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Abstract: As-is building modeling plays an important role in energy audits and retrofits. However,
in order to understand the source(s) of energy loss, researchers must know the semantic information
of the buildings and outdoor scenes. Thermal information can potentially be used to distinguish
objects that have similar surface colors but are composed of different materials. To utilize both
the red–green–blue (RGB) color model and thermal information for the semantic segmentation of
buildings and outdoor scenes, we deployed and adapted various pioneering deep convolutional
neural network (DCNN) tools that combine RGB information with thermal information to improve
the semantic and instance segmentation processes. When both types of information are available, the
resulting DCNN models allow us to achieve better segmentation performance. By deploying three
case studies, we experimented with our proposed DCNN framework, deploying datasets of building
components and outdoor scenes, and testing the models to determine whether the segmentation
performance had improved or not. In our observation, the fusion of RGB and thermal information
can help the segmentation task in specific cases, but it might also make the neural networks hard to
train or deteriorate their prediction performance in some cases. Additionally, different algorithms
perform differently in semantic and instance segmentation.

Keywords: building thermal modeling; building semantic segmentation; energy audits; instance
segmentation; thermal and RGB data fusion

1. Motivation and Introduction

Researchers are exploring an efficient energy loss audit approach for groups of build-
ings in large districts, since buildings are mutually affected. Recently, with the support of
thermal cameras, it has become possible to detect energy loss from a building’s facade and
roof by reading the temperature information from thermal images [1,2]. This approach
originally motivated researchers to detect energy loss from an entire building using a hand-
held thermal camera [2,3]. Due to the time required, it is not feasible to detect energy loss
from all buildings in a whole district using such a handheld camera. To improve efficiency,
researchers have mounted cameras and multiple sensors on unmanned aircraft systems
(UASs). This solution allows for faster data collection and broader camera views [4]. How-
ever, the thermal information from other objects—such as cars and equipment—is also
captured, which is not the type of heat loss that we focus on. For example, Xu et al. [5] and
Friman et al. [6] used UAS-based thermal images to detect heat loss from district heating
networks; however, they had to distinguish road objects from others, since heat loss from
cars and equipment is also captured in UAS-based thermal images. Similarly, in order
to better detect the source(s) of energy loss, we need to be able to differentiate between
buildings’ various components and other items in the scene—and, further, to determine
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whether the energy loss is from a particular building [7]. To differentiate components’ se-
mantic information (semantic segmentation) and to delineate each distinct object (instance
segmentation), many computer vision algorithms—especially deep learning approaches—
have been developed, such as Mask R-CNN [8], the YOLO family [9], and the DeepLab
family [10]. These segmentation algorithms allow for object detection at the pixel level and
indexing of each distinct object, thus enabling the classification of each image pixel.

Traditional semantic segmentation is primarily based on visible-light imagery input—
also known as red–green–blue (RGB) images—which makes the task intrinsically challeng-
ing [11,12]. For example, it is difficult to precisely distinguish between objects of similar
colors. To overcome this limitation of RGB data and further improve the performance of se-
mantic segmentation, other forms of measurement can be used in addition to RGB images,
such as depth and thermal information. Unlike visible light imaging, thermal imaging
cameras can detect objects’ thermal information under various lighting conditions, and
even under difficult conditions such as night-time. Therefore, adding thermal information
helps some applications that require high segmentation precision [13,14].

In our semantic segmentation task, we focused on differentiating salient components—
such as facades and roofs—where energy loss was important to monitor, as well as on
peripheral components such as cars and equipment, where heat loss was not our main
focus, but may interfere in the study. Therefore, in this research, we classified the five
most relevant categories of classes: facades, roofs, cars, roof equipment, and ground
equipment. Researchers have implemented similar methods to detect thermal anomalies
while reducing the false positive rate—the ratio between the number of negative samples
wrongly categorized as positive and the total number of actual negative samples. For
example, Berg et al. [15,16] used thresholds to classify whether pixels in images belonged
to a building or not. Friman et al. [6] analyzed the distribution of pixel intensities across
thermal images, and set a temperature threshold to distinguish buildings from the ground.
However, setting a threshold and simply determining whether heat loss is from buildings—
as opposed to cars and ground equipment—without the support of semantic information
is not possible. Therefore, we need to define a framework that can directly conduct
segmentation on aerial RGB datasets, thereby adding multiple channels that can potentially
improve segmentation performance.

