retrieves

the previous data distribution and the location of the actual data. If no distribution

is specified for SRS Read, each process retrieves the entire portion of the data from

the corresponding IBP depot used in the previous execution. If SAME is used for the

data distribution, the first process reads the data from the IBP depot corresponding

to the first process in the previous execution and broadcasts the data to the other

processes. If data distribution is specified in SRS Read, SRS Read determines the data

maps for the old and new distributions of the data corresponding to the previous and

the current distributions. Based on the information contained in the data maps, each

process retrieves its portion of data from the IBP depots containing the data portions.

Thus reconfiguration of the application is achieved by using different level of parallelism

for the current execution and specifying a data distribution in SRS Read that may be

different from the distribution used in the previous execution.

SRS Check Stop is a collective operation and called at various phases of the program

to check if the application has to be stopped. If SRS Check Stop returns 1, then an

external component has requested for the application to stop, and the application can

execute application-specific code to stop the executing application. SRS Check Stop

contacts the RSS to retrieve a value that specifies if the application has to be stopped. If

an external component has requested for the application to be stopped, SRS Check Stop

110

stores the various data distributions and the actual data registered by SRS Register to

the IBP [82] depots. Each process of the parallel application stores its piece of data to

the local IBP depot. By storing only the data specified by SRS Register and requiring

each process of the parallel application to store the data to the IBP depot on the

corresponding machine, the overhead incurred for checkpointing is significantly low.

SRS Check Stop sends the pointers for the checkpointed data to RSS and deletes all

the local data structures maintained by the library. SRS Check Stop also contacts the

Database Manager specified in the srs.config file and stores the application status as

STOPPED.

SRS Finish is called collectively by all the processes of the parallel application before

MPI Finish in the application. SRS Finish deletes all the local data structures main-

tained by the library and contacts the RSS requesting the RSS to terminate execution.

SRS Finish also contacts the Database Manager specified in the srs.config file storing

the status of the application as DONE.

Fundamental to the reconfiguration capability provided by the SRS framework is

the representation of data distributions by internal data structures called data maps.

The data distributions stored in the IBP depots are in the form of the data maps.

SRS Read performs data redistribution by generating data maps for the old and the

new distributions for the data. A data map contains the sizes and the locations of the

different blocks of data. Figure 4.1 illustrates a sample data map. In the figure, the

first data block consisting of 1000 units of data reside in processor 0, the second block

111

offset size processor

 0 1000 0

1000 500 1

1500 800 2

2300 1000 3

3300 700 4

Figure 4.1: A Data Map representing a data distribution of a data of size 4000 units

of data consisting of 500 units of data reside in processor 1 etc. Although the data map

is restricted in that it will not be able to express complex data distributions, it is useful

for expressing most of the common data distributions like block, block-cyclic, circular

etc.

Apart from the 6 main functions, SRS also provides 3 auxiliary functions:

SRS StoreMap, SRS DistributeFunc Create and SRS DistributeMap Create.

SRS StoreMap is a collective operation to store the data maps of the various data to

the IBP depots. The first processor gets the data distributions of all the data that were

specified in all the SRS Registers from all processors. For data with data distributions,

it then calls the appropriate data distribution functions to generate data maps. The

distribution functions also return an encoding of the input information used by the

functions. For e.g., for a block-cyclic data distribution, the encoding is the block size

of the data. The first process then stores the data maps to the IBP depots and sends

112

pointers to the location of the IBP depots to the RSS. It also sends the encodings used

in the distribution functions, the type and size of the data, the process number of the

processor holding the local data without distributions and other relevant information to

the RSS. The user can call SRS StoreMap after all the SRS Register calls in his code to

store the data maps. This is done so that an external component like the Rescheduler

can retrieve the data maps and other information stored by SRS StoreMap from the

RSS to make rescheduling decisions. SRS Check Stop also calls SRS StoreMap if the

user has not explicitly called SRS StoreMap.

SRS DistributeFunc Create and SRS DistributeMap Create allow the user to specify

his own data distributions instead of using the data distributions provided by the SRS

library. The user can create his own distribution function that returns a data map and

register his function to the SRS system using SRS DistributeFunc Create. The handle

returned by SRS DistributeFunc Create can then be passed to the SRS Register and

SRS Read calls. The user can also explicitly construct the data map structure and

register the data map to the SRS library using SRS DistributeMap Create.

SRS DistributeMap Create also returns a handle that can be used in SRS Register and

SRS Read calls.

Figure 4.2 shows a simple MPI based parallel program. The global data indicated

by global A is initialized in the first process and distributed across all the processes in

a block distribution. The program then enters a loop where each element of the global

data is incremented by a value of 10 by the process holding the element.

113

int main(int argc, char** argv){
int *global_A, int* local_A;
int global_size, local_size;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Init(&argc, &argv);

MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);
local_size = global_size/size;

if(rank == 0){

for(i=0; i<global_size; i++){
global_A[i] = i;

}
}

MPI_Scatter (global_A, local_size, MPI_INT, local_A, local_size,
MPI_INT, 0, comm);

for(i=0; i<global_size; i++){

proc_number = i/local_size;
local_index = i\%local_size;

if(rank == proc_number){
local_A[local_index] += 10;

}
}

MPI_Finalize();

exit(0);

}

Figure 4.2: Original code

114

Figure 4.3 shows the same code instrumented with calls to the SRS library. The

application shown in Figure 4.3 is reconfigurable in that it can be stopped and continued

on a different number of processors.

4.4 Runtime Support System (RSS)

RSS is a sequential application that can be executed on any machine with which the

machines used for the execution of actual parallel application will be able to commu-

nicate. RSS exists for the entire duration of the application and spans across multiple

migrations of the application. Before the actual parallel application is started, the RSS

is launched by the user. The RSS prints out a port number on which it listens for re-

quests. The user fills a configuration file called srs.config with the name of the machine

where RSS is executing and the port number printed by RSS and makes the configu-

ration file available to the first process of the parallel application. When the parallel

application is started, the first process retrieves the location of RSS from the configura-

tion file and registers with the RSS during SRS Init. The RSS maintains the application

configuration of the present as well as the previous executions of the application.

The RSS also maintains an internal flag, called stop flag that indicates if the ap-

plication has to be stopped. Initially, the flag is cleared by the RSS. A utility called

stop application is provided and allows the user to stop the application. When the

utility is executed with the location of RSS specified as input parameter, the utility

contacts the RSS and makes the RSS set the stop flag. When the application calls

115

int main(int argc, char** argv){
int *global_A, int* local_A;
int global_size, local_size;
MPI_Comm comm = MPI_COMM_WORLD;

MPI_Init(&argc, &argv);
SRS_Init();

MPI_Comm_rank(comm, &rank);
MPI_Comm_size(comm, &size);

local_size = global_size/size;
restart_value = SRS_Restart_Value();

if(restart_value == 0){
if(rank == 0){

for(i=0; i<global_size; i++){
global_A[i] = i;

}
}

MPI_Scatter (global_A, local_size, MPI_INT, local_A, local_size,
MPI_INT, 0, comm);

iter_start = 0;
}
else{
SRS_Read("A", local_A, BLOCK, NULL);
SRS_Read("iterator", &iter_start, SAME, NULL);

}

SRS_Register("A", local_A, GRADS_INT, local_size, BLOCK, NULL);
SRS_Register("iterator", &i, GRADS_INT, 1, 0, NULL);

Figure 4.3: Modified code with SRS calls

116

for(i=iter_start; i<global_size; i++){
stop_value = SRS_Check_Stop();
if(stop_value == 1){

MPI_Finalize();
exit(0);

}
proc_number = i/local_size;
local_index = i\%local_size;

if(rank == proc_number){
local_A[local_index] += 10;

}
}

SRS_Finish();
MPI_Finalize();

exit(0);

}

Figure 4.3. Continued

117

SRS Check Stop, the SRS library contacts the RSS and retrieves the stop flag. The

application either continues executing or stops its execution depending on the value of

the flag.

When the SRS Check Stop checkpoints the data used in the application to IBP

depots, it sends the location of the checkpoints and the data distributions to the RSS.

When the application is later restarted, it contacts the RSS and retrieves the location of

the checkpoints from the RSS. When the application finally calls SRS Finish, the RSS

is requested by the application to terminate itself. The RSS cleans the data stored in

the IBP depots, deletes its internal data structures and terminates.

The interactions between the different components in the SRS checkpointing archi-

tecture is illustrated in Figure 4.4.

Appendix B gives a detailed description about the SRS API.

4.5 Steps for Developing and Executing Malleable Appli-

cations

Following is the summary of the actions needed for developing and executing malleable

and migratable MPI message passing applications with the SRS library.

1. The user starts IBP depots on all machines where he may execute his application.

2. The user converts his parallel MPI application into a malleable application by

inserting calls to SRS library. He then compiles and links with the SRS library.

118

User

Application Runtime Support System (RSS)

stop_application

Storage
IBP

Registration, Handles to checkpointed data,

Query for STOP signal

STOP

Storing and
Retrieving of
Checkpoints

Figure 4.4: Interactions in SRS

3. The user then executes RSS on a machine with which the machines for application

execution will be able to communicate. The RSS will output a port number on

which it listens for requests.

4. The user creates a configuration file specifying the machine and the port number

of RSS.

5. The user stores the configuration file in the working directory of the first process

of the parallel application.

6. The user starts his parallel application on a set of machines. The application,

through the SRS library communicates with the RSS.

119

7. In the middle of the application execution, the user can stop the application by

using the stop application utility. The user specifies the location and the port

number of the RSS to the stop application utility.

8. The user can restart his application on possibly a different number of processors in

the same way he initially started his application. After the application completes,

the RSS terminates.

4.6 Limitations

Although the SRS framework is robust in supporting migration of malleable parallel

applications across heterogeneous environments, it has certain limitations in terms of

the checkpointing library and the kind of applications it can support.

1. Although the SRS library can be used in a large number of parallel applications,

it is most suitable to iterative applications where SRS Check Stop can be inserted

at the beginning or at the end of the loop. The SRS library is not suitable

for applications like multi-component applications where different data can be

initialized and used at different points in the program.

2. Currently, the execution context is restored by the user by the use of appropriate

conditional statements in the program. This approach is cumbersome and difficult

for the users when programs where multiple nested procedures are involved.

3. The SRS library supports only native data types like single and double precision

120

floating point numbers, integers, characters etc. It does not support checkpointing

of complex pointers, files and structures.

4. Although the main motivation of the SRS library is to help the user proactively

stop an executing application and restart and continue it with a different con-

figuration, SRS also allows fault tolerance by means of periodic checkpointing.

However, the fault tolerance supported by SRS is limited in that it can tolerate

only application failures due to non-deterministic events and not total processor

failures. This is because the IBP depots on which the checkpoints are stored also

fail when the machines on which the IBP depots are located fail.

4.7 SRS and Metascheduler

After the end application has been instrumented with SRS calls, it can be started,

stopped, restarted and continued a number of times by the different components in

the GrADS framework. The GrADS Application Launcher, after starting the Contract

Monitor, launches the Runtime Support System (RSS) on the machine where the user

initiated the GrADS application execution. The Application Launcher then creates the

configuration file, srs.config needed by the SRS library. The Application Launcher fills

the srs.config file with information about the location of the RSS and the Database

Manager and stages the configuration file to the machine that will hold the first process

of the executing application determined by the Performance Modeler. The Application

Launcher finally launches the end application.

121

When the end application executes, the SRS library associated with the end ap-

plication reads the parameters from the srs.config file, registers its state as STARTED

with the Database Manager and communicates with the RSS. When a metascheduling

component like the Permission Service, Contract Negotiator or the Rescheduler decides

to stop the application, it contacts the RSS corresponding to the application and sends

a STOP signal. This signal is conveyed to the end application, when the application

executes its next SRS Check Stop call. The end application stops execution and stores

its status as STOPPED in the Database Manager. The Contract Monitor that moni-

tors the end application also stops execution. The GrADS Application Manager that

launched the end application through the Application Launcher, reads the status of the

end application from the Database Manager, learns that the application has stopped

and waits for the status of the application to change to RESUME.

When the metascheduler component decides to continue the end application, it stores

RESUME for the status of the application. This prompts the Application Manager to

restart from the Resource Selection phase in its life cycle and ultimately relaunch the

end application and the Contract Monitor with the new schedule and performance

prediction.

122

Chapter 5

Experiments and Results

This chapter includes experiments and results presented in the following papers.

Sathish S. Vadhiyar and Jack J. Dongarra. A Metascheduler For The Grid. Proceedings
of 11th IEEE International Symposium on High Performance Distributed Computing.
pages 343-351. July, 2002.

Sathish S. Vadhiyar and Jack J. Dongarra. A Performance Oriented Migration Frame-
work for the Grid. To appear in the Proceedings of The 3rd IEEE/ACM International
Symposium on Cluster Computing and the Grid (CCGrid 2003).

Sathish S. Vadhiyar and Jack J. Dongarra. Self Adaptivity in Grid Computing. Submit-
ted to the special issue of Concurrency: Practice and Experience on Grid Performance,
2003.

Sathish S. Vadhiyar and Jack J. Dongarra. SRS - A Framework for Developing Malleable
and Migratable Parallel Applications for Distributed Systems. Submitted to Parallel
Processing Letters, 2003.

I was the primary contributor of the papers and was involved in conducting experi-
ments and obtaining the results. In this chapter, more experiments and results are
added to the paper versions.

In this chapter, experimental results corresponding to different experiments are pro-

123

vided. Some of the experiments are intended to demonstrate the usefulness of the

metascheduling components. Some experiments were conducted to verify the accuracy

in predicting the cost associated with redistribution of data during rescheduling. The

experiments in the third section were conducted to study the overhead associated with

the SRS checkpointing library. The experiments in the final section were conducted

to verify the robustness of our metascheduler when large number of problems are sub-

mitted to the system. The experiments in the final section also help in studying the

different characteristics of the metascheduler and in comparing with the situations when

the metascheduler was not used.

5.1 Usefulness of Metascheduling Components

The following experiments were conducted for demonstrating the usefulness of different

metascheduling components.

ScaLAPACK LU and QR factorization codes were instrumented such that the time

taken for each iteration corresponding to a block of the matrix is measured and mon-

itored. IBP [82] depots, where storage can be allocated, are started on the processors

of the Grid System. The experimental testbed consists of the machines shown in Table

2.1. For all the experiments, the simulated annealing scheduler by Yarkhan [117] was

used for the GrADS Performance Modeler.

For the easy demonstration of the usefulness of the metascheduling components,

only a subset of the machines in the entire GrADS testbed shown in Table 2.1 was used

124

for the experiments in this section. The total execution times reported in the following

subsections include the time for Grid overhead and not just the time taken by the end

application. The times for the Grid overhead was reported in Chapter 2 and explained

in great detail in our previous work [81].

5.1.1 Permission Service

In this experiment, we demonstrate the functionality of the Permission Service. For

the experiments in this section, ScaLAPACK LU factorization code was used. A large

application, app1, was introduced into the system consisting of 4 opus machines, 1 torc

machine and 2 cypher machines. Ten minutes after app1 started, a relatively small

application, app2, that intended to use only the 4 opus machines was introduced into

the system. app2 was chosen such that its memory requirements were greater than

the memory available in the opus system when app1 was executing. In the following

experiment, a linear algebra problem with matrix size 13000 was chosen for app1. The

Permission Service evaluated the performance benefits of stopping app1, accommodat-

ing app2, and restarting app1 after the completion of app2. The functionality of the

Permission Service, when the matrix size of the linear algebra problem, app2, is 5000,

is illustrated on a single opus machine in Figure 5.1.

In Figure 5.2, we observe the percentage performance loss incurred by app1 due to

the accommodation of app2 in the system. The x-axis represents different matrix sizes

for app2 and the y-axis represents the percentage performance loss incurred by app1.

Two points can be observed from Figure 5.2. First, for less than 20% of performance loss

125

No processes running on
the system

13000 problem uses
the system

13000 problem
is stopped

5000 problem uses the system

5000 problem completes

13000 problem continues

13000 problem completes

Figure 5.1: Free memory available on a opus machine during the execution of app1 and
app2

Source: The NWS interactive query website [8].

126

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

4500 5000 5500 6000 6500 7000 7500 8000

%
 P

er
fo

rm
an

ce
 L

os
s

Matrix Size

Permission Service Utility

Figure 5.2: Performance loss for app1

for app1, the system was able to accommodate app2. Without the Permission Service

mechanism, app2 would not have been able to use the system. Second, the performance

loss increases with the increase in problem size of app2. When the problem size of app2

is comparable with the problem size of app1, the Permission Service determines that

performance benefits cannot be achieved for the system by accommodating app2.

5.1.2 Contract Negotiator

In this experiment, we demonstrate the utility of the Contract Negotiator in accom-

modating a new application by stopping an already running application, if significant

127

performance benefits can be obtained for the new application. The stopped application

is restarted after the new application completes its execution. For this experiment,

ScaLAPACK LU factorization code was used on only cypher machines. In this exper-

iment, an application, app1 is executed on N processors. 3 minutes after app1 started

its execution, an application, app2 is introduced in the Grid system. app2 is intended

to use (N+1) processors. Since N of the processors were occupied by app1, only a sin-

gle processor is available for app2. The Contract Negotiator analyzes the performance

benefits that can be obtained by stopping app1 and making (N+1) processors available

for app2. In the experiments, matrix size 7500 was used for app2. The total execution

time of a 7500 matrix size ScaLAPACK problem when executed on a single processor

is 818.11 seconds.

We define

1. Execution time of app1 without rescheduling, exec1without re

2. Execution time of app1 with rescheduling, exec1with re

3. Execution time of app2 without rescheduling, exec2without re

4. Execution time of app2 with rescheduling, exec2with re

5. Performance loss for app1, perf loss

perf loss =
exec1with re − exec1without re

exec1without re

128

6. Performance gain for app2, perf gain

perf gain =
exec2without re − exec2with re

exec2without re

7. Utility value, util val

util val =
perf gain

perf loss

util val > 1 indicates that the rescheduling strategy is useful for the entire system.

util val < 1 indicates that the rescheduling strategy can cause an overall loss in perfor-

mance for the entire system. Greater the value of util val, more the usefulness of the

rescheduling strategy.

Table 5.1 shows the matrix sizes of app1, the number of processors N, the number of

processors eventually used by app2 and the util val. Note that the eventual number of

processors used by app2 depends on system conditions and execution time model and

is not always the (N+1) processors available to app2.

We observe from Table 5.1, that the values of util val are consistently high for the

above experiments. This proves that the scheduling strategy of compromising long

running jobs for short running jobs is beneficial to the entire system. The value of

util val depends on a number of factors including the times for the long and short jobs

and the times for checkpointing the states of the long job. For e.g., even though the 7500

129

Table 5.1: Utility of Contract Negotiator
Matrix
Size of
app1

Processors
N

Number of
Proces-
sors used by
app2

util val

15000 4 5 2.13
17000 5 6 5.11
18500 6 7 2.27
20000 7 8 2.04
21000 8 9 2.05
22500 9 9 2.36
24000 10 9 1.72

matrix problem uses 9 processors when matrix sizes of 21000, 22500 and 24000 were used

for app1, the performance benefits due to the scheduling strategy obtained for the cases

when matrix sizes of app1 were 21000 and 22500, were higher than the performance

benefit obtained for the case when matrix size of app1 was 24000. This was due to

the longer time incurred for checkpointing the state of the 24000 matrix problem when

compared to checkpointing the states of 21000 and 22500 matrix problems. Also, there

is an optimal combination of long and short job sizes when the performance benefits due

to scheduling strategy can be high. In the above experiments, we observe that matrix

size 17000 for app1 leads to such high performance for the overall system.

5.1.3 Rescheduler

In the experiments in this section, ScaLAPACK QR factorization was used as the end

application. For all the experiments in this section, the worst cast rescheduling cost of

900 seconds as shown in Table 3.1 was used for rescheduling decisions.

130

Migration on Request

In all the experiments in this section, 4 msc machines and 8 opus machines were used.

A given matrix size for the QR factorization problem was input to the Application

Manager. Since the msc machines were faster than the opus machines, the Application

Manager by means of the performance modeler chose the 4 msc machines for the end

application run. A few minutes after the start of the end application, artificial load

is introduced into the 4 msc machines. This artificial load is achieved by executing a

certain number of loading programs on each of the msc machines. The loading program

used was a sequential C code that consists of a single looping statement that loops

forever. This program was compiled without any optimization in order to achieve the

loading effect.

