10 research outputs found

    Removal of Interferences from Partial Discharge Pulses using Wavelet Transform

    Get PDF
     It is essential to detect partial discharge (PD) as a symptom of insulation breakdown in high voltage (HV) applications. However accuracy of such measurement is often degraded due to the existence of noise in the signal. Wavelet Transform (WT) seems to be more suitable than traditional Fourier Transform in analyzing signals with interesting transient information such as partial discharge (PD) signals. In this paper a WT method with soft thresholding is used for signal denoising. PD signals and corona obtained from actual measurements with different voltage magnitudes are processed. Processed signals show the better result.

    Removal of Interferences from Partial Discharge Pulses using Wavelet Transform

    Full text link

    Wavelet Transform Fuzzy Algorithms for Dermoscopic Image Segmentation

    Get PDF
    This paper presents a novel approach to segmentation of dermoscopic images based on wavelet transform where the approximation coefficients have been shown to be efficient in segmentation. The three novel frameworks proposed in this paper, W-FCM, W-CPSFCM, and WK-Means, have been employed in segmentation using ROC curve analysis to demonstrate sufficiently good results. The novel W-CPSFCM algorithm permits the detection of a number of clusters in automatic mode without the intervention of a specialist

    Method for Optimal Sensor Deployment on 3D Terrains Utilizing a Steady State Genetic Algorithm with a Guided Walk Mutation Operator Based on the Wavelet Transform

    Get PDF
    One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains

    Using adaptive thresholding and skewness correction to detect gray areas in melanoma \u3ci\u3ein situ\u3c/i\u3e images

    Get PDF
    The incidence of melanoma in situ (MIS) is growing significantly. Detection at the MIS stage provides the highest cure rate for melanoma, but reliable detection of MIS with dermoscopy alone is not yet possible. Adjunct dermoscopic instrumentation using digital image analysis may allow more accurate detection of MIS. Gray areas are a critical component of MIS diagnosis, but automatic detection of these areas remains difficult because similar gray areas are also found in benign lesions. This paper proposes a novel adaptive thresholding technique for automatically detecting gray areas specific to MIS. The proposed model uses only MIS dermoscopic images to precisely determine gray area characteristics specific to MIS. To this aim, statistical histogram analysis is employed in multiple color spaces. It is demonstrated that skew deviation due to an asymmetric histogram distorts the color detection process. We introduce a skew estimation technique that enables histogram asymmetry correction facilitating improved adaptive thresholding results. These histogram statistical methods may be extended to detect any local image area defined by histograms --Abstract, page iv

    Denoising and enhancement of mammographic images under the assumption of heteroscedastic additive noise by an optimal subband thresholding

    Get PDF
    Mammographic images suffer from low contrast and signal dependent noise, and a very small size of tumoral signs is not easily detected, especially for an early diagnosis of breast cancer. In this context, many methods proposed in literature fail for lack of generality. In particular, too weak assumptions on the noise model, e.g., stationary normal additive noise, and an inaccurate choice of the wavelet family that is applied, can lead to an information loss, noise emphasizing, unacceptable enhancement results, or in turn an unwanted distortion of the original image aspect. In this paper, we consider an optimal wavelet thresholding, in the context of Discrete Dyadic Wavelet Transforms, by directly relating all the parameters involved in both denoising and contrast enhancement to signal dependent noise variance (estimated by a robust algorithm) and to the size of cancer signs. Moreover, by performing a reconstruction from a zero-approximation in conjunction with a Gaussian smoothing filter, we are able to extract the background and the foreground of the image separately, as to compute suitable contrast improvement indexes. The whole procedure will be tested on high resolution X-ray mammographic images and compared with other techniques. Anyway, the visual assessment of the results by an expert radiologist will be also considered as a subjective evaluation

    Object Modelling and Tracking in Videos via Multidimensional Features

    Get PDF
    We propose to model a tracked object in a video sequence by locating a list of object features that are ranked according to their ability to differentiate against the image background. The Bayesian inference is utilised to derive the probabilistic location of the object in the current frame, with the prior being approximated from the previous frame and the posterior achieved via the current pixel distribution of the object. Consideration has also been made to a number of relevant aspects of object tracking including multidimensional features and the mixture of colours, textures, and object motion. The experiment of the proposed method on the video sequences has been conducted and has shown its effectiveness in capturing the target in a moving background and with nonrigid object motion

    Partitionnement des images hyperspectrales de grande dimension spatiale par propagation d'affinité