Our study was designed to answer the following questions: (1) How do thermal
images influence the performance of semantic and instance segmentation? (2) Can thermal
information be fused with RGB information to improve the performance of semantic
segmentation? If so, how can such fusion be supported by different approaches? (3) How
do DCNNs perform for different categories of classes? Our study contributes a Building
Object and Outdoor Scene Segmentation (BOOSS) database to building science research. In
this dataset, a collection of aerial imagery data fusing thermal and RGB information with
annotations of building components and other classes are provided. Additionally, our
study uses multichannel imagery data to solve the building component segmentation
problems for energy audits. The rest of this paper is organized into the following sections:
Section 2 reviews the existing works in the field. Section 3 presents the methodology of
this study. Section 4 presents case studies and results, while Section 5 concludes the paper
and presents potential future work.

2. Related Work
2.1. Energy Aduits

Energy audits on building envelopes are important for building performance, and
increasing the efficiency of building envelopes is a low-cost but high-return strategy [17].
Lucchi [18] reviewed studies that used thermal cameras to solve energy audit prob-
lems based on qualitative and quantitative approaches. Qualitative approaches include
(1) classification of building components [19], (2) thermal bridge identification [20,21],
(3) air leakage inspection [22], and (4) HVAC and pipeline system inspection [23]. Quan-
titative approaches include (1) U-value assessment [24,25], (2) moisture content identifi-
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cation [26], (3) thermal anomaly percentage calculation [16], and (4) indoor occupancy
calculation for energy consumption inspection [27]. Recently, researchers have also installed
thermal cameras onto other devices, such as unmanned aerial vehicles (UAVs) [28] and
unmanned ground vehicles (UGVs) [29], to capture thermal images. When researchers used
a handheld data collection approach, they were informed of what objects they investigated.
However, for energy audits using an aerial-based data collection approach, researchers need
to distinguish objects before processing thermal information, because aerial-based data col-
lection captures all information, including regions of interest and outliers alike. For example,
Friman et al. [6] and Berg et al. [15,16] inspected heat loss from district heating networks;
they needed to differentiate road components; otherwise, heat information captured from
cars and building roofs could influence the energy audit accuracy. Therefore, a building
component segmentation procedure is required for energy audits.

2.2. Neural Network Approaches for Feature Extraction

Traditional feature extraction approaches have been classified as either appearance-
based or part-based [30]. Appearance-based approaches include principal component
analysis (PCA) [31,32], linear discriminant analysis (LDA) [33,34], and independent com-
ponent analysis (ICA) [35]. The part-based approaches mainly include scale-invariant
feature transformation (SIFT) [36], and its variants: PCA–SIFT [37] and gradient location–
orientation histogram (GLOH) [38].

The traditional approaches, as previously summarized, are all linear processing ap-
proaches. Another approach, created by the fast development of deep neural networks
for feature extraction, is the convolutional neural network (CNN). In classic CNN models,
convolution and fully connected (FC) layers implement linear transformations on their
inputs. Later, nonlinearity is added to the feature extraction tasks, such as activation and
pooling layers.

Among these approaches, Alex Krizhevsky and Geoffrey Hinton’s AlexNet CNN
can be considered the most interesting work after a long hiatus in the computer vision
neural network research [39], because of its special network architecture. Many deep neural
network architectures have been designed based on this work, such as ZFNet [40] and
VGGNet. In particular, VGGNet significantly outperforms other networks. The biggest
difference between VGGNet and others is the size of its filters. Both AlexNet and ZFNet
use large filters—11 × 11 [39] and 7 × 7 [40], respectively—but VGGNet reduces the
parameters by using two layers of 3 × 3 filters (equivalent to a filter of 5 × 5) or three
layers of 3 × 3 filters (equivalent to a filter of 7 × 7). As there are fewer parameters to learn,
VGGNet can converge faster and avoid overfitting problems. There are many different
versions of VGGNet, but the most popular are VGG-16 and VGG-19, because of their
accuracy and learning speed.

