2,216 research outputs found

    An Approach to Semantically Segmenting Building Components and Outdoor Scenes Based on Multichannel Aerial Imagery Datasets

    Get PDF
    As-is building modeling plays an important role in energy audits and retrofits. However, in order to understand the source(s) of energy loss, researchers must know the semantic information of the buildings and outdoor scenes. Thermal information can potentially be used to distinguish objects that have similar surface colors but are composed of different materials. To utilize both the red–green–blue (RGB) color model and thermal information for the semantic segmentation of buildings and outdoor scenes, we deployed and adapted various pioneering deep convolutional neural network (DCNN) tools that combine RGB information with thermal information to improve the semantic and instance segmentation processes. When both types of information are available, the resulting DCNN models allow us to achieve better segmentation performance. By deploying three case studies, we experimented with our proposed DCNN framework, deploying datasets of building components and outdoor scenes, and testing the models to determine whether the segmentation performance had improved or not. In our observation, the fusion of RGB and thermal information can help the segmentation task in specific cases, but it might also make the neural networks hard to train or deteriorate their prediction performance in some cases. Additionally, different algorithms perform differently in semantic and instance segmentation

    A phenomenological approach to multisource data integration: Analysing infrared and visible data

    Get PDF
    A new method is described for combining multisensory data for remote sensing applications. The approach uses phenomenological models which allow the specification of discriminatory features that are based on intrinsic physical properties of imaged surfaces. Thermal and visual images of scenes are analyzed to estimate surface heat fluxes. Such analysis makes available a discriminatory feature that is closely related to the thermal capacitance of the imaged objects. This feature provides a method for labelling image regions based on physical properties of imaged objects. This approach is different from existing approaches which use the signal intensities in each channel (or an arbitrary linear or nonlinear combination of signal intensities) as features - which are then classified by a statistical or evident approach

    Rapid Online Analysis of Local Feature Detectors and Their Complementarity

    Get PDF
    A vision system that can assess its own performance and take appropriate actions online to maximize its effectiveness would be a step towards achieving the long-cherished goal of imitating humans. This paper proposes a method for performing an online performance analysis of local feature detectors, the primary stage of many practical vision systems. It advocates the spatial distribution of local image features as a good performance indicator and presents a metric that can be calculated rapidly, concurs with human visual assessments and is complementary to existing offline measures such as repeatability. The metric is shown to provide a measure of complementarity for combinations of detectors, correctly reflecting the underlying principles of individual detectors. Qualitative results on well-established datasets for several state-of-the-art detectors are presented based on the proposed measure. Using a hypothesis testing approach and a newly-acquired, larger image database, statistically-significant performance differences are identified. Different detector pairs and triplets are examined quantitatively and the results provide a useful guideline for combining detectors in applications that require a reasonable spatial distribution of image features. A principled framework for combining feature detectors in these applications is also presented. Timing results reveal the potential of the metric for online applications. © 2013 by the authors; licensee MDPI, Basel, Switzerland

    Structure Preserving Large Imagery Reconstruction

    Get PDF
    With the explosive growth of web-based cameras and mobile devices, billions of photographs are uploaded to the internet. We can trivially collect a huge number of photo streams for various goals, such as image clustering, 3D scene reconstruction, and other big data applications. However, such tasks are not easy due to the fact the retrieved photos can have large variations in their view perspectives, resolutions, lighting, noises, and distortions. Fur-thermore, with the occlusion of unexpected objects like people, vehicles, it is even more challenging to find feature correspondences and reconstruct re-alistic scenes. In this paper, we propose a structure-based image completion algorithm for object removal that produces visually plausible content with consistent structure and scene texture. We use an edge matching technique to infer the potential structure of the unknown region. Driven by the estimated structure, texture synthesis is performed automatically along the estimated curves. We evaluate the proposed method on different types of images: from highly structured indoor environment to natural scenes. Our experimental results demonstrate satisfactory performance that can be potentially used for subsequent big data processing, such as image localization, object retrieval, and scene reconstruction. Our experiments show that this approach achieves favorable results that outperform existing state-of-the-art techniques

    A vision system for mobile maritime surveillance platforms

    Get PDF
    Mobile surveillance systems play an important role to minimise security and safety threats in high-risk or hazardous environments. Providing a mobile marine surveillance platform with situational awareness of its environment is important for mission success. An essential part of situational awareness is the ability to detect and subsequently track potential target objects.Typically, the exact type of target objects is unknown, hence detection is addressed as a problem of finding parts of an image that stand out in relation to their surrounding regions or are atypical to the domain. Contrary to existing saliency methods, this thesis proposes the use of a domain specific visual attention approach for detecting potential regions of interest in maritime imagery. For this, low-level features that are indicative of maritime targets are identified. These features are then evaluated with respect to their local, regional, and global significance. Together with a domain specific background segmentation technique, the features are combined in a Bayesian classifier to direct visual attention to potential target objects.The maritime environment introduces challenges to the camera system: gusts, wind, swell, or waves can cause the platform to move drastically and unpredictably. Pan-tilt-zoom cameras that are often utilised for surveillance tasks can adjusting their orientation to provide a stable view onto the target. However, in rough maritime environments this requires high-speed and precise inputs. In contrast, omnidirectional cameras provide a full spherical view, which allows the acquisition and tracking of multiple targets at the same time. However, the target itself only occupies a small fraction of the overall view. This thesis proposes a novel, target-centric approach for image stabilisation. A virtual camera is extracted from the omnidirectional view for each target and is adjusted based on the measurements of an inertial measurement unit and an image feature tracker. The combination of these two techniques in a probabilistic framework allows for stabilisation of rotational and translational ego-motion. Furthermore, it has the specific advantage of being robust to loosely calibrated and synchronised hardware since the fusion of tracking and stabilisation means that tracking uncertainty can be used to compensate for errors in calibration and synchronisation. This then completely eliminates the need for tedious calibration phases and the adverse effects of assembly slippage over time.Finally, this thesis combines the visual attention and omnidirectional stabilisation frameworks and proposes a multi view tracking system that is capable of detecting potential target objects in the maritime domain. Although the visual attention framework performed well on the benchmark datasets, the evaluation on real-world maritime imagery produced a high number of false positives. An investigation reveals that the problem is that benchmark data sets are unconsciously being influenced by human shot selection, which greatly simplifies the problem of visual attention. Despite the number of false positives, the tracking approach itself is robust even if a high number of false positives are tracked
    • …
    corecore