1,206 research outputs found

    Selecting a semantic similarity measure for concepts in two different CAD model data ontologies

    Get PDF
    Semantic similarity measure technology based approach is one of the most popular approaches aiming at implementing semantic mapping between two different CAD model data ontologies. The most important problem in this approach is how to measure the semantic similarities of concepts between two different ontologies. A number of measure methods focusing on this problem have been presented in recent years. Each method can work well between its specific ontologies. But it is unclear how accurate the measured semantic similarities in these methods are. Moreover, there is yet no evidence that any of the methods presented how to select a measure with high similarity calculation accuracy. To compensate for such deficiencies, this paper proposes a method for selecting a semantic similarity measure with high similarity calculation accuracy for concepts in two different CAD model data ontologies. In this method, the similarity calculation accuracy of each candidate measure is quantified using Pearson correlation coefficient or residual sum of squares. The measure with high similarity calculation accuracy is selected through a comparison of the Pearson correlation coefficients or the residual sums of squares of all candidate measures. The paper also reports an implementation of the proposed method, provides an example to show how the method works, and evaluates the method by theoretical and experimental comparisons. The evaluation result suggests that the measure selected by the proposed method has good human correlation and high similarity calculation accuracy

    Toward knowledge-based automatic 3D spatial topological modeling from LiDAR point clouds for urban areas

    Get PDF
    Le traitement d'un très grand nombre de données LiDAR demeure très coûteux et nécessite des approches de modélisation 3D automatisée. De plus, les nuages de points incomplets causés par l'occlusion et la densité ainsi que les incertitudes liées au traitement des données LiDAR compliquent la création automatique de modèles 3D enrichis sémantiquement. Ce travail de recherche vise à développer de nouvelles solutions pour la création automatique de modèles géométriques 3D complets avec des étiquettes sémantiques à partir de nuages de points incomplets. Un cadre intégrant la connaissance des objets à la modélisation 3D est proposé pour améliorer la complétude des modèles géométriques 3D en utilisant un raisonnement qualitatif basé sur les informations sémantiques des objets et de leurs composants, leurs relations géométriques et spatiales. De plus, nous visons à tirer parti de la connaissance qualitative des objets en reconnaissance automatique des objets et à la création de modèles géométriques 3D complets à partir de nuages de points incomplets. Pour atteindre cet objectif, plusieurs solutions sont proposées pour la segmentation automatique, l'identification des relations topologiques entre les composants de l'objet, la reconnaissance des caractéristiques et la création de modèles géométriques 3D complets. (1) Des solutions d'apprentissage automatique ont été proposées pour la segmentation sémantique automatique et la segmentation de type CAO afin de segmenter des objets aux structures complexes. (2) Nous avons proposé un algorithme pour identifier efficacement les relations topologiques entre les composants d'objet extraits des nuages de points afin d'assembler un modèle de Représentation Frontière. (3) L'intégration des connaissances sur les objets et la reconnaissance des caractéristiques a été développée pour inférer automatiquement les étiquettes sémantiques des objets et de leurs composants. Afin de traiter les informations incertitudes, une solution de raisonnement automatique incertain, basée sur des règles représentant la connaissance, a été développée pour reconnaître les composants du bâtiment à partir d'informations incertaines extraites des nuages de points. (4) Une méthode heuristique pour la création de modèles géométriques 3D complets a été conçue en utilisant les connaissances relatives aux bâtiments, les informations géométriques et topologiques des composants du bâtiment et les informations sémantiques obtenues à partir de la reconnaissance des caractéristiques. Enfin, le cadre proposé pour améliorer la modélisation 3D automatique à partir de nuages de points de zones urbaines a été validé par une étude de cas visant à créer un modèle de bâtiment 3D complet. L'expérimentation démontre que l'intégration des connaissances dans les étapes de la modélisation 3D est efficace pour créer un modèle de construction complet à partir de nuages de points incomplets.The processing of a very large set of LiDAR data is very costly and necessitates automatic 3D modeling approaches. In addition, incomplete point clouds caused by occlusion and uneven density and the uncertainties in the processing of LiDAR data make it difficult to automatic creation of semantically enriched 3D models. This research work aims at developing new solutions for the automatic creation of complete 3D geometric models with semantic labels from incomplete point clouds. A framework integrating knowledge about objects in urban scenes into 3D modeling is proposed for improving the completeness of 3D geometric models using qualitative reasoning based on semantic information of objects and their components, their geometric and spatial relations. Moreover, we aim at taking advantage of the qualitative knowledge of objects in automatic feature recognition and further in the creation of complete 3D geometric models from incomplete point clouds. To achieve this goal, several algorithms are proposed for automatic segmentation, the identification of the topological relations between object components, feature recognition and the creation of complete 3D geometric models. (1) Machine learning solutions have been proposed for automatic semantic segmentation and CAD-like segmentation to segment objects with complex structures. (2) We proposed an algorithm to efficiently identify topological relationships between object components extracted from point clouds to assemble a Boundary Representation model. (3) The integration of object knowledge and feature recognition has been developed to automatically obtain semantic labels of objects and their components. In order to deal with uncertain information, a rule-based automatic uncertain reasoning solution was developed to recognize building components from uncertain information extracted from point clouds. (4) A heuristic method for creating complete 3D geometric models was designed using building knowledge, geometric and topological relations of building components, and semantic information obtained from feature recognition. Finally, the proposed framework for improving automatic 3D modeling from point clouds of urban areas has been validated by a case study aimed at creating a complete 3D building model. Experiments demonstrate that the integration of knowledge into the steps of 3D modeling is effective in creating a complete building model from incomplete point clouds