Another interesting architecture is GoogLeNet, which makes networks much deeper.
This deeper network is defined as “inception”. The first GoogLeNet technique introduced
a 1 × 1 convolution as a dimension-reduction module by reducing the computation bot-
tleneck, thereby allowing for an increase in the network depth and width. It has also
been demonstrated that this technique can reduce the overfitting problem, because the
technique has a regularization effect. The second GoogLeNet technique involves the FC
layers, which are different from other networks’ architectures, wherein whole feature maps
are fully connected to each FC layer. In GoogLeNet, global average pooling is obtained by
averaging each individual element of the feature maps to each related FC layer element.
These two techniques allow GoogLeNet layers to reach 22 layers in total, which is very
deep compared with AlexNet, ZFNet, and VGGNet.

However, deeper neural networks also have drawbacks. For example, it is known that
the deeper layers may cause the problems of a vanishing or exploding gradient. To solve
these problems, a ship connection (or shortcut connection) is implemented in a ResNet
architecture by adding an input layer to the output layer after a few skipped layers. To
reduce the computational complexity, ResNet also uses a bottleneck design technique,
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which adds an extra 1 × 1 convolutional layer to the network’s beginning and end. Despite
the increases in layer size, there is no additional complexity. For instance, ResNet-152 is
still less complex than VGG-16/19.

2.3. Semantic Segmentation

Segmentation has many different prototypes with different architectural designs.
To better understand their performance, we compared the most utilized frameworks,
including the fully connected network (FCN) [41,42], the pyramid scene parsing network
(PSPNet) [43], DeepLab v3+ [10,44], and Mask R-CNN [8]. According to the commonly
used website Paper with Code, in which researchers compete for the best performance [45],
these algorithms are highly ranked and, thus, are included in this literature review.

First, the FCN is derived from classic object detection approaches, in which input
images are downsized and fed into the convolution and fully connected (FC) layers, and the
output predicts object labels. If the output is upsampled to a pixel-wise output rather than a
single label, it can be used to predict semantic information. Second, PSPNet uses a pyramid
parsing module that exploits global context information in the network. This module
utilizes different region-based context aggregation, and its final prediction is more reliable
than the FCN because of the collection of both local and global clues. PSPNet first extracts a
feature map from the input image. On the top of the map, it aggregates context information
using a four-level pyramid pooling module. The kernels of this pooling module cover the
whole image, half the image, and small portions. After pooling, this context information is
concatenated with the original feature map in the final part. Lastly, the final prediction is
generated from a succeeding convolutional layer. Next, DeepLab v3+ is the third version
in the DeepLab family developed by Google, which conducts segmentation tasks directly
on the input images. Compared with traditional convolutional layers that process all
neighboring values together, the DeepLab family uses dilated convolutions (also known
as atrous convolutions), by which certain input values are skipped in order to observe a
greater field of view. This technique allows filters to include more context using fewer
parameters [10]. Both the first and second versions of DeepLab use an atrous convolution
and a fully connected conditional random field (CRF), and the second version has one
additional technique—atrous spatial pyramid pooling (ASPP), in which multiple parallel
atrous convolutions with different rates are fused to generate a feature map. Following the
success of v1 and v2, Google proposed v3 and v3+ by removing the CRF but reconstructing
the ASPP, improving performance [46]. Lastly, Mask R-CNN extends the Faster R-CNN
by adding a new branch that can predict an object mask. Unlike semantic segmentation,
which assigns every pixel of an image with a class label, Mask R-CNN, as a form of instance
segmentation, treats multiple objects of the same class as distinct individual instances; it
first proposes candidate regions of interest (ROIs) using a region proposal network (RPN),
and then extracts feature maps, applying pooling and other convolutional neural networks
to these regions. Mask R-CNN uses these regions to define bounding boxes and identify
individual items in the same class.

The abovementioned algorithms are not the only approaches. There are many other
algorithms of both semantic and instance segmentation. The difference between semantic
and instance segmentation is that semantic segmentation treats multiple objects of the same
category as a whole entity, while instance segmentation treats multiple objects of the same
class as distinct individual instances. The other semantic algorithms include UNet [47],
a context-guided network (CGNet) [48], and unified perceptual parsing (UPerNet) [49].
UNet is a basic segmentation approach that was frequently used before complex CNN
approaches were implemented; its performance accuracy has been surpassed by many
current approaches. CGNet has fewer network parameters and, thus, its training process is
faster but less accurate compared to PSPNet and DeepLab v3+. UPerNet is very similar to
PSPNet, and they achieve similar performances.

The other instance segmentation approaches include the YOLO family and the Faster-
RCNN family. Similar to Mask R-CNN, the other instance segmentation algorithms use
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similar techniques. However, such algorithms only predict bounding boxes for objects, and
do not assign pixel-wise classes to objects in the bounding boxes.