Due to the loss in predicted performance caused by the artificial load, the con-

tract monitor requested the Rescheduler to migrate the application. The Rescheduler

evaluated the potential performance benefits that can be obtained by migrating the

application to the 8 opus machines and either migrated the application or allowed the

application to continue on the 4 msc machines. The Rescheduler was operated in two

modes - a default and a non-default mode. The normal operation of the Rescheduler is

its default mode and the non-default mode of the Rescheduler is when the Rescheduler

code was modified to force the application to either migrate or continue on the same set

of resources. Thus in cases when the default mode of the Rescheduler was to migrate

the application, the non-default mode was to continue the application on the same set of

131

resources and in cases when the default mode of the Rescheduler was to not migrate the

application, the non-default mode was to force the Rescheduler to migrate the applica-

tion by adjusting the rescheduling cost parameters. For each experimental run, results

were obtained for both when Rescheduler was operated in the default and non-default

mode. This allowed us to compare both scenarios and to verify if the Rescheduler made

the right decision.

Three parameters were involved in each set of experiments - the size of the matrices,

the amount of load and the time after the start of the application when the load was

introduced into the system. The following three sets of experiments were obtained by

fixing two of the parameters and varying the other parameter.

In the first set of experiments, the artificial load consisting of 10 loading programs

was introduced into the system 5 minutes after the start of the end application. The bar

chart in Figure 5.3 was obtained by varying the size of the matrices, i.e. the problem size

on the x-axis. The y-axis represents the execution time in seconds of the entire problem

including the Grid overhead. For each problem size, the bar on the left represents

the execution time when the application was not migrated and the bar on the right

represents the execution time when the application was migrated.

Several points can be observed from Figure 5.3. The time for reading checkpoints

occupied most of the rescheduling cost since it involves moving data across the Internet

from Tennessee to Illinois and redistribution of data from 4 to 8 processors. On the

other hand, the time for writing checkpoints is insignificant since the checkpoints are

132

7000 8000 9000 10000 11000 12000

Size of matrices (N)

E
xe

cu
tio

n
T

im
e

(s
ec

)

0
20

00
40

00
60

00
80

00
10

00
0

Application duration 2
Checkpoint reading
Application start 2
Grid overhead 2
Performance modeling 2
Resource selection 2
Checkpoint writing
Application duration 1
Application start 1
Grid overhead 1
Performance modeling 1
Resource slection 1

Rescheduler decided not
to reschedule for size 8000.
Wrong decision

Left Bars − No rescheduling
4 UT m/c s

Right Bars − Rescheduling
from 4 UT to 8 UIUC m/c s

Figure 5.3: Effect of Problem Sizes on Migration

133

written to local disks. The rescheduling benefits are more for large problem sizes since

the remaining lifetime of the end application when load is introduced is larger for larger

problem sizes. There is a particular size of the problem below which the migrating cost

overshadows the performance benefit due to rescheduling. Except for matrix size 8000,

the Rescheduler made the correct decision for all matrix sizes. For matrix size 8000,

the Rescheduler assumed a worst-case rescheduling cost of 900 seconds while the actual

rescheduling cost was close to about 420 seconds. Thus the Rescheduler evaluated the

performance benefit to be negligible while the actual scenario points to the contrary.

Thus the pessimistic approach followed by using a worst-case rescheduling cost in the

Rescheduler will lead to underestimating the performance benefits due to rescheduling

in some cases.

In the second set of experiments, matrix size 12000 was chosen for the end application

and artificial load was introduced 20 minutes into the execution of the application.

In this set of experiments, the amount of artificial load was varied by varying the

number of loading programs that were executed. In Figure 5.4, the x-axis represents

the number of loading programs and the y-axis represents the execution time in seconds.

For each amount of load, the bar on the left represents the case when the application

was continued on 4 msc machines and the bar on the right represents the case when the

application was migrated to 8 opus machines.

Similar to the first set of experiments, we find only one case when the Rescheduler

made incorrect decision for rescheduling. This case, when the number of loading pro-

134

3 5 5 10 10 15 15 20 20

Number of loading programs(N)

E
xe

cu
tio

n
T

im
e

(s
ec

)

0
10

00
20

00
30

00
40

00
50

00
60

00

Application duration 2
Checkpoint reading
Application start 2
Grid overhead 2
Performance modeling 2
Resource selection 2
Checkpoint writing
Application duration 1
Application start 1
Grid overhead 1
Performance modeling 1
Resource slection 1

Rescheduler decided
not to reschedule.
Wrong decision.

No Rescheduling

Left Bars − No rescheduling
4 UT m/c s

Right bars − Rescheduling
from 4 UT to 8 UIUC m/cs

Figure 5.4: Effect of Amount of Load on Migration

135

grams was 5 was due to the insignificant performance gain that can be obtained due to

rescheduling. When the number of loading programs was 3, we were not able to force

the Rescheduler to migrate the application since the application completed at the time

of rescheduling decision. Also, more the amount of load, the more the performance

benefit due to rescheduling because of larger performance losses for the application in

the presence of heavier loads. But the most significant result in Figure 5.4 was that

the execution times when the application was rescheduled remained almost constant

irrespective of the amount of load. This is because, as can be observed from the results

when the number of loading programs was 10 and when the number was 20, the more

the amount of load, the earlier the application was rescheduled. Hence our rescheduling

framework was able to adapt to the external load.

In the third set of experiments, shown in Figure 5.5, equal amount of load consisting

of 7 loading programs was introduced at different points of execution of the end applica-

tion for the same problem of matrix size 12000. The x-axis represents the elapsed time

in minutes of the execution of end application when the load was introduced. The y-axis

represents the total execution time in seconds. Similar to the previous experiments, the

bars on the left denote the cases when the application was not rescheduled and the bars

on the right represent the cases when the application was rescheduled.

As can be observed from Figure 5.5, there are diminishing returns due to rescheduling

as the load is introduced later into the program execution. The Rescheduler made wrong

decisions in two cases - when the load introduction times are 15 and 20 minutes after

136

5 5 10 10 15 15 20 20 23 24

Time since start of the application when load was introduced(Minutes)

E
xe

cu
tio

n
T

im
e

(s
ec

)

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00 Application duration 2
Checkpoint reading
Application start 2
Grid overhead 2
Performance modeling 2
Resource selection 2
Checkpoint writing
Application duration 1
Application start 1
Grid overhead 1
Performance modeling 1
Resource slection 1

from 4 UT to 8 UIUC m/cs

Wrong decisions.
not to reschedule.
Rescheduler decided

Right Bars − Rescheduling

Left Bars − No rescheduling
4 UT m/cs

23

Figure 5.5: Effect of Load Introduction Time on Migration

137

the start of end application execution. While the wrong decision for 20 minutes can

be attributed to the pessimistic approach of rescheduling, the wrong decision of the

Rescheduler for 15 minutes was determined to be due to the faulty functioning of the

performance model for the ScaLAPACK QR problem for UIUC machines. The most

startling result in Figure 5.5 is when the load was introduced 23 minutes after the

start of the end application. At this point, the program almost completed and hence

rescheduling will not yield performance benefits for the application. The Rescheduler

was able to evaluate the scenario and avoid unnecessary rescheduling of the application.

Most rescheduling frameworks will not be capable of achieving this since they do not

possess the knowledge regarding remaining execution time of the application.

Opportunistic Migration

In this set of experiments, we illustrate opportunistic migration in which the Rescheduler

tries to migrate an executing application when some other application completes. For

the experiments in this section, ScaLAPACK QR factorization code was used. Two

experiments were conducted to demonstrate the usefulness of the Rescheduler.

In the first experiment, an application, app1, was introduced into the system such

that it consumed most of the memory of 8 msc machines. During the execution of app1,

an app2, that intended to use 11 machines, 3 torcs and 8 mscs was introduced into

the system. Since the 8 msc machines were occupied by app1, app2 was able to utilize

only the 3 torc machines. When app1 completed, the 8 msc machines were freed and

app2 was able to utilize the extra resources to reduce its remaining execution time. The

138

Rescheduler evaluated the performance benefits of allowing app2 to utilize the extra 8

processors.

ScaLAPACK problems of sizes 20000 and 21000, depending on the available memory

on mscs when the experiments were run, were used for app1. ScaLAPACK problem of

size 11000 was used for app2.

We define

1. Total execution time of app2 on 3 torcs without rescheduling, execwithout re

2. Total execution time of app2 with rescheduling, execwith re

3. Percentage rescheduling gain for app2, percentagegain

percentage gain =
execwithout re − execwith re

execwithout re

app2 was introduced at various points of time after the starting of app1. Hence

additional resources will be available for app2 at various points of time into its execution.

The total number of iterations needed by the ScaLAPACK problem of size 11000 was

275. Figure 5.6 illustrates the utility of rescheduling as a function of the remaining

number of iterations left for app2 when app2 was rescheduled. We observe that the

percentage rescheduling gain for app2 increases when the remaining execution time left

for app2 at the time of rescheduling increases. The rescheduling gain depends on a

number of parameters like the time taken for redistribution of data and the number of

additional resources available etc. These parameters depend on the specific application

139

0

2

4

6

8

10

12

14

16

18

20

200 205 210 215 220 225 230 235 240 245

%
 P

er
fo

rm
an

ce
 G

ai
n

du
e

to
 r

es
ch

ed
ul

in
g

Remaining number of iterations for problem of size=11000 when it was rescheduled

Expander Utility

Figure 5.6: Rescheduling gain for app2

for which rescheduling is done.

For the second experiment, two problems were involved similar to the first experi-

ment. For the first problem, matrix size of 14000 was input to the Application Manager

and 6 msc machines were made available. The Application Manager, through the Per-

formance Modeler chose the 6 machines for the end application run. Two minutes after

the start of the end application for the first problem, a second problem of a given ma-

trix size was input to the Application Manager. For the second problem, the 6 msc

machines on which the first problem was executing and 2 opus machines were made

available. Due to the presence of the first problem, the 6 msc machines alone were in-

140

sufficient to accommodate the second problem. Hence the performance model chose the

6 msc machines and 2 opus machines for the end application and the actual application

run involved communication across the Internet.

In the middle of the execution of the second application, the first application com-

pleted and hence the second application can be potentially migrated to use only the

6 msc machines. Although this involved constricting the number of processors of the

second application from 8 to 6, there can be potential performance benefits due to

the non-involvement of Internet. The Rescheduler evaluated the potential performance

benefits due to migration and made an appropriate decision.

Figure 5.7 shows the results for two illustrative cases when matrix sizes of the second

application were 13000 and 14000. The x-axis represents the matrix sizes and the y-

axis represents the execution time in seconds. For each application run, three bars are

shown. The bar on the left represents the execution time for the first application that

was executed on 6 msc machines. The middle bar represents the execution time of

the second application when the entire application was executed on 6 msc and 2 opus

machines. The bar on the right represents the execution time of the second application,

when the application was initially executed on 6 msc and 2 opus machines and later

migrated to execute on only 6 msc machines when the first application completed.

In both problem cases, matrix sizes 13000 and 14000, for the second problem, the

Rescheduler made the correct decision of migrating the application. We also find that

for both problem cases, the second application was almost immediately rescheduled

141

14000 13000 13000 14000 14000 14000

Size of matrices (N)

E
xe

cu
tio

n
T

im
e

(s
ec

)

0
20

00
40

00
60

00

Application duration 2
Checkpoint reading
Application start 2
Grid overhead 2
Performance modeling 2
Resource selection 2
Checkpoint writing
Application duration 1
Application start 1
Grid overhead 1
Performance modeling 1
Resource slection 1

Left Bars − Large problem

Middle Bars − No rescheduling
6 UT and 2 UIUC m/c s

from 6 UT and 2 UIUC
m/c s to 6 UT m/c s

Right Bars − Rescheduling

6 UT m/c s

Figure 5.7: Opportunistic Migration

142

after the completion of the first application.

5.2 Predicting Redistribution Cost

As observed in Figures 5.3, 5.4, 5.5, the Rescheduler makes wrong decisions for reschedul-

ing in certain cases. In cases where the Rescheduler made the wrong decisions, the

Rescheduler decided that rescheduling the executing application will not yield signif-

icant performance benefits for the application while the actual results point to the

contrary. This is because the Rescheduler used the worst case times shown in Table 3.1

for different phases of rescheduling while the actual rescheduling cost was less than the

worst case rescheduling cost for cases when the Rescheduler made the wrong decisions.

As shown in Table 3.1, of the various costs involved in rescheduling, the cost for

reading and redistribution of data is the highest. The data redistribution and reading

the checkpoints are performed in a single operation where the processes determine the

portions and locations of data needed by them and read the checkpoints directly from

the IBP [82] depots. The data redistribution cost depends on a number of factors

including the number and amount of checkpointed data, the data distributions used

for the data , the current and future processors sets for the application used before

and after rescheduling respectively, the network characteristics, particularly the latency

and bandwidth, of the links between the current and future processor sets etc. The

rescheduling framework was extended to predict the redistribution cost and use the

predicted redistribution cost for calculating the gain due to rescheduling the executing

143

application. Though the time for writing the checkpoints also depends on the size of

the checkpoints which in turn depends on the problem size, the checkpoint writing time

is insignificant due to the design of the rescheduling architecture where the processes

write checkpoint data to the local disks. Hence the time for checkpoint writing is not

predicted in the rescheduling framework.

Similar to the SRS library, the Rescheduling framework has also been extended to

support common data distribution algorithms like block, cyclic and block-cyclic distri-

butions. When the end application calls SRS Register to mark the checkpointed data,

it also specifies the data distribution used for the data. If the data distribution is one of

the common data distributions, the input parameter used for the distribution is stored

in an internal data structure of the SRS library. For e.g., if block-cyclic data distribution

is specified for the data, the block size used for the distribution is stored in the internal

data structure. When the application calls, SRS StoreMap, the data distributions used

for the different data along with the parameters used for the distribution are sent to the

Runtime Support System (RSS).

When the Rescheduler wants to calculate the rescheduling cost of an executing

application, it contacts the RSS of the application, and retrieves various information

about the data that were marked for checkpointing including the total size and data

types of the data, the data distributions used for the data and the parameters used for

the data distributions. For each data that uses one of the common data distributions

supported by the Rescheduler, the Rescheduler determines the data maps for the current

144

processor configuration on which the application is executing and the future processor

configuration where the application can be potentially rescheduled. A data map indicate

the total number of panels of the data and the size and location of each of the data

panel. The Rescheduler calculates the data map using the data distribution and the

parameters used for data distribution, it collected from RSS. Based on the data maps

for the current and future processor configuration and the properties of the networks

between the current and future processor configuration it collected from NWS, the

Rescheduler simulates the redistribution behavior. The end result of the simulation is

the predicted cost for reading and redistribution of checkpointed data if the application

was rescheduled to the new processor configuration. The Rescheduler uses this predicted

redistribution cost for calculation the potential rescheduling gain that can be obtained

due to rescheduling the application.

An experiment was conducted in which the simulation model for predicting the re-

distribution cost was validated. In this experiment, 4 msc and 8 opus machines were

used. A ScaLAPACK QR factorization problem was submitted to the GrADS Appli-

cation Manager. Since the msc machines are faster than the opus machines, the 4 msc

machines were chosen by the Performance Modeler for the execution of the end appli-

cation. 5 minutes after the start of the execution of the end application, artificial loads

are introduced in the msc machines by the execution of 10 loading programs on each

of the msc machines. When the Contract Monitor contacted the Rescheduler request-

ing for rescheduling the application, The Rescheduler dynamically predicted the the

145

0

20

40

60

80

100

120

140

6000 7000 8000 9000 10000 11000 12000 13000 14000

T
im

e
[s

ec
s.

]

Matrix Size

Redistribution Cost, Predicted vs Actual performance
(4 UT, 8 UIUC machines)

measured time
predicted time

Figure 5.8: Redistribution Cost Prediction

redistribution cost involved in rescheduling the application from msc to opus machines.

Figure 5.8 compares the predicted and the actual cost for redistribution of data in the

application for different problem sizes. The x-axis denoted the matrix sizes used for the

QR factorization problem and the y-axis represents the redistribution time.

From Figure 5.8, we find that the Rescheduler was able to perform a reasonable

simulation of the redistribution of data. The actual redistribution cost was greater than

the predicted redistribution cost by only 30-40 seconds. The difference is mainly due

to the unpredictable behavior in the network characteristics of the Internet connection

between Tennessee and Illinois, Urban-Champaign. By employing the predicted redis-

146

tribution cost, the Rescheduler was able to make the right decisions for rescheduling for

cases in Figures 5.3, 5.4 and 5.5 when it previously made wrong decisions.

5.3 SRS Checkpointing Experiments

In the experiments in this section, msc and opus clusters were used. The application

used for SRS checkpointing was ScaLAPACK QR factorization. The experiments were

conducted on non-dedicated machines.

5.3.1 SRS Overhead

In the first experiment, the overhead of SRS library was analyzed when checkpointing

of data is not performed. Thus the application instrumented with SRS library simply

connects to a RSS daemon and runs to completion. Figure 5.9 compares the execution

of the factorization application on 8 msc machines when operated in three modes. The

“Normal” mode is when the plain application without SRS calls is executed. In the

second mode, the application instrumented with SRS library was executed connecting

to a RSS daemon started at UT. In the third mode, the application instrumented with

SRS library was executed connecting to a RSS daemon started at UIUC. The x-axis

represents the matrix sizes used for the problem and the y-axis represents the total

elapsed execution time of the application.

The maximum overhead of using SRS when RSS was started at UT was 15% of

the overall execution time of the application. This is close to the 10% overhead that

147

0

500

1000

1500

2000

2500

3000

2000 4000 6000 8000 10000 12000 14000 16000

E
xe

cu
tio

n
T

im
e

[s
ec

s.
]

Matrix Size

Overhead in using SRS (No Checkpointing)
(application=ScaLAPACK QR, cluster=homogeneous(UT), procs=8)

Normal
With SRS (RSS at UT)

With SRS (RSS at UIUC)

Figure 5.9: Overhead in SRS on a homogeneous cluster (No Checkpointing)

148

Table 5.2: Details of Periodic Checkpointing used for Figure 5.10
Matrix
Size

Number of Check-
points

Size per Check-
point (MBytes)

Time for stor-
ing a
checkpoint
(Seconds)

8000 1 64 6.51
10000 2 100 10.06
12000 3 144 13.68
14000 4 196 32.34
16000 5 256 93.25

is desired for checkpointing systems [74]. The worst-case overhead of using SRS when

RSS was started at UIUC was 29% of the overall execution time of the application.

The increased overhead is due to the communication between SRS and RSS during

initialization and at different phases of the application. Since RSS was located at UIUC,

the communications involved slow Internet bandwidth between UT and UIUC. The

large overhead can be justified by the benefits the SRS library provide in reconfiguring

applications across heterogeneous sites.

Figure 5.10 shows the results of an experiment similar to the first experiment, but

with the periodic checkpointing option turned on. In the periodic checkpointing mode,

the SRS library checkpoints the application data to IBP depots every 10 minutes.

The worst-case SRS overheads in this experiment was high - 23% of the application

time when RSS was located at UT and 36% of the application time when RSS was

located at UIUC. The details of the periodic checkpointing used for Figure 5.10 is given

in Table 5.2.

149

0

500

1000

1500

2000

2500

3000

8000 9000 10000 11000 12000 13000 14000 15000 16000

E
xe

cu
tio

n
T

im
e

[s
ec

s.
]

Matrix Size

Overhead in using SRS
(Periodic Checkpointing every 10 minutes)

(application=ScaLAPACK QR, cluster=homogeneous(UT), procs=8)

Normal
With SRS (RSS at UT)

With SRS (RSS at UIUC)

Figure 5.10: Overhead in SRS on a homogeneous cluster (Periodic Checkpointing)

150

Table 5.3: Details of Periodic Checkpointing used for Figure 5.11
Matrix
Size

Number of Check-
points

Size per Check-
point (MBytes)

Time for stor-
ing a
checkpoint
(Seconds)

2000 1 2.5 4.59
4000 1 10.6 9.34
6000 2 24 11.22
8000 3 42.7 13.50
10000 5 66.7 18.51

From Table 5.2, it is clear that the high worst-case SRS overheads seen in Figure 5.10

are not due to the time taken for storing checkpoints. We suspect that the overheads

are due to the transient loads on the non-dedicated machines.

