1,354 research outputs found

    Development, Implementation and Pre-clinical Evaluation of Medical Image Computing Tools in Support of Computer-aided Diagnosis: Respiratory, Orthopedic and Cardiac Applications

    Get PDF
    Over the last decade, image processing tools have become crucial components of all clinical and research efforts involving medical imaging and associated applications. The imaging data available to the radiologists continue to increase their workload, raising the need for efficient identification and visualization of the required image data necessary for clinical assessment. Computer-aided diagnosis (CAD) in medical imaging has evolved in response to the need for techniques that can assist the radiologists to increase throughput while reducing human error and bias without compromising the outcome of the screening, diagnosis or disease assessment. More intelligent, but simple, consistent and less time-consuming methods will become more widespread, reducing user variability, while also revealing information in a more clear, visual way. Several routine image processing approaches, including localization, segmentation, registration, and fusion, are critical for enhancing and enabling the development of CAD techniques. However, changes in clinical workflow require significant adjustments and re-training and, despite the efforts of the academic research community to develop state-of-the-art algorithms and high-performance techniques, their footprint often hampers their clinical use. Currently, the main challenge seems to not be the lack of tools and techniques for medical image processing, analysis, and computing, but rather the lack of clinically feasible solutions that leverage the already developed and existing tools and techniques, as well as a demonstration of the potential clinical impact of such tools. Recently, more and more efforts have been dedicated to devising new algorithms for localization, segmentation or registration, while their potential and much intended clinical use and their actual utility is dwarfed by the scientific, algorithmic and developmental novelty that only result in incremental improvements over already algorithms. In this thesis, we propose and demonstrate the implementation and evaluation of several different methodological guidelines that ensure the development of image processing tools --- localization, segmentation and registration --- and illustrate their use across several medical imaging modalities --- X-ray, computed tomography, ultrasound and magnetic resonance imaging --- and several clinical applications: Lung CT image registration in support for assessment of pulmonary nodule growth rate and disease progression from thoracic CT images. Automated reconstruction of standing X-ray panoramas from multi-sector X-ray images for assessment of long limb mechanical axis and knee misalignment. Left and right ventricle localization, segmentation, reconstruction, ejection fraction measurement from cine cardiac MRI or multi-plane trans-esophageal ultrasound images for cardiac function assessment. When devising and evaluating our developed tools, we use clinical patient data to illustrate the inherent clinical challenges associated with highly variable imaging data that need to be addressed before potential pre-clinical validation and implementation. In an effort to provide plausible solutions to the selected applications, the proposed methodological guidelines ensure the development of image processing tools that help achieve sufficiently reliable solutions that not only have the potential to address the clinical needs, but are sufficiently streamlined to be potentially translated into eventual clinical tools provided proper implementation. G1: Reducing the number of degrees of freedom (DOF) of the designed tool, with a plausible example being avoiding the use of inefficient non-rigid image registration methods. This guideline addresses the risk of artificial deformation during registration and it clearly aims at reducing complexity and the number of degrees of freedom. G2: The use of shape-based features to most efficiently represent the image content, either by using edges instead of or in addition to intensities and motion, where useful. Edges capture the most useful information in the image and can be used to identify the most important image features. As a result, this guideline ensures a more robust performance when key image information is missing. G3: Efficient method of implementation. This guideline focuses on efficiency in terms of the minimum number of steps required and avoiding the recalculation of terms that only need to be calculated once in an iterative process. An efficient implementation leads to reduced computational effort and improved performance. G4: Commence the workflow by establishing an optimized initialization and gradually converge toward the final acceptable result. This guideline aims to ensure reasonable outcomes in consistent ways and it avoids convergence to local minima, while gradually ensuring convergence to the global minimum solution. These guidelines lead to the development of interactive, semi-automated or fully-automated approaches that still enable the clinicians to perform final refinements, while they reduce the overall inter- and intra-observer variability, reduce ambiguity, increase accuracy and precision, and have the potential to yield mechanisms that will aid with providing an overall more consistent diagnosis in a timely fashion