2.4. Current Datasets

There are many datasets for semantic segmentation research in the computer vi-
sion field, such as Cityscapes, PASCAL visual object classes (VOC), ADE20K, and ScanNet.
Cityscapes is designed to identify semantic information on urban street scenes. Many classi-
fied objects include vehicles, trees, and signal signs. These images are generally taken from
the ground. PASCAL VOC, on the other hand, can detect over 400 miscellaneous objects
from datasets. ADE20K includes many objects, such as food, furniture, and appliances
in indoor scenes, and vehicles, infrastructure, and buildings in outdoor scenes, with over
250 annotated instances. ScanNet provides an annotated 3D reconstruction of indoor
scenes. These datasets are all RGB imagery datasets.

There are several different types of open-source dataset with multiple channels, such
as Kinect data, simultaneous localization and mapping (SLAM) data, and synthetic data.
These datasets fuse RGB information with depth information to improve segmentation
accuracy. However, after reviewing current open-source datasets, we found that there are
no outdoor scene datasets in which detailed images of facades, roofs, windows, etc., are
included for building envelope energy audits. Additionally, the aforementioned open-
source datasets are usually collected using ground-based equipment. Such data acquisition
methods do not allow for building roof inspections. Mayer et al. [50] recently published a
hyperspectral database (RGB + thermal + height) with drone images for thermal bridge
detection; however, their datasets only focused on roof components, without other objects
in an outdoor scene.

To comprehensively inspect building envelopes in an urban area with several struc-
tures, it is necessary to collect drone-based aerial images of buildings and outdoor scenes.
In this study, we implemented experiments on our collected and processed datasets, called
Building Object and Outdoor Scene Segmentation (BOOSS)—Aerial Imagery Datasets. The im-
ages were taken in the winter in Karlsruhe, Germany. The outdoor temperature was −5 ◦C
(23 ◦F) when we conducted our experiments. Since another use case of the dataset was to
detect heat loss from the thermal images, we avoided sunny days in order to eliminate the
impact of solar radiation on building envelopes.

2.5. Image Data Fusion and Related Work

Researchers have found that fusing multiple sensor data with RGB data can potentially
improve object classification performance [51–53]. Commonly used fusion approaches can
be categorized into four types: input, early, late, and multiscale fusion. As shown in Figure
1a, RGB and data provided by an extra channel (e.g., depth, thermal, or other types) are
integrated as joint inputs fed into a neural network. This fusion approach is called input
fusion. As shown in Figure 1b,c, the RGB and extra channel data are first fed into different
network streams, where their features are then extracted by the lower level or the upper
level and combined as joint features for the next-level decision. These fusion approaches
are called early and late fusion, respectively. In multiscale fusion, as shown in Figure 1d,
the RGB and extra data are separately fed into two streams. Unlike late fusion, in which
the extracted features (yellow blocks and green blocks) are connected in the last step, the
multiscale fusion process in Figure 1d takes place in every step.

RGB–Depth Fusion: The studies conducted by Ren et al. [54] and Peng et al. [55] are
examples of input fusion, in which RGB and depth images were directly concatenated to
form a four-channel input. Qu et al.’s [56] work is an early fusion method, while studies by
Desingh et al. [57] and Wang et al. [58] are examples of late fusion methods. Many studies
also work on multiscale fusion; for example, Chen et al. [53] used paired RGB and depth
images to implement segmentation. Their neural networks were examples of late fusion
but, in contrast, they built connections between the final layer (the blue block in Figure 1d)
and every early layer (every yellow block and green block), which they called cross-modal
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interaction. Their approach took every neural network layer into account when making a
prediction on the last layer. Chen and Li [52] conducted a similar work, but the difference was
that they first concatenated the RGB feature network stream (the yellow blocks in Figure 1d)
with the depth feature stream (the green blocks in Figure 1d), and fused the concatenated
features, the last RGB features, and the last depth features to make a final prediction.
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In addition to changing the RGB network structures and depth fusion models, re-
searchers have also explored methods to use synthetic depth images due to data hunger,
which refers to a shortage of paired RGB–depth data required for training a segmentation
model [59]. These paired RGB–depth images are usually rendered from a 3D virtual en-
vironment rather than sensors in the real world, which can save ground-truth labeling
time. For example, Chen et al. [60] used a 3D scene generator and a 2D rendering engine to
simulate RGB images and depth maps for the ground, buildings, and trees with their corre-
sponding annotations. Since the model can be easily adjusted in a 3D virtual environment,
the annotations for different objects only need to be configured once, and all of the RGB
and depth images can then be rendered along with their annotated objects. Similarly, Chen
et al. also implemented their synthetic methods on campuses [61] and in urban areas [62].