In the third experiment in this subsection, the application was executed in a het-

erogeneous environment comprising 8 opus and 4 msc machines. The application was

operated in 3 modes. “Normal” was when the plain application was executed. In the

second mode, the application instrumented with SRS calls was executed without check-

pointing. In the third mode, the application instrumented wit SRS calls was executed

with periodic checkpointing of every 10 minutes. In the SRS mode, the RSS was started

at UT. Figure 5.11 shows the results of the third experiment. The worst-case SRS over-

head for the application was 15% and hardly noticeable in the figure. The details of the

periodic checkpointing used in the third mode for the figure is given in Table 5.3.

151

0

500

1000

1500

2000

2500

3000

3500

4000

2000 3000 4000 5000 6000 7000 8000 9000 10000

E
xe

cu
tio

n
T

im
e

[s
ec

s.
]

Matrix Size

Overhead in using SRS
(RSS at UT)

(application=ScaLAPACK QR, cluster=heterogeneous(UT & UIUC), procs=12)

Normal
With SRS (No checkpointing)

With SRS (Periodic checkpointing every 10 mins.)

Figure 5.11: Overhead in SRS on a heterogeneous cluster

152

5.3.2 SRS for Moldable Applications

In this subsection, results for experiments where the application is stopped and restarted

on the same number of processors are shown. The application instrumented with SRS

calls was initially executed at 8 msc machines. 3 minutes after the start of the appli-

cation, the application was stopped using the stop application utility. The application

was restarted on the same number of machines. In this scenario, the processes of the

parallel application read the corresponding checkpoints from the IBP storage without

performing any redistribution of data. The RSS daemon was started at UT.

Figure 5.12 shows the times for writing and reading checkpoints when the application

was restarted on the same 8 msc machines on which it was originally executing. From

the figure, we find that the times for writing and reading checkpoints are very low and

in the range of 7-10 seconds. Thus the application can be removed from a system and

restarted later on the same system for various reasons without much overhead. The time

between when the stop signal was issued to the application and when the application

actually stops depends on the moment when the application calls SRS Check Stop after

the stop signal. Table 5.4 gives the checkpoint sizes used in Figure 5.12.

Figure 5.13 shows the results when the application was started at 8 msc machines,

stopped and restarted at 8 opus machines. The increased times in reading checkpoints is

due to the communication of checkpoints across the Internet from msc to opus machines.

153

4

6

8

10

12

14

16

18

20

6000 7000 8000 9000 10000 11000 12000

T
im

e
[s

ec
s.

]

Matrix Size

Writing and Reading Checkpoints
(Writing and Reading at UT, procs=8)

Checkpoint Writing
Checkpoint Reading

Figure 5.12: Times for Checkpoint Writing and Reading when the application was
restarted on msc machines

Table 5.4: Details of Checkpointing used in Figure 5.12
Matrix Size Size per Checkpoint (MBytes)

6000 36
7000 49
8000 64
9000 81
10000 100
11000 121
12000 144

154

0

10

20

30

40

50

60

70

80

90

6000 6500 7000 7500 8000 8500 9000 9500 10000

T
im

e
[s

ec
s.

]

Matrix Size

Writing and Reading Checkpoints
(Writing at UT and Reading at UIUC, procs=8)

Checkpoint Writing
Checkpoint Reading

Figure 5.13: Times for Checkpoint Writing and Reading when the application was
restarted on opus machines

155

5.3.3 SRS for Malleable Applications

In the experiments in this section, the application was started on 8 msc machines and

restarted on a different number of machines spanning UT and UIUC. In this case, the

restarted application, through the SRS library, determines the new data maps for the

processors and redistributed the stored checkpoint data among the processors. The RSS

daemon was started on UT.

In Figure 5.14, results are shown when the ScaLAPACK QR application correspond-

ing to matrix size 8000 was restarted on different number of processors (3 opus machines

- 8 opus + 2 msc machines). The size of a single stored checkpoint was 64 MBytes. The

time for data redistribution depends on the number and size of the data blocks that

are communicated during redistribution and the network characteristics of the machines

between which the data are transferred. When the application is restarted on a smaller

number of processors, the size of the data blocks are large and hence the redistribution

time is large. For larger number of processors, the redistribution time decreases due to

the reduced size of data blocks communicated between the processors.

Figure 5.15 shows the dependence of the redistribution times on the problem size.

For this experiment, the application was initially started on 8 msc machines and restarted

on 8 opus and 2 msc machines.

156

0

10

20

30

40

50

60

70

80

90

3 4 5 6 7 8 9 10

T
im

e
[s

ec
s.

]

Number of processors

Writing and Redistribution of Checkpoints
(application=ScaLAPACK QR, Matrix size=8000)

Checkpoint Writing
Checkpoint Redistribution

Figure 5.14: Times for Checkpoint Writing and Redistribution when the application
was restarted on different number of processors

157

0

10

20

30

40

50

60

70

80

6000 6500 7000 7500 8000 8500 9000 9500 10000

T
im

e
[s

ec
s.

]

Matrix Size

Writing and Redistribution of Checkpoints
(application=ScaLAPACK QR, Redistribution on 10 procs)

Checkpoint Writing
Checkpoint Redistribution

Figure 5.15: Times for Checkpoint Writing and Redistribution for different problem
sizes

158

5.4 Practical Experiments

For the experiments in this section, 5 iterative applications were integrated into the

GrADS framework - ScaLAPACK LU and QR factorizations, ScaLAPACK eigenvalue

problem, PETSC [20, 19, 18] Conjugate Gradient (CG) application and heat equation

application using finite difference stencil method. The integration involved develop-

ing execution models for the Performance Modeler and invoking SRS calls from the

applications for rescheduling.

50 problems were submitted to the GrADS system with different arrival rates. Pois-

son distributions with different mean interval times in minutes were used for job submis-

sions. Uniform distributions were used for the type of the applications corresponding

to the problems and the problem sizes. At the end of the problem runs, different statis-

tics including the total throughput of the system, the number of jobs rejected by the

metascheduler, the mean response times of the different kinds of jobs, the number of

instances of the different kinds of metascheduling decisions etc. were collected.

5.4.1 Comparison with Plain Application-level Scheduling

Two sets of experiments were conducted for different mean inter-arrival times. In the

first set of experiments, 50 GrADS applications were executed in the presence of the

metascheduling components for different mean inter-arrival times and different statis-

tics were collected. In the second set of experiments, the same 50 GrADS applications

with the same inter-arrival times were executed in the absence of the metascheduler.

159

The metascheduler was disabled by disabling the Contract Negotiator and the Resched-

uler. The Contract Developers corresponding to the GrADS applications, instead of

contacting the Contract Negotiator, approved the contracts passed by the Application

Managers. Also, the Permission Service rejected permission for the GrADS applica-

tions if the resources were not sufficient for the end applications. It did not try to stop

executing applications to accommodate new applications.

Figure 5.16 shows the number of applications that were rejected permission in the

presence and absence of the metascheduler. For mean inter-arrival times 2, 4 and 6,

the number of rejected applications are much higher when the metascheduler was not

used. This is because, few applications that were submitted to the system at about the

same time occupied the same set of resources and hence prevented the accommodation

of the applications that arrived later in the system. Also, when the metascheduler was

enabled, the metascheduler tried to accommodate new applications by stopping execut-

ing applications. For mean inter-arrival times 1, 8 and 10, though few applications that

were submitted to the system at about the same time claimed the same set of resources,

the jobs that arrived later into the system had small resource requirements and were

able to be accommodated into the system. The metascheduler adopted a conserva-

tive approach and rejected few of the applications that were submitted simultaneously.

Hence when the mean inter-arrival times were 1, 8 and 10, more number of applications

were rejected permission when the metascheduler was used.

Figure 5.17 shows the total times in minutes, taken for all the 50 applications in

160

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

C
ou

nt

Mean arrival time in minutes

Number of rejected jobs for different arrival rates for 50 problems

Number of rejected jobs wihout using metascheduler
Number of rejected jobs when using metascheduler

Figure 5.16: Number of rejected applications in the presence and absence of
metascheduler

161

200

300

400

500

600

700

800

900

1000

1100

1 2 3 4 5 6 7 8 9 10

T
ot

al
 ti

m
e

[m
in

ut
es

]

Mean arrival time in minutes

Total time for all jobs for different arrival rates for 50 problems

Total time for all jobs wihout using metascheduler
Total time for all jobs when using metascheduler

Figure 5.17: Total times of all applications with and without the metascheduler

the presence and absence of the metascheduler. We observe that the presence of the

metascheduler facilitates the faster completion of the jobs even for cases when more

applications were accommodated into the system. This is because, in the absence of the

metascheduler, large applications that were submitted to the system at about the same

time occupied the same set of resources. Hence, these applications had to frequently

access the disks, thus significantly increasing the response times.

Figures 5.18 and 5.19 show the extent of contract violations with different mean

inter-arrival times in the presence and absence of metascheduler.

Contract violation is defined as an event when the ratio between the measured and

162

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

C
ou

nt

Mean arrival time in minutes

Number of contract violations for different arrival rates for 50 problems

Number of contract violations wihout using metascheduler
Number of contract violations when using metascheduler

Figure 5.18: Number of contract violations with and without the metascheduler

163

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

C
ou

nt

Mean arrival time in minutes

Ratios between (measured / expected) times
and upper contract limits for different arrival rates for 50 problems

Mean of the Ratios without using metascheduler
Mean of the Ratios when using metascheduler

Standard deviation without using metascheduler
Standard deviation when using metascheduler

Figure 5.19: Extent of contract violations with and without the metascheduler

164

the expected costs of the application is greater than the specified tolerance limit. Figure

5.18 shows the number of contract violations for different mean inter-arrival times. Fig-

ure 5.19 takes into account the ratios between the ratios of the measured and expected

costs of the applications and the upper tolerance limits of the ratios. We find that in

most of the cases, the number of contract violations and the mean and standard devi-

ation of the contract violation ratios are much higher when the metascheduler was not

used. The small extents of the contract violations, when the metascheduler was used, are

achieved by the rescheduling of the executing applications for which contract violations

are noticed and dynamically adjusting the upper tolerance limits by the rescheduling

framework. Thus for applications, for which performance guarantees are desired, the

use of the metascheduler is advisable.

5.4.2 Behavior of the Metascheduler

Figure 5.20 shows the behavior of the metascheduler for different job submission rates.

The number of jobs accommodated into the system by the Permission Service, the num-

ber of times the Contract Negotiator act as queue manager allowing few applications

to execute while prompting other applications to retrieve new resource information and

the number of times different metascheduling components stopped executing applica-

tions are shown in the figure. The x-axis represents the mean inter-arrival times of the

Poisson distribution in minutes.

We find that the number of applications accommodated into the system by the Per-

mission Service depends primarily on the job sizes and independent of the mean arrival

165

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10

C
ou

nt

Mean arrival time in minutes

Metascheduling decisions for different arrival rates for 50 problems

Number of accommodated problems
Number of times Metascheduler acted as Queue Manager
Number of times Metascheduler rescheduled applications

Figure 5.20: Different kinds of metascheduling decisions based on the amount of
contention

166

times of the jobs. Similarly, the number of rescheduling decisions by the Metascheduler

depends on the job mix and the contention for the resources by the large sized jobs

and is independent of the mean inter arrival times. The number of times the Contract

Negotiator acts as queue manager depends on the mean inter-arrival times of the jobs.

Smaller the time difference between the submission of the jobs, greater the number of

times the Contract Negotiator rejects the contracts of the application, thus prompting

the applications to restart from the resource selection phase. We also find that the

number is almost constant for inter-arrival times of 1, 2 and 4 minutes. This is due to

the constant overhead associated with the GrADS applications and the metascheduling.

The graph in Figure 5.21 shows the mean response times of all the jobs, the accom-

modated jobs and the rejected jobs. We find that the mean response times decrease with

the increase in mean inter-arrival times. This is due to the reduction in the contention

among the jobs for large mean inter-arrival times. The mean response times for inter-

arrival times of 1, 2 and 4 minutes are almost constant due to the constant overhead

associated with the GrADS applications and the metascheduler. The mean response

times for rejected jobs is about 2 hours for small mean inter-arrival times. This is due

to the longer durations spent by all the jobs in the various metascheduling queues. Our

future metascheduling systems will give higher priority to jobs that can be potentially

rejected and respond sooner than 2 hours for such jobs.

Figures 5.22 and 5.23 show the extent of contract violations with different mean

inter-arrival times. Figure 5.22 shows the number of contract violations for different

167

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

1 2 3 4 5 6 7 8 9 10

M
ea

n
re

sp
on

se
 ti

m
e

[s
ec

on
ds

]

Mean arrival time in minutes

Mean response times for different arrival rates for 50 problems

Mean response times for all problems
Mean response times for accommodated problems

Mean response times for rejected problems

Figure 5.21: Mean response times of the jobs for different mean inter-arrival times

168

200

300

400

500

600

700

800

900

1000

1 2 3 4 5 6 7 8 9 10

C
on

tr
ac

t V
io

la
tio

ns

Mean arrival time in minutes

Number of contract violations for different arrival rates for 50 problems

Number of contract violations

Figure 5.22: Number of contract violations

mean inter-arrival times. We find that the number of contract violations primarily

depends on the job sizes of the different jobs and the contention for the resources by the

jobs and is independent of the mean inter-arrival times. Figure 5.23 takes into account

the ratios between the ratios of the measured and expected costs of the applications and

the upper tolerance limits of the ratios. We find that the mean of the ratios is small

and lie in the range of 2-3 and the standard deviation of the ratios are small and are

about 1.5.

Following is the summary of the conclusions from the practical experiments in this

section.

169

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10

C
ou

nt

Mean arrival time in minutes

Ratios between (measured / expected) times
and upper contract limits for different arrival rates for 50 problems

Mean of the Ratios
Standard deviation

Figure 5.23: Extent of contract violations

170

1. The metascheduler is particularly useful in situations when large number of large

applications are submitted to the system at about the same time.

2. In general, the use of the metascheduler facilitates the accommodation of more

number of jobs.

3. The metascheduler is definitely useful when performance guarantees need to be

met for the applications.

4. When the job mix and the job arrival rates are known and there are large gaps be-

tween the submissions of the large jobs, plain application-level scheduling without

metascheduling is sufficient.

5. The number of metascheduling decisions tend to reduce as the mean inter-arrival

times of the jobs increase.

6. The metascheduling strategies have to be enhanced to improve the mean response

times of the rejected jobs.

7. The extent of the performance contract violations are almost constant and inde-

pendent of the mean inter-arrival times of the jobs, when the metascheduler was

used.

171

Chapter 6

GrADSolve - A

Metascheduling-Based

Distributed Computing System

This chapter includes lightly revised sections of the following papers.

Sathish S. Vadhiyar and Jack J. Dongarra. GrADSolve - A Grid-based RPC system
for Remote Invocation of Parallel Software. Submitted to Journal of Parallel and Dis-
tributed Computing, 2003.

Sathish S. Vadhiyar and Jack J. Dongarra. GrADSolve - RPC for High Performance
Computing on the Grid”. Submitted to EuroPar 2003.

I was the primary contributor of the papers and was involved in the design and im-
plementation of the frameworks and verification by experiments. This chapter revises
the papers by providing a more detailed descriptions of the sections in the papers.

In the previous chapters, the metascheduling architecture was explained and the

172

usefulness of metascheduler was demonstrated by means of experiments. The experi-

ments and the results for the metascheduler shown in Chapter 5 were obtained using

ad-hoc implementations of the the metascheduler, the Grid Application Manager and

the interactions between them. Though the ad-hoc implementations are powerful for

conducting demonstrative and practical experiments, they present various obstacles in

the seamless use of the Grid components both by the service providers and the service

consumers. The ad-hoc implementations of the system components are not easy to use

due to the following reasons:

1. Lack of distinction between service providers and consumers.

The users, while trying to solve a problem using the ad-hoc components specifies

the location of the Performance Modeler and the Contract Monitor in an input

configuration file. These components are application-specific and are generated

by the application library writers. Hence the binaries corresponding to these

components need to be communicated from the library writers to the users. This

leads to large consumption of storage resources and results in poor scalability of

the Grid system in the sense that more the number of applications that the users

intends to solve over the Grid, more the amount of storage is required by the user.

The user also specifies the location of the end applications in all the resources of

the Grid system. Due to the absence of an Information Repository (IR) in the ad-

hoc infrastructure, the user needs to retrieve this information explicitly from the

library writers. Also, due to the absence of error checking mechanisms in the ad-

173

hoc infrastructure, the user needs to retrieve the input and output specifications

for the end applications from the library writers.

2. Absence of programming constructs for the users.

In most cases, users desire to use remote services with minimal changes to their

application codes. These application codes are written in conventional program-

ming languages like C, Fortran, Matlab etc. Hence it is desirable to have a layer

in the Grid architecture that translates the programming language function calls

into corresponding Grid requests. In the ad-hoc implementation, such a layer is

absent resulting in the expression of service requests by means of cumbersome

command-line arguments and configuration file. Also, service requests by means

of a programming language provides greater flexibility to the user in terms of in-

put and output data management. The users will also be able to harness other

powerful native features provided by the programming language.

3. Absence of well-defined interfaces for the service providers.

In the ad-hoc infrastructure, the application library writers perform several dif-

ficult steps before uploading their applications to the Grid resources for use by

the end users. This is due to the absence of easy-to-use interfaces for the library

writers in the ad-hoc infrastructure. First, the library writers physically upload

their applications to all the resources on the Grid. In most cases, the information

about the Grid resources are not available to the library writers. Secondly, due

to the absence of generic templates, the library writers have to be extra careful

174

while writing the execution models for the applications. These execution models

depend on the internal structures in the infrastructure and due to the absence of

error checking mechanisms in the infrastructure, there are no means to validate

the prototypes used by the library writers for the execution models. Also, the

library writer replicates most of the work from the execution model in the Con-

tract Monitor for monitoring the application. Transparent template generation

and remote storage mechanisms can mitigate most of the problems faced by the

library writer in the ad-hoc infrastructure.

4. Lack of support for user data management.

In the ad-hoc infrastructure, the data needed by the end applications are generated

within the application itself. The end users have control over only the parameters

of the date including the data size, block size etc. A more realistic scenario is for

the applications to operate on the data passed by the end-users. Also, the users

by means of programming constructs may vary few data for the end applications

or may use the same data while invoking different remote services. For these rea-

sons, powerful and transparent data movement and data handling mechanisms are

necessary in the Grid infrastructure. When the applications involved are parallel

applications and the end-users operate in sequential environments, data have to

be partitioned among the different remote resources used for the execution of the

parallel application. The data partitioning should be performed corresponding to

the data distribution used by the application. For the transparent movement of

175

data from the user to the remote resources, matching the user’s data with the dif-

ferent parameters needed by the end application and for checking error conditions

due to mismatch between the size and the type passed by the user and the data

types and sizes needed by the application, an Interface Definition Language (IDL)

is necessary for the application writers to convey information about their applica-

tions to the Grid system. The IDL mechanism can also be used for advertisement

purposes. Performance model wrappers also need to be developed for conveying

the information about the data distribution used by the application.

5. Rigidity in terms of the capabilities of the applications.

The ad-hoc infrastructure assumes the existence of end applications that can be

stopped and continued from previous execution on possibly different number of

processors. Though the SRS library allows the applications to possess such ca-

pabilities, there can be certain kinds of applications that cannot be stopped and

continued from previous executions. In these cases, the applications have to be

restarted from the beginning of the execution. The metascheduling policies have

to be modified while dealing with such applications such that the cost incurred

due to restarting the applications from the beginning of the execution are taken

into account while making rescheduling decisions. Also, some applications may

be able to continue from the previous point in execution once stopped, but may

not be able to continue on a different number of processors. The GrADS Appli-

cation Manager and the Performance Modeler have to be modified so that such

176

applications are restarted on the same number of processors.

Also, the ad-hoc framework depends excessively on the application-level schedules

generated for the end applications. These application-level schedules are generated

based on the execution models written by the library writers for the applications.

In some cases, the library writers may not possess enough information to predict

the execution cost of the end applications and to write the execution models for the

applications. In these cases, default scheduling strategies that are independent of

execution model of the end applications need to be employed in the Application

Manager and the metascheduler. In some cases, the library writers may have

provided execution models for the applications but may have failed to provide

data distribution information for some of the critical data used by the application.

In these situations, the Grid framework should be able to employ robust default

data distribution strategies for handling most of the common data distributions

used in the applications.