    Natural Language Processing in-and-for Design Research

    Full text link
    We review the scholarly contributions that utilise Natural Language Processing (NLP) methods to support the design process. Using a heuristic approach, we collected 223 articles published in 32 journals and within the period 1991-present. We present state-of-the-art NLP in-and-for design research by reviewing these articles according to the type of natural language text sources: internal reports, design concepts, discourse transcripts, technical publications, consumer opinions, and others. Upon summarizing and identifying the gaps in these contributions, we utilise an existing design innovation framework to identify the applications that are currently being supported by NLP. We then propose a few methodological and theoretical directions for future NLP in-and-for design research

    Contributions for the exploitation of Semantic Technologies in Industry 4.0

    Get PDF
    120 p.En este trabajo de investigación se promueve la utilización de las tecnologías semánticas, en el entorno de la Industria 4.0, a través de tres contribuciones enfocadas en temas correspondientes a la fabricación inteligente: las descripciones enriquecidas de componentes, la visualización y el análisis de los datos, y la implementación de la Industria 4.0 en PyMEs.La primera contribución es una ontología llamada ExtruOnt, la cual contiene descripciones semánticas de un tipo de máquina de fabricación (la extrusora). En esta ontología se describen los componentes, sus conexiones espaciales, sus características, sus representaciones en tres dimensiones y, finalmente, los sensores utilizados para capturar los datos. La segunda contribución corresponde a un sistema de consulta visual en el cual se utiliza la ontología ExtruOnt y una representación en 2D de la extrusora para facilitar a los expertos de dominio la visualización y la extracción de conocimiento sobre el proceso de fabricación de una manera rápida y sencilla. La tercera contribución consiste en una metodología para la implementación de la Industria 4.0 en PyMEs, orientada al ciclo de vida del cliente y potenciada por el uso de tecnologías Semánticas y tecnologías de renderizado 3D.Las contribuciones han sido desarrolladas, aplicadas y validadas bajo un escenario de fabricación real

    Matching methods for semantic interoperability in Product Lifecycle Management.