    Get PDF
    The interest in hyperspectral image data has been constantly increasing during the last years. Indeed, hyperspectral images provide more detailed information about the spectral properties of a scene and allow a more precise discrimination of objects than traditional color images or even multispectral images. High spatial and spectral resolutions of hyperspectral images enable to precisely characterize the information pixel content. Though the potentialities of hyperspectral technology appear to be relatively wide, the analysis and the treatment of these data remain complex. In fact, exploiting such large data sets presents a great challenge. In this thesis, we are mainly interested in the reduction and partitioning of hyperspectral images of high spatial dimension. The proposed approach consists essentially of two steps: features extraction and classification of pixels of an image. A new approach for features extraction based on spatial and spectral tri-occurrences matrices defined on cubic neighborhoods is proposed. A comparative study shows the discrimination power of these new features over conventional ones as well as spectral signatures. Concerning the classification step, we are mainly interested in this thesis to the unsupervised and non-parametric classification approach because it has several advantages: no a priori knowledge, image partitioning for any application domain, and adaptability to the image information content. A comparative study of the most well-known semi-supervised (knowledge of number of classes) and unsupervised non-parametric methods (K-means, FCM, ISODATA, AP) showed the superiority of affinity propagation (AP). Despite its high correct classification rate, affinity propagation has two major drawbacks. Firstly, the number of classes is over-estimated when the preference parameter p value is initialized as the median value of the similarity matrix. Secondly, the partitioning of large size hyperspectral images is hampered by its quadratic computational complexity. Therefore, its application to this data type remains impossible. To overcome these two drawbacks, we propose an approach which consists of reducing the number of pixels to be classified before the application of AP by automatically grouping data points with high similarity. We also introduce a step to optimize the preference parameter value by maximizing a criterion related to the interclass variance, in order to correctly estimate the number of classes. The proposed approach was successfully applied on synthetic images, mono-component and multi-component and showed a consistent discrimination of obtained classes. It was also successfully applied and compared on hyperspectral images of high spatial dimension (1000 × 1000 pixels × 62 bands) in the context of a real application for the detection of invasive and non-invasive vegetation species.Les images hyperspectrales suscitent un intérêt croissant depuis une quinzaine d'années. Elles fournissent une information plus détaillée d'une scène et permettent une discrimination plus précise des objets que les images couleur RVB ou multi-spectrales. Bien que les potentialités de la technologie hyperspectrale apparaissent relativement grandes, l'analyse et l'exploitation de ces données restent une tâche difficile et présentent aujourd'hui un défi. Les travaux de cette thèse s'inscrivent dans le cadre de la réduction et de partitionnement des images hyperspectrales de grande dimension spatiale. L'approche proposée se compose de deux étapes : calcul d'attributs et classification des pixels. Une nouvelle approche d'extraction d'attributs à partir des matrices de tri-occurrences définies sur des voisinages cubiques est proposée en tenant compte de l'information spatiale et spectrale. Une étude comparative a été menée afin de tester le pouvoir discriminant de ces nouveaux attributs par rapport aux attributs classiques. Les attributs proposés montrent un large écart discriminant par rapport à ces derniers et par rapport aux signatures spectrales. Concernant la classification, nous nous intéressons ici au partitionnement des images par une approche de classification non supervisée et non paramétrique car elle présente plusieurs avantages: aucune connaissance a priori, partitionnement des images quel que soit le domaine applicatif, adaptabilité au contenu informationnel des images. Une étude comparative des principaux classifieurs semi-supervisés (connaissance du nombre de classes) et non supervisés (C-moyennes, FCM, ISODATA, AP) a montré la supériorité de la méthode de propagation d'affinité (AP). Mais malgré un meilleur taux de classification, cette méthode présente deux inconvénients majeurs: une surestimation du nombre de classes dans sa version non supervisée, et l'impossibilité de l'appliquer sur des images de grande taille (complexité de calcul quadratique). Nous avons proposé une approche qui apporte des solutions à ces deux problèmes. Elle consiste tout d'abord à réduire le nombre d'individus à classer avant l'application de l'AP en agrégeant les pixels à très forte similarité. Pour estimer le nombre de classes, la méthode AP utilise de manière implicite un paramètre de préférence p dont la valeur initiale correspond à la médiane des valeurs de la matrice de similarité. Cette valeur conduisant souvent à une sur-segmentation des images, nous avons introduit une étape permettant d'optimiser ce paramètre en maximisant un critère lié à la variance interclasse. L'approche proposée a été testée avec succès sur des images synthétiques, mono et multi-composantes. Elle a été également appliquée et comparée sur des images hyperspectrales de grande taille spatiale (1000 × 1000 pixels × 62 bandes) avec succès dans le cadre d'une application réelle pour la détection des plantes invasives

    Identification and tracking of marine objects for collision risk estimation.

    Get PDF
    With the advent of modem high-speed passenger ferries and the general increase in maritime traffic, both commercial and recreational, marine safety is becoming an increasingly important issue. From lightweight catamarans and fishing trawlers to container ships and cruise liners one question remains the same. Is anything in the way? This question is addressed in this thesis. Through the use of image processing techniques applied to video sequences of maritime scenes the images are segmented into two regions, sea and object. This is achieved using statistical measures taken from the histogram data of the images. Each segmented object has a feature vector built containing information including its size and previous centroid positions. The feature vectors are used to track the identified objects across many frames. With information recorded about an object's previous motion its future motion is predicted using a least squares method. Finally a high-level rule-based algorithm is applied in order to estimate the collision risk posed by each object present in the image. The result is an image with the objects identified by the placing of a white box around them. The predicted motion is shown and the estimated collision risk posed by that object is displayed. The algorithms developed in this work have been evaluated using two previously unseen maritime image sequences. These show that the algorithms developed here can be used to estimate the collision risk posed by maritime objects

    Identification and tracking of maritime objects for collision risk estimation

    Get PDF
    With the advent of modem high-speed passenger ferries and the general increase in maritime traffic, both commercial and recreational, marine safety is becoming an increasingly important issue. From lightweight catamarans and fishing trawlers to container ships and cruise liners one question remains the same. Is anything in the way? This question is addressed in this thesis. Through the use of image processing techniques applied to video sequences of maritime scenes the images are segmented into two regions, sea and object. This is achieved using statistical measures taken from the histogram data of the images. Each segmented object has a feature vector built containing information including its size and previous centroid positions. The feature vectors are used to track the identified objects across many frames. With information recorded about an object's previous motion its future motion is predicted using a least squares method. Finally a high-level rule-based algorithm is applied in order to estimate the collision risk posed by each object present in the image. The result is an image with the objects identified by the placing of a white box around them. The predicted motion is shown and the estimated collision risk posed by that object is displayed. The algorithms developed in this work have been evaluated using two previously unseen maritime image sequences. These show that the algorithms developed here can be used to estimate the collision risk posed by maritime objects.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore