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Abstract: In this paper, an ontology-supported case-based reasoning approach for computer-aided tolerance specifica-

tion is proposed. This approach firstly considers the past tolerance specification problems and their schemes as previ-

ous cases and the new tolerance specification problems as target cases and uses an ontology to represent previous and 

target cases. Then certain ontology-based similarity measure is used to assess the similarity between the toleranced 

features of target and previous cases, the similarity between the part features of target and previous cases, and the sim-

ilarity between the topological relations of target and previous cases. Based on these similarities, an ontology-based 

similarity measure for computing the similarity between target and previous cases is designed, and an algorithm for 

establishing such similarity measure with high accuracy and retrieving similar previous cases for a target case with 

this similarity measure is presented. This algorithm shows how to linearly combine the similarity of toleranced fea-

tures, the similarity of part features, and the similarity of topological relations to assess the similarity between target 

and previous cases to implement retrieval of previous cases under the prerequisite of ensuring the highest accuracy of 

the similarity measure. The paper also reports a prototype implementation of the proposed approach, provides an ex-

ample to illustrate how the approach works, and evaluates the approach via theoretical and experimental comparisons.  

Keywords: Computer-aided tolerance specification; Tolerance specification scheme; Tolerance specification problem; 

Case-based reasoning; Ontology; Similarity measure  

1. Introduction 

Tolerance in mechanical product development is defined as the permissible variation limit of the dimensions and 

geometric parameters of parts. It is the concrete reflection of product precision, the outcome of the coordination of 

product requirements and development costs, and an important technical indicator in the processes of product design, 

manufacturing, verification, assembly, and testing. Tolerance design (or tolerancing) is the design of the dimensions 

and tolerances of parts in the process of product development. Its purpose is to develop products which can satisfy 

functional and assembly requirements with minimum development costs. Since the advent of the theory of geometric 

dimensioning and tolerancing (GD&T), tolerance design has been broken down into three major parts that of tolerance 

specification, that of tolerance allocation, and that of tolerance analysis, where:  

 Tolerance specification mainly considers identifying toleranced features from each part of a product, establishing 

a datum reference frame for each part, selecting tolerance types for each toleranced feature, and using tolerance 

principles under the prerequisite of satisfying the functional and assembly requirements of the product.  

 Tolerance allocation focuses on determining the values of all selected tolerance types through refining the empir-

ical values or optimizing the empirical values based on the functional and assembly requirements of the product 

and specific cost-tolerance functions.  
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 Tolerance analysis put emphasis on evaluating the accumulation of errors that are allowed by the determined tol-

erance values and comparing such accumulation to the functional and assembly requirements of the product.  

So far, semi-automatic or automatic tolerance allocation and analysis have become a reality in a number of com-

puter-aided design (CAD) systems, while tolerance specification is still manually carried out by mechanical designers 

according to specific tolerancing standards (e.g. ISO 1101 [1] and ASME Y14.5 [2]) in CAD systems [3]. In such sit-

uation, the quality of the designed tolerance specification schemes is largely depended on the judgment and experi-

ence of the designers. Different designers may opt for different tolerance specification schemes for an identical nomi-

nal geometry under the same circumstance. This may not make much difference when designing a simple product. But 

for a complex product (e.g. automobile, manufacturing machine, airplane), this situation will directly increase the un-

certainty in product tolerance design and eventually have a negative effect on the quality of the product [4]. Besides, 

tolerance specification information is represented as the symbol annotations of CAD models in most of the current 

CAD systems. Although using such representation form is capable to establish a syntactically correct representation 

model of tolerance specification information, it cannot represent the semantics of tolerance specification information 

explicitly [5]. For this reason, tolerance specification information is not really computer-interpretable in most of the 

current CAD systems, which impedes the implementation of automatic tolerance specification in these systems.  

To make tolerance specification information really computer-interpretable in CAD systems and to reduce the un-

certainty of product tolerance design, the technologies of ontology and case-based reasoning (CBR) in the area of arti-

ficial intelligence are simultaneously introduced to computer-aided tolerance specification and an ontology-supported 

CBR approach for computer-aided tolerance specification is proposed in this paper. CBR [6], a powerful technology 

for computer reasoning and problem-solving, is well-known for providing an effective mechanism for solving new 

problems based on the solutions of similar past problems. It has been formalized with the purposes of computer rea-

soning and problem solving as a process consisting of four steps: case retrieval, reuse, revision, and retention, where 

case retrieval is the basis of other three steps [7]. To implement case retrieval, the first thing to do is to represent the 

cases. The proposed approach uses web ontology language (OWL) ontology [8], which is well-known for having a 

capability to represent information semantics explicitly and make information computer-interpretable, to represent the 

past tolerance specification problems and their schemes and considered them as previous cases and to represent each 

new tolerance specification problem and considered it as a target case. The represented cases have rigorous comput-

er-interpretable semantics because of the mathematical logic-based semantics of OWL [9]. As the benefits of such 

representations, semantic similarity assessment can be performed on the OWL ontology, which provides an effective 

mechanism to implement case retrieval [10]. Based on the OWL ontology representations of previous and target cases, 

an ontology-based similarity measure with high accuracy is then designed to automatically retrieve similar previous 

cases for a target case. The tolerance specification schemes in some of these similar previous cases may provide aux-

iliary information in solving the new tolerance specification problem in the target case. By reusing or reusing and re-

vising these schemes, designers can carry out tolerance specification for the new problem more easily.  

The remainder of the paper is organized as follows. An overview of related work is provided in Section 2. The 

details of the proposed approach are explained in Section 3. Section 4 reports a prototype implementation of the ap-

proach, presents an example to illustrate how the approach works, and evaluates the approach through theoretical and 

experimental comparisons. Section 5 ends the paper with a conclusion.  
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2. Related work 

Computer-aided tolerance specification is the application of computer technologies to aid in tolerance specifica-

tion of mechanical products. It is preferably implemented in accordance with tolerancing standards (e.g. ISO 1101 [1], 

ASME Y14.5 [2]). But existing tolerancing standards do not provide a practical method to implement computer-aided 

tolerance specification. In current practice, tolerance specification work is manually completed by mechanical design-

ers in CAD systems. This situation, as analyzed in the introduction, will directly increase the uncertainty in the toler-

ance design of a complex product and eventually have a negative effect on the quality of the product [4].  

With an aim of reducing the uncertainty in product tolerance design, a number of approaches for computer-aided 

tolerance specification have been presented during the past two decades [11]. These approaches can be classified into 

the following three categories on the basis of their existing problems:  

 Some step in the approach needs a great deal of know-how to complete human-computer interaction. Representa-

tive examples for this category are technologically and topologically related surface (TTRS) approach [12–15], 

degree of freedom (DOF) approach [16–18], and requirement decomposition approach [19–21]. The TTRS ap-

proach, which was presented by Clement et al. [12], implemented by Salomons et al. [13], and extended by Tou-

lorge et al. [14] and Zhang et al. [15], is the first and most cited approach for computer-aided tolerance specifica-

tion. This approach firstly extracts the surfaces of each part from a geometric modeler, then models each surface 

using an invariance class [22] and a minimum set of reference points, lines, and planes (which are called mini-

mum geometric datum elements), and finally generates the applicable tolerance specification schemes for each 

surface based on the classified tolerancing cases from the attributes of the model of this surface. A significant 

characteristic of the TTRS approach is that it is intuitive and unambiguous. But the selection of the minimum 

geometric datum elements in it requires a great deal of know-how, which could lead to human errors. The DOF 

approach, which was proposed by Shah et al. [16], Kandikjan et al. [17], and Wu et al. [18], also works under a 

priori classification of tolerancing cases. In this approach, a metric relation links two atomic geometric features. 

Such relation must be controlled by dimension or geometric tolerances. For each link of geometric features, the 

priori classification firstly provides the type, number, and direction of the constrained DOFs. Then certain rules 

are defined to establish the mappings from the constraints on DOF, toleranced features, and constrained metric 

relations to tolerance types and to guide the designers to choose datums and basic dimensions. The main ad-

vantage of the DOF approach is that it has rigorous mathematical definition (its mathematical basis is rigid body 

kinematics). But like the TTRS approach, the input of information of the constrained DOFs also requires a great 

deal of know-how. The requirement decomposition approach, which was presented by Ballu and Mathieu [19] 

and extended by Dantan et al. [20] and Costadoat et al. [21], firstly leverages an iterative procedure to decom-

pose all functional requirements input by the designers, then generates the influenced translations and rotations 

for each geometric feature according to the decomposed functional requirements, and finally selects the tolerance 

types and related datum for this feature on the basis of the generated influenced translations and rotations. The 

most prominent characteristic of this approach is that it has developed a second-order GD&T schema, while most 

of the existing approaches only implement first-order tolerance specification [23]. However, the approach needs 

explicit functional and assembly requirements as its input, which largely increases the difficulty of its use.  
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 The approach is incomplete for tolerance specification. Examples for this category are mirror approach [24, 25, 3] 

and semantic web rule language (SWRL) rules based approach [26]. The mirror approach, which was presented 

by Wang et al. [24] and extended by Armillotta and Semeraro [25, 3], firstly defines the planar surfaces having 

assembly relations with other planar surfaces as mirrors and divides mirrors into strong and weak mirrors. Strong 

mirrors are then selected as primary datums and weak mirrors are chosen as secondary or tertiary datums. Finally, 

form, location, and orientation tolerances are specified to datums and features using a rule-based procedure. The 

main characteristic of this approach is that it is easy to use. But for those parts without planar surface, the ap-

proach needs to be further improved. The SWRL rules based approach, which was proposed by Zhong et al. [26], 

aims to generate tolerance types in CAD systems automatically. This approach firstly uese OWL assertions to 

formalize the relations in the part layer, assembly feature surface layer, and spatial relation layer of the spatial re-

lations based assembly tolerance representation model [27]. It then uses SWRL rules to formalize the mapping 

relations between spatial relations and tolerance types. Finally, for an arbitrary assembly, the approach extracts its 

assembly requirements from the system, uses the extracted assembly requirements to instantiate the OWL asser-

tions, and infers the recommended tolerance types for each part of the assembly through the instantiated OWL 

assertions and SWRL rules. Due to the intelligent inference mechanism of SWRL rules and the semantic repre-

sentation mechanisms of OWL ontology, the SWRL rules based approach has advantages in having a high degree 

of intelligence and satisfying the requirement of representing the semantics of tolerance type information. How-

ever, the approach has not yet involved automatic generation of datums, toleranced features, and tolerance prin-

ciples.  