    Full text link
    Product lifecycle management (PLM) is a business strategy that enables seamless information flow in today's collaborative, but distributed product development environment. In such environment, geographically and functionally distributed teams are involved in the development process, and the teams use different software systems with different ways of representing product data. As the product development process gets bigger and complicated, product semantics also needs to be translated in addition to the syntactic information, but ISO 10303, the current industry standard, cannot successfully translate the semantics; this has led to a new approach toward semantics-based product data integration. Semantics-based integration first requires participating domains to use semantic representation of product data. Given the semantic representations, it further requires techniques to determine semantic maps across product representations that will enable semantically correct interoperability of product data, and we propose the enabling techniques in this research. In order to determine semantic maps, we propose a method - Instance-Based Concept Matching (IBCM) that detects 1-to-n maps by exploiting implicit semantics captured in the instances of product models. The use of implicit semantics adds a new dimension in the area of product development, where most of the previous research has focused on using schema or data definition that are explicitly defined. Any single matching method is not enough to determine the semantic maps across the different systems, since each method presents only one view. We propose a method - FEedback Matching Framework with Implicit Training (FEMFIT) to combine the different matching approaches using ranking Support Vector Machine. The method overcomes the need to explicitly train the algorithm before it is used, and minimizes the decision-making load on the domain expert. Finally, we propose a framework to automatically determine the translation rules to enable translation of concepts from one system to another. Even after the semantic maps are obtained, the syntax in the sending system should properly transform to the syntax in the receiving system. We use a graph search method that obtains the overall translation rule as a combination of multiple basic functions. Using such rules, data from one system can be easily translated to another system.Ph.D.Mechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/64796/1/yeoil_1.pd

    Ontological View-driven Semantic Integration in Open Environments

    Get PDF
    In an open computing environment, such as the World Wide Web or an enterprise Intranet, various information systems are expected to work together to support information exchange, processing, and integration. However, information systems are usually built by different people, at different times, to fulfil different requirements and goals. Consequently, in the absence of an architectural framework for information integration geared toward semantic integration, there are widely varying viewpoints and assumptions regarding what is essentially the same subject. Therefore, communication among the components supporting various applications is not possible without at least some translation. This problem, however, is much more than a simple agreement on tags or mappings between roughly equivalent sets of tags in related standards. Industry-wide initiatives and academic studies have shown that complex representation issues can arise. To deal with these issues, a deep understanding and appropriate treatment of semantic integration is needed. Ontology is an important and widely accepted approach for semantic integration. However, usually there are no explicit ontologies with information systems. Rather, the associated semantics are implied within the supporting information model. It reflects a specific view of the conceptualization that is implicitly defining an ontological view. This research proposes to adopt ontological views to facilitate semantic integration for information systems in open environments. It proposes a theoretical foundation of ontological views, practical assumptions, and related solutions for research issues. The proposed solutions mainly focus on three aspects: the architecture of a semantic integration enabled environment, ontological view modeling and representation, and semantic equivalence relationship discovery. The solutions are applied to the collaborative intelligence project for the collaborative promotion / advertisement domain. Various quality aspects of the solutions are evaluated and future directions of the research are discussed

    A BIM - GIS Integrated Information Model Using Semantic Web and RDF Graph Databases

    Get PDF
    In recent years, 3D virtual indoor and outdoor urban modelling has become an essential geospatial information framework for civil and engineering applications such as emergency response, evacuation planning, and facility management. Building multi-sourced and multi-scale 3D urban models are in high demand among architects, engineers, and construction professionals to achieve these tasks and provide relevant information to decision support systems. Spatial modelling technologies such as Building Information Modelling (BIM) and Geographical Information Systems (GIS) are frequently used to meet such high demands. However, sharing data and information between these two domains is still challenging. At the same time, the semantic or syntactic strategies for inter-communication between BIM and GIS do not fully provide rich semantic and geometric information exchange of BIM into GIS or vice-versa. This research study proposes a novel approach for integrating BIM and GIS using semantic web technologies and Resources Description Framework (RDF) graph databases. The suggested solution's originality and novelty come from combining the advantages of integrating BIM and GIS models into a semantically unified data model using a semantic framework and ontology engineering approaches. The new model will be named Integrated Geospatial Information Model (IGIM). It is constructed through three stages. The first stage requires BIMRDF and GISRDF graphs generation from BIM and GIS datasets. Then graph integration from BIM and GIS semantic models creates IGIMRDF. Lastly, the information from IGIMRDF unified graph is filtered using a graph query language and graph data analytics tools. The linkage between BIMRDF and GISRDF is completed through SPARQL endpoints defined by queries using elements and entity classes with similar or complementary information from properties, relationships, and geometries from an ontology-matching process during model construction. The resulting model (or sub-model) can be managed in a graph database system and used in the backend as a data-tier serving web services feeding a front-tier domain-oriented application. A case study was designed, developed, and tested using the semantic integrated information model for validating the newly proposed solution, architecture, and performance
    corecore