RGB–Thermal Fusion: Thermal data are another data type that can be used to im-
prove semantic segmentation [63]. For example, Laguela et al. [64] researched how to
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generate a high-quality thermographic image of a building envelope by fusing infrared
data with RGB images. Similarly, Luo et al.’s [65] hybrid tracking framework is an early
fusion method. Conversely, Li et al.’s [66] two-stream CNN of RGB–thermal object tracking
is a typical late fusion method. Additionally, researchers have also implemented multiscale
fusion methods such as Zhai et al.’s [67] cross-modal correlation filters and Jiang et al.’s [68]
cross-modal multi-granularity attention networks. As illustrated in Figure 1d, the classic
approach builds one stream for RGB and another for extra data, but Jiang et al. [68] built
two streams for RGB data and two for thermal data. The authors fused the four streams to
a make final prediction. The benefit of their method is that they learned more features from
data, but it also increased the computational burden. Researchers have similarly explored
using synthetic data for RGB–thermal segmentation. For example, Hou et al. [20] used
a generative adversarial network (GAN) to simulate building envelope thermal images
based on RGB images. Researchers have also fused multiple data types; for example, Mayer
et al. [69] combined thermal, depth, and RGB data in their thermal bridge detection studies.

Feature–Feature Fusion: For feature–feature data fusion, researchers have not used
multiple sensor data, but they have built multiple neural network channels with different
feature extraction methods. They next fused multiple extracted feature channels into one
channel and implemented the segmentation process. These methods fuse multiple feature
channels extracted from original RGB images instead of fusing multiple channels recorded
by different sensors. Nevertheless, their fusion methods provide alternative solutions
to segmentation problems. For example, Nawaz et al. [51] built attention map networks
(AMNs) in addition to traditional feature extraction methods to subtract background
information from RGB images. In their method, the attention map is a mechanism that
extracts different weights from original RGB images.

Since each dataset that computer vision tasks use has many object classes, algorithms
usually calculate a total accuracy over all classes, and we cannot evaluate their perfor-
mances when analyzing an individual object class. For our building envelope inspection
purpose, it is necessary to investigate an algorithm’s performance for different object
classes, so that building owners, urban planners, and district managers can correspond-
ingly audit energy loss.

3. Methodology
3.1. Data Collection

After reviewing current open-source datasets, we did not find useful outdoor scene
datasets for building envelope energy audits in the field of civil engineering. Additionally,
the existing open-source datasets are usually collected using ground-based equipment.
Such data acquisition methods do not allow for the inspection of building roofs and high
building facades. To comprehensively inspect building envelopes, we thus need to collect
drone-based aerial images of buildings and outdoor scenes. Therefore, in our dataset, we
focused on five categories: roofs, facades, roof equipment, cars, and ground equipment.

The images we used were taken with an FLIR Duo Pro R camera that was mounted
on the DJI Matrix 600 drone. The FLIR Duo Pro R is one of the most widely used thermal
cameras because it has both an RGB lens and a thermal lens packed together; as such, it
can take thermal images and RGB images simultaneously. Using these tools, we can detect
two types of energy loss: heat loss, and cooling loss. However, if thermal cameras are used
for energy loss detection, we can only detect heat loss in the winter (cold seasons), because
the required temperature difference (at least 10 ◦C) between indoors and outdoors can be
guaranteed. On the other hand, in the summer (hot seasons), cooling leakages cannot be
identified. Therefore, in our studies, the images were taken in Germany during the winter.

In order to explore and understand the performance of our data fusion strategies, as
well as using different algorithms, we applied input fusion to three different pioneering
segmentation frameworks: PSPNet, DeepLab v3+, and Mask R-CNN. As shown in Table 1,
these three algorithms have higher global ranks [45]. UNet has a good performance, but it
only works for small images. For example, the dataset ATLAS is a medical image dataset.
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We used these frameworks to test only on RGB images, and then we revised the frameworks
to test datasets that fused thermal and RGB images.