 Some step in the approach is extremely complicated. Such situation can be seen in assembly positioning con-

straints based approach [28–32], variational geometric constraint network (VGCN) approach [33, 34], and poly-

chromatic sets based approach [35, 4]. The assembly positioning constraints based approach, which was present-

ed by Anselmetti and Mawussi [28], extended by Mejbri et al. [29] and Cao et al. [32], and implemented by An-

selmetti [30, 31], defines each functional requirement as a geometric tolerance on an ending geometric entity. 

This tolerance is decomposed into a set of geometric tolerances on individual parts according to a us-

er-established positioning table that lists the assembly positioning constraints in order. The datum reference 

frame of each obtained geometric tolerance is then validated by rules that are based on the degrees of invariance 

of the features of individual parts. Like the requirement decomposition approach, this approach has also devel-

oped a second-order GD&T schema. But for a complex assembly, the establishment of its positioning table is ex-

tremely complicated. The VGCN approach, which was proposed by Hu et al. [33] and implemented by Hu and 

Peng [34], also works under a priori classification of tolerancing cases. But unlike the TTRS and DOF approach-

es, this approach needs explicit assembly requirements as its input. For each requirement, the approach links the 

involved nominal derived features using topological relations and parameters. The obtained graph is called as 

VGCN. Each link in a variational geometric constraint network can be assigned a geometric tolerance type ac-

cording to its topological relation and the priori classification of tolerancing cases. For a simple assembly, the 

VGCN approach is easy to use. But for a complex assembly, it is very difficult to use because the construction of 

a graph-based VGCN is extremely complicated. The polychromatic sets based approach, which was presented 

and extended by Zhang et al. [35, 4], can be seen as an extension of the VGCN approach. This approach firstly 

uses some contour matrices in polychromatic sets to represent variational geometric constraints and tolerance 
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types. Then according to the inference relations between unified and individual colors of polychromatic sets, it 

can infer variational geometric constraints and tolerance types for each explicit assembly requirement. Finally, 

the approach constructs a tolerance network on the basis of the inferred variational geometric constraints and tol-

erance types. Like the issue in the VGCN approach, the construction of a tolerance network for a complex as-

sembly in the polychromatic sets based approach is extremely complicated.  

As can be seen from the above review, the existing approaches for computer-aided tolerance specification are too 

technical, not complete enough, or extremely complicated. How to implement effective computer-aided tolerance 

specification remains a challenging task.  

To tackle such challenge, an ontology-supported CBR approach for computer-aided tolerance specification is 

proposed in the present paper. The proposed approach firstly uses OWL ontology to represent the past tolerance speci-

fication problems and their schemes as previous cases and to represent each new tolerance specification problem as a 

target case. It then automatically generates reference tolerance specification schemes for each new tolerance specifica-

tion problem using a retrieval technique driven by ontology-based semantic similarity assessment. By reusing or re-

using and revising these schemes, designers can easily carry out tolerance specification for the new problem. After 

that, designers can easily retain the revised tolerance specification scheme as a new previous case. Compared with the 

three categories of approaches above, the proposed approach has the following characteristics: (1) It directly takes the 

CAD model of an assembly as input and returns reference tolerance specification schemes for each toleranced feature 

of each part of the assembly as output. This process is fully automatic and does not need know-how. (2) The proposed 

approach is applicable for all shapes of parts. It has involved the generation of a complete tolerance specification 

scheme (i.e. toleranced feature, datum, tolerance type, and tolerance principle). (3) The proposed approach needs hu-

man-computer interaction in the steps of reuse, revision, and retention of the generated reference tolerance specifica-

tion schemes. Such interaction only requires a small amount of know-how and is not complicated.  

3. Ontology-supported CBR approach  

Carrying out tolerance specification for an assembly is designing tolerance specification schemes for each part of 

this assembly. This includes identifying toleranced features from each part of the assembly, establishing a datum ref-

erence frame for each part, selecting tolerance types for each toleranced feature, and using tolerance principles under 

the prerequisite of satisfying the functional and assembly requirements of the assembly. As an example, the process of 

designing tolerance specification scheme for a shaft in Fig. 1 is as follow:  
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Fig. 1. An example of designing tolerance specification scheme. 
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 Identifying the toleranced feature: The shaft consists of seven features: planar surface f1; cylindrical surface f2; 

planar surface f3; cylindrical surface f4; planar surface f5; cylindrical surface f6; planar surface f7. Its main function 

is rotation. The run-out of the feature f4 plays an important role in ensuring this function. Thus f4 is selected as a 

feature to be toleranced.  

 Establishing the datum reference frame: In general, the common axis of two cylindrical surfaces in a shaft can be 

taken as the datum reference frame of this shaft. The datum reference frame of the shaft in Fig. 1 is naturally es-

tablished as the common axis of the cylindrical surfaces f2 and f6 (i.e. A–B).  

 Selecting the tolerance type for each toleranced feature: The toleranced feature f4 is a cylindrical surface, whose 

applicable tolerance types are straightness, roundness, cylindricity, circular run-out, and total run-out [18]. The 

topological relation of f4 with respect to the datum reference frame A–B in ideal situation is parallel, whose ap-

plicable tolerance types are linear dimension tolerance, parallelism, position, symmetry, circular run-out, and to-

tal run-out [27]. Considering these two groups of applicable tolerance types and the functional requirement of the 

shaft synthetically, circular run-out is selected for f4.  

 Using tolerance principles: The circular run-out tolerance cannot be used any tolerance principles since it is not 

specified on a feature of size [1, 2].  

As can be seen from the example above, the basic elements for describing a tolerance specification problem are a 

toleranced feature (f4), the part containing the toleranced feature (the shaft in Fig. 1) and all the features of this part (f1, 

f2, f3, f4, f5, f6, and f7), and the topological relation of the toleranced feature with respect to the datum reference frame 

of the part in an ideal situation (parallel), while the basic elements for describing a solution of a tolerance specification 

problem are a datum reference frame (if required) (A–B), tolerance type (circular run-out), and tolerance principle (if 

required). According to the tolerancing standard ISO 1101 [1] or ASME Y14.5 [2], a datum reference frame may con-

sist of only one datum, two datums, or three datums. When it consists of two datums, the two datums are respectively 

called primary datum and secondary datum. When it consists of three datums, the three datums are respectively called 

primary datum, secondary datum, and tertiary datum. Tolerance principles can be applied on the whole tolerance, the 

primary datum, the secondary datum, and the tertiary datum. They are called general tolerance principle, primary da-

tum tolerance principle, secondary datum tolerance principle, and tertiary datum tolerance principle, respectively.  

Formally, let DP be the primary datum, DS be the secondary datum, DT be the tertiary datum, TT be the tolerance 

type, PG be the general tolerance principle, PP be the primary datum tolerance principle, PS be the secondary datum 

tolerance principle, PT be the tertiary datum tolerance principle, FT be the toleranced feature, P be the part that con-

tains the toleranced feature, FP be a set of all the features of part P, and RT be the topological relation of the toler-

anced feature with respect to the datum reference frame in an ideal situation. Then the basic elements for describing a 

tolerance specification problem are DP, DS, DT, FT, P, FP, and RT, while the basic elements for describing a solution of 

a tolerance specification problem are DP, DS, DT, TT, PG, PP, PS, PT, FT, P, FP, and RT. From the perspective of CBR, 

DP, DS, DT, FT, P, FP, and RT can constitute a target tolerance specification case, DP, DS, DT, TT, PG, PP, PS, PT, FT, P, 

FP, and RT can constitute a previous tolerance specification case, and the proposed ontology-supported CBR approach 

for computer-aided tolerance specification can be seen as an approach for retrieving similar previous cases for each 

target case using an ontology-based similarity assessment technique.  