Finally, the ad-hoc framework deals with only parallel end applications while it

is a desirable property of the Grid framework to deal with both sequential and

parallel applications. In general, the Grid framework must be flexible to deal with

the above mentioned different capabilities of the end applications. While some

properties of the applications like the ability to continue and reconfigure from

the previous point in execution are desirable for the metascheduling strategies,

the Grid framework need not mandate the existence of these properties in the

177

applications. More the number of capabilities of the applications and more the

information passed to the system regarding the capabilities, more the robustness

and service performance the system will be able to provide for the individual

service requests.

The above mentioned obstacles have to be removed for the ease of use of the Grid

framework - one of the important goals for Grid computing systems [58]. In this chapter,

a flexible Grid computing framework based on the metascheduling strategies discussed

in the previous sections is explained. The system is called GrADSolve since it com-

bines the easy-to-use interfaces of the NetSolve system [34] and the powerful GrADS

scheduling strategies employed by the metascheduler. The system is flexible since it

allows the library writers to express different capabilities of the applications and pos-

sess mechanisms to deal with the different capabilities. GrADSolve also possess simple

and powerful Interface Definition (IDL) mechanisms for the library writers to convey

information about the input and output parameters used by the application. GrAD-

Solve supports users programs written in C to invoke Grid services. It also supports the

notion of separate domains for the end users and the library writers. It also provides

powerful mechanisms for partitioning the user’s data among different remote resources

used for problem solving.

In addition to the above capabilities, GrADSolve also investigates the concepts and

provides fundamental framework for maintaining and using execution traces. In many

cases, it is desirable for users to execute their applications on a set of Grid resources and

178

replicate the execution at a later point of time. This is extremely useful for testing the

applications over the Grid framework and in projects where large number of collabora-

tors are involved. GrADSolve provides a framework whereby the user can request the

system to maintain the trace for the current execution. The user can then execute his

Grid program at a later point of time with a system-returned key. GrADSolve bypasses

the scheduling and data distribution phases that it used for the initial execution of the

application. Instead, it executes the application with the same processors used in the

trace and with the same data distributions. The ability to maintain traces and data

partitioning strategies are unique features of the GrADSolve system.

In th next section, the related work in the field of RPC systems for invoking remote

parallel applications is presented. The overview of NetSolve system is discussed in the

Section 6.2 and the disadvantages of the NetSolve framework are highlighted. The

overview of the GrADSolve system is explained in Section 6.3 and compared with the

NetSolve system. The enhanced features in GrADSolve are described and its advantages

over the NetSolve system are elucidated. The various entities in the GrADSolve system

and the support for the entities in the GradSolve system are explained in Section 6.4.

Section 6.4 also deals with the detailed description of the framework of the GrADSolve

system. One of the unique features of the GrADSolve is the ability to store, maintain

and use execution traces for problem runs. The support in the GrADSolve system for

execution traces is explained in Section 6.5. The changes needed in the metascheduler of

the ad-hoc infrastructure to support the flexibility provided to the end applications by

179

the GrADSolve system is dealt in Section 6.6. In Section 6.7, the experiments conducted

in GrADSolve are explained and results are presented to demonstrate the usefulness of

the data staging mechanisms and execution traces in GrADSolve.

6.1 Related Work

Few RPC systems contain mechanisms for the execution of remote parallel software.

MRPC [38] is a RPC system tuned for providing high performance for MPMD appli-

cations on homogeneous clusters. The RPC communications are implemented on top of

Active Messages (AM) [109] and the user’s client programs are written in Compositional

C++ (CC++). The work by Maassen et. al [76] extends Java RMI [5] for efficient com-

munications in solving high performance computing problems. Both MRPC [38] and

the Java RMI extension [76] require the end user’s programs to be parallel programs.

NetSolve [34], Ninf [96], RCS [17] and DFN-RPC [87] support task parallelism by

the asynchronous execution of number of remote sequential applications. OmniRPC

[97] is an extension of Ninf and supports asynchronous RPC calls to be made from

OpenMP programs. But similar to the approaches in NetSolve, Ninf, RCS and DFN-

RPC, OmniRPC supports only master-worker models of parallelism. NetSolve, Ninf and

RCS also support remote invocation of MPI applications, but the amount of parallelism

and the locations of the resources to be used for the execution are fixed at the time when

the applications are uploaded to the systems and hence are not adaptive to dynamic

loads in the Grid environments.

180

The efforts that are very closely related to GrADSolve are PaCO [91, 92] and

PaCO++ [44, 43] from the PARIS project in France. The PaCO systems are im-

plemented within the CORBA [2] framework to encapsulate MPI applications in RPC

systems. The data distribution and redistribution mechanisms in PaCO are much more

robust than in GrADSolve and support invocation of remote parallel applications either

from sequential or parallel client programs. Recently, the PARIS project has been in-

vestigating coupling multiple applications of different types in Grid frameworks [45, 85].

Although the PARIS project aims to improve the performance of CORBA for high per-

formance computing, the RPC mechanisms provided in CORBA by the use of client

stubs and server skeletons have not found to be favorable for high performance com-

puting according to a previous study [103]. Also, the PaCO projects do not support

dynamic selection of resources for application execution as in GrADSolve. Also, GrAD-

Solve supports Grid related security models by employing Globus mechanisms. And

finally, GrADSolve is unique in maintaining execution traces that can help bypass the

resource selection and data staging phases.

6.2 NetSolve - A Brief Overview

NetSolve [34] is a Grid computing system developed at University of Tennessee. It is

a Remote Procedure Call (RPC) based system used for solving numerical applications

over remote machines. The NetSolve system consists of 3 main components - agent,

server and client. The working of the NetSolve system is illustrated in Figure 6.1.

181

fro
m the agent

1. T
he client re

trie
ves p

roblem sp
ecific

ation

2. The client matches input data with problem parameters

fro
m the agent

3. T
he client re

trie
ves li

st o
f se

rvers

4. The client contacts a server on a machine for problem solving

5. Server spawns
 a service

6. Client sends input to service

7. Service solves problem

8. Service sends output

Agent

Client

Server

Service

Figure 6.1: Overview of NetSolve system

The library writers upload their applications into the NetSolve system by writing

a Problem Description File (PDF). The PDF for the application is translated into a

wrapper and compiled into a server stub. The server containing different applications

are started as server daemons. When the server daemons are started the problem

descriptions of the different applications in the servers are sent to the agent and stored

in an internal database maintained by the agent. Thus the agent maintains global

information about all the servers and the applications supported by the servers.

The end users solve their numerical problems remotely over NetSolve servers by

writing client codes. The user client codes can be written in C, Fortran or Matlab

languages. The client code invokes a function call provided by the NetSolve API. The

function call specifies the name of the remote application and the input and the output

182

data needed by the remote application. The client contacts the agent and retrieves

the problem description of the application. The client, after performing error checking

procedures, matches the user’s data with the different parameters needed by the ap-

plication. The client then contacts the agent to obtain a list of servers that can solve

the problem. The agent periodically receives workload of the different servers from the

servers. Based on the computational capacities and the workloads of the servers, the

agent prepares a list of servers sorted by the computational capacities and workloads.

The servers with maximum computational capacities and minimal workloads are placed

at the top of the list. Thus the agent performs dual-roles of maintaining information

about the various components and scheduling the servers for problem solving.

After retrieving the list of servers from the agent, the client contacts the first server

in the list. The server daemon spawns a service specific for the application run and

passes the location of the service to the client. The client contacts the service and

passes the input data for the application. The service, then solves the problem with the

input data and passes the output back to the client.

NetSolve system is mostly suitable for sequential applications. Though NetSolve

supports remote execution of parallel applications, the amount of parallelism is fixed at

the time the server daemons are started. Also, the format of the Problem Description

Files (PDFs) are cumbersome to be written by the library writers. These problems are

rectified and more enhancements are added in the GrADSolve system.

183

6.3 The GrADSolve System

At the core of the GrADSolve system is a XML database implemented with Apache

Xindice [1]. Since XML is mostly useful for storing metadata and transferring com-

patible documents across the network, GrADSolve uses XML as a language for storing

information about different Grid entities. This database maintains three kinds of tables

- users, resources and applications. The users table contains information about the

different users of the Grid system, namely the home directories of the users on different

resources. The resources table contains information about the different machines in the

Grid, namely the name of the machines, the clusters to which the machines belong, the

architecture and the operating system in the machines, the peak performance of the

machines etc. The applications table contains information about different applications,

namely the name and owner of the application, if the application is sequential or par-

allel, the language in which the application is written, if the application can continue

from the previous point in application once stopped, if the application is reconfigurable

once stopped, the number of input and output arguments, the data type and size of

each arguments, the location of the binaries of the applications on each of the resources

etc. All the above mentioned information are stored in the XML database in the form

of XML documents. The Xindice implementation of the XML-RPC standard [12] was

used for storing and retrieving information to and from the XML database.

Of the metascheduling components, the DataBase Manager is implemented with

the popular PostgreSQL [10] Database mechanisms. Apart from the normal database

184

storage and retrieval mechanisms, PostgreSQL also provides triggers for execution of

certain procedures on the occurrence of certain events and event notification capabili-

ties. Event notification mechanisms is one of the important capabilities needed by the

Database Manager in the metascheduler. When the PostgreSQL Database Manager is

initialized, a table for storing information related to different problem runs is created.

As new GrADS applications are executed in the system, entries for the applications

are created in the table and different information regarding the application, including

the problem name, user name, the problem status, capabilities of the problem, the re-

source information of the resources used in the application-level scheduling, the final

application-level schedule, the locations of the Contract Monitor, the Performance Mod-

eler and the Runtime Support System (RSS), the ratios between the measured and the

predicted performance cost for the end application, the number of contract violations,

the information about the execution trace if the application is executed in the trace

mode etc., are stored in the table as the applications pass through different phases of

the GrADS execution.

A number of PostgreSQL triggers are implemented for recording certain entries in

the table on the occurrence of certain events. A PostgreSQL trigger is implemented such

that the times corresponding to the Resource Selection, start of the end application and

completion of the application, and the accumulated percentage completion time are

recorded internally by the Database Manager as the GrADS application generates the

corresponding events. Another trigger is employed to implement policies for deleting

185

some of the records in the table as new entries are inserted. Another trigger is used to

record the last usage of a stored execution trace. Also, the PostgreSQL event notification

mechanism is used such that components including GrADS Application Manager and

metascheduling components are notified on the occurrence of certain events, for example,

when the status of an application is changed.

Other metascheduling components, namely the Permission Service, the Contract Ne-

gotiator and the Rescheduler perform PostgreSQL queries against the Database Man-

ager. The XML database and the metascheduling components together correspond to

the agent in the NetSolve system where the XML database forms the database part of

the agent while the metascheduling components form the scheduling layer of the agent.

The general functioning of the GrADSolve system is illustrated by Figure 6.2.

Unlike the NetSolve system, there are no server daemons in GrADSolve. The library

writer uploads his application into the Grid system specifying the problem description

of the application using an Interface Definition Language (IDL). The GrADSolve system

creates a wrapper for the application, compiles the wrapper along with the application

and transports the executable application to the different resources of the Grid sys-

tem using the Globus GridFTP mechanisms. The library writer also has the option of

adding an execution model for the application. The information regarding the locations

of the end applications on the resources are stored in the Xindice XML database. The

end user writes a NetSolve-like client program to execute applications over the Grid.

The GrADSolve client accesses the XML database, retrieves the problem specification

186

Machine 1

Machine 2

Machine 3

fro
m th

e X
ML data

base

4. The client stages data to remote machines,

2. The client matches input data with the
 problem parameters

3. The client performs
 the GrADS Application
 Manager cycle

 launches the application on the remote machines and

 retrieves the output from the final machines

XML
Database

Client

Metascheduler

1. C
lie

nt re
trie

ves
problem

 sp
eci

fic
ati

on

Figure 6.2: Overview of GrADSolve system

187

for the application and matches the user’s data with the parameters of the problem.

The GrADSolve client then passes through different stages of the GrADS application

manager including the Resource Selection, Performance Modeling and Contract Devel-

opment. For the Performance Modeling, the client retrieves the execution model if the

application possesses an execution model. After determining the final application-level

schedule, the GrADSolve client partitions the user’s input data and stages the appro-

priate blocks of data to the different resources using the Globus GridFTP mechanisms.

The client then spawns the application on the set of resources using MPICH-G [56].

Similar to the staging of the input data, the client gathers the different blocks of output

data from different resources using GridFTP and copies the data to the user’s mem-

ory. During the different stages, the GrADSolve client stores different information to

the Database Manager. The GrADSolve client also interacts with the metascheduling

components to validate the performance contracts.

6.4 GrADSolve Entities

There are three human entities involved in GrADSolve - administrators, library writers

and end users. The role of these entities in GrADSolve and the functions performed by

the GrADSolve system for these entities are explained in the following sub sections.

188

6.4.1 Administrators

The GrADSolve administrator is responsible for managing the users and resources of

the GrADSolve system. The administrator initializes the XML database and starts the

various metascheduling components - namely, the Database Manager, the Permission

Service, the Contract Negotiator and the Rescheduler. During the initialization of

the Database Manager, the administrator also creates various database triggers and

notification events. The administrator also creates entities for different users in the XML

database by specifying a user configuration file. The user configuration file contains

information for different users, namely the user account names for different resources

and the location of the home directories on different resources in the GrADSolve system.

These information are translated into XML documents and stored in the users table

of the Xindice database. Finally, the administrator creates the resources table in the

Xindice database and adds entries for different resources in the GrADSolve system by

specifying a resource configuration file. The various information in the configuration

file, namely the names of the different machines, their computational capacities, the

number of processors in the machines and other machine specifications, are stored as

XML documents. The translation of the configuration files into XML documents are

automatically handled by the GrADSolve system.

189

6.4.2 Library Writers

The library writer uploads his application into the GrADSolve system by specifying an

Interface Definition Language (IDL) file for the application. The Backus Normal Form

(BNF) of the GrADSolve IDL is given in Figure 6.3.

In the IDL file, the library writer specifies the name of the problem suite and the

description of the problem suite. A problem suite consists of a set of functions that the

user can invoke remotely. For each function, the library writer specifies in the IDL file,

the programming language in which the function is written, the name of the function,

the set of input and output arguments in the function, the description of the function,

the names of the object files and libraries needed for linking the function with other

functions, if the function is sequential or parallel, if the function can continue from its

previous point in execution once stopped, if the function can restart and continue on a

different set of processors once stopped etc. GrADSolve supports the library functions to

be written in the popular C or Fortran languages. For each input and output arguments,

the library writer specifies the name of the argument, if the argument is an input or

output argument, the datatype of the argument, the number of elements of the argument

if the argument is a vector, the number of rows and columns of the argument if the

argument is a matrix etc. The number of elements in the vector arguments and the

number of rows and columns of the matrix arguments can be constants or expressed in

terms of the other input arguments.

An example of a IDL file written for a ScaLAPACK QR factorization problem is

190

〈PROBLEMSTART〉 −→ 〈PROBLEMDESC〉 〈FUNCTION〉
〈PROBLEMDESC〉 −→ PROBLEM 〈PROBLEMNAME〉

〈FUNCTION〉 −→ 〈LANGUAGE〉FUNCTION 〈FUNCDEFN〉 〈FUNCDESC〉
〈FUNCLIB〉 〈FUNCTYPE〉 〈CONTINUECAPACITY〉
〈RECONFIGCAPACITY〉

〈LANGUAGE〉 −→ C | FORTRAN

〈FUNCDEFN〉 −→ 〈FUNCNAME〉 (〈ARGLIST〉)
〈FUNCDESC〉 −→ ′′ 〈STRING〉′′

〈FUNCLIB〉 −→ LIBS =′′ 〈STRING〉′′
〈FUNCTYPE〉 −→ TY PE = 〈TYPESTRING〉

〈CONTINUECAPACITY〉 −→ CONTINUE = 〈OPTIONSTRING〉
〈RECONFIGCAPACITY〉 −→ RECONFIGURE = 〈OPTIONSTRING〉

〈ARGLIST〉 −→ 〈ARGUMENT〉 | 〈ARGLIST〉 , 〈ARGUMENT〉
〈ARGUMENT〉 −→ 〈INOUTSTRING〉 〈DATATYPE〉 〈VARNAME〉

| 〈INOUTSTRING〉 〈DATATYPE〉 〈VARNAME〉
〈VACTORATTR〉
| 〈INOUTSTRING〉 〈DATATYPE〉 〈VARNAME〉
〈MATRIXATTR〉

〈VECTORATTR〉 −→ [〈DIMENSIONEXPR〉]
〈MATRIXATTR〉 −→ [〈DIMENSIONEXPR〉] [〈DIMENSIONEXPR〉]

〈DIMENSIONEXPR〉 −→ 〈NUMBER〉 | 〈VARNAME〉
〈PROBLEMNAME〉 −→ 〈IDENTIFIER〉

〈FUNCNAME〉 −→ 〈IDENTIFIER〉
〈TYPESTRING〉 −→ sequential | parallel

〈OPTIONSTRING〉 −→ yes | no

〈INOUTSTRING〉 −→ IN | OUT | INOUT

〈DATATYPE〉 −→ INT | FLOAT | DOUBLE | CHAR

〈VARNAME〉 −→ 〈IDENTIFIER〉

Figure 6.3: BNF of GrADSolve IDL

191

PROBLEM qrwrapper
C FUNCTION qrwrapper(IN int N, IN int NB, INOUT double A[N][N],

INOUT double B[N][1])
‘‘a version of qr factorization that works with square matrices.’’
LIBS = ‘‘/home/grads23/GrADSolve/ScaLAPACK/pdgeqrf_instr.o \

/home/grads23/GrADSolve/ScaLAPACK/pdscaex_instrQR.o \
...
...
...’’

TYPE = parallel
CONTINUE_CAPABILITY = yes
RECONFIGURATION_CAPABILITY = yes

Figure 6.4: An example GrADSolve IDL for a ScaLAPACK QR problem

given in Figure 6.4.

After the library writer submits the IDL file to the GrADSolve system, GrADSolve

translates the IDL file to a XML document. The XML document generated for the IDL

file in Figure 6.4 is shown in Figure 6.5.

The GrADSolve translation system also generates a wrapper program. This wrapper

program is a driver and acts as an entry point for remote execution of the actual func-

tion. The wrapper program when compiled and executed performs certain important

functions. The wrapper performs the necessary initialization if the end application is

a parallel application. The wrapper function also reads a configuration file that spec-

ifies the location of the Runtime Support System (RSS) and the Autopilot manager.

The configuration file was generated and staged to the machines for remote execution

when the end user submitted his problem to the GrADSolve system. The wrapper pro-

192

<?xml version="1.0"?>
<function name="qrwrapper">

<user>grads23</user>
<description>a version of qr factorization that works

with square matrices.
</description>
<type>parallel</type>
<language>C</language>
<continue>1</continue>
<reconfigure>1</reconfigure>
<call>
<argCount>4</argCount>
<arg>

<inout>IN</inout>
<datatype>int</datatype>
<objecttype>scalar</objecttype>
<name>N</name>

</arg>
<arg>

<inout>IN</inout>
<datatype>int</datatype>
<objecttype>scalar</objecttype>
<name>NB</name>

</arg>
<arg>

<inout>INOUT</inout>
<datatype>double</datatype>
<objecttype>matrix</objecttype>
<name>A</name>
<rowExpression>N</rowExpression>
<colExpression>N</colExpression>

</arg>

Figure 6.5: XML document generated for the IDL in Figure 6.4

193

<arg>
<inout>INOUT</inout>
<datatype>double</datatype>
<objecttype>matrix</objecttype>
<name>B</name>
<rowExpression>N</rowExpression>
<colExpression>1</colExpression>

</arg>
</call>

</function>

Figure 6.5. Continued

gram then registers with the RSS using SRS Init() and also registers with the Autopilot

system. The wrapper program then retrieves the problem description from the XML

database, initializes the input and output arguments, and reads the input data from

the appropriate files into the input arguments. It then invokes the actual function spec-

ified in the IDL file with the input and output arguments. Once the actual problem is

solved by the execution of the actual function, the wrapper program stores the output

arguments to files. It finally performs finalization routines for deregistering from RSS,

the Autopilot manager and the parallel execution environment.

The library writer has the option of instrumenting the end application with calls to

SRS library and the Autopilot. If stopping and continuing capability is desired for the

application, the application has to be instrumented with calls to the SRS library. When

the library writer wants to add execution model for his application, he instruments

the application with calls to the Autopilot library so that portions of the application

for which execution model was written are timed and the actual execution times are

194

reported for monitoring by the Contract Monitor.