Table 1. Evaluation of algorithms, with their global ranks (data source: Papers with code. https://paperswithcode.com/
(accessed on 27 May 2021)).

Model Testing Dataset Metric Global Rank

Mask R-CNN

COCO
Average precision 1st

Mean average precision 1st

Cell17
F1 score 2nd

Dice 2nd

PSPNet
NYU Depth v2 Mean IoU 4th

Cityscapes Mean IoU 3rd

DeepLab v3+
PASCAL VOC Mean IoU 2nd

SkyScapesDense Mean IoU 2nd

UPerNet [49] ADE20K Mean IoU 45th

UNet [47]
Anatomical Tracings of

Lesions After Stroke (ATLAS) IoU 2nd

Retinal vessel segmentation F1 score 10th

CGNet [48] MSU video super resolution
benchmark Subjective score 21st

3.2. PSPNet Implementation

The first algorithm we used and adapted was PSPNet [43], as shown in Figure 2.
Unlike the FCN, PSPNet does not implement pixel-wise prediction training from a fully
connected feature map. In its first stage, the algorithm implements training on a series of
feature maps that consist of different filters. This collection of feature maps is defined as
a pyramid pooling module. In the second stage, the pooling layers are upsampled and
concatenated to former feature maps to generate final feature information, which is later
fed into a convolutional layer to obtain the final pixel-wise semantic prediction.
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Figure 2 illustrates the input fusion approach on RGB plus thermal datasets using
PSPNet. In this algorithm, the loss functions include auxiliary loss and master branch loss.
Auxiliary loss allows the optimization of the learning process, while master branch loss
is responsible for the whole network. PSPNet adds parameter weights to these two loss
functions, including 0.4 for auxiliary loss and 0.6 for master branch loss (a ratio of 4:6 is
recommended by the original author).

https://paperswithcode.com/
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3.3. DeepLab v3+ Implementation

The second tested algorithm was from the DeepLab family [10,44,46]. We used and
revised the latest version (DeepLab v3+). DeepLab v3+, as with its other versions, also
uses the pyramid pooling method used in PSPNet. However, unlike PSPNet, the DeepLab
family uses an innovative pooling structure called atrous spatial pyramid pooling (ASPP).
This pooling structure can capture multiscale information by adjusting the filter’s field of
view. Unlike using a traditional pooling structure, it also considers the hidden relationship
between disconnected pixels in the imagery datasets. Additionally, the several parallel
ASPP convolutional layers used in DeepLab v3+ have different rates from the pooling
layers used in PSPNet.

The biggest difference between the latest version of DeepLab and earlier versions is
that it extends DeepLab v3 by employing an encoder–decoder structure. This structure
can expedite computations for feature extraction because it does not enlarge the neural
network, and it can also recover sharp segmentation boundaries in the decoder path.

We used ResNet-50 on both the RGB and thermal images for performance com-
parison, and then the overlapped extracted features for the remaining steps, which are
similar to the typical DeepLab v3 approach. Figure 3 illustrates the input fusion ap-
proach on DeepLab v3+. First, we simply concatenated a thermal channel after the RGB
channels to obtain four-channel input data. To guarantee the performance while using
an acceptable computational capacity, we used a 512 × 512 image size, which is com-
monly used in other applications. Second, the integrated images were fed into the typical
DeepLab v3 + network, with the condition that only the first input layer was adjusted from
three to four in order to conveniently process the input four-channel images. The loss
function of the DeepLab family calculates the sum of cross-entropy terms for each spatial
position in their networks, and assigns equal weight to each term.
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3.4. Mask R-CNN Implementation

Figure 4 illustrates the input fusion approach on the adapted Mask R-CNN. Formally,
the task is defined as follows: given a set X containing input images xi ∈ RH×W×C with
image height H, width W, and channels C (in this case, the RGB image size is 512× 512× 3,
so H = 512, W = 512, and C = 3), and a corresponding annotation set Y containing bounding
boxes yi,box ∈ RN×4, where the number 4 represents the coordinates of a bounding box’s
four corners, class labels yi,cls ∈ RN , and masks yi,box ∈ RN×H×W , and where N is the
number of annotated objects in the given image, we represent the learning mapping as F:
X→ Y, where F denotes a neural network.