This section aims to describe the details of the proposed ontology-supported CBR approach. The schematic rep-

resentation of the approach is shown in Fig. 2. As can be seen from this figure, the approach mainly comprises six 
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steps. The first step is to represent the previous tolerance specification cases using ontology. The part information (i.e. 

datum, features, toleranced features, and topological relations between features) of each new toleranced feature is ex-

tracted from a CAD system to construct a target tolerance specification case in the second step. The third step is to 

assess the similarities between toleranced features, between part features, and between topological relations. Then the 

similarity between a target case and a previous case can be defined as a weighted sum of these three similarities. How 

to determine a similarity measure with high accuracy to assess this similarity is also explained in this step. The fourth 

step is to use the determined similarity measure to compute the similarity between a target case and each of all previ-

ous cases in the case base. Through these four steps, some similar previous cases can be generated. The tolerance 

specification schemes in these previous cases can be combined with the recommended tolerance types generated by 

the SWRL rules based approach in [26] to assist tolerance specification in the target case through a case reuse mecha-

nism or case reuse and revision mechanisms in the fifth step. Then the target case and its final tolerance specification 

schemes could be retained as a new previous case by a case retention mechanism in the last step. Because part infor-

mation extraction can be easily implemented using the application program interfaces (APIs) of a CAD system and 

tolerance specification case retention is manually carried out by a designer, the section will not explain the second step 

and the last step in detail. The details of the first step, the third and fourth steps, and the fifth step are respectively ex-

plained in the following three sub-sections: the representation of tolerance specification cases, the retrieval of toler-

ance specification cases, and the reuse and revision of tolerance specification cases.  

3.1. Representation of tolerance specification cases  

3.1.1. Tolerance specification cases  

A case can be seen as a data structure that consists of a description and a solution of a problem. In CBR [6], there 

are generally two types of cases: previous case and target case, where a previous case is a historical case that consists 

of a description and a solution of a problem, and a target case is a newly encountered case that only contains a de-

scription of a problem. For a tolerance specification problem, FT, P, FP, and RT constitute its description, and DP, DS, 

DT, TT, PG, PP, PS, and PT constitute its solution (such solution is usually called a tolerance specification scheme in 

GD&T). Naturally, a tolerance specification case, a previous case for tolerance specification, and a target case for tol-

erance specification can be respectively defined as follows:  

Definition 1 (Tolerance specification case). A tolerance specification case is a fifteen-tuple CTS = (N, D, A, DP, 

DS, DT, TT, PG, PP, PS, PT, FT, P, FP, RT), where N is the case number, D is the last revised date of the case, and A is 

the author of the case.  

Definition 2 (Previous case for tolerance specification). A previous case for tolerance specification is a fifteen- 

tuple CP = (N, D, A, DP, DS, DT, TT, PG, PP, PS, PT, FT, P, FP, RT), where all tuples have the same meanings as they 

have in Definition 1.  

Definition 3 (Target case for tolerance specification). A target case for tolerance specification is a seven-tuple CT 

= (DP, DS, DT, FT, P, FP, RT), where all tuples have the same meanings as they have in Definition 1.  

Fig. 3(a) and Fig. 3(b) respectively show an example of previous case and an example of target case. Assume the 

number of the previous case is ―PC000001‖, the last revised date of the previous case is ―OCT 06, 2016‖, and the au-

thor of the previous case is ―Yuchu Qin‖. Then according to Definitions 2 and 3, the previous case in Fig. 3(a) and the 

target case in Fig. 3(b) can be respectively described as follows:  
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Fig. 2. Schematic representation of the ontology-supported CBR approach for computer-aided tolerance specification. 

 

CS = (―PC000001‖, ―OCT 06, 2016‖, ―Yuchu Qin‖, ―A‒B‖, ―‖, ―‖, ―Circular run-out‖, ―‖,  

―‖, ―‖, ―‖, fP,4, pP, {fP,1, fP,2, fP,3, fP,4, fP,5, fP,6, fP,7}, ―Parallel‖) 

 

CT = (―A‖, ―‖, ―‖, fT,5, pT, {fT,1, fT,2, fT,3, fT,4, fT,5}, ―Perpendicular‖)  

 

3.1.2. Tolerance specification ontology  

In artificial intelligence, ontology has been given a meaning: an explicit and formalized specification of a shared 

conceptualization model, where ―explicit‖ means all concepts in the model and all of the constraints between them 
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have unambiguous definitions, ―formalized‖ means the representation of the model has a rigorous mathematical basis 

and is directly computer-readable and computer-interpretable, ―shared‖ means the described objects in the model are 

some commonly recognized concepts in a field so that the model can provide common interpretations of these con-

cepts, and ―conceptualization‖ means that the model is an abstraction of the objective things [8]. This meaning can be 

seen as a non-formalized definition of ontology. In practical applications of ontology, a formalized definition is often 

required. Without loss of generality, a formalized definition of tolerance specification ontology is given as follow: 
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Fig. 3. An example of previous case and an example of target case. 

Definition 4 (Tolerance specification ontology). The tolerance specification ontology divides the world of toler-

ance specification into four parts of classes, properties, individuals, and axioms, where an individual is a concrete in-

stance in the world of tolerance specification, a property stands for a relationship between two individuals, a class is a 

unified name of a group of individuals that have a common property, and an axiom is a fact that holds in the world of 

tolerance specification. Based on these parts, the tolerance specification ontology is defined as a four-tuple OTS = {SC, 

SP, SI, SA}, where SC is a set of classes, SP is a set of properties, SI is a set of individuals, and SA is a set of axioms.  

After formally defining the tolerance specification ontology, the next step is to construct this ontology. For on-

tology construction, there are various available methods, such as skeleton method, TOVE method, SENSUS method, 

METHONTOLOGY method, and seven-step method [36]. Among these methods, the most cited one is the seven-step 

method [37], which was presented by Stanford University, one of the most authoritative ontology research institutions 

in the world. This method has very detailed documentation that can be used as a reference for the construction of an 

ontology. In addition, an ontology constructed by the method can be easily extended and reused to multiple domains. 

For these reasons, the seven-step method is applied to manually construct the tolerance specification ontology. The 

construction process mainly consists of the following seven steps:  

 Determine the domain and scope of the ontology. The tolerance specification ontology is mainly used in comput-

er-aided tolerance specification.  

 Consider reusing existing ontologies. In the field of tolerance design, some researchers like Fiorentini et al. [38], 

Zhong et al. [26], Lu et al. [39], Ahmed and Han [40], and Qin et al. [41] have constructed their respective on-

tologies that are related to tolerance for their specific purposes, where Fiorentini et al. [38] constructed an ontol-

ogy for assembly tolerance representation, Zhong et al. [26] constructed an ontology for generation of assembly 

tolerance types, Lu et al. [39] constructed an ontology for the enrichment of the semantics of variational geomet-

ric constraint information, Ahmed and Han [40] constructed an ontology for tolerance information exchange, and 
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Qin et al. [41] constructed an ontology for generation of geometric tolerance zones. Among these ontologies, the 

ontology for generation of assembly tolerance types in [26] has a common purpose with the tolerance specifica-

tion ontology in this paper. Further, the proposed ontology-supported CBR approach in the paper can be used as a 

complementary approach to improve the approach in [26]. Therefore, the ontology for generation of assembly 

tolerance types in [26] can be directly reused when constructing the tolerance specification ontology.  

 Enumerate important terms in the ontology. According to the definitions of tolerance specification cases (Defini-

tions 1, 2, and 3), important terms are case, tolerance specification case, number, last revised date, author, prima-

ry datum, secondary datum, tertiary datum, tolerance type, general tolerance principle, primary datum tolerance 

principle, secondary datum tolerance principle, tertiary datum tolerance principle, toleranced feature, part, part 

feature, topological relation, previous case, and target case.  

 Define the classes and the class hierarchy. Among the enumerated terms, terms representing unary relations are 

case, tolerance specification case, toleranced feature, previous case, and target case. These five terms are defined 

as classes Case, TSCase, TolerancedFeature, PreviousTSCase, and TargetTSCase, respectively. Obviously, Case 

should be defined as the parent class of TSCase, and TSCase should be defined as the parent class of PreviousTS- 

Case and TargetTSCase.  

 Define the properties of classes (slots). Among the enumerated terms, terms representing binary relations are 

number, last revised date, author, primary datum, secondary datum, tertiary datum, tolerance type, general toler-

ance principle, primary datum tolerance principle, secondary datum tolerance principle, tertiary datum tolerance 

principle, toleranced feature, part, part feature, and topological relation. They are defined as object properties 

hasNumber, hasLastRevisedDate, hasAuthor, hasPrimaryDatum, hasSecondaryDatum, hasTertiaryDatum, has- 

ToleranceType, hasGTolerancePrinciple, hasPDTolerancePrinciple, hasSDTolerancePrinciple, hasTDTolerancePrin- 

ciple, hasTolerancedFeature, hasPart, hasPartFeature, and hasTopologicalRelation, respectively.  

 Define the facets (domain and range) of the slots. The domain and range of a property can be defined on the basis 

of the function of this property. For instance, the object property hasNumber is used to link a previous tolerance 

specification case to a number. Thus its domain and range are defined as the classes PreviousTSCase and Number 

(Number is a class), respectively. The domain and range of the remaining properties are defined by a similar way.  