After generating the wrapper program, the GrADSolve system compiles the wrapper

program with the object files and the libraries specified in the IDL file and with the

appropriate parallel libraries if the application is specified as a parallel application in the

IDL file. The result of the compilation process is an executable file suitable for remote

execution on the GrADSolve resources. The application is finally uploaded into the

GrADSolve system. The uploading process consists of two phases. In the first phase,

the executable file is staged to the remote machines in the GrADSolve system and

stored in the user’s accounts on the machines. The machines available in the system

are determined by querying the resources table in the XML database and the user’s

home directories on the machines to which the executable file is stored are determined

by querying the users table in the XML database. In the second phase of the uploading

process, the XML document for the application generated from the IDL file is stored in

the XML database keyed by the problem name. Also, stored in the XML database for

the application is the information regarding the location of the executable files for the

application on the remote resources.

If the library writer wants to add an execution model for his application, he executes

the getperfmodel template utility specifying the name of the application. The utility re-

trieves the problem description of the application from the XML database and generates

a performance model template file. The template file contains the definitions of the exe-

cution model routines. The library writer fills in the execution model routines with the

195

int areResourcesSufficient(int N, int NB, double* A,
double* B, RESOURCEINFO* resourceInfo,
SCHEDULESTRUCT* schedule){

}

int getExecutionTimeCost(int N, int NB, double* A, double* B,
RESOURCEINFO* resourceInfo, SCHEDULESTRUCT*
schedule, double* cost{

}

int mapper(int N, int NB, double* A, double* B,
RESOURCEINFO* resourceInfo, SCHEDULESTRUCT* inputSchedule,
SCHEDULESTRUCT* mapperSchedule){

}

Figure 6.6: A Performance Model template generated by the GrADSolve system for
the QR problem

appropriate code for predicting the execution cost of his application. The performance

model template file generated by the getperfmodel template for the ScaLAPACK QR

problem is shown in Figure 6.6.

The performance model template file contains definitions for three functions. The

first function, areResourcesSufficient takes as input the problem parameters, a given

set of machines for problem execution, schedule and the resource capabilities of the

machines, resourceInfo. The library writer fills the function such that the function

will return 1 if the machines have adequate capacities for solving the problem and 0

otherwise. The second function getExecutionTimeCost takes as input the problem pa-

196

rameters, the given set of machines, the resource capabilities and returns as output, the

predicted execution cost, cost, of the application if the application were to run on the

given set of machines. The third function, mapper is an optional function. It is used

for specifying the data distribution of the different data used by the application. The

mapper can also change the order of the machines in the given set of machines repre-

sented by inputSchedule and return the new order of machines in the mapperSchedule.

The execution model for the ScaLAPACK QR application filled with the code written

by the library writer is shown in the Figure 6.7.

The library writer uploads his execution model by executing the add perfmodel util-

ity. After performing certain error checking mechanisms, the add perfmodel utility gen-

erates a wrapper program for the execution model. This wrapper program contains

functions that act as entry points for the execution model. The functions in the wrap-

per program initialize certain parameters with default values and invoke the functions

in the execution model. The add perfmodel utility finally uploads the execution model

for the application by storing the location of the wrapper program and the execution

model to the XML database corresponding to the entry for the application.

6.4.3 End Users

The end users solve problems over remote GrADSolve resources by writing a client

program. This client program can be written in C or Fortran. The client program

includes an invocation of a routine called gradsolve() passing to the function, the name of

the end application and the input and output parameters needed by the end application.

197

int areResourcesSufficient(int N, int NB, double* A,
double* B, RESOURCEINFO* resourceInfo,
SCHEDULESTRUCT* schedule){

memAvailable = 0.0;
for(i=0; i<schedule->count; i++){
memAvailable += resourceInfo->meminfo[schedule->indices[i]];

}
memNeeded = (double)N *((double)N + (double)NB + 1.0) * sizeof(double);
if(memNeeded > memAvailable){
return 0; /*resources not sufficient */

}
return 1; /*resources sufficient */

}
int getExecutionTimeCost(int N, int NB, double* A, double* B,

RESOURCEINFO* resourceInfo, SCHEDULESTRUCT*
schedule, double* cost{

for(j=0; j<N; j+=NB){
trun += t1+t2; /* t1 and t2 are times for different phases

in the iteration */
}
*cost = trun;
return 0;

}
int mapper(int N, int NB, double* A, double* B,

RESOURCEINFO* resourceInfo, SCHEDULESTRUCT* inputSchedule,
SCHEDULESTRUCT* mapperSchedule){

setBlockCyclicDistribution("A", mapperSchedule, N*NB);
B_distribution = (int*)malloc(sizeof(int)*mapperSchedule->count);
B_distribution[0] = N;
for(i=1; i<mapperSchedule->count; i++){
B_distribution[i] = 0;

}
setDistribution("B", mapperSchedule, B_distribution);
free(B_distribution);
getExecutionTimeCost(N, NB, A, B, resourceInfo, mapperSchedule,

&(mapperSchedule->cost));
return 0;

}

Figure 6.7: A QR Performance Model filled with library writer code

198

An example of a GrADSolve client program written in C is shown in Figure 6.8.

The invocation of the gradSolve() routine triggers the execution of the GrADSolve

Application Manager. As a first step, the Application Manager verifies if the user has

credentials to execute applications on the GrADSolve system. GradSolve uses Globus

Grid Security Infrastructure (GSI) [32] for the authentication of users. The Applica-

tion Manager then queries the XML Database to verify if the application had been

previously uploaded by the library writer. If the application had not been uploaded,

the Application Manager displays an error message to the user and aborts operation.

If the application exists in the GrADSolve system, the Application Manager registers

the problem run with the PostgreSQL database component of the metascheduler. The

Application Manager then retrieves the problem description from the XML database

and matches the user’s data with the input and output parameters required by the end

application.

If an execution model exists for the end application, the Application Manager down-

loads the execution model from the remote location where the library writer had pre-

viously stored the execution model. The Application Manager compiles the execution

model programs with other wrapper programs, starts the application-specific Perfor-

mance Modeler service and stores the location of the service in the Database Manager

of the metascheduler. The Application Manager then retrieves the list of machines in

the GrADSolve system from the resources table in the XML database, and retrieves

resource characteristics of the machines from the NWS. Similar to the ad-hoc infras-

199

#include "gradsolve.h"

int main(int argc, char** argv){
int N, NB;
double* A, * B;
int i;

N = 1000;
NB = 40;

A = (double*)malloc(sizeof(double)*N*N);
B = (double*)malloc(sizeof(double)*N);

srand48(time(0));

for(i=0; i<N*N; i++){
A[i] = drand48();
if(i < N){
B[i] = drand48();

}
}

gradsolve("qrwrapper", N, NB, A, B);

free(A);
free(B);

return 1;

}

Figure 6.8: GrADSolve C client code for the QR problem

200

tructure, the Application Manager passes the list of machines, along with the resource

characteristics to the Permission Service to receive permission to proceed to the next

stages of the Application Manager. If the permission is granted by the Permission

Service, the Application Manager proceeds to the Schedule Generation phase.

In the Schedule Generation phase, the Application Manager first determines if the

end application has an execution model. If an execution model exists, the Application

Manager contacts the Performance Modeler service, passes the problem parameters and

the list of machines with the machine capabilities and receives the final list of machines

for the end application execution from the Permission Service. In this mode of oper-

ation, the Schedule Generation phase of the GrADSolve system is equivalent to the

Performance Modeling phase of the ad-hoc infrastructure. Along with the final list of

machines and the predicted execution cost for the final schedule, the Performance Mod-

eling service also returns information about the data distribution for the different data

in the end application. The Performance Modeler service also generates a contract file

that contains a list of predicted execution costs for the different phases of the end ap-

plication. If an execution model does not exist for the end application, the Schedule

Generation phase adopts default scheduling strategies to generate the final schedule for

end application execution.

If the end application is a sequential application, the default scheduling procedure

first determines the total size of the input data. For each machine in the GrADSolve

system, the scheduling procedure determines the computation time and the time for

201

movement of input and output data between the machine where the Application Man-

ager executes and the target machine. For the computation time, the scheduling proce-

dure assumes the total number of operations in the application to be equal to the input

data size. For the data movement times, the network capacity between the machines is

taken into account. The machine with the least value for the sum of the computation

and the data movement times is chosen for the end application execution. If the end ap-

plication is a parallel application, the default scheduling procedure assumes the parallel

application to be a sequential broadcast operation where a single machine sends the

input data to all the other machines. The time for sending the input data is determined

as the broadcast time of the machine. The total time for each machine is calculated

as the sum of the broadcast, computation and data movement times. After sorting the

list of machines in the order of the total times, the scheduling procedure traverses the

list and continues to select the machines for the final schedule till the ratios of the total

times for the successive machines in the list increases beyond a tolerance limit.

At the end of the Schedule Generation phase, the GrADSolve Application Man-

ager receives a list of machines for final application execution. Similar to the ad-hoc

infrastructure, the GrADSolve Application Manager then passes the final list of ma-

chines and the expected execution cost as a contract to the Contract Negotiator of the

metascheduler and receives either approval or rejection of the contract. If the contract is

rejected, the Application Manager restarts from the Resource Selection phase again. If

the contract is accepted, the Application Manager stores the status of the problem run

202

and the final schedule in the PostgreSQL Database Manager of the metascheduler. The

GrADSolve Application Manager then starts an Autopilot Manager [93] if an Autopilot

Manager is not executing on the machine where the Application Manager was started.

The Application Manager then creates working directories on the remote machines

of the final schedule for end application execution and enters the Application Launching

phase. The Application Launching phase consists of several important functions. As a

first step, the Application Launcher starts the Runtime Support System (RSS) needed

for the SRS library. It then creates configuration files needed for Contract Monitor-

ing (AP.config) and the SRS library (srs.config) and stages these files to the remote

machine chosen for executing the first process of the end application. The Application

Launcher then stores the input data to files and stages these files to the corresponding

remote machines chosen for application execution. If data distribution information for

an input data does not exists, the Application Launcher stages the entire input data

to all the machines involved in end application execution. If the information regarding

data distribution for an input data exists, the Application Launcher stages only the

appropriate portions of the data to the corresponding machines. This kind of selec-

tive data staging significantly reduces the time needed for the staging for entire data

especially if large amount of data is involved. Apart from staging the input data, the

Application Launcher also stages the information regarding data distribution to the

remote machines.

After the staging of input data, the Application Launcher launches the end applica-

203

tion on the remote machines chosen for the final schedule using the Globus MPICH-G

[56] mechanism. If an execution model exists for the problem, the Application Launcher

also starts the Contact Monitor for monitoring the progress of the end application. The

end application, after registering with the RSS and the Autopilot, reads the input data

that were previously staged by the Application Launcher and solves the problem. The

end application then stores the output data to the corresponding files on the machines

in the final schedule and deregisters from the RSS and the SRS library. The SRS library,

during the deregistration of the application, stores the completion status of the problem

in the PostgreSQL Database Manager.

If the end application was stopped by a metascheduler component, the Applica-

tion Launcher waits for a RESUME signal from the component and restarts from the

Resource Selection Phase. If the end application finished execution, the Application

Launcher copies the output data from the remote machines to the user’s memory space.

The staging in of the output data from the remote locations is a reverse operation of

the staging out of the input data to the remote locations. The GrADSolve Application

Manager finally returns success state to the user’s client program.

6.5 Execution Traces in GrADSolve - Storage, Manage-

ment and Usage

One of the unique features in the GrADSolve system is the ability provided to the users

to store and use execution traces of problem runs. There are many applications in

204

which the outputs of the problem depend on the exact number and configuration of the

machines used for problem solving. For example, considering the problem of adding

large number of double precision numbers, one of the parallel implementations of the

problem is to partition the list of double precision numbers among all processes of the

parallel application, compute local sums of the numbers in each process and compute

the global sum of the local sums computed on each process. The final sum obtained for

the same set of double precision numbers may vary from one problem run to another

depending on the number of elements in each partition, the number of processes used

in the parallel application and the actual processes used in the computation. This is

due to the impact of the round off errors caused by the addition of double precision

numbers. In general ill-conditioned problems or unstable algorithms can give rise to

vast changes in output results due to small changes in input conditions. For these kinds

of applications, the user may desire to use the same input environment for all problem

runs. Also, during testing of new numerical algorithms over the Grid, different groups

working on the algorithm may want to ensure that same results are obtained when the

algorithms are executed with same input data on the same configuration of resources.

To guarantee reproducibility of numerical results in the above situations, GrADSolve

provides capability to the users to store execution traces of problem runs and use the

execution traces during subsequent executions of the same problem with the same input

data. For storing the execution trace of the current problem run, the user executes his

GrADSolve program with a configuration file called input.config in the working direc-

205

tory containing the following line:

TRACE FLAG = 1

During the registration of the problem run with the PostgreSQL Database Manager of

the metascheduler, the value of the TRACE FLAG variable is stored. The GrADSolve

Application Manager proceeds to other stages of its execution. After the end application

completes it execution and the output data are copied from the remote machines to the

user’s memory, the Application Manager, under default mode of operation, removes the

remote working directories used for storing the files containing the input data for the

end application. But when the user wants to store the execution trace of the problem

run, i.e. when the input.config file contains “TRACE FLAG = 1” line, the Application

Manager retains the input data used for the problem run in the remote machines. At

the end of the problem run, the Application Manager generates an output configuration

file called output.config containing the following line

TRACE KEY = <key>

The value key in the output.config is a pointer to the execution trace stored for the

problem run.

When the user wants to execute the problem with the execution trace previously

stored, he executes his client program specifying the line,

206

TRACE KEY = <key>

in the input.config file. The value key in the input.config, is the same value previously

generated by the GrADSolve Application Manager when the execution trace was stored.

The Application Manager first checks if the TRACE KEY exists in the Database Man-

ager. If the TRACE KEY does not exist, the Application Manager displays an error

message to the user and aborts operation. If the TRACE KEY exists for an execution

trace of a previous problem run, the Application Manager registers the current prob-

lem run with the Database Manager and proceeds to the other stages of its execution.

During the Schedule Generation phase, the Application Manager, instead of generating

a schedule for the execution of the end application, retrieves the schedule used for the

previous problem run corresponding to the TRACE KEY, from the Database Manager.

The Application Manager then checks if the capacities of the resources in the schedule

at the time of trace generation are comparable to the current capacities of the resources.

If the capacities are not comparable, the Application Manager displays an error message

to the user and aborts the operation. If the capacities are comparable, the Application

Manager proceeds to the rest of the phases of its execution. During the Application

Launching phase, the Application Manager, instead of staging the input data to remote

working directories, copies the input data and the data distribution information, used

in the previous problem run corresponding to the TRACE KEY, to the remote working

directories. The use of the same number of machines and the same input data used

in the previous schedule also guarantees the use of the same data distribution for the

207

current problem run. Thus GrADSolve guarantees the use of the same execution en-

vironment used in the previous problem run for the current problem run, and hence

guarantees reproducibility of numerical results.

To support the storage and use of execution traces in the GrADSolve system, two

PostgreSQL trigger functions are used. One trigger function called trace usage trigger

updates the last usage time of an execution trace when the execution trace is used for

a problem run. Another trigger function called cleanup trigger is used for periodically

deleting entries in the Database Manager thereby maintaining the size of the problems

table in the Database. The cleanup trigger is invoked whenever a new entry correspond-

ing to a problem run is added to the problems table. The cleanup trigger first deletes

those entries for which the execution traces were not stored if the entries existed in the

Database for more than 10 minutes. The cleanup trigger then deletes those entries for

which the execution traces were stored, if the time of last usage of the execution trace is

greater than 30 days. Thus by using longer duration for those problem runs for which

execution traces were stored, the cleanup trigger function provides greater opportunity

for the usage of the execution traces for the subsequent problem runs. If no entries meet

the above criteria for deletions and the number of entries for which the execution traces

were stored is greater than 100, the cleanup trigger function orders the entries based on

completion times and deletes the first few entries in the list till the number of entries in

the DataBase decreases to less than 100.

208

6.6 Metascheduler in GrADSolve

The metascheduler in GrADSolve is similar to the metascheduler in the ad-hoc infras-

tructure with few minor modifications. While the metascheduler in the ad-hoc infras-

tructure assumes the existence of preemptible parallel applications for which execution

models exist, mechanisms have been plugged into the metascheduler in the GrADSolve

system to support different kinds of applications with different capabilities.

For the Database Manager, the popular and more robust PostgreSQL was used. In

addition to the fields for the problems table used in the Database Manager for ad-hoc

infrastructure, the problems table in the PostgreSQL Database also contains fields for

storing different capabilities of the applications including if an execution model exists

for the end application, if the execution model possesses a mapper function, if the end

application can continue from its previous point in execution once stopped, if the end

application can be reconfigured etc. The PostgreSQL Database also contains fields

for storing and managing execution traces for the problem runs. These fields include

execution trace flag that indicates if the execution trace for the problem run has to be

stored, the execution trace key that a problem run uses, the time of last usage of an

execution trace etc. The PostgreSQL Database Manager is also supported by trigger

functions that update certain fields on the occurrence of certain events. The use of the

robust PostgreSQL Database enabled to increase the stability of the Database Manager

of the metascheduler.

The Permission Service in the GrADSolve metascheduler accesses the PostgreSQL

209

Database Manager to retrieve the different capabilities of the end applications. If the

end application for which the Permission decision is being made does not possess an ex-

ecution model, the Permission Service assumes that the resources have adequate capac-

ities to execute the end application and simply grants permission for the corresponding

GrADSolve Application Manager to continue to the next stages of its execution. Also,

during the decision to stop an executing application to accommodate a new applica-

tion, the Permission Service utilizes the remaining execution time of the executing end

application if the application can continue from a particular point in execution after

stopping while the Permission Service utilizes the entire predicted execution time of the

application if the end application cannot continue after stopping execution.

The Contract Negotiator in the GrADSolve metascheduler is similar to its ad-hoc in-

frastructure counterpart. It first ensures that the GrADSolve application for which con-

tract decision is being made retrieved resource information from NWS for its application-

level schedule before any executing applications started. If the GrADSolve application

received its resource information before the start of any executing applications, the

Contract Negotiator simply sends CONTRACT OK for those applications that do not

possess execution models. For those applications for which execution models exist, the

Contract Negotiator tries to improve the performance contract. While evaluating the

potential performance benefits for the new application due to stopping an executing

application, the Contract Negotiator takes into account only those executing applica-

tions for which execution models exist and for which execution traces are not stored or

210

used. If such executing applications can continue after stopping, the Contract Negotia-

tor utilizes the remaining execution times of the applications in its calculations while it

uses the entire predicted execution times of the applications, if the applications cannot

continue after stopping execution. Similarly, while trying to reduce the impact on exe-

cuting applications due to the addition of the new application, the Contract Negotiator

considers only those new applications for which executions models exists and which do

not utilize a previous execution trace. It also tries to evaluate impacts on only those

executing applications for which execution models exist.

The Rescheduler of the metascheduler in the GrADSolve system considers reschedul-

ing only those executing applications that possess execution models and for which exe-

cution traces are not stored or used. While deciding to migrate an executing application

to a new set of resources, the rescheduler retrieves a new schedule consisting of the same

number of machines in the current schedule from the Performance Model service, if the

end application cannot reconfigure after stopping execution. Similarly, while making

migrating decisions for an executing application, the Rescheduler considers either the

remaining execution time of the application with the new schedule of resources or the

entire predicted cost of the application with the new schedule depending on the contin-

uation capability of the application after stopping execution.

211

6.7 Experiments and Results

For the experiments in this section, 4 machines from the GrADS testbed were used -

a msc machine from UT, a opus machine from UIUC and two circus machines from

UCSD. In the experiments, GrADSolve was used to remotely invoke ScaLAPACK driver

for solving the linear system of equation, AX = B. The driver invokes ScaLAPACK

QR factorization for the factorization of matrix, A. Block cyclic distribution was used

for the matrix, A and the right-hand side vector, B. A GrADSolve IDL was written for

the driver routine and an execution model that predicts the execution cost of the QR

problem was uploaded into the GrADSolve system. The GrADSolve user invokes the

remote parallel application by passing the size of the matrix, the matrix, A and the

right-hand side vector, B to the gradsolve() call.