Input fusion involves brutally concatenating the thermal channel onto the end of the
RGB channels, which does not change the algorithm’s architecture. First, the thermal chan-
nel was directly concatenated after integrating RGB channels as a matrix of xi ∈ RH×W×C.
In this case, H = 512, W = 512, and C = 4. Second, the feature extraction block, ResNet-50,
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proposes a certain number of regional feature maps from this matrix. The rest of the steps
are the same as those of the traditional Mask R-CNN approach.
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In Figure 4, Mask R-CNN includes two stages: First, it uses a region proposal net-
work (RPN) to propose candidate regions of interest (ROIs). Second, it uses a convo-
lutional backbone to extract features that are used for neural network training. We set
feature extraction blocks to ResNet-50, facilitating the comparison of the algorithms’ per-
formances. Mask R-CNN uses a multi-task loss on ROIs. The loss function is defined as
L = Lcls + Lbox + Lmask. Lcls is the cross-entropy loss across all five classes plus the back-
ground. Lbox is the bounding box regression over the predicted box corners. Finally, Lmask
is the average binary cross-entropy loss across the pixels in the mask.

3.5. Common Configurations (Hyperparameters) for Performance Comparison

To fairly compare the performance of different semantic segmentation algorithms,
we must control for bias. First, the size of the input RGB and thermal imagery datasets
were all 512 × 512. The experiment dataset had the requisite 8:2 ratio of training and
testing datasets. In this study, the training dataset included 4190 images, and for testing,
1000 images, meeting the 8:2 ratio requirement. In these images, there were 37,426 instances
in training datasets and 8915 instances in testing datasets, as shown in Table 2, and also
meeting the 8:2 ratio requirement. Table 2 also shows the numbers of instances in the
training and testing datasets in terms of categories. In addition, the numbers of roofs,
facades, and roof equipment instances were greater than the number of other instances.
One thing that should be emphasized is that images in the training dataset were collected
separately from images in testing in terms of collection positions and scenes. Second, in
order to prevent vanishing or exploding gradient problems, the backbone feature extraction
networks used in all four tested segmentation algorithms were set to ResNet-50. To reduce
training time and improve accuracy, we used a fine-tuning method in which a pretrained
ResNet-50 model was used to initialize the new model. Therefore, the same ResNet-50 model
was used in each algorithm for a fair comparison. Additionally, the pretrained models were
trained using both Cityscapes and VOC datasets; both were used for a fair comparison. Third,
the training configuration settings were also the same for each algorithm: the data batch size
was 2, the iteration was 5000 per epoch, and the total number of epochs was 200. Fourth, all
of the algorithms used the same polynomial learning rate, meaning that the learning rate at
the beginning was 0.01, and the rate at the end was 0.0001, reducing at a fixed decreasing
rate. Finally, the same GPU (NVIDIA Tesla P100) was used to train the models.
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Table 2. Numbers of instances in the datasets.

Index Description Roofs Cars Facades Ground
Equipment

Roof
Equipment

Total
Number of
Instances

(1)

Number of instances in the
training datasets

(Percentage of the given category
in the total number of instances)

10,147
(27.1%)

3426
(9.15%)

9286
(24.8%)

3679
(9.8%)

10,888
(29.1%) 37,426

(2)

Number of instances in
the testing datasets

(Percentage of the given category
in the total number of instances)

2448
(27.5%)

804
(9.0%)

2177
(24.4%)

880
(9.9%)

2606
(29.2%) 8915

(3) Ratio of (1):(2) 4.145 4.261 4.266 4.181 4.178 4.198

4. Case Studies and Results
4.1. Performance Evaluation

There are different evaluation approaches, including precision (1), recall (2), Jac-
card/intersection over union (IoU) (3), accuracy (ACC) (4), and F1 score (5). In these
equations, true positive (TP) represents the area of overlap in pixel level between the pre-
dicted segmentation and the ground truth in the images. True negative (TN) represents the
areas that belong to the class, but the algorithms predict that they do not. In contrast, false
positive (FP) represents the areas that belong to the correct class, but that the algorithms
fail to recognize. False negative (FN) represents the areas that do not belong to the correct
class, but that the algorithms incorrectly think that they do. Using TP, TN, FP, and FN, we
can calculate the evaluation metrics. Precision, also known as positive predictive value, is
the fraction of the correctly classified area among the actual result area in the ground-truth
images. Recall, also called sensitivity, is the fraction of the correctly classified pixel area
among the predicted result area in the predicted images. Accuracy (ACC) simply calculates
the ratio between correctly predicted areas and the whole areas of an image. However,
accuracy is often not robust enough to evaluate the algorithm’s performance. Therefore,
we introduce IoU—the fraction of the correctly classified pixel area among the union areas
of the actual result areas and predicted result areas. Finally, F1 is a harmonic mean that
combines the precision and recall scores, as shown in (5).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FN
(2)