 Create instances. The authors have manually collected one hundred previous cases from the tolerancing standards 

ISO 1101 [1] and ASME Y14.5 [2] and several technical handbooks to instantiate the tolerance specification on-

tology at present. For example, the previous case in Fig. 3(a) is one of these one hundred previous cases. The 

following instances and assertions have been created for this previous case:  

AS = {PreviousTSCase(CP), Number(PC000001), Date(OCT 06, 2016), Author(Yuchu Qin),  

DatumLine(A‒B), CircularRunout(cr), CylindricalSurface(fP,4), Part(pP),  

RealPlanar(fP,1), RealCylindrical(fP,2), RealPlanar(fP,3), RealCylindrical(fP,4), RealPlanar(fP,5),  

RealCylindrical(fP,6), RealPlanar(fP,7), ParallelRelation(parallel),  

hasNumber(CP, PC000001), hasLastRevisedDate(CP, OCT 06, 2016),  

hasAuthor(CP, Yuchu Qin), hasPrimaryDatum(CP, A‒B), hasSecondaryDatum(CP, Null),  

hasTertiaryDatum(CP, Null), hasToleranceType(CP, cr), hasGTolerancePrinciple(CP, Null),  

hasPDTolerancePrinciple(CP, Null), hasSDTolerancePrinciple(CP, Null),  

hasTDTolerancePrinciple(CP, Null), hasTolerancedFeature(CP, fP,4), hasPart(CP, pP),  
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hasPartFeature(CP, fP,1), hasPartFeature(CP, fP,2), hasPartFeature(CP, fP,3),  

hasPartFeature(CP, fP,4), hasPartFeature(CP, fP,5), hasPartFeature(CP, fP,6),  

hasPartFeature(CP, fP,7), hasTopologicalRelation(CP, parallel)} 

 

 

3.2. Retrieval of tolerance specification cases  

In CBR [6], case retrieval is the process of retrieving similar previous cases from case base for each given target 

case. The most essential step in this process is to assess the similarity of a target case and a previous case. This 

sub-section aims to complete this step for tolerance specification case retrieval. As can be seen from a comparison of 

the definitions of a previous case and a target case for tolerance specification (Definitions 2 and 3), the attributes tol-

eranced feature, part features, and topological relation are distinctive attributes for the similarity between the previous 

case and the target case because the similarities of these attributes directly determine this similarity. The sub-section 

firstly illustrates how to quantify the similarity of toleranced features, the similarity of part features, and the similarity 

of topological relations. It then explains how to compute the similarity of target and previous cases. Finally, a retrieval 

algorithm of similar previous cases is designed based on such similarity.  

3.2.1. Similarity between toleranced features 

It can be seen from Definitions 1, 2, and 3 that every tolerance specification case (either a previous case or a tar-

get case) contains a toleranced feature. While in tolerance specification, different toleranced features can be applied 

different tolerance types. For this reason, the similarity between toleranced features can be quantified by their applica-

ble tolerance types. Formally, let FT,T be the toleranced feature in a target case CT, FT,P be the toleranced feature in a 

previous case CP, S(FT,T) be a set of the applicable tolerance types of FT,T, and S(FT,P) be a set of the applicable toler-

ance types of FT,P. Then the similarity between FT,T and FT,P can be quantified by the similarity between S(FT,T) and 

S(FT,P) (i.e. Sim(FT,T, FT,P) = Sim(S(FT,T), S(FT,P))).  

In GD&T, there are totally ten different kinds of toleranced features: point, straight line, spherical surface, cylin-

drical surface, planar surface, helical surface, revolute surface, prismatic surface, complex surface, and feature of size 

[18]. Each kind of toleranced feature may be applied one or more tolerance types. Table 1 lists the applicable tolerance 

types of these toleranced features.  

Through searching Table 1, the elements of S(FT,T) and S(FT,P) can be obtained. For instance, assume FT,T is the 

toleranced feature fT,5 in Fig. 3(b), and FT,P is the toleranced feature fP,4 in Fig. 3(a). Then S(FT,T) = { , , , , 

, , , , , , } and S(FT,P) = { , , , , } since the tolerance specification ontology instan-

tiated by the two examples in Fig. 3 have the assertions PlanarSurface(fT,5) and CylindricalSurface(fP,4). As can be seen 

from this example, the question of computing the similarity between toleranced features can be transformed into a 

question of computing the similarity between two sets.  

For the computation of the similarity between two sets, there have been three different similarity measures whose 

mathematical foundation is set theory at present. The three measures are Maedche and Staab’s measure [42], Rodri-

guez and Egenhofer’s measure [43], and Sanchez et al.’s measure [44]. Since Sanchez et al. have experimentally veri-

fied that the accuracy of their measure is higher than the accuracy of the first two measures under certain standard 

benchmarks [44], this measure is selected to compute the similarity between the toleranced features FT and FP:  

T,T T,P T,P T,T

T,T T,P 2

T,T T,P

( ) ( ) ( ) ( )
( , ) 1 l

\
og 1

( ) ( )

\
Sanchez

S F S F S F S F
Sim F F

S F S F

 
   
  

 (1) 
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Table 1 

Applicable tolerance types of ten different kinds of toleranced features. Notes: TT is short for tolerance type; SL is short for 

straight line; SS is short for spherical surface; CS is short for cylindrical surface; PS is short for planar surface; RS is short 

for revolute surface; TS is short for prismatic surface; XS is short for complex surface; FOS is short for feature of size;  

stands for angle tolerance;  stands for linear dimension tolerance.  

TT PT SL SS  CS PS RS TS XS FOS 

  ☻  ☻ ☻ ☻ ☻  ☻ 

     ☻    ☻ 

   ☻ ☻  ☻    

    ☻      

      ☻ ☻ ☻  

      ☻ ☻ ☻  

  ☻   ☻    ☻ 

  ☻   ☻    ☻ 

  ☻   ☻    ☻ 

 ☻ ☻   ☻    ☻ 

 ☻ ☻       ☻ 

     ☻    ☻ 

    ☻ ☻ ☻    

    ☻ ☻     

  ☻   ☻     

 ☻ ☻   ☻     

 

For example, the similarity between the toleranced features fT,5 and fP,4 in Fig. 3 can be computed as follow:  

SimSanchez(FT(fT,5), FT(fP,4)) = 1 ‒ log2{1 + [(8 + 2) ÷  13]} = 0.1769  

3.2.2. Similarity between part features  

Every toleranced feature belongs to a part which consists of a certain number of part features. According to a 

classification by Srinivasan [22], a part feature may be a spherical surface, a cylindrical surface, a planar surface, a 

helical surface, a revolute surface, a prismatic surface, or a complex surface (these seven types of surfaces are called 

as seven invariance classes). Naturally, the similarity between part features can be quantified by the invariance classes 

they belong to.  

Formally, let FP,T be the set of part features in a target case CT, FP,P be the set of part features in a previous case 

CP, S(FP,T) be a set that consists of the class assertions of all the part features in FP,T, and S(FP,P) be a set that consists 

of the class assertions of all the part features in FP,P. Then the similarity between FP,T and FP,P can be quantified by 

the similarity between the two sets S(FP,T) and S(FP,P) (i.e. Sim(FP,T, FP,P) = Sim(S(FP,T), S(FP,P))). The similarity 

Sim(S(FP,T), S(FP,P)) can also be calculated using Sanchez et al.’s measure:  

2

( ) ( ) ( ) ( )
( , ) 1 lo 1

( (

\ \
g

) )

P,T P,P P,P P,T

Sanchez P,T P,P

P,T P,P

S S S S
Sim

S S

 
   
  

F F F F
F F

F F
 (2) 

For example, assume FP,T is the set of the part features in Fig. 3(b), FP,P is the set of the part features in Fig. 3(a). 

Then according to the tolerance specification ontology instantiated by the two examples in Fig. 3, the two sets S(FP,T) 

and S(FP,P) are respectively obtained as follows:  
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S(FP,T) = {RealPlanar(fT,1), RealCylindrical(fT,2), RealPlanar(fT,3), RealCylindrical(fT,4), RealPlanar(fT,5)} 

S(FP,P) = {RealPlanar(fP,1), RealCylindrical(fP,2), RealPlanar(fP,3), RealCylindrical(fP,4), RealPlanar(fP,5),  

RealCylindrical(fP,6), RealPlanar(fP,7)} 

As can be seen from the elements of the sets S(FP,T) and S(FP,P), S(FP,T) contains 3 planar surfaces and 2 cylin-

drical surfaces, while S(FP,P) contains 4 planar surfaces and 3 cylindrical surfaces. Based on this, the value of Sim-

Sanchez(FP,T, FP,P) is calculated as follow:  

SimSanchez(FP(fT,5), FP(fP,4)) = 1 ‒ log2{1 + [(2 + 0) ÷  7]} = 0.6374  

3.2.3. Similarity between topological relations  

As can be seen from Definitions 1, 2, and 3, every tolerance specification case (either a previous case or a target 

case) contains a topological relation. While in tolerance specification, different topological relations correspond to 

different tolerance types. For this reason, the similarity between topological relations can be quantified by their corre-

sponding tolerance types. Formally, let RT,T be the topological relation in a target case CT, RT,P be the topological rela-

tion in a previous case CP, S(RT,T) be a set of the corresponding tolerance types of RT,T, and S(RT,P) be a set of the cor-

responding tolerance types of RT,P. Then the similarity between RT,T and RT,P can be quantified by the similarity be-

tween S(RT,T) and S(RT,P) (i.e. Sim(RT,T, RT,P) = Sim(S(RT,T), S(RT,P))).  

In GD&T, there are totally seven different kinds of topological relations: coincident relation, disjoint relation, in-

clusive relation, parallel relation, perpendicular relation, intersecting relation, and nonuniplanar relation [27]. Each 

kind of topological relation may correspond to one or more tolerance types. Table 2 lists the corresponding tolerance 

types of these seven kinds of topological relations. 