GrADSolve was operated in 3 modes. In the first mode, the execution model did not

contain information about the data distribution used in the ScaLAPACK program. In

this case, GrADSolve transported the entire data to each of the locations used for the

execution of the end application. This mode of operation is practiced in RPC systems

that do not support the information regarding data distribution. In the second mode,

the execution model contained information about the data distribution used in the end

application. In this case, GrADSolve transported only the appropriate portions of the

data to the locations used for the execution of end application. In the third mode,

GrADSolve was used with an execution trace corresponding to a previous run of the

same problem. In this case, data is not staged from the user’s address space to the

212

0

200

400

600

800

1000

1200

1400

1000 2000 3000 4000 5000 6000 7000 8000

T
im

e
[s

ec
s.

]

Matrix Size

Data Staging and GrADSolve Overhead

Full data staging
Data staging with distribution

Data staging with execution traces
Overhead with full data staging

Overhead with distribution
Overhead with execution traces

Figure 6.9: Data staging and other GrADSolve overhead

remote machines, but temporary copies of the input data used in the previous run are

made for the current problem run.

Figure 6.9 shows the times taken for data staging and other GrADSolve overhead for

different matrix sizes and for the three modes of GrADSolve operation. Since the times

taken for the execution of the end application are same in all the three modes, we focus

only on the times taken for data staging and possible Grid overheads. The machines

that were chosen by the GrADSolve application-level scheduler for the execution of end

application for different matrix sizes are shown in Table 6.1.

Comparing the first two modes in Figure 6.9, we find that for smaller problem sizes,

213

Table 6.1: Machines chosen for application execution
Matrix size Machines

1000 1 UT machine
2000 1 UT machine
3000 1 UT machine
4000 1 UT machine
5000 1 UT, 1 UIUC machines
6000 1 UIUC, 1 UCSD machines
7000 1 UIUC, 1 UCSD machines
8000 1 UT, 1 UIUC, 2 UCSD machines

the times taken for data staging in both the modes are the same. This is because only

one machine was used for problem execution and the same amount of data are staged

in both the modes when only one machine is involved for problem execution. For larger

problem sizes, the times for data staging with distribution information is less than 20-

55% of the times taken for staging the entire data to remote resources. Thus the use of

data distribution information in GrADSolve can give significant performance benefits

when compared to staging the entire data that is practiced in some of the RPC systems.

Data staging in the third mode is basically the time taken for creating temporary copies

of data used in the previous problem runs in remote resources. We find this time to

be negligible when compared to the first two modes. Thus execution traces can be

used as caching mechanisms to use the previously staged data for problem solving.

The GrADSolve overheads for all the three modes are found to be the same. This is

because of the small number of machines used in the experiments. For experiments

when large number of machines are used, we predict that the overheads will be higher

214

in the first two modes than in the third mode. This is because in the first two modes,

the application-level scheduling will explore large number of candidate schedules to

determine the machines used for end application while in the third mode, a previous

application-level schedule will be retrieved from the database and used.

215

Chapter 7

Conclusions and Future Work

7.1 Contributions of the Research

In this research, we discussed the need of a preemptive-based metascheduler for dis-

tributed computing by identifying the problems faced with other scheduling strategies,

namely, application-level scheduling. Specifically, the research intended to meet three

objectives of scheduling that are critical for distributed computing - to provide high

performance to individual applications within the constraints of the system loads, to

accommodate maximum number of applications into the system without overwhelming

the system resources and to provide high throughput of the overall system.

Towards meeting the objectives, the research designed and developed a metasched-

uler for the Grid that takes into account both the application level and system level

considerations. The different components of the metascheduler, viz., the Database Man-

ager, Permission Service, Contract Negotiator and the rescheduler were explained in de-

216

tail. These components provided valuable scheduling services for meeting our scheduling

objectives. The Permission Services tries to accommodate new applications into the sys-

tem by preempting executing large applications. The Contract Negotiator acts as an

arbitrator between different application-level schedulers and balances the interests of

different applications. It acts as a queue manager ensuring that the application-level

schedulers made their scheduling with recent resource information. This guarantees that

the application-level schedulers avoid conflicting claims on the same set of resources and

also develop correct expectations for their performance. The Contract Negotiator pre-

empts executing applications for improving the performance contract values of new

applications and also reduces the impact on executing applications by the new applica-

tions. These decisions of the Contract Negotiator ensure high performance for individual

applications and high throughput of the system. The Rescheduler, by employing a ro-

bust migration framework reschedules applications if performance guarantees are not

met or to make use of free resources. The policies of the Rescheduler again help in

improving the performance of individual applications and providing high throughput of

the overall system. The policies of the metascheduling components were validated with

the help of demonstrative experiments and were found to meet the scheduling objec-

tives for distributed computing. Practical experiments were also conducted to study the

behavior of the metascheduler and to compare with situations when the metascheduler

was not used. These practical experiments proved that the metascheduler was helpful in

guaranteeing the performance contracts of the applications and maintaining the mean

217

performance contract ratios to be as small as 2.5 and the standard deviation of the

ratios to be as low as 1.5. The use of the metascheduler also helped in accommodating

atleast 3 more large applications than when the metascheduler was not used. Finally,

the use of the metascheduler also helped in increasing the throughput of the system by

atleast 15%.

The migration framework employed by the Rescheduler contains robust and unique

mechanisms for rescheduling executing applications. Many existing migrating systems

that migrate applications under loading conditions implement simple policies that can-

not be applied to Grid systems. The migration framework utilized in the metascheduler

takes into account both the system load and application characteristics. The migrating

decisions are based on factors like the amount of load, the time of the application when

the load is introduced and the size of the applications. The research also implemented

a framework that migrates executing applications to make use of additional free re-

sources. Experiments were conducted and results were presented to demonstrate the

capabilities of the migration framework. Based on the load conditions of the resources,

the migration framework can yield upto 70% improvement in performance for executing

applications. The performance benefits that can be obtained due to rescheduling de-

pends on the time taken to redistribute data to the new set of processors. This time for

redistribution depends on the resource and network characteristics of the resources in-

volved in the current and the new schedule at the time of rescheduling and the amount

of data movement involved. An initial design for retrieving these parameters at the

218

time of rescheduling and predicting the redistribution cost dynamically was integrated

into the migration framework. Our experiments and results showed that the predicted

redistribution cost correspond with the actual redistribution costs, thereby increasing

the accuracy of the rescheduling decisions made by the migration framework.

The migration framework and other components of the metascheduler rely on the

existence of premptible applications. A checkpointing infrastructure called SRS for de-

veloping and executing malleable and migratable parallel applications across heteroge-

neous sites was explained. The SRS API has limited number of functions for seamlessly

enabling parallel applications malleable. The uniqueness of the SRS system is achieved

by the use of IBP distributed storage infrastructure. Results were shown to evaluate

the overhead incurred to the applications and the times for storing, reading and redis-

tributing checkpoints. Our experiment results indicate that parallel applications, with

instrumentation to SRS library, were able to achieve reconfigurability incurring only

about 15-35% overhead.

Finally, to achieve practical utility of the metascheduler, an actual metascheduler-

based Grid RPC system called GrADSolve was developed. The Grid system is different

from many other Grid computing systems in that it is able to incorporate applications

with different capabilities. These capabilities include the presence of execution models

to predict the execution cost of the application, the presence of data distribution infor-

mation, the ability for the applications to be preempted during execution, the ability

to reconfigure etc. GrADSolve is an RPC system intended for efficient execution of

219

remote parallel software. The efficiency is achieved by dynamically choosing the ma-

chines used for parallel execution and staging the data to remote machines based on

data distribution information. The GrADSolve RPC system also supports maintaining

and utilizing execution traces for problem solving. Our experiments showed that the

GrADSolve system is able to adapt to the problem sizes and the resource characteristics

and yielded significant performance benefits with its data staging and execution trace

mechanisms. The data staging mechanisms in GrADSolve helps reduce the data staging

times in RPC systems by 20-50%.

7.2 Future Directions of the Research

Though the metascheduler has been found to achieve its objectives with the help of

demonstrative experiments, there is a need of formal set of mathematical formulations

to determine the optimal values that can be achieved by metascheduling techniques

in general and to evaluate the efficacy of the implementation of our metascheduler

in achieving the scheduling objectives. The evaluation of the metascheduler can also

be achieved by means of simulation techniques. Current simulation techniques are

able to evaluate only the low-level schedulers that determine the final set of resources

for application execution. In a complex metascheduling system where there are many

interactions between the low-level schedulers and the metascheduler and between the

metascheduling components themselves, robust and innovative simulation techniques

have to be developed. Also, our metascheduler consists of a set of ad-hoc techniques

220

that implement scheduling policies. Designing and implementing the metascheduler

based on format set of specifications and formulations will be the subject of future

research.

Our metascheduler uses various thresholds for implementing various policies regard-

ing preempting executing applications to accommodate new applications and to improve

the performance contracts of new applications, determining the relative problem sizes of

different applications, determining the impact of the executing applications on the per-

formance contract of new applications, waiting for an executing application to complete

before accommodating new applications, allowing a new application to execute in the

presence of executing applications, specifying acceptable limits of impact on executing

applications by new applications and evaluating the benefits that can be obtained by

rescheduling executing applications. These threshold values were obtained by conduct-

ing trial-and-error experiments with problems of different sizes and different resource

combinations available in the GrADS testbed. These thresholds depend on various fac-

tors like the accuracy of resource information, the type of applications, the predictions

of various resource parameters etc. and will have to be determined dynamically. Also,

in our metascheduling system, the applications are preempted at fixed intervals. The

intervals for preemption can also be determined dynamically based on the kind of job

mix and the history of workloads. Thus dynamically determining various parameters

for metascheduling will be an interesting avenue for future research.

Currently our metascheduler has been tested with only regular applications. Regular

221

applications offer ample opportunities to predict execution costs, to integrate with the

contract developer and monitor and to predict the remaining execution time of the

executing applications. We plan to explore the challenges involved in integrating non-

regular and multi-component applications into our metascheduler. We also plan to

test our metascheduling framework in environments involving separate domains where

number of local scheduling policies are involved.

There are also few issues regarding implementation of the current metascheduler.

Though the architecture of our metascheduler is decentralized with number of metaschedul-

ing components and application-level schedulers, the architecture of the individual

metascheduling components are centralized accepting requests from all applications in

the system. The centralized approach of the metascheduling components can lead to

issues in scalability, especially when large number of applications are involved. We plan

to implement a distributed metascheduler to improve the scalability of the architecture.

Also, the current metascheduler implements loosely coupled locks so that the policies

implemented by a metascheduler component do not override the policies implemented

by other metascheduler component. We plan to implement robust distributed locks for

the purpose. The current implementation of the metascheduler also has to be enhanced

to improve the mean response times of rejected applications.

There are various opportunities of interesting research in the area of rescheduling

executing applications to improve the performance of the applications. Currently, the

migration framework takes into account the the current load on the machines and the

222

remaining execution time of the applications to evaluate the performance benefits due

to rescheduling. In our future effort, the rescheduler will also take into account the pre-

dictions of the rate of change of loads on the system resources, the history of workload

on the resources, the rate of availability of the machines and the load caused by the

executing applications themselves to determine more accurate values of performance

benefits due to rescheduling. Though we have obtained encouraging initial results for

predicting the cost for redistribution of data, predicting the redistribution cost for any

application with any data distribution is a hard problem. We plan to provide robust in-

terfaces for the library writers to communicate information about the data distribution

used in the application to the rescheduler framework. Also, our opportunistic migration

currently migrates executing applications when certain resources become lightly loaded.

Our future work will involve opportunistic migration when new resources are added to

the Grid system. Another major avenue for future research direction is to extend our

SRS checkpointing library. One of the main goals will be to use precompiler technologies

to restore the execution context and to relieve the user from having to make major mod-

ifications in his program to provide malleability of his applications. The precompilation

strategies will be similar to the approaches taken by Ferrari [50], Dome [24], Zandy [119]

and Sun et. al. [102]. Other future investigations include support for checkpointing

files, complex pointers and structures and to provide support for different kinds of ap-

plications. Although the design of the checkpointing framework supports migration in

heterogeneous environments, the current implementation stores the checkpoint data as

223

raw bytes. This approach will lead to misinterpretation of the data by the application

if, for example, the data is stored on a Solaris system and read by a Linux machine.

This is due to the different byte orderings and floating point representations followed on

different systems. We plan to use the External Data Representation (XDR) or Porch

Universal Checkpointing Format (UCF) [100, 89] for representing the checkpoints. We

also plan to separate the storage nodes for checkpoints from the computational nodes

for application execution by employing the eXNode [22] architecture. This will provide

robust fault tolerant mechanism for withstanding the processor failures in SRS. We also

intend to collaborate with the CUMULVS project [63] to provide a generic visualization

architecture that will be used to monitor the execution of malleable applications. There

are also plans to extend the RSS daemon to make it fault-tolerant by periodically check-

pointing its state so that the RSS service can be migrated across sites. Presently, all the

processes of the parallel application communicate with a single RSS deamon. This may

pose a problem for the scalability of the checkpointing system, especially when large

number of machines are involved. Our future plan is to implement a distributed RSS

system to provide scalability.

Finally, there are also future plans to extend our GrADSolve RPC system. Pluggable

interfaces to the library writers for expressing new capabilities of the end application

to the GrADSolve system will be developed. Remote execution of non-MPI parallel

programs and applications with different modes of parallelism are also being considered.

Support for remote invocation in different programming languages including MATLAB

224

are also part of our future efforts. Lastly, automatic usage of execution traces based on

the supplied parameters will alleviate the need for the GrADSolve users to supply trace

keys for usage.

225

Bibliography

226

Bibliography

[1] Apache xindice. http://xml.apache.org/xindice.

[2] Corba. http://www.corba.org.

[3] GrADS Web Site. http://hipersoft.cs.rice.edu/grads/index.htm.

[4] Grand Challenge Problems. http://www.nhse.org/grand challenge.htm.

[5] Java Remote Method Invocation (Java RMI). java.sun.com/products/jdk/rmi.

[6] LAM-MPI. http://www.lam-mpi.org.

[7] MPI. http://www-unix.mcs.anl.gov/mpi.

[8] NWS Interactive Query. http://nws.cs.ucsb.edu/CGI/graphIt.cgi.

[9] Portable Batch System. http://www.openpbs.org.

[10] Postgresql. http://www3.us.postgresql.org.

[11] PVM. http://www.csm.ornl.gov/pvm.

[12] Xml-rpc. http://www.xmlrpc.com.

227

[13] D. Abramson, R. Sosic, J. Giddy, and B. Hall. Nimrod: A Tool for Performing

Parametised Simulations using Distributed Workstations. The 4th IEEE Sympo-

sium on High Performance Distributed Computing, Virginia, August 1995.

[14] A.Chowdhury. Dynamic Reconfiguration: Checkpointing Code Generation. In

In Proceedings of IEEE 5th International Symposium on Assessment of Software

Tools and Technologies (SAST97), 1997.

[15] A. Agbaria and R. Friedman. Starfish: Fault-Tolerant Dynamic MPI Programs

on Clusters of Workstations. In In the 8th IEEE International Symposium on

High Performance Distributed Computing, pages 167–176, August 1999.

[16] J.N.C. Arabe, A.B.B. Lowekamp, E. Seligman, M. Starkey, and P. Stephan. Dome:

Parallel Programming in a Heterogeneous Multi-User Environment. Supercomput-

ing, 1995.

[17] P. Arbenz, W. Gander, and M. Oettli. The remote computation system. Parallel

Computing, 23:1421–1428, 1997.

[18] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.

Efficient management of parallelism in object oriented numerical software libraries.

In E. Arge, A. M. Bruaset, and H. P. Langtangen, editors, Modern Software Tools

in Scientific Computing, pages 163–202. Birkhauser Press, 1997.

228

[19] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.

PETSc 2.0 users manual. Technical Report ANL-95/11 - Revision 2.0.24, Argonne

National Laboratory, 1999.

[20] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith.

PETSc home page. http://www.mcs.anl.gov/petsc, 1999.

[21] A. Baratloo, P. Dasgupta, and Z. M. Kedem. CALYPSO: A Novel Software System

for Fault-Tolerant Parallel Processing on Distributed Platforms. In Proc. of the

Fourth IEEE Int’l Symp. on High Performance Distributed Computing (HPDC-4),

pages 122–129, August 1995.

[22] M. Beck, T. Moore, and J. Plank. An End-to-End Approach to Globally Scalable

Network Storage. In ACM SIGCOMM 2002 Conference, Pittsburgh, PA, USA,

August 2002.

[23] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and Vaidy Sunderam.

Tools for Heterogeneous Network Computing. In R. Sincovec et al., editor, Pro-

ceedings of the Sixth SIAM Conference on Parallel Processing for Scientific Com-

puting, pages 854–861, Philadelphia, USA, 1993. SIAM Publications.

[24] A. Beguelin, E. Seligman, and P. Stephan. Application Level Fault Tolerance

in Heterogeneous Networks of Workstations. Technical Report CMU-CS-96-157,

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,

August 1996.

229

[25] F. Berman. High-performance schedulers. In The Grid: Blueprint for a New

Computing Infrastructure, pages 279–203. Morgan Kaufmann, ISBN 1-55860-475-

8, 1999.

[26] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johns-

son, K. Kennedy, C. Kesselman, J. Mellor-Crummey, D. Reed, L. Torczon, and

R. Wolski. The GrADS Project: Software Support for High-Level Grid Applica-

tion Development. International Journal of High Performance Applications and

Supercomputing, 15(4):327–344, Winter 2001.

[27] F. Berman and R. Wolski. The AppLeS Project: A Status Report. Proceedings

of the 8th NEC Research Symposium, May 1997.

[28] M. Bhandarkar, L. V. Kale, E. de Sturler, and J. Hoeflinger. Object-Based Adap-

tive Load Balancing for MPI Programs. In Proceedings of the International Con-

ference on Computational Science, San Francisco, CA, LNCS 2074, pages 108–

117, May 2001.

[29] B. Bieker, G. Deconinck, E. Maehle, and J. Vounckx. Reconfiguration and Check-

pointing in Massively Parallel Systems. In Proceedings of 1st European Dependable

Computing Conference (EDCC-1), volume Lecture Notes in Computer Science

Vol. 852, pages 353–370. Springer-Verlag, October 1994.

[30] M. Bishop, M. Valence, and L. F. Wisniewski. Process Migration for Heteroge-

neous Distributed Systems. Technical Report TR95-264, 1995.

230

[31] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Don-

garra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C.

Whaley. ScaLAPACK Users’ Guide. Society for Industrial and Applied Mathe-

matics, Philadelphia, PA, 1997.

[32] R. Butler, D. Engert, I. Foster, C. Kesselman, S. Tuecke, J. Volmer, and V. Welch.

A National-Scale Authentication Infrastructure. IEEE Computer, 33(12):60–66,

2000.

[33] R. Buyya, D. Abramson, and J. Giddy. Nimrod-G Resource Broker for Service-

Oriented Grid Computing. IEEE Distributed Systems Online, 2(7), November

2001.

[34] H. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computa-

tional Science Problems. The International Journal of Supercomputer Applications

and High Performance Computing, 11(3):212–223, Fall 1997.

[35] J. Casas, D. Clark, P. Galbiati, R. Konuru, S. Otto, R. Prouty, and J. Walpole.

MIST: PVM with Transparent Migration and Checkpointing, 1995.

[36] J. Casas, D. Clark, R. Konuru, S. Otto, R. Prouty, and J. Walpole. MPVM: A

Migration Transparent Version of PVM. Technical Report CSE-95-002, 1, 1995.

[37] T.L. Casavant and J.G. Kuhl. A Taxonomy of Scheduling in General-Purpose

Distributed Computing Systems. IEEE Transactions on Software Engineering,

SE-14(2):141–154, February 1988.

231

[38] C-C. Chang, G. Czajkowski, and T. von Eicken. MRPC: A High Performance

RPC System for MPMD Parallel Computing. 29(1):43–66, 1999.

[39] Y. Chen, K. Li, and J. S. Plank. CLIP: A Checkpointing Tool for Message-passing

Parallel Programs. In SC97: High Performance Networking and Computing, San

Jose, November 1997.

[40] G. Deconinck and R. Lauwereins. User-Triggered Checkpointing: System-

Independent and Scalable Application Recovery. In Proceedings of 2nd IEEE Sym-

posium on Computers and Communications (ISCC97), pages 418–423, Alexan-

dria, Egypt, July 1997.

[41] G. Deconinck, J. Vounckx, R. Lauwereins, and J.A. Peperstraete. User-triggered

Checkpointing Library for Computation-intensive Applications. In Proceedings of

7th IASTED-ISMM International Conference On Parallel and Distributed Com-

puting and Systems (IASTED, Anaheim-Calgary-Zurich) (ISCC97), pages 321–

324, Washington, DC, October 1995.