    Mini Kirsch Edge Detection and Its Sharpening Effect

    Get PDF
    In computer vision, edge detection is a crucial step in identifying the objects’ boundaries in an image. The existing edge detection methods function in either spatial domain or frequency domain, fail to outline the high continuity boundaries of the objects. In this work, we modified four-directional mini Kirsch edge detection kernels which enable full directional edge detection. We also introduced the novel involvement of the proposed method in image sharpening by adding the resulting edge map onto the original input image to enhance the edge details in the image. From the edge detection performance tests, our proposed method acquired the highest true edge pixels and true non-edge pixels detection, yielding the highest accuracy among all the comparing methods. Moreover, the sharpening effect offered by our proposed framework could achieve a more favorable visual appearance with a competitive score of peak signal-to-noise ratio and structural similarity index value compared to the most widely used unsharp masking and Laplacian of Gaussian sharpening methods.  The edges of the sharpened image are further enhanced could potentially contribute to better boundary tracking and higher segmentation accuracy

    A Scale Space Local Binary Pattern (SSLBP) – Based Feature Extraction Framework to Detect Bones from Knee MRI Scans

    Get PDF
    The medical industry is currently working on a fully autonomous surgical system, which is considered a novel modality to go beyond technical limitations of conventional surgery. In order to apply an autonomous surgical system to knees, one of the primarily responsible areas for supporting the total weight of human body, accurate segmentation of bones from knee Magnetic Resonance Imaging (MRI) scans plays a crucial role. In this paper, we propose employing the Scale Space Local Binary Pattern (SSLBP) feature extraction, a variant of local binary pattern extractions, for detecting bones from knee images. The proposed methods consist of two phases. In the first phase, training phase, the SSLBP feature is defined and extracted to obtain the characteristic of knee bone texture problem. And based on the extracted feature from the training dataset, Support Vector Machine (SVM) structure is generated for classifying. The second phase is segmentation phase. The knee MRI is preprocessed to remove noise, and the pre-processed image is classified based on the feature extraction. Finally, in the segmentation phase, the classified image is post-processed by using fuzzy c-means clustering technique. The experimental results demonstrate that the proposed method has an average accuracy rate of 96.10% with an average Matthews Correlation Coefficient (MCC) rate of 88.26%, which significantly outperforms existing intensity-based methods such as fuzzy c-means clustering and deep feature extraction method

    Recent trends, technical concepts and components of computer-assisted orthopedic surgery systems: A comprehensive review

    Get PDF
    Computer-assisted orthopedic surgery (CAOS) systems have become one of the most important and challenging types of system in clinical orthopedics, as they enable precise treatment of musculoskeletal diseases, employing modern clinical navigation systems and surgical tools. This paper brings a comprehensive review of recent trends and possibilities of CAOS systems. There are three types of the surgical planning systems, including: systems based on the volumetric images (computer tomography (CT), magnetic resonance imaging (MRI) or ultrasound images), further systems utilize either 2D or 3D fluoroscopic images, and the last one utilizes the kinetic information about the joints and morphological information about the target bones. This complex review is focused on three fundamental aspects of CAOS systems: their essential components, types of CAOS systems, and mechanical tools used in CAOS systems. In this review, we also outline the possibilities for using ultrasound computer-assisted orthopedic surgery (UCAOS) systems as an alternative to conventionally used CAOS systems.Web of Science1923art. no. 519

    Analysis, Segmentation and Prediction of Knee Cartilage using Statistical Shape Models

    Get PDF
    Osteoarthritis (OA) of the knee is one of the leading causes of chronic disability (along with the hip). Due to rising healthcare costs associated with OA, it is important to fully understand the disease and how it progresses in the knee. One symptom of knee OA is the degeneration of cartilage in the articulating knee. The cartilage pad plays a major role in painting the biomechanical picture of the knee. This work attempts to quantify the cartilage thickness of healthy male and female knees using statistical shape models (SSMs) for a deep knee bend activity. Additionally, novel cartilage segmentation from magnetic resonance imaging (MRI) and estimation algorithms from computer tomography (CT) or x-rays are proposed to facilitate the efficient development and accurate analysis of future treatments related to the knee. Cartilage morphology results suggest distinct patterns of wear in varus, valgus, and neutral degenerative knees, and examination of contact regions during the deep knee bend activity further emphasizes these patterns. Segmentation results were achieved that were comparable if not of higher quality than existing state-of-the-art techniques for both femoral and tibial cartilage. Likewise, using the point correspondence properties of SSMs, estimation of articulating cartilage was effective in healthy and degenerative knees. In conclusion, this work provides novel, clinically relevant morphological data to compute segmentation and estimate new data in such a way to potentially contribute to improving results and efficiency in evaluation of the femorotibial cartilage layer

    Adaptive kernel estimation for enhanced filtering and pattern classification of magnetic resonance imaging: novel techniques for evaluating the biomechanics and pathologic conditions of the lumbar spine