 

Table 2 

Corresponding tolerance types of seven different kinds of topological relations. Notes: TR is short for topological relation; 

COI is short for coincident relation; DIS is short for disjoint relation; INC is short for inclusive relation; PAR is short for 

parallel relation; PER is short for perpendicular relation; INT is short for intersecting relation; NON is short for nonunipla-

nar relation;  stands for angle tolerance;  stands for linear dimension tolerance.  

TR           

COI    ☻ ☻ ☻ ☻ ☻   

DIS    ☻      ☻ 

INC    ☻  ☻     

PAR ☻   ☻  ☻ ☻ ☻  ☻ 

PER  ☻     ☻ ☻   

INT   ☻    ☻  ☻  

NON    ☻      ☻ 

 

By searching Table 2, the elements of S(RT,T) and S(RT,P) can be obtained. For example, assume RT,T is the topo-

logical relation of the toleranced feature fT,5 with respect to datum A in Fig. 3(b), and RT,P is the topological relation of 

the toleranced feature fP,4 with respect to datum A‒B in Fig. 3(a), Then S(RT,T) = { , , } and S(RT,P) = { , , 

, , , } since the tolerance specification ontology instantiated by the two examples in Fig. 3 have the asser-

tions hasTopologicalRelation(CT, perpendicular) and hasTopologicalRelation(CP, parallel). It can be seen from this 

example that the question of computing the similarity between topological relations can also be transformed into a 



 
Page 14 of 30 

 

question of computing the similarity between two sets. Naturally, the transformed similarity can also be calculated 

using Sanchez et al.’s measure:  

T,T T,P T,P T,T

T,T T,P 2

T,T T,P

( ) ( ) ( ) ( )
( , ) 1 l

\
og 1

( ) ( )

\
Sanchez

S R S R S R S R
Sim R R

S R S R

 
   
  

 (3) 

For instance, the similarity between the topological relation of the toleranced feature fT,5 with respect to datum A 

in Fig. 3(b) (RT,T) and the topological relation of the toleranced feature fP,4 with respect to datum A‒B in Fig. 3(a) (RT,P) 

can be computed as follow:  

SimSanchez(RT(fT,5), RT(fP,4)) = 1 ‒ log2{1 + [(1 + 4) ÷  7]} = 0.2224  

3.2.4. Similarity between target and previous cases  

In general, a case is represented by a set of attributes, some of which are distinctive attributes (the similarities 

between distinctive attributes directly determine the similarity between cases). Based on such representation, a local 

similarity measure is designed for each distinctive attribute and a global similarity measure is usually defined as a 

weighted sum of all local similarity measures [45].  

So far, three similarity measures for respectively computing the similarities between the toleranced features of 

target and previous cases (SimSanchez(FT,T, FT,P)), between the part features of target and previous cases (SimSanchez(FP,T, 

FP,P)), and between the topological relations of target and previous cases (SimSanchez(RT,T, RT,P)) have been designed. A 

similarity measure for assessing the similarity between target and previous cases Sim(CT, CP) can be naturally defined 

as a weighted sum of these three similarity measures:  

Sim(CT, CP) = λ1SimSanchez(FT,T, FT,P) + λ2SimSanchez(FP,T, FP,P) + λ3SimSanchez(RT,T, RT,P) (4) 

where λ1, λ2, and λ3 are respectively the weights of SimSanchez(FT,T, FT,P), SimSanchez(FP,T, FP,P), and SimSanchez(RT,T, RT,P) 

such that 0 ≤ λ1, λ2, λ3 ≤ 1 and λ1 + λ2 + λ3 = 1.  

As can be seen from Expression (4), the assignment of the weights λ1, λ2, and λ3 directly affects the accuracy of 

Sim(CT, CP) and the accuracy of tolerance specification case retrieval. Generally, the accuracy of a similarity measure 

is quantified by the Pearson correlation coefficient between the similarities of a certain number of randomly selected 

sample pairs computed by the similarity measure and the similarities of these sample pairs judged by a certain number 

of domain experts. The greater the coefficient, the higher the accuracy of the similarity measure is [44]. Therefore, the 

values of λ1, λ2, and λ3 can be computed through maximizing the Pearson correlation coefficient between the similari-

ties of sample case pairs calculated by Sim(CT, CP) and the similarities of these sample case pairs judged by domain 

experts.  

Formally, let Sim(CT, CP) = λ1SimSanchez(FT,T, FT,P) + λ2SimSanchez(FP,T, FP,P) + λ3SimSanchez(RT,T, RT,P) (where λ1, λ2, 

and λ3 are arbitrary real numbers), SimJ(CT, CP) be the similarity of CT and CP judged by domain experts, vector U = 

[SimSanchez(FT,T, FT,P), SimSanchez(FP,T, FP,P), SimSanchez(RT,T, RT,P)]
T
, vector V = [SimJ(CT, CP)]

T
, and vector λ = [λ1, λ2, 

λ3]
T
. Then the question of assigning λ1, λ2, and λ3 is converted to a question of seeking a vector λ which can maximize 

the Pearson correlation coefficient between λ
T
U and V:  

TT
T

T T

cov( , )
pcc( , )

cov( , ) cov( , )
 


 

 

UV

UU VV

λλ U V
λ U V

λ U U λ V V λ λ
 (5) 

where cov(U, V) is the covariance of the vectors U and V, cov(U, U) is the covariance of the vectors U and U, and 

cov(V, V) is the covariance of the vectors V and V.  
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To solve the vector λ which can maximize pcc(λ
T
U, V), a canonical correlation analysis based method [46] is 

used and the solving process is as follows.  

Firstly, let u =
1/2
UU
λ and v =

1/2
VV . Then Expression (11) can be transformed to:  

T 1/2 1/2

T

T T T T
pcc( , )

   
 UU UV VV

u v
λ U V

u u v v u u v v
 (6) 

Then according to the Cauchy-Schwarz inequality, the following inequality is obtained:  

T 1/2 1 1/2 T        
UU UV VV VU UU

u u v v  (7) 

whereVU
is the covariance of the vectors V and U.  

Finally, the following inequality is obtained through combining Expressions (12) and (13):  

T 1/2 1 1/2

T

T
pcc( , )

      


UU UV VV VU UUu u
λ U V

u u
 (8) 

As can be seen from Expression (14), the maximum value of pcc(λ
T
U, V) is attained if and only if u is the eigenvector 

with the maximum eigenvalue for the matrix
1/2 1 1/2      

UU UV VV VU UU . Thus the solution is: λ is an eigenvector with the 

maximum eigenvalue for the matrix
1 1    

UU UV VV VU .  

To solve the real weights λ1, λ2, and λ3, the obtained vector λ is normalized as follow: For all λi < 0 (i = 1, 2, 3), 

let λi = 0. Then re-solve the new vector λ until all λi ≥ 0. Finally, let λi = λi/(λ1+λ2+λ3). A real weight vector λ = [λ1, λ2, 

λ3]
T
 obtained after such normalization is a vector which can maximize pcc(λ

T
U, V) because:  

 

   

TT
1 2 3T

T T

1 2 3 1 2 3

T

T

T

( )
pcc( , )

( ) ( )

pcc( , )                   

  

     

  
 

       


 

 

UVUV

UU VV UU VV

UV

UU VV

λλ
λ U V

λ λ λ λ

λ
λ U V

λ λ

 (9) 

After solving the real weights λ1, λ2, and λ3, the measure Sim(CT, CP) having the highest accuracy can be deter-

mined. This measure will be selected to implement tolerance specification case retrieval.  

3.2.5. Retrieval algorithm of similar previous cases  

Based on the above explanation of accurately assessing the similarity between target and previous cases, a re-

trieval algorithm of similar previous cases is designed as follow:  

Tolerance specification case retrieval algorithm  

Case base: A tolerance specification ontology that consists of a tolerance specification case base totally containing n  

previous cases CP,k (k = 1, 2,…, n) 

Function DetermineASimilarityMeasure 

Input: N sample case pairs (CT,i, CP,i) (i = 1, 2,…, N) and their judged similarities SimJ(CT,i, CP,i)  

Output: A similarity measure Sim(CT, CP) that has the greatest pcc value with SimJ(CT,i, CP,i)  
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Step 1: for integer i ← 1 to N do 

Use SimSanchez(FT,T, FT,P) to compute the similarities between the toleranced features of (CT,i, CP,i)  

Use SimSanchez(FP,T, FP,P) to compute the similarities between the part features of (CT,i, CP,i)  

Use SimSanchez(RT,T, RT,P) to compute the similarities between the topological relations of (CT,i, CP,i)  

Step 2: Use the weight solving procedure to compute the values of λ1, λ2, and λ3 

Step 3: Output the measure Sim(CT, CP) = λ1SimSanchez(FT,T, FT,P) + λ2SimSanchez(FP,T, FP,P) + λ3SimSanchez(RT,T, RT,P) 

End DetermineASimilarityMeasure  

Function RetrieveSimilarPreviousCases 

Input: A target case CT; A measure that has the greatest pcc value; A similarity threshold t; A positive integer N+ 

Output: N+ previous cases sorted in descending order on the basis of their similarities with CT 

Step 1: Extract the datum, toleranced features, part features, and topological relations of the part in CT 

Instantiate the tolerance specification ontology according to the extracted information  

for integer k ← 1 to n do  

Use the measure that has the greatest pcc value to compute the similarities between CT and CP,k 

Step 2: for integer k ← 1 to n do  

Find out all of the (nt) previous cases whose similarities with CT are greater than or equal to t 

Step 3: Sort the nt previous cases in descending order on the basis of their similarities with CT 

Step 4: Output the top N+ previous cases in the nt sorted previous cases  

End RetrieveSimilarPreviousCases 

The designed algorithm consists of two functions. The former function is used to determine a similarity measure 

with high accuracy to implement tolerance specification case retrieval. It takes as input N sample case pairs and their 

judged similarities, and it returns as output a similarity measure for assessing the similarity between target and previ-

ous cases that has the greatest Pearson correlation coefficient with the judged similarities. For an identical case base, 

this function requires being executed only once. The later function is used to retrieve similar previous cases from the 

tolerance specification case base to assist tolerance specification for a target case. It takes as input a target case, a sim-

ilarity measure that has the greatest Pearson correlation coefficient, a similarity threshold, and a positive integer, and it 

returns as output a specified number of previous cases sorted in descending order on the basis of their similarities with 

the target case. This function is executed once whenever a new target case is entered.  