[42] Deng, Gu, Brecht, and Lu. Preemptive Scheduling of Parallel Jobs on Multipro-

cessors. In SODA: ACM-SIAM Symposium on Discrete Algorithms (A Conference

on Theoretical and Experimental Analysis of Discrete Algorithms), 1996.

[43] A. Denis, C. Pérez, and T. Priol. Achieving Portable and Efficient Parallel

CORBA Objects. Concurrency and Computation: Practice and Experience, 2002.

232

[44] A. Denis, C. Prez, and T. Priol. Portable Parallel CORBA Objects: an Approach

to Combine Parallel and Distributed Programming for Grid Computing. In Proc.

of the 7th International Euro-Par’01 Conference (EuroPar’01), pages 835–844.

Springer, August 2001.

[45] A. Denis, C. Prez, and T. Priol. Towards High Performance CORBA and MPI

Middlewares for Grid Computing. In Craig A. Lee, editor, Proc. of the 2nd In-

ternational Workshop on Grid Computing, number 2242 in LNCS, pages 14–25.

Springer-Verlag, November 2001.

[46] L. Dikken, F. van der Linden, J. J. J. Vesseur, and P. M. A. Sloot. DynamicPVM:

Dynamic Load Balancing on Parallel Systems. In Wolfgang Gentzsch and Uwe

Harms, editors, Lecture notes in computer science 797, High Performance Com-

puting and Networking, volume Proceedings Volume II, Networking and Tools,

pages 273–277, Munich, Germany, April 1994. Springer Verlag.

[47] F. Douglis and J. K. Ousterhout. Transparent Process Migration: Design Al-

ternatives and the Sprite Implementation. Software - Practice and Experience,

21(8):757–785, 1991.

[48] Xing Du and Xiaodong Zhang. Coordinating Parallel Processes on Networks

of Workstations. Journal of Parallel and Distributed Computing, 46(2):125–135,

1997.

233

[49] M. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson. A Survey of Rollback-

Recovery Protocols in Message Passing Systems. Technical Report CMU-CS-96-

181, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA,

USA, October 1996.

[50] A.J. Ferrari, S.J. Chapin, and A.S. Grimshaw. Process Introspection: A Hetero-

geneous Checkpoint/Restart Mechanism Based on Automatic Code Modification.

Technical Report Technical Report CS-97-05, Department of Computer Science,

University of Virginia, March 1997.

[51] S.M. Figueira and F. Berman. Modeling the Effects of Contention on the Perfor-

mance of Heterogeneous Applications. The 5th International Symposium on High

Performance Distributed Computing (HPDC ’96), pages 392–, August 1996.

[52] S.M. Figueira and F. Berman. Predicting Slowdown for Networked Workstations.

The 6th International Symposium on High Performance Distributed Computing

(HPDC ’97), pages 92–101, August 1997.

[53] S.M. Figueira and F. Berman. Modeling the Slowdown of Data-Parallel Appli-

cations in Homogeneous and Heterogeneous Clusters of Workstations. Seventh

Heterogeneous Computing Workshop, pages 90–101, March 1998.

[54] S.M. Figueira and F. Berman. A Slowdown Model for Applications Executing

on Time-Shared Clusters of Workstations. IEEE Transactions on Parallel and

Distributed Systems, 12(6):653–669, June 2001.

234

[55] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke.

A Directory Service for Configuring High-Performance Distributed Computations.

volume Proc. 6th IEEE Symp. on High-Performance Distributed Computing,

pages 365–375, 1997.

[56] I. Foster and N. Karonis. A Grid-Enabled MPI: Message Passing in Heterogeneous

Distributed Computing Systems. In Proceedings of SuperComputing 98 (SC98),

1998.

[57] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit.

Intl J. Supercomputer Applications, 11(2):115–128, 1997.

[58] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing

Infrastructure. Morgan Kaufmann, ISBN 1-55860-475-8, 1999.

[59] J. Gehring and A. Reinefeld. MARS - A Framework for Minimizing the Job

Execution Time in a Metacomputing Environment. Future Generation Computer

Systems, 12(1):87–99, 1996.

[60] Jörn Gehring and Thomas Preiss. Scheduling a Metacomputer with Uncooperative

Sub-schedulers. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling

Strategies for Parallel Processing, pages 179–201. Springer Verlag, 1999.

[61] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. A

Users’ Guide to PVM Parallel Virtual Machine. Technical Report ORNL/TM-

12187, Oak Ridge National Laboratory, May 1993.

235

[62] A. Geist, A. Beguelin, J. Dongarra, R. Manchek, W. Jiang, and V. Sunderam.

PVM: A Users’ Guide and Tutorial for Networked Parallel Computing. MIT

Press, 1994.

[63] G. A. Geist, J. A. Kohl, and P. M. Papadopoulos. CUMULVS: Providing Fault-

Tolerance, Visualization and Steering of Parallel Applications. International Jour-

nal of High Performance Computing Applications, 11(3):224–236, August 1997.

[64] E. Godard, S. Setia, and E. White. DyRecT: Software Support for Adaptive

Parallelism on NOWs. In in IPDPS Workshop on Runtime Systems for Parallel

Programming, Cancun, Mexico, May 2000.

[65] A. Grimshaw, W. Wulf, J. French, A. Weaver, and Jr. P. Reynolds. Legion: The

Next Logical Step Toward a Nationwide Virtual Computer. Technical Report

CS-94-21, Department of Computer Science, University of Virginia, 1994.

[66] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance, portable im-

plementation of the MPI message passing interface standard. Parallel Computing,

22(6):789–828, September 1996.

[67] William D. Gropp and Ewing Lusk. User’s Guide for mpich, a Portable Implemen-

tation of MPI. Mathematics and Computer Science Division, Argonne National

Laboratory, 1996. ANL-96/6.

236

[68] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of

Job-Scheduling Strategies for Grid Computing. In GRID 2000, pages 191–202,

November 2000.

[69] C. Hofmeister and J. M. Purtilo. Dynamic Reconfiguration in Distributed Sys-

tems : Adapting Software Modules for Replacement. In Proceedings of the 13 th

International Conference on Distributed Computing Systems, Pittsburgh, USA,

May 1993.

[70] A. Jeong and D. Shasha. PLinda 2.0: A Transactional/Checkpointing Approach

to Fault Tolerant Linda. In Proceedings of the 13th Symposium on Reliable Dis-

tributed Systems, pages 96–105. IEEE, 1994.

[71] L.V. Kalé, S. Kumar, and J. DeSouza. A Malleable-Job System for Timeshared

Parallel Machines. In 2nd IEEE/ACM International Symposium on Cluster Com-

puting and the Grid (CCGrid 2002), May 2002.

[72] R. Kettimuthu, V. Subramani, S. Srinivasan, T.B. Gopalsamy, D. K. Panda, and

P. Sadayappan. Selective Preemption Strategies for Parallel Job Scheduling. In

Proceedings of 2002 International Conference on Parallel Processing (ICPP 2002),

August 2002.

[73] R. Koo and S. Toueg. Checkpointing and Rollback Recovery for Distributed

Systems. IEEE Transactions on Software Engineering, 13(1):23–31, 1987.

237

[74] K. Li, J.F. Naughton, and J.S. Plank. Real-time Concurrent Checkpoint for

Parallel Programs. In In Second ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 79–88, March 1990.

[75] M. Litzkow, M. Livney, and M. Mutka. Condor - a Hunter for Idle Workstations.

Proc. 8th Intl. Conf. on Distributed Computing Systems, pages 104–111, 1988.

[76] J. Maassen, R. van Nieuwpoort, R. Veldema, H. Bal, T. Kielmann, C. Jacobs, and

R. Hofman. Efficient Java RMI for Parallel Programming. ACM Transactions on

Programming Languages and Systems (TOPLAS), 23(6):747–775, November 2001.

[77] D. McLaughlin, S. Sardesai, and P. Dasgupta. Preemptive Scheduling for Dis-

tributed Systems. In 11th International Conference on Parallel and Distributed

Computing Systems, September 1998.

[78] R. Mirchandaney, D. Towsley, and J. A. Stankovic. Adaptive Load Sharing in Het-

erogeneous Distributed Systems. Journal of Parallel and Distributed Computing,

9:331–346, 1990.

[79] V. K. Naik, S. P. Midkiff, and J. E. Moreira. A checkpointing strategy for scalable

recovery on distributed parallel systems. In SuperComputing (SC) ’97, San Jose,

November 1997.

[80] E. W. Parsons and K. C. Sevcik. Implementing Multiprocessor Scheduling Disci-

plines. In Dror G. Feitelson and Larry Rudolph, editors, Job Scheduling Strategies

for Parallel Processing, pages 166–192. Springer Verlag, 1997.

238

[81] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, G. Fagg, K. Roche, and S. Vadhi-

yar. Numerical Libraries and the Grid: The GrADS Experiments with Scalapack.

Journal of High Performance Applications and Supercomputing, 15(4):359–374,

Winter 2001.

[82] J. S. Plank, M. Beck, W. R. Elwasif, T. Moore, M. Swany, and R. Wolski. The

Internet Backplane Protocol: Storage in the Network. NetStore99: The Network

Storage Symposium, 1999.

[83] James S. Plank. An Overview of Checkpointing in Uniprocessor and Distributed

Systems, Focusing on Implementation and Performance. Technical Report UT-

CS-97-372, 1997.

[84] James S. Plank, Micah Beck, Gerry Kingsley, and Kai Li. Libckpt: Transparent

Checkpointing under Unix. Technical Report UT-CS-94-242, 1994.

[85] C. Prez, T. Priol, and A. Ribes. A Parallel CORBA Component Model for Nu-

merical Code Coupling. In Craig A. Lee, editor, Proc. of the 3nd International

Workshop on Grid Computing, LNCS. Springer-Verlag, November 2002.

[86] P. Pruitt. An Asynchronous Checkpoint and Rollback Facility for Distributed

Computations. Technical report, Honors Thesis, The College of William and

Mary, Computer Science, Williamsburg, VA, 1998.

[87] R. Rabenseifner. The dfn remote procedure call tool for parallel and distributed

applications. In In Kommunikation in Verteilten Systemen - KiVS 95. K. Franke,

239

U. Huebner, W. Kalfa (Editors), Proceedings, Chemnitz-Zwickau, pages 415–419,

February 1995.

[88] A. Radulescu and Arjan J. C. van Gemund. Preemptive Task Scheduling for Dis-

tributed Systems (Research Note). Lecture Notes in Computer Science, 1900:272–

276, 2001.

[89] B. Ramkumar and V. Strumpen. Portable checkpointing for heterogenous archi-

tectures. In 27th International Symposium on Fault-Tolerant Computing, pages

58–67, 1997.

[90] D. A. Reed. Grids, the TeraGrid and Beyond. IEEE Computer, pages 62–68,

January 2003.

[91] C. René and T. Priol. MPI Code Encapsulation using Parallel CORBA Object.

In Proceedings of the 8th IEEE International Symposium on High Performance

Distributed Computing, pages 3–10. IEEE, August 1999.

[92] C. René and T. Priol. MPI Code Encapsulating using Parallel CORBA Object.

Cluster Computing, 3(4):255–263, 2000.

[93] R.L. Ribler, J.S. Vetter, H. Simitci, and D.A. Reed. Autopilot: Adaptive Control

of Distributed Applications. Proceedings of the 7th IEEE Symposium on High-

Performance Distributed Computing, July 1998.

240

[94] S. H. Russ, B. K. Flachs, J. Robinson, and B. Heckel. Hector: Automated Task

Allocation for MPI. In Proceedings of IPPS ’96, The 10th International Parallel

Processing Symposium, pages 344–348, Honolulu, Hawaii, April 1996.

[95] K.A. Saqabi, S.W. Otto, and J. Walpole. Gang Scheduling in Heterogeneous

Distributed Systems. Technical report, OGI, 1994.

[96] H. Nakada M. Sato and S. Sekiguchi. Design and Implementations of Ninf: towards

a Global Computing Infrastructure. In Future Generation Computing Systems,

Metascomputing Issue, volume 15, pages 649–658, 1999.

[97] M. Sato, M. Hirano, Y. Tanaka, and S. Sekiguchi. OmniRPC: A Grid RPC Facility

for Cluster and Global Computing in OpenMP. In In Workshop on OpenMP

Applications and Tools (WOMPAT2001), July 2001.

[98] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The

Complete Reference - The MPI Core, volume 1. Boston MIT Press, 2nd edition,

September 1998.

[99] G. Stellner. CoCheck: Checkpointing and Process Migration for MPI. In Proceed-

ings of the 10th International Parallel Processing Symposium (IPPS ’96), pages

526–531, Honolulu, Hawaii, 1996.

[100] V. Strumpen and B. Ramkumar. Portable Checkpointing and Recovery in Hetero-

geneous Environments. Technical Report Technical Report 96-6-1, Department of

Electrical and Computer Engineering, University of Iowa, June 1996.

241

[101] V. Subramani, R. Kettimuthu, S. Srinivasan, and P Sadayappan. Distributed

Job Scheduling on Computational Grids using Multiple Simultaneous Requests.

In Proceedings of 11th IEEE International Symposium on High Performance Dis-

tributed Computing, pages 359–366, July 2002.

[102] X. H. Sun, V. K. Naik, and K. Chanchio. Portable hijacking. In SIAM Parallel

Processing Conference, March 1999.

[103] T. Suzumura, T. Nakagawa, S. Matsuoka, H. Nakada, and S. Sekiguchi. Are Global

Computing Systems Useful? - Comparison of Client-Server Global Computing

Systems Ninf, Netsolve versus CORBA. In In Proceedings of the 14th International

Parallel and Distributed Processing Symposium, IPDPS ’00, pages 547–559, May

2000.

[104] T. Tannenbaum and M. Litzkow. The condor distributed processing system. Dr.

Dobb’s Journal, pages 40–48, February 1995.

[105] Herwig Unger and Thomas Boehme. A Fuzzy Based Load Sharing Mechanism

for Distributed Systems. Technical Report TR-98-026, International Computer

Science Institute, Berkeley, CA, 1998.

[106] S. Vadhiyar and J. Dongarra. A Metascheduler for the Grid. In Proceedings of

11th IEEE International Symposium on High Performance Distributed Comput-

ing, pages 343–351, July 2002.

242

[107] G.D. van Albada, J. Clinckemaillie, A.H.L. Emmen, J. Gehring, O. Heinz,

F. van der Linden, B.J. Overeinder, A. Reinefeld, and P.M.A. Sloot. Dynamite -

Blasting Obstacles to Parallel Cluster Computing, April 1995.

[108] J.S. Vetter and D.A. Reed. Real-time Performance Monitoring, Adaptive Control,

and Interactive Steering of Computational Grids. The International Journal of

High Performance Computing Applications, 14(4):357–366, 2000.

[109] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser. Active Mes-

sages: A Mechanism for Integrated Communication and Computation. In 19th

International Symposium on Computer Architecture, pages 256–266, Gold Coast,

Australia, May 1992.

[110] F. Vraalsen, R.A. Aydt, C.L. Mendes, and D.A. Reed. Performance Contracts:

Predicting and Monitoring Grid Application Behavior. In Proceedings of the 2nd

International Workshop on Grid Computing/LNCS (GRID 2001). Springer Ver-

lag, November 2001.

[111] C.A. Waldspurger and W.E. Weihl. Lottery Scheduling: Flexible Proportional-

Share Resource Management. In First Symposium on Operating Systems Design

and Implementation (OSDI), USENIX Association, pages 1–11, 1995.

[112] J. Weissman. The Interference Paradigm for Network Job Scheduling. Proceedings

of the Heterogeneous Computing Workshop, pages 38–45, April 1996.

243

[113] J.B. Weissman. Prophet: Automated Scheduling of SPMD Programs in Worksta-

tion Networks. Concurrency: Practice and Experience, 11(6), November 1999.

[114] R. Wolski, G. Shao, and F. Berman. Predicting the Cost of Redistribution in

Scheduling. Proceedings of 8th SIAM Conference on Parallel Processing for Sci-

entific Computing, March 1997.

[115] R. Wolski, N. Spring, and J. Hayes. The Network Weather Service: A Distributed

Resource Performance Forecasting Service for Metacomputing. Journal of Future

Generation Computing Systems, 15(5-6):757–768, October 1999.

[116] D. Wright. Cheap Cycles from the Desktop to the Dedicated Cluster: Combining

Opportunistic and Dedicated Scheduling with Condor. Proceedings of the Linux

Clusters: The HPC Revolution conference, Champaign - Urbana, IL, June 2001.

[117] A. Yarkhan and J. Dongarra. Experiments with Scheduling Using Simulated An-

nealing in a Grid Environment. In M. Parashar, editor, Lecture notes in computer

science 2536 Grid Computing - GRID 2002, volume Third International Work-

shop, pages 232–242, Baltimore, MD, USA, November 2002. Springer Verlag.

[118] Z. You-Hui and P. Dan. A Task Migration Mechanism for Mpi Applications.

In In Proceedings of 3rd Workshop on Advanced Parallel Processing Technologies

(APPT’99), pages 74–78, Changsha, China, October 1999.

244

[119] V.C. Zandy, B.P. Miller, and M. Livny. Portable hijacking. In The Eighth IEEE In-

ternational Symposium on High Performance Distributed Computing (HPDC’99),

pages 177–184, August 1999.

[120] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam. The impact of mi-

gration on parallel job scheduling for distributed systems. In Lecture Notes in

Computer Science 1900, volume 6th International Euro-Par Conference, pages

242–251, Aug/Sep 2000.

[121] S. Zhou, X. Zheng, J. Wang, and P. Delisle. Utopia: a Load Sharing Facility for

Large, Heterogeneo us Distributed Computer Systems. Software – Practice and

Experience, 23(12):1305–1336, December 1993.

245

Appendices

246

Appendix A

Algorithms

A.1 Ad-hoc Search Procedure

1. Determine the amount of physical memory that is needed for the current problem.

2. If possible, find a fastest machine in the coarse grid that has the memory needed

to solve the problem.

3. For each cluster in the coarse grid:

(a) Find a machine in the cluster that has the maximum average bandwidth

relative to the other machines in the grid. Add this to the fine grid.

(b) Do the following:

i. Find the next machine in the coarse grid that has maximum average

bandwidth relative to the machines that are already in the fine grid.

247

ii. Calculate the new time estimate for the application by passing the ma-

chines in the fine grid to the execution model.

iii. Repeat Step 3.b.i until the time estimate for the application run time

increases.

4. Compare the different fine grids obtained in Step 3 and choose the fine grid with

the lowest time estimate.

5. If a single machine was found in Step 2, the time estimate for the problem using

the single machine is compared with the time estimate for the problem using the

machines found in Step 4. If the time estimate for the machine found in Step 2 is

less than the time estimate for the machines found in Step 4, then use the single

machine in Step 2 for the fine grid. Else use the machines found in Step 4 for the

fine grid. If Step 2 was not able to find a single machine that is able to solve the

problem, then the machines found in Step 4 are used for the fine grid.

A.2 Calculation of Approximate Remaining Execution Time

of an Executing Application

BEGIN COMMENTS

total pct - total percentage completion time

pct - percentage completion time retrieved from the Database Manager

time diff - difference between current global time and the start time of the application

248

pred time - predicted execution cost for the application

avg ratio - average of all ratios between the actual and the predicted cost for the appli-

cation obtained from the Contract Monitor

ret - remaining execution time of the application

last 5 avg - average of the last 5 ratios between the actual and predicted cost of the

application

END COMMENTS

total pct = pct +
time diff × 100.0

pred time × avg ratio
(A.1)

ret =
(100.0 − total pct) × (pred time ∗ avg ratio)

100.0
(A.2)

BEGIN COMMENTS

The above is the remaining execution time obtained assuming the

ratio between the actual and predicted execution cost to be

avg ratio. A further approximation is assuming the ratio to be

average of last 5 ratios of actual and predicted costs.

END COMMENTS

ret =
ret × last 5 avg

avg ratio
(A.3)

249

A.3 Algorithm for Permission Service

Permission Service:

Input: problemParameters, resourceRequirements, resourceInformation

resourceCapacity = getCapacity(resourceInformation)

if (resourceCapacity > resourceRequirements)

send (PERMISSION)

else

if (no currently running resource consuming applications)

send (NO_PERMISSION)

else

shortRemainingTimeApplications =

resource consuming applications that are going to end in

5 minutes

if (such applications exist) then

waitForCompletion (shortApplication)

send(PERMISSION)

250

else

ratio = remaining execution time of big application /

predicted execution time of new application in the

absence of big application

maxRatio = maximum value of ratio for all the big

applications

if (maxRatio >20 and bigApplication == checkpointable)

stop bigApplication

send permission to new application

wait for new application to complete

resume big application

251

A.4 Algorithm for Contract Negotiator

Contract Negotiator:

Input: problemParameters, finalListOfMachines, predictedTime

rsTime = time of resource selection of newApplication

executingList = getListOfExecutingApplications()

if (rsTime < minimum starting time of applications in executingList)

send (CONTRACT_NOT_OK)

else

for each application i in executingList

timeAbs = predicted time of new application in the absence of i

timePre = predicted time of new application in the presence of i

if (timePre/timeAbs > 1.5)

bigApplication = i

break out of loop

remainingExecAbs = remaining execution time of bigApplication in

the absence of new application

252

remainingExecPre = remaining execution time of bigApplication in

the presence of new application

impactTime = impact of current application on bigApplication

if (bigApplication is checkpointable and

2*timeAbs < 0.5*min(remainingExecTime+timeAbs,

impactTime + timePre))

stop bigApplication;

send (CONTRACT_NOT_OK) to new application

wait for the new application to complete

resume bigApplication

else if ((impactTime + timePre) > 1.2*(remainingExecTime+timeAbs))

Continue bigApplication

Wait for bigApplication to complete

Send (CONTRACT_NOT_OK) to new application

253

forever repeat /* never ending loop */

for each application i in executingList

percentIncreaseInImpact_i = increase in impact due to addition

of current application

end for

maxPercent = max(percentIncreaseInImpact_i)

if(maxPercent > 30)

new_resources = original_resources for current application -

a single resource

current_predicted_time = predicted execution cost of current

application with new_resources

pred_cost_increase = current_predicted_time /

original_predicted_time

if (pred_cost_increase > 2*maxPercent)

break out of the never ending loop

send CONTRACT_OK to the current application

254

A.5 Algorithm for Rescheduler

if (a Contract Monitor has requested for rescheduling the

end application)

resources_new = new resource characteristics from NWS.

new_schedule = application-level schedule with

resources_new

ret_current = remaining execution when the application

continues execution on the original set

of resources.

ret_new = remaining execution when the application

continues on new_schedule

rescheduling_gain = (ret_current -

(ret_new+rescheduling_cost)) /

ret_current

if (rescheduling_gain > gain_limit)

stop application

continue application on new_schedule

255

else

Query the data base manager for recently completed

applications.

if (some applications have completed)

executingList = list of executing applications

for each application i in executingList

reschedulingGain = (remaining execution time of i

without rescheduling -

(remaining execution time of i with

rescheduling + rescheduling time)) /

current remaining exec time

maxReschedulingGain = maximum of rescheduling gains

maxApplication = application that has maximum

rescheduling gain

if (maxReschedulingGain > 0.5)

stop maxApplication

get new candidate schedule for maxApplication

continue maxApplication on new set of resources

256

Appendix B

SRS Library Reference

B.1 SRS Init

C - void SRS Init()

Fortran - SRS INIT()

This function is called at the beginning of user’s application code. Should be called

after MPI Init().

B.2 SRS Finish

C - void SRS Finish()

Fortran - SRS FINISH()

This function is called at the end of the user’s application code. Should be called

before MPI Finalize().

257

B.3 SRS Restart Value

C - int SRS Restart Value()

Fortran - SRS RESTART VALUE(RESTART VALUE)

INTEGER RESTART VALUE

This function is used to indicate if the program is executed under the start or restart

mode.

Return values:

0 - Program started for the first time

1 - Program restarted

The user uses these values for conditional execution of certain statements of his

application. For e.g., if the application uses a matrix and the matrix will be checkpointed

when the application is stopped in the middle of its execution, then the matrix needs

to be initialized with initial values only when the application is executed for the first

time.

258

int* matrix;

int restart_value;

matrix = (int*)malloc(sizeof(int)*10);

restart_value = SRS_Restart_Value();

if(restart_value == 0){

for(i=0; i<10; i++){

matrix[i] = i;

}

}

B.4 SRS Check Stop

C - int SRS Check Stop()

Fortran - SRS CHECK STOP(STOP VALUE)

INTEGER STOP VALUE

This function returns 1 when the application has to be stopped and 0 otherwise. The

application periodically calls this function to check if it has to stop. When the value

returned by SRS Check Stop() is 1, the application executes any application specific

exit statements and stops. This function performs the actual checkpointing of data

when the return value is 1.

259

Example Usage

int main(){

int stop_value;

int *a;

stop_value = SRS_Check_Stop();

if(stop_value == 1){

/* perform exit */

/* do data cleanup */

free(a);

MPI_Finalize();

exit(0);

}

}

B.5 SRS Register

C - int SRS Register(char* name, void* data, int data type, int size,

int distribute handle, void* distribute data)

Fortran - SRS REGISTER(NAME, DATA, DATATYPE, SIZE,

DISTRIBUTION HANDLE, DISTRIBUTION DATA)

CHARACTER* NAME

260

<type> DATA, DISTRIBUTION DATA

INTERGER DATATYPE, SIZE, DISTRIBUTION HANDLE

This function allows the user to “mark” the data that will be check-

pointed when the application is stopped. Only those data that are marked

by SRS register() will be checkpointed when the application is stopped. The

function just adds the data to the list of data to be checkpointed. It does

not do the actual checkpointing.

name - a string containing less than 30 characters used to represent the

data. The user can use any arbitrary string name

data - pointer to data containing size data elements of data type data type

data type - data type of the elements of data. The data type can be one of

GRADS INT for integers, GRADS FLOAT for single precision reals,

GRADS DOUBLE for double precision reals, GRADS CHAR for characters

and GRADS BYTE for bytes.

distribute handle - can be one of BLOCK, BLOCKCYCLIC, CYCLIC or 0.

The handles returned by SRS DistributeFunc Create and

SRS DistributeMap Create can also be used.

distribute data - any specific information needed by the distribution func-

tion. For e.g., for BLOCKCYCLIC, a pointer to the block size is passed as

distribute data. NULL is used if the distribution function does not need any

specific information.

261

Return values:

0 - on success

-1 - on failure

Example Usage

int main(){

double x[10];

int i;

SRS_Register("X", x, GRADS_DOUBLE, 10, BLOCK, NULL);

SRS_Register("iterator", &i, GRADS_INT, 1, 0, NULL);

}

B.6 SRS Read

C - int SRS Read(char* name, void* data, int distribute handle, void* dis-

tribute data)

Fortran - SRS READ(NAME, DATA, DISTRIBUTION HANDLE, DIS-

TRIBUTION DATA)

CHARACTER* NAME

<type> DATA, DISTRIBUTION DATA

INTERGER DISTRIBUTION HANDLE

SRS Read() is called to read the data that was previously checkpointed.

262

Hence this function should be called only in the restart mode. The first

argument is a character string of less than 30 characters used to identify the

data. The name is the same string that that was used in the SRS Register()

function in the previous application run for checkpointing the data. data is a

pointer to the application’s address space into which the checkpointed data

will be read.

distribute handle can be one of BLOCK, BLOCKCYCLIC, CYCLIC or 0.

The handles returned by SRS DistributeFunc Create and

SRS DistributeMap Create can also be used. Following are the meanings of

the various handles.

0 - When 0 is used for new distribute handle, the data distributed over the

set of processes in the previous application run is copied one-one over the

corresponding set of processes in the current application run.

SAME - When SAME is used, the data stored by process 0 in the old

application run is copied to all the processes in the new application run.

This is useful for storing and retrieving iterator values.

BLOCK - This specifies 1-d block distribution.

CYCLIC - This specifies 1-d cyclic distribution.

BLOCKCYCLIC - This specifies 1-d block cyclic distribution.

distribute data - any specific information needed by the distribution func-

tion. For e.g., for BLOCKCYCLIC, a pointer to the block size is passed as

263

distribute data. NULL is used if the distribution function does not need any

specific information.

Example Usages

In the following examples, only partial code statements are shown to

demonstrate SRS Read() call.

Example 1: This is a simple example in which an array of integers are

copied from the set of processes in the old application to the corresponding

set of processes in the new application run.

int main(){

int A[10];

int i;

SRS_Init();

restart_value = SRS_Restart_Value();

if(restart_value == 1){

SRS_Read("A", A, 0, NULL);

}

SRS_Register("A", A, GRADS_INT, 10, 0, NULL);

}

Example 2: In this example, block-cyclic data distribution is used for

both old and new application runs. Thus the same data is distributed in

264

a block cyclic fashion over a new set of processes when the application is

restarted. Unlike Example 1, this example can be stopped and restarted on

a different set of processes.

int main(){

int A[10];

int i;

SRS_Init();

restart_value = SRS_Restart_Value();

if(restart_value == 1){

SRS_Read("A", A, BLOCKCYCLIC, NULL);

}

SRS_Register("A", A, GRADS_INT, 10, BLOCKCYCLIC, NULL);

}

Example 3: This example demonstrates the use of SAME value for new

distribution in SRS Read(). In this example, SAME is used for propagating

the checkpointed iterator to all the processes so that all the processes in the

current application run can start from the same iteration.

265

int main(){

int i, iter_start;

SRS_Init();

restart_value = SRS_Restart_Value();

if(restart_value == 1){

SRS_Read("iterator", &iter_start, SAME, NULL);

}

SRS_Register("iterator", &i, GRADS_INT, 1, 0, NULL);

for(i=iter_start; i<10; i++){

}

}

B.7 SRS StoreMap

C - void SRS StoreMap()

Fortran - SRS STOREMAP()

SRS StoreMap is called by the user to store the data maps corresponding

to the data distributions of the data passed previously in SRS Register. This

is useful if an external component wants to know the data distributions used

by the executing application.

266

B.8 SRS DistributeFunc Create

C - int SRS DistributeFunc Create(DataMapInfo* (*distribute func)(int

data size, int proc count, void* other info, char* input arg), int* handle)

SRS Read() and SRS Register require handles to data distributions. When

the data distribution is specified by means of a function, the handles can be

created by SRS DistributeFunc Create(). The first argument distribute func

is a pointer to a function that constructs a data map. The function accepts

4 arguments.

data size - total number of elements of data of data type GRADS INT,

GRADS FLOAT, GRADS DOUBLE, GRADS CHAR, GRADS BYTE

proc count - total number of processes

other info - any other information needed for the data distribution.

input arg - encoding of other info returned by the function.

The function returns a pointer to a structure called DataMapInfo whose

specification is given below.

typedef struct{

int info count;

int* offset;

int* size;

int* proc;

} DataMapInfo;

267

This structure is used for specifying the data map used for the data.

offset, size and proc are arrays. Each <offset, size, proc> triple contains infor-

mation about a particular data panel.

info count - number of elements in offset, size and proc arrays.

offset - offset[i] contains the global offset in terms of the data types

GRADS INT, GRADS DOUBLE, GRADS FLOAT, GRADS CHAR,

GRADS BYTE of the data panel i. The elements in the offset array should

be sorted by ascending order.

size - size[i] contains the number of elements of data type of either

GRADS INT, GRADS DOUBLE, GRADS FLOAT, GRADS CHAR or

GRADS BYTE of data panel i.

proc - proc[i] contains the process number that holds the data panel i.

The 2nd argument of SRS DistributeFunc Create() is the handle that

is set by the SRS DistributeFunc Create(). This handle will be used by

SRS Read() and SRS Register().

Example Usage

In this example, SRS DistributeFunc Create() is used to create a han-

dle to a block data distribution. This handle is used in the subsequent

SRS Register().

268

DataMapInfo* block_distribution(int data_size, int proc_count, void*

other_data, char* input_arg){

int i, total_offset;

DataMapInfo* data_map;

data_map = (DataMapInfo*)malloc(sizeof(DataMapInfo));

data_map->info_count = proc_count;

data_map->offset = (int*)malloc(sizeof(int)*proc_count);

data_map->size = (int*)malloc(sizeof(int)*proc_count);

data_map->proc = (int*)malloc(sizeof(int)*proc_count);

total_offset = 0;

for(i=0; i<proc_count; i++){

data_map->offset[i] = total_offset;

data_map->size[i] = data_size/proc_count +

((data_size % proc_count) > i);

data_map->proc[i] = i;

total_offset += data_map->size[i];

}

input_arg = NULL;

return data_map;

}

269

int main(){

int A[10];

int restart_value;

int distributefunc_handle;

DataMapInfo* (*distribute_func)(int, int , void*, char*);

MPI_Init();

SRS_Init();

restart_value = SRS_Restart_Value();

distribute_func = block_distribution;

SRS_DistributeFunc_Create(distribute_func, &distributefunc_handle);

SRS_Register(‘‘A’’, A, GRADS_INT, 10, distributefunc_handle, NULL);

SRS_Finish();

MPI_Finalize();

}

B.9 SRS DistributeMap Create

C - int SRS DistributeMap Create(DataMapInfo* dataMap, int* handle)

SRS DistributeMap Create() is one method of creating handle to a data

map needed by SRS Register() and SRS Read(). The first argument dataMap

270

is a pointer to a structure called DataMapInfo whose specification is given

below.

typedef struct{

int info count;

int* offset;

int* size;

int* proc;

} DataMapInfo;

This structure is used for specifying the data map used for the data.

offset, size and proc are arrays. Each <offset, size, proc> triple contains infor-

mation about a particular data panel.

info count - number of elements in offset, size and proc arrays.

offset - offset[i] contains the global offset in terms of the data types

GRADS INT, GRADS DOUBLE, GRADS FLOAT, GRADS CHAR,

GRADS BYTE of the data panel i. The elements in the offset array should

be sorted by ascending order.

size - size[i] contains the number of elements of data type of either

GRADS INT, GRADS DOUBLE, GRADS FLOAT, GRADS CHAR or

GRADS BYTE of data panel i.

proc - proc[i] contains the process number that holds the data panel i.

The 2nd argument of SRS DistributeMap Create() is the handle that

271

is set by the SRS DistributeMap Create(). This handle will be used by

SRS Read() and SRS Register().

Example

In this example, the block cyclic data distribution is constructed using the

data map structure and a handle is created using SRS DistributeMap Create().

This handle is used in the subsequent SRS Register() call.

272

int main(){

int A[10];

int handle;

int restart_value;

MPI_Init();

SRS_Init();

restart_value = SRS_Restart_Value();

dataMap = (DataMapInfo*)malloc(sizeof(DataMapInfo));

dataMap->info_count = 5;

dataMap->offset = (int*)malloc(sizeof(int)*5);

dataMap->size = (int*)malloc(sizeof(int)*5);

dataMap->proc = (int*)malloc(sizeof(int)*5);

dataMap->offset[0] = 0;

dataMap->size[0] = 2;

dataMap->proc[0] = 0;

dataMap->offset[1] = 2;

dataMap->size[1] = 2;

dataMap->proc[1] = 1;

dataMap->offset[2] = 4;

dataMap->size[2] = 2;

dataMap->proc[2] = 2;

dataMap->offset[3] = 6;

273

dataMap->size[3] = 2;

dataMap->proc[3] = 0;

dataMap->offset[4] = 8;

dataMap->size[4] = 2;

dataMap->proc[4] = 1;

SRS_DistributeMap_Create(dataMap, &handle);

SRS_Register(‘‘A’’, A, GRADS_INT, 10, handle, NULL);

SRS_Finish();

MPI_Finalize();

}

274

B.10 The big picture - A working example

(1) #include <stdio.h>

(2) #include <stdlib.h>

(3) #include <unistd.h>

(4) #include "mpi.h"

(5) #include "srs.h"

(6) #include "datatype.h"

(7) int main(int argc, char** argv){

(8) int* global_A;

(9) int* local_A;

(10) int rank, size;

(11) int global_size, local_size;

(12) int proc_number, local_index;

(13) int i, j, iter_start, restart_value, stop_value;

(14) MPI_Comm comm = MPI_COMM_WORLD;

(15) MPI_Init(&argc, &argv);

(16) SRS_Init();

(17) MPI_Comm_rank(comm, &rank);

(18) MPI_Comm_size(comm, &size);

(19) global_size = atoi(argv[1]);

275

(20) local_size = global_size/size;

(21) restart_value = SRS_Restart_Value();

(22) global_A = (int*)malloc(sizeof(int)*global_size);

(23) local_A = (int*)malloc(sizeof(int)*local_size);

(24) if(restart_value == 0){

(25) if(rank == 0){

(26) for(i=0; i<global_size; i++){

(27) global_A[i] = i;

(28) }

(29) }

(30) MPI_Scatter (global_A, local_size, MPI_INT, local_A, local_size,

(31) MPI_INT, 0, comm);

(32) iter_start = 0;

(33) }

(34) else{

(35) SRS_Read("A", local_A, BLOCK, NULL);

(36) SRS_Read("iterator", &iter_start, SAME, NULL);

(37) }

(38) SRS_Register("A", local_A, GRADS_INT, local_size, BLOCK, NULL);

(39) SRS_Register("iterator", &i, GRADS_INT, 1, 0, NULL);

276

(40) printf("Proc. %d initial: ", rank);

(41) for(j=0; j<local_size; j++){

(42) printf("%d ", local_A[j]);

(43) }

(44) printf("\n");

(45) for(i=iter_start; i<global_size; i++){

(46) stop_value = SRS_Check_Stop();

(47) if(stop_value == 1){

(48) free(global_A);

(49) free(local_A);

(50) MPI_Finalize();

(51) exit(0);

(52) }

(53) proc_number = i/local_size;

(54) local_index = i%local_size;

(55) if(rank == proc_number){

(56) local_A[local_index] += 10;

(57) }

(58) printf("Proc. %d Iter. %d: ", rank, i);

(59) for(j=0; j<local_size; j++){

277

(60) printf("%d ", local_A[j]);

(61) }

(62) printf("\n");

(63) sleep(1);

(64) }

(65) free(global_A);

(66) free(local_A);

(67) SRS_Finish();

(68) MPI_Finalize();

(69) exit(0);

(70) }

In this example, an array A whose size is divisible by the number of

processors is evenly distributed across all the processors. When the appli-

cation is started for the first time (line 24), the root process initializes the

array (lines 25-29) and distributes sub arrays to all the processors using

MPI Scatter (lines 30-31). Each process executes a loop whose number of

iterations is equal to the size of the array (lines 45-64). In each iteration

of the loop, a single element of the array whose array index is given by the

iteration number, is incremented by 10. This increment is carried by the

processor that owns the element (lines 55-57).

Each process registers its subarray and the iteration number for check-

278

pointing (lines 38-39). At the start of each iteration of the loop, each process

calls SRS Check Stop() to check if the application has to stop (line 46). If

the application has received a stop signal, each process frees the allocated

arrays and calls MPI Finalize() and exit() (lines 47-52).

When the application is restarted, each process reads its portion of the

array and the array is once again distributed in a block fashion (line 35).

Each process also reads the iteration number from which it has to continue.

Since all the processes have to continue from the same iteration, SAME

is used for SRS Read() (line 36). Thus this example can be started on

m number of processors, stopped and can be restarted on n number of

processors where n can be different from m. The only requirement for this

example is that the size of the array should be divisible by m and n. The

program can be stopped and restarted on different sets of processors any

number of times. At the end of program completion, the unique correct

values of the array, which are 10 - (size of the array-1)+10, are displayed.

279

Vita

Sathish Vadhiyar was born in Madras, India on November 16, 1975. He

completed his high school in 1991 after which he joined Thiagarajar College

of Engineering, Madurai, India for pursuing his undergraduate degree. He

obtained his Bachelor of Engineering in Computer Science and Engineering

in 1997. After then, he traveled to United States to pursue graduate stud-

ies. He obtained his Master’s degree in Computer Science from Clemson,

University, South Carolina in 1999. After graduation, he applied and joined

the Doctorate program in Computer Science in University of Tennessee in

May, 1999.

During the course of his Doctorate program, he worked as a Graduate

Research Assistant in the Innovative Computing Laboratory (ICL) under

the guidance of Dr. Jack Dongarra. During this period, he traveled to

many high profile conferences and presented various research papers. He

was also involved in GrADS, a multi-institutional research project. His

current research interests include parallel, distributed and Grid computing.

Sathish Vadhiyar is expected to receive his Doctoral degree in May 2003.

280

	A Preemption-Based Meta-Scheduling System for Distributed Computing
	Recommended Citation

	thesis.dvi

