42,241 research outputs found

    Sparse multinomial kernel discriminant analysis (sMKDA)

    No full text
    Dimensionality reduction via canonical variate analysis (CVA) is important for pattern recognition and has been extended variously to permit more flexibility, e.g. by "kernelizing" the formulation. This can lead to over-fitting, usually ameliorated by regularization. Here, a method for sparse, multinomial kernel discriminant analysis (sMKDA) is proposed, using a sparse basis to control complexity. It is based on the connection between CVA and least-squares, and uses forward selection via orthogonal least-squares to approximate a basis, generalizing a similar approach for binomial problems. Classification can be performed directly via minimum Mahalanobis distance in the canonical variates. sMKDA achieves state-of-the-art performance in terms of accuracy and sparseness on 11 benchmark datasets

    Multiclass Learning with Simplex Coding

    Get PDF
    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper

    NARX-based nonlinear system identification using orthogonal least squares basis hunting

    No full text
    An orthogonal least squares technique for basis hunting (OLS-BH) is proposed to construct sparse radial basis function (RBF) models for NARX-type nonlinear systems. Unlike most of the existing RBF or kernel modelling methods, whichplaces the RBF or kernel centers at the training input data points and use a fixed common variance for all the regressors, the proposed OLS-BH technique tunes the RBF center and diagonal covariance matrix of individual regressor by minimizing the training mean square error. An efficient optimization method isadopted for this basis hunting to select regressors in an orthogonal forward selection procedure. Experimental results obtained using this OLS-BH technique demonstrate that it offers a state-of-the-art method for constructing parsimonious RBF models with excellent generalization performance

    Data-driven Soft Sensors in the Process Industry

    Get PDF
    In the last two decades Soft Sensors established themselves as a valuable alternative to the traditional means for the acquisition of critical process variables, process monitoring and other tasks which are related to process control. This paper discusses characteristics of the process industry data which are critical for the development of data-driven Soft Sensors. These characteristics are common to a large number of process industry fields, like the chemical industry, bioprocess industry, steel industry, etc. The focus of this work is put on the data-driven Soft Sensors because of their growing popularity, already demonstrated usefulness and huge, though yet not completely realised, potential. A comprehensive selection of case studies covering the three most important Soft Sensor application fields, a general introduction to the most popular Soft Sensor modelling techniques as well as a discussion of some open issues in the Soft Sensor development and maintenance and their possible solutions are the main contributions of this work

    Developing non-destructive techniques to predict 'Hayward' kiwifruit storability : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Food Technology at Massey University, Palmerston North, New Zealand

    Get PDF
    A significant portion of New Zealand’s kiwifruit production is held as stock in local coolstores for extended periods of time before being exported. Many pre-harvest factors contribute to variation in fruit quality at harvest and during coolstorage, and results in the difficulty in segregating fruit for their storage outcomes. The objective of this work was to develop non-destructive techniques utilised at harvest to predict storability of individual or batches of ‘Hayward’ kiwifruit based on (near) skin properties. Segregation of fruit with low storage potential at harvest could enable that fruit to be sold earlier in the season reducing total fruit loss and improving profitability later in the season. The potential for optical coherence tomography (OCT) to detect near surface cellular structural differences in kiwifruit as a result of preharvest factors was demonstrated through quantitative image analysis of 3D OCT images of intact fruit from five commercial cultivars. Visualisation and characterisation of large parenchyma cells in the outer pericarp of kiwifruit was achieved by developing an automated image processing technique. This work established the usefulness of OCT to perform rapid analysis and differentiation of the microstructures of sub-surface cells between kiwifruit cultivars. However, the effects of preharvest conditions between batches of fruit within a cultivar were not detectable from image analysis and hence, the ability to provide segregation or prediction for fruit from the same cultivar was assumed to be limited. Total soluble solids concentration (TSS) and flesh firmness (FF) are two important quality attributes indicating the eating quality and storability of stored kiwifruit. Prediction of TSS and FF using non-destructive techniques would allow strategic marketing of fruit. This work demonstrated that visible-near-infrared (Vis-NIR) spectroscopy could be utilised as the sole input at harvest, to provide quantitative prediction of post-storage TSS by generating blackbox regression models. However the level of accuracy achieved was not adequate for online sorting purposes. Quantitative prediction of FF remained unsuccessful. Improved ways of physical measurements for FF may help reduce the undesirable variation observed on the same fruit and increase prediction capability. More promising results were obtained by developing blackbox classification models using Vis-NIR spectroscopy at harvest to segregate storability of individual kiwifruit based on the export FF criterion of 1 kgf (9.8 N). Through appropriate machine learning techniques, the surface properties of fruit at harvest captured in the form of spectral data were correlated to post-storage FF via pattern recognition. The best prediction was obtained for fruit stored at 0°C for 125 days: approximately 50% of the soft fruit and 80% of the good fruit could be identified. The developed model was capable of performing classification both within (at the fruit level) and between grower lines. Model validation suggested that segregation between grower lines at harvest achieved 30% reduction in soft fruit after storage. Should the model be applied in the industry to enable sequential marketing, $11.2 million NZD/annum could be saved because of reduced fruit loss, repacking and condition checking costs
    corecore