    Get PDF
    This dissertation investigates the contribution the lumbar spine musculature has on etiological and pathogenic characteristics of low back pain and lumbar spondylosis. This endeavor necessarily required a two-step process: 1) design of an accurate post-processing method for extracting relevant information via magnetic resonance images and 2) determine pathological trends by elucidating high-dimensional datasets through multivariate pattern classification. The lumbar musculature was initially evaluated by post-processing and segmentation of magnetic resonance (MR) images of the lumbar spine, which characteristically suffer from nonlinear corruption of the signal intensity. This so called intensity inhomogeneity degrades the efficacy of traditional intensity-based segmentation algorithms. Proposed in this dissertation is a solution for filtering individual MR images by extracting a map of the underlying intensity inhomogeneity to adaptively generate local estimates of the kernel’s optimal bandwidth. The adaptive kernel is implemented and tested within the structure of the non-local means filter, but also generalized and extended to the Gaussian and anisotropic diffusion filters. Testing of the proposed filters showed that the adaptive kernel significantly outperformed their non-adaptive counterparts. A variety of performance metrics were utilized to measure either fine feature preservation or accuracy of post-processed segmentation. Based on these metrics the adaptive filters proposed in this dissertation significantly outperformed the non-adaptive versions. Using the proposed filter, the MR data was semi-automatically segmented to delineate between adipose and lean muscle tissues. Two important findings were reached utilizing this data. First, a clear distinction between the musculature of males and females was established that provided 100% accuracy in being able to predict gender. Second, degenerative lumbar spines were accurately predicted at a rate of up to 92% accuracy. These results solidify prior assumptions made regarding sexual dimorphic anatomy and the pathogenic nature of degenerative spine disease

    Advanced Algorithms for 3D Medical Image Data Fusion in Specific Medical Problems

    Get PDF
    Fúze obrazu je dnes jednou z nejběžnějších avšak stále velmi diskutovanou oblastí v lékařském zobrazování a hraje důležitou roli ve všech oblastech lékařské péče jako je diagnóza, léčba a chirurgie. V této dizertační práci jsou představeny tři projekty, které jsou velmi úzce spojeny s oblastí fúze medicínských dat. První projekt pojednává o 3D CT subtrakční angiografii dolních končetin. V práci je využito kombinace kontrastních a nekontrastních dat pro získání kompletního cévního stromu. Druhý projekt se zabývá fúzí DTI a T1 váhovaných MRI dat mozku. Cílem tohoto projektu je zkombinovat stukturální a funkční informace, které umožňují zlepšit znalosti konektivity v mozkové tkáni. Třetí projekt se zabývá metastázemi v CT časových datech páteře. Tento projekt je zaměřen na studium vývoje metastáz uvnitř obratlů ve fúzované časové řadě snímků. Tato dizertační práce představuje novou metodologii pro klasifikaci těchto metastáz. Všechny projekty zmíněné v této dizertační práci byly řešeny v rámci pracovní skupiny zabývající se analýzou lékařských dat, kterou vedl pan Prof. Jiří Jan. Tato dizertační práce obsahuje registrační část prvního a klasifikační část třetího projektu. Druhý projekt je představen kompletně. Další část prvního a třetího projektu, obsahující specifické předzpracování dat, jsou obsaženy v disertační práci mého kolegy Ing. Romana Petera.Image fusion is one of today´s most common and still challenging tasks in medical imaging and it plays crucial role in all areas of medical care such as diagnosis, treatment and surgery. Three projects crucially dependent on image fusion are introduced in this thesis. The first project deals with the 3D CT subtraction angiography of lower limbs. It combines pre-contrast and contrast enhanced data to extract the blood vessel tree. The second project fuses the DTI and T1-weighted MRI brain data. The aim of this project is to combine the brain structural and functional information that purvey improved knowledge about intrinsic brain connectivity. The third project deals with the time series of CT spine data where the metastases occur. In this project the progression of metastases within the vertebrae is studied based on fusion of the successive elements of the image series. This thesis introduces new methodology of classifying metastatic tissue. All the projects mentioned in this thesis have been solved by the medical image analysis group led by Prof. Jiří Jan. This dissertation concerns primarily the registration part of the first project and the classification part of the third project. The second project is described completely. The other parts of the first and third project, including the specific preprocessing of the data, are introduced in detail in the dissertation thesis of my colleague Roman Peter, M.Sc.
    corecore