The complexity of the designed algorithm is analyzed as follows. For the former function, the computation 

amount of Step 1 is 3N (each measure needs N computations), and the computation amount of Step 2 is 1. Thus, the 

total computation amount of the first function is 3N + 1. For the later function, the computation amounts of Step 1 and 

Step 2 are both n. The computation amount of Step 3 is ntlog2nt (the computation amount of the sorting procedure). 

Consequently, the total computation amount of this function is 2n + ntlog2nt, and the total computation amount of the 

algorithm is 2n + ntlog2nt + 3N + 1. Since generally the values of nt and N are both far less than the value of n, the 

complexity of the algorithm is O(n).  

3.3. Reuse and revision of tolerance specification cases  

In CBR [6], case reuse is the process of proposing a solution for the new problem in each given target case from 

the solutions in the retrieved previous cases. The most essential step in this process is to judge whether a retrieved 
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solution can be directly reused as a solution for the new problem. Such judgement depends on the new problem itself. 

For a new tolerance specification problem in a given target case, the judgement can be made according to the func-

tional and assembly requirements of the toleranced feature in the given target case. If such requirements are identical 

to the functional and assembly requirements of the toleranced feature in a retrieved similar previous tolerance specifi-

cation case, then the solution in this case can be directly reused to address the new tolerance specification problem and 

the new tolerance specification problem and its solution do not need to be retained as a new previous case. Otherwise, 

the solution needs to be revised (or adapted) before it is used. In this situation, case revision is required.  

Revising (or adapting) the solution in a retrieved similar previous case to transform it into a solution that can be 

used to solve the new problem in a given target case is called case revision (or adaptation) in CBR [6]. It appears after 

case reuse and is followed by case retention. During the past few decades, a number of strategies for case revision 

have been presented. They were classified into substitution strategy, transformation strategy, and generation strategy 

[45]. Substitution strategy simply revises some attribute values of the retrieved solution, whereas transformation 

strategy will change the structure of the retrieved solution (i.e. add some attributes to the retrieved solution or remove 

some attributes from the retrieved solution). Generation strategy re-executes the method of generating the retrieved 

solutions on the new problem.  

Based on the characteristics of tolerance specification problem, a combination of substitution and transformation 

strategies is adopted in revision of tolerance specification cases (i.e. such revision may need to modify attribute values, 

structure, or both of them). Like the judgement in reuse of tolerance specification cases, revision of tolerance specifi-

cation cases is also implemented according to the functional and assembly requirements of the toleranced feature in 

the given target case. The following rules, which are summarized from the mirror approach [24], can be used to guide 

such implementation:  

 If the toleranced feature is used to arrest leakage between two parts, then it needs to be specified tight form 

(straightness, flatness, roundness, cylindricity, profile any line, or profile any surface) and dimension tolerances.  

 If the toleranced feature is used to maintain rotation between two parts, then it needs to be specified tight location 

(position, concentricity, coaxiality, or symmetry) and form tolerances.  

 If the toleranced feature is used to maintain symmetry between two parts and is selected as a datum feature, then 

it cannot be applied maximum material requirement (MMR).  

 If the toleranced feature is used to maintain gear mesh between two parts, then then it needs to be specified pro-

file any line or profile any surface tolerance.  

 If the toleranced feature is used to connect two parts, then it needs to be applied MMR.  

 If the toleranced feature is used to maintain sliding between two parts, then it needs to be specified form toler-

ance.  

 If the toleranced feature is in an interference fit, then regardless of feature size is recommended for it.  

 If the toleranced feature is in a clearance fit, then MMR is recommended for it.  

 If the toleranced feature is in an assembling having location function, then it is chosen as the candidate feature 

for secondary datum feature.  

 If the toleranced feature is in an assembling having seat function, then it is chosen as the candidate feature for 

primary datum feature. 

 If the toleranced feature is in an assembling having contact function, then it is chosen as the candidate feature for 
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tertiary datum feature.  

 If the toleranced feature is in an assembling having alignment function, then it is chosen as the candidate feature 

for secondary datum feature.  

Based on the above rules, revision of tolerance specification cases is carried out by the following three steps:  

 Generate the recommended tolerance types for the toleranced feature using the SWRL rules based approach in 

[26]. This step consists of the following four sub-steps: (1) Extract the assembly constraint and topological rela-

tions between the toleranced feature and other features automatically using CAD system’s APIs. (2) Instantiate 

the developed tolerance specification ontology according to the extracted assembly constraint relations. (3) Gen-

erate new ontology assertions via performing SWRL rules based reasoning on the instantiated tolerance specifi-

cation ontology. (4) Obtain the recommended tolerance types for the toleranced feature according to the generat-

ed ontology assertions.  

 List all possible tolerance specification schemes for the toleranced feature after applying the above rules.  

 Combine the generated tolerance types and the listed tolerance specification schemes to make revision.  

4. Implementation, example, and evaluation  

This section firstly reports a prototype implementation of the proposed ontology-supported CBR approach. It 

then presents an example to illustrate how the approach works. Finally, the section evaluates the approach by theoret-

ical and experimental comparisons.  

4.1. Implementation  

The tolerance specification ontology was developed using Protégé. Fig. 4 shows a partial visual representation of 

the developed ontology in Protégé. The CAD system used in the prototype implementation of the proposed ontolo-

gy-supported CBR approach is NX. The tolerance specification case retrieval algorithm was implemented with the use 

of OWL APIs, NX Open APIs, and the Java programming language.  

In the process of the implementation of the tolerance specification case retrieval algorithm, an important task is 

to determine a similarity measure with high accuracy for tolerance specification case retrieval. To complete this task, 

an experiment has been conducted. This experiment consists of two steps (Please note that such experiment needs to 

be conducted only once for an identical tolerance specification case base).  

The first step is to obtain a certain number of sample case pairs and their judged similarities. In general, sample 

case pairs can be obtained through randomly selecting pairs of previous cases from case base and their judged similar-

ities can be obtained through a statistics of the similarities judged by a certain number of domain experts. The sample 

case pairs in the experiment and their judged similarities were also obtained by this way. Specifically, totally 30 sam-

ple case pairs were randomly selected from the instantiated tolerance specification ontology (tolerance specification 

case base) that contains 100 previous cases (they can constitute 100×99 case pairs). Then the similarity of each sample 

case pair on a scale 0, 0.2, 0.4, 0.6, 0.8, and 1 was judged by 12 mechanical designers in the authors’ institutions. The 

12 judged similarities of each sample case pair were sorted in descending order and the first and last ones were re-

moved. The mean value of the remaining 10 judged similarities was computed and considered as the judged similarity 

of each sample case pair. The judge similarities of the 30 sample case pairs are listed in Table 3.  
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Fig. 4. A partial visual representation of the developed ontology in Protégé. 

 

Table 3 

The judged similarities, the similarities between toleranced features computed by SimSanchez(FT,T, FT,P), the similarities be-

tween part features computed by SimSanchez(FP,T, FP,P), and the similarities between topological relations computed by Sim-

Sanchez(RT,T, RT,P) of the 30 sample case pairs (CT,i, CP,i) (i = 1, 2, …, 30).  