IoU =
TP

TP + FP + FN
=

Area(predicted∩ true)
Area(predicted∪ true)

(3)

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
(4)

F1 =
2TP

2TP + FP + FN
= 2× Precision× Recall

Precision + Recall
(5)

4.2. Evaluation of PSPNet and DeepLab v3+

In this section, we used the evaluation metrics—including precision, recall, IoU,
accuracy, and F1 scores—to evaluate the performance of the implemented and trained
PSPNet and DeepLab v3+ algorithms. We selected and calculated the average evaluation
values from the last 20 epochs (1/10 of total epochs). The performances are summarized
in Tables 3 and 4. First, the metrics in Table 3 display evaluation over all categories,
while the metrics in Table 4 reflect the IoU of different categories. Second, the headers
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in Tables 3 and 4 represent the evaluation metrics, and each row with its index number
represents different experiments that tested distinct algorithms using various pretrained
models and training datasets. Third, in this section, the algorithms include DeepLab v3+
and PSPNet. The pretrained models that provide initial parameters use the Cityscapes
and VOC open-source datasets. Fourth, the training datasets consist of two versions:
one only has RGB images, while the other fuses RGB and thermal images. Therefore, the
experiments presented in Table 3 are the different combinations of algorithms, datasets, and
pretrained models. For example, “RGB-only-City-DeepLabv3+” represents the DeepLab
v3+ algorithm experiment with the training dataset that only had RGB images, and the
initial DeepLab v3+ parameters were set by using the Cityscapes pretrained model. Finally,
the different colors represent the values, and darker colors represent a greater value, which
means a better performance.

Table 3. Performance evaluation of PSPNet and DeepLab v3+.

Index Algorithms ACC F1 IoU Precision Recall Memory Per
Iteration

Training
Time Per
Iteration

1 RGB-only-
City-DeepLabv3+ 0.91621 0.79454 0.68392 0.86021 0.75690

1400–1500 MB 0.2–0.3 s

2 RGB-only-
City-PSPNet 0.91712 0.79213 0.68199 0.85542 0.75468

3 RGB-only-
VOC-DeepLabv3+ 0.91686 0.79846 0.68930 0.85561 0.76388

4 RGB-only-
VOC-PSPNet 0.91759 0.79232 0.68347 0.85904 0.75432

5 RGB-Thermal-
City-DeepLabv3+ 0.91546 0.79576 0.68426 0.84683 0.76195

6 RGB-Thermal-
City-PSPNet 0.91556 0.78685 0.67646 0.84792 0.75238

7 RGB-Thermal-
VOC-DeepLabv3+ 0.91638 0.79561 0.68491 0.85775 0.75978

8 RGB-Thermal-
VOC-PSPNet 0.91567 0.78870 0.67818 0.85354 0.75136

Table 4. Performance evaluation of PSPNet and DeepLab v3+ in terms of IoU.

Index Algorithms IoU.Background IoU.Cars IoU.Facades IoU.Ground_Equipment IoU.Roof_Equipment IoU.Roofs

1 RGB-only-City-
DeepLabv3+ 0.80200 0.73955 0.79259 0.32389 0.54672 0.89874

2 RGB-only-City-
PSPNet 0.80532 0.74463 0.79551 0.31752 0.5294 0.89961

3 RGB-only-VOC-
DeepLabv3+ 0.80249 0.75421 0.79487 0.32512 0.56011 0.89900

4 RGB-only-VOC-
PSPNet 0.80674 0.75462 0.79513 0.30555 0.53918 0.89961

5 RGB-Thermal-City-
DeepLabv3+ 0.79940 0.73289 0.79512 0.33899 0.54223 0.89686

6 RGB-Thermal-City-
PSPNet 0.80279 0.74061 0.79102 0.29864 0.52828 0.89738

7 RGB-Thermal-
VOC-DeepLabv3+ 0.80260 0.73676 0.79529 0.33040 0.54663 0.89781

8 RGB-Thermal-