Sample case pair SimJ(CT, CP) SimSanchez(FT,T, FT,P) SimSanchez(FP,T, FP,P) SimSanchez(RT,T, RT,P) 

(CT,1, CP,1) 0.2800 0.0000 0.4150 0.0931 

(CT,2, CP,2) 0.1400 0.0614 0.4854 0.1069 

(CT,3, CP,3) 0.2200 0.0000 0.0740 0.0931 

(CT,4, CP,4) 0.4400 0.4975 0.5406 0.2224 

(CT,5, CP,5) 0.2600 0.0614 0.1699 0.1520 

(CT,6, CP,6) 0.2000 0.1069 0.7776 0.1520 

(CT,7, CP,7) 0.8200 1.0000 0.3479 1.0000 

(CT,8, CP,8) 0.1600 0.0000 0.0875 0.1069 

(CT,9, CP,9) 0.6200 0.3479 0.5406 0.0931 

(CT,10, CP,10) 0.7200 0.4975 0.1375 1.0000 

(CT,11, CP,11) 0.8600 1.0000 0.5525 1.0000 

(CT,12, CP,12) 0.5200 0.2996 0.3833 0.0000 

(CT,13, CP,13) 0.3600 0.4975 0.2224 0.1520 

(CT,14, CP,14) 0.2800 0.0614 0.8301 0.0931 

(CT,15, CP,15) 0.9000 1.0000 0.2224 1.0000 

(CT,16, CP,16) 0.3400 0.0614 0.4525 0.0931 

(CT,17, CP,17) 0.8400 1.0000 0.3479 1.0000 

(CT,18, CP,18) 0.1000 0.1255 0.3219 0.0000 

(CT,19, CP,19) 0.1600 0.0000 0.3219 0.0000 

(CT,20, CP,20) 0.7600 1.0000 0.4525 1.0000 
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(CT,21, CP,21) 0.1400 0.1069 0.0875 0.1069 

(CT,22, CP,22) 0.2800 0.0614 0.5305 0.2224 

(CT,23, CP,23) 0.1600 0.3219 0.3219 0.0931 

(CT,24, CP,24) 0.2600 0.0614 0.3219 0.1520 

(CT,25, CP,25) 0.4000 0.0000 0.4150 0.2224 

(CT,26, CP,26) 0.0600 0.0000 0.1699 0.0000 

(CT,27, CP,27) 0.3600 0.4975 0.2838 0.1520 

(CT,28, CP,28) 0.9400 1.0000 0.7935 1.0000 

(CT,29, CP,29) 0.8400 0.4975 0.3479 1.0000 

(CT,30, CP,30) 0.7000 0.4975 0.7370 0.2630 

 

The second step is to determine a similarity measure with high accuracy for tolerance specification case retrieval 

according to the obtained sample case pairs and their judged similarities. This step was completed by the former func-

tion in the designed tolerance specification case retrieval algorithm. It firstly computed the similarities between the 

toleranced features of the 30 sample case pairs using SimSanchez(FT,T, FT,P) (Expressions (1)), computed the similarities 

between the part features of the 30 sample case pairs using SimSanchez(FP,T, FP,P) (Expressions (2)), and computed the 

similarities between the topological relations of the 30 sample case pairs using SimSanchez(RT,T, RT,P) (Expressions (3)). 

The results of the computations are listed in Table 3. Then the values of the weights λ1, λ2, and λ3 in Expression (4) 

were computed by the weight solving procedure. The results of the computation are: λ1 = 0.3518, λ2 = 0.2267, and λ3 = 

0.4215. Thus, the similarity measure with high accuracy for tolerance specification case retrieval is determined as:  

Sim(CT, CP) = 0.3518SimSanchez(FT,T, FT,P) + 0.2267SimSanchez(FP,T, FP,P) + 0.4215SimSanchez(RT,T, RT,P) (10) 

This measure can be used to accurately assess the similarity between a target case and a previous case. For ex-

ample, using the measure, the similarity between the target case CT in Fig. 3(b) and the previous case CP in Fig. 3(a) is 

assessed as Sim(CT, CP) = 0.3518×0.1769 + 0.2267×0.6374 + 0.4215×0.2224 = 0.3005. 

4.2. Example  

4.2.1. Retrieval of similar previous cases for a target case  

The retrieval of similar previous cases for a target case is implemented by the later function in the designed tol-

erance specification case retrieval algorithm. An accurate retrieval of similar previous cases from the tolerance speci-

fication ontology (tolerance specification case base) to aid tolerance specification in a target case is taken as an exam-

ple to illustrate how this function works. This retrieval takes as input the determined similarity measure with high ac-

curacy for tolerance specification case retrieval, a target case shown in Fig. 5 (the part in this figure is the output shaft 

of the gear reducer in Fig. 6 that was designed in NX), a similarity threshold 0.8000, and a positive integer 5, and it 

will return as output 5 previous cases that are sorted in descending order on the basis of their similarities with the tar-

get case. The details of the process from input to output, which mainly contains three steps, are explained below.  

The first step is to extract the datum, toleranced feature, part features, and topological relations of the part in the 

target case. Using NX Open APIs, the datum, toleranced feature, part features, and topological relations of the part in 

the target case in Fig. 5 were extracted from NX, and thus the target case can be represented by a seven-tuple: CT = 

(―A‒B‖, ―‖, ―‖, A(f5), p, {f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16, f17, f18, f19, f20, f21, f22, f23, f24, f25, f26, f27}, 

―Parallel‖), where A(f5) is the axis of the cylindrical surface f5.  
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Fig. 5. A target case used to illustrate the process of tolerance specification case retrieval. 

 

 

 
Fig. 6. A gear reducer containing the part in the target case in Fig. 5. 

 

The second step is to instantiate the developed tolerance specification ontology according to the extracted infor-

mation. Using OWL APIs, the developed tolerance specification ontology was automatically instantiated by the ex-

tracted information and so the corresponding instances and assertions were automatically created in the ontology. Fig. 

7 shows the visual representation of the created assertions related to the instance CT in Protégé.  

The last step is to retrieve similar previous cases for the target case. Using the determined similarity measure for 

tolerance specification case retrieval, the similarity between the target case in Fig. 5 and each of the one hundred pre-

vious cases in the tolerance specification ontology (tolerance specification case base) was automatically computed and 

all of the previous cases whose similarities with the target case are greater than or equal to 0.8000 (the input similarity 

threshold) were screened out. The screened out previous cases were sorted in descending order according to their sim-

ilarities with the target case and the top 5 (the input positive integer) previous cases were output and are shown in Fig. 

8. The details of the top one previous case are shown in Fig. 9. The tolerance specification schemes in these 5 previ-

ous cases could be used as reference tolerance specification schemes for the tolerance specification problem in the 

target case.  
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Fig. 7. The visual representation of the created assertions related to the instance CT in Protégé. 

 

 

Fig. 8. The top five previous cases for tolerance specification. 

 

4.2.2. Reuse of a previous case  

The toleranced feature A(f5) in the target case in Fig. 5 is used to maintain the stability of the rotation of the 

whole output shaft and ensure the assemblability of the cylindrical surface f5. The toleranced feature A(f7) in the re-

trieved similar previous case PC000062 in Fig. 9 also has such functional and assembly requirements. Thus, the tol-

erance specification scheme in this previous case (see Fig. 9) is directly reused to solve the tolerance specification 

problem in the target case without revision, and a straightness with MMR and a coaxiality are specified to A(f5).  
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Fig. 9. The details of the top one previous case for tolerance specification. 

 

4.2.3. Tolerance specification for a part 

Tolerance specification for a part can be carried out through designing tolerance specification scheme for each 

toleranced feature of the part according to the proposed ontology-supported CBR approach. As an example, the toler-

ance specification schemes for the remaining toleranced features of the part in Fig. 5 were designed by a similar way 

as the design of the tolerance specification scheme for the toleranced feature A(f5). The result of tolerance specifica-

tion for this part is shown in Fig. 10. 

4.3. Evaluation  

4.3.1. Theoretical comparison  

Since pcc value is used to quantify the accuracy of tolerance specification case retrieval in the proposed ontolo-

gy-supported CBR approach, the effectiveness of the designed case retrieval algorithm can be evaluated by comparing 

the pcc values of the measures considering one attribute, the measures considering two attributes, and the measure 

determined by the former function of the algorithm.  

Formally, let (CT,i, CP,i) (i = 1, 2,…, N) be N sample case pairs that are randomly selected from the tolerance 

specification case base, SimJ(CT,i, CP,i) be the judged similarities of (CT,i, CP,i), Sim1,1(CT, CP), Sim1,2(CT, CP), and 
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Sim1,3(CT, CP) be the measures considering one attribute, Sim2,1(CT, CP), Sim2,2(CT, CP), and Sim2,3(CT, CP) be the 

measures considering two attributes, and Sim(CT, CP) (Expression (4)) be the measure determined by the former func-

tion of the algorithm. Then according to Expression (4), the following expressions can be obtained:  

Sim1,1(CT, CP) = SimSanchez(FT,T, FT,P) (11) 

Sim1,2(CT, CP) = SimSanchez(FP,T, FP,P) (12) 

Sim1,3(CT, CP) = SimSanchez(RT,T, RT,P) (13) 

Sim2,1(CT, CP) = λ2,1,1SimSanchez(FT,T, FT,P) + λ2,1,2SimSanchez(FP,T, FP,P) (14) 

Sim2,2(CT, CP) = λ2,2,1SimSanchez(FT,T, FT,P) + λ2,2,2SimSanchez(RT,T, RT,P) (15) 

Sim2,3(CT, CP) = λ2,3,1SimSanchez(FP,T, FP,P) + λ2,3,2SimSanchez(RT,T, RT,P) (16) 
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Fig. 10. The result of tolerance specification for the part in Fig. 5. 

 

Further, let pccD = pcc(Sim(CT,i, CP,i), SimJ(CT,i, CP,i)), and pccj,k = pcc(Simj,k(CT,i, CP,i), SimJ(CT,i, CP,i)) (j = 1, 2; 

k = 1, 2, 3). If the proposition ―pccD ≥ pccj,k for all j = 1, 2 and k = 1, 2, 3‖ holds, then the designed case retrieval 

algorithm is effective. The proof of this proposition is as follow:  

Proof. Let vector U = [SimSanchez(FT,T, FT,P), SimSanchez(FP,T, FP,P), SimSanchez(RT,T, RT,P)]
T
, vector V = [SimJ(CT, 

CP)]
T
, and vector λ = [λ1, λ2, λ3]

T
 be the weight vector solved by the weight solving procedure. According to the algo-

rithm, pcc(λ
T
U, V) is the greatest pcc among the pccs between the similarities of (CT,i, CP,i) assessed by all possible 

linear combinations of SimSanchez(FT,T, FT,P), SimSanchez(FP,T, FP,P), and SimSanchez(RT,T, RT,P) and the judged similarities 

SimJ(CT,i, CP,i), which include the following seven cases:  

 If pccD obtains the maximum value when λ2 = λ3 = 0 and λ1 = 1, then (a) pccD = pcc1,1;  

 If pccD obtains the maximum value when λ1 = λ3 = 0 and λ2 = 1, then (b) pccD = pcc1,2;  

 If pccD obtains the maximum value when λ1 = λ2 = 0 and λ3 = 1, then (c) pccD = pcc1,3;  

 If pccD obtains the maximum value when λ3 = 0 and λ1, λ2 ≠ 0, then (d) pccD = pcc2,1;  

 If pccD obtains the maximum value when λ2 = 0 and λ1, λ3 ≠ 0, then (e) pccD = pcc2,2;  
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 If pccD obtains the maximum value when λ1 = 0 and λ2, λ3 ≠ 0, then (f) pccD = pcc2,3;  

 If pccD obtains the maximum value when λ1, λ2, λ3 ≠ 0, then (g) pccD > pccj,k for all j = 1, 2 and k = 1, 2, 3.  

Based on the conclusions from (a) to (g), the proposition ―pccD ≥ pccj,k for all j = 1, 2 and k = 1, 2, 3‖ holds. □ 

4.3.2. Experimental comparison  

Generally, an experimental comparison for evaluating the accuracy of similarity-based information retrieval can 

be made using an identical benchmark consisting of a certain number of sample pairs and their judged similarities. 

The greater the Pearson correlation coefficient between the computed and judged similarities, the higher the accuracy 

is. To evaluate the accuracy of the designed case retrieval algorithm, a specialized tolerance specification case bench-

mark in the field of computer-aided tolerance specification is firstly required to be designed.  

In the previous example, 30 sample case pairs have been randomly selected from the constructed tolerance speci-

fication case base containing 100 previous cases, and their judged similarities have been obtained (see Table 3). These 

30 sample case pairs and their judged similarities can be directly used as a benchmark to evaluate the accuracy of the 

design algorithm. To be more specific, they are used to evaluate the accuracies of the measures considering one attrib-

ute (Expressions (11)‒(13)), the measures considering two attributes (Expressions (14)‒(16)), and the measure deter-

mined by the former function of the algorithm (Expressions (4)).  

Based on the above description, an experiment taking the 30 sample case pairs and their judged similarities in 

Table 3 as input was carried out by comparing the pcc values of Expressions (11)‒(13), Expressions (14)‒(16), and 

Expressions (4). For the purpose of enabling fair comparison, the weights in each expression were computed by the 

presented weight solving procedure in Section 3. Specifically, the experiment firstly used the weight solving proce-

dure to calculate the values of each group of weights in Expressions (11)‒(13), Expressions (14)‒(16), and Expres-

sions (4). It then used each expression to compute the similarities of the 30 sample case pairs. Finally, the experiment 

respectively calculated the Pearson correlation coefficient between each group of the computed similarities and the 

judged similarities of the 30 sample case pairs. The calculated each group of weights and Pearson correlation coeffi-

cient are listed in Table 4.  

Table 4 

The calculated each group of weights and Pearson correlation coefficient in the comparison experiment.  

λ & pcc Sim1,1(CT, CP) Sim1,2(CT, CP) Sim1,3(CT, CP) Sim2,1(CT, CP) Sim2,2(CT, CP) Sim2,3(CT, CP) Sim(CT, CP) 

λj,k,1 (λ1) 1.0000 1.0000 1.0000 0.8188 0.5111 0.2963 0.3518 

λj,k,2 (λ2) ——— ——— ——— 0.1812 0.4889 0.7037 0.2267 

(λ3) ——— ——— ——— ——— ——— ——— 0.4215 

pccj,k (pccD) 0.8839 0.2594 0.8857 0.8902 0.9168 0.9058 0.9279 

 

4.3.3. Comparison result analysis  

The theoretical comparison has proved that the measure determined by the former function of the algorithm has 

the highest accuracy among all of the measures considering one or two features. This is actually a proof of the effec-

tiveness of the weight solving procedure in the designed algorithm since the objective of weight calculation is to 

maximize the accuracy of this measure. In general similarity calculation, weights are manually assigned by domain 

experts according to their experience. This does not necessarily achieve the highest accuracy. While in the weight 

solving procedure, weights can be adjusted to maximize the accuracy of the determined measure. So compared to 
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manual assignment method, the weight solving procedure has an advantage of constantly obtaining the highest accu-

racy.  

In the experimental comparison, an experiment has been carried out to verify the correctness of the theoretical 

comparison result and to evaluate the accuracies of all possible linear combinations of SimSanchez(FT,T, FT,P), Sim-

Sanchez(FP,T, FP,P), and SimSanchez(RT,T, RT,P). As can be seen from the result of the experiment (Table 4), the proposition 

―pccD ≥ pccj,k for all j = 1, 2 and k = 1, 2, 3‖ holds, which experimentally demonstrates the effectiveness of the de-

signed algorithm. In addition, the pcc value of the determined measure can reach 0.9279, which is very close to 1. 

This indicates that the tolerance specification case retrieval in the designed algorithm highly correlates with the re-

trieval based on domain experts’ judgement. As can also be seen from Table 4, the measure Sim1,2(CT, CP) has a very 

low pcc value (0.2594), while the pcc values of both Sim1,1(CT, CP) and Sim1,3(CT, CP) are greater than 0.8000. This 

signifies that both toleranced feature and topological relation play important role in the design of tolerance specifica-

tion scheme, while the influence of part features on the design of tolerance specification scheme is relatively small. 

These are consistent with the actual situation in practice.  

In summary, the results and findings of the theoretical and experimental comparisons are as follows: (1) The 

measure determined by the designed algorithm was proved and verified to be more accurate than all linear combina-

tions of its three components. (2) The weight solving procedure in the designed algorithm has an advantage of con-

stantly obtaining the highest accuracy of tolerance specification case retrieval compared to manual assignment method. 

(3) The tolerance specification case retrieval in the designed algorithm can highly correlate with the retrieval based on 

domain experts’ judgement.  

5. Conclusion  

In this paper, an ontology-supported CBR approach for computer-aided tolerance specification has been proposed. 

This approach mainly consists of three parts: the representation of tolerance specification cases, the retrieval of toler-

ance specification cases, and the reuse or revision of tolerance specification cases. The first part used OWL ontology 

to formalize the past tolerance specification cases as previous cases and to formalize each new tolerance specification 

problem as a target case. These formalizations can provide a semantic enrichment model for the information of toler-

ance specification schemes benefiting from the semantic representation capability of OWL ontology. The second part 

described how to use an ontology-based similarity measure to assess the similarity of toleranced features, the similar-

ity of part features, and the similarity of topological relations and how to linearly combine these similarities to estab-

lish an ontology-based similarity measure with high accuracy to implement the retrieval of similar previous cases for a 

target case. The tolerance specification schemes in some of the retrieved previous cases are valuable resources for de-

signers when designing tolerance specification schemes. The third part clarified the process of the reuse and revision 

of tolerance specification cases. The paper has also reported the implementation, illustration, and evaluation of the 

approach. The illustration shows that the approach can provide useful information to assist tolerance specification. 

The evaluation suggests that the tolerance specification case retrieval in the approach can highly correlate with the 

retrieval based on domain experts’ judgement.  

The main contributions of the paper can be briefly summarized as follows: (1) The paper constructs and develops 

a tolerance specification ontology to represent the tolerance specification information in CAD systems. This ontology 

achieves an important change of representing tolerance specification information from a computer-readable level to a 
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computer-interpretable level. It provides a feasible model of tolerance specification information for further imple-

menting automatic tolerance specification in CAD systems. (2) The paper designs and implements a tolerance speci-

fication case retrieval algorithm to retrieve reference schemes for each new tolerance specification problem. This al-

gorithm directly takes the CAD model of an assembly as input and returns reference tolerance specification schemes 

for each toleranced feature of each part of the assembly as output. This process is fully automatic and does not need 

know-how. In addition, the algorithm is applicable for all shapes of parts and has involved the generation of a com-

plete tolerance specification scheme.  

Future studies will aim especially at overcoming the following two limitations of the ontology-supported CBR 

approach: (1) The time complexity of the tolerance specification case retrieval algorithm is O(n), which may not be an 

acceptable upper bound if the number of previous cases n is very large. The ontology-supported CBR approach main-

ly considers obtaining high case retrieval accuracy. But like case retrieval accuracy, case retrieval speed is also a very 

important indicator to measure the performance of case retrieval. Hence, it is also of necessity to study the improve-

ment of case retrieval speed when case retrieval accuracy is high enough. (2) The ontology-supported CBR approach 

mainly considers the influence of geometric information on tolerance specification in tolerance specification case re-

trieval (i.e. only implements first-order tolerance specification). This is not comprehensive enough since in addition to 

geometric information, design requirement information and manufacturing process information are other important 

types of information having influences on tolerance specification (they respectively correspond to second-order and 

third-order tolerance specifications). Thus, it is of significance to study the synthetic influences of the geometric in-

formation, design requirement information, and manufacturing process information on tolerance specification (i.e. 

study third-order tolerance specification).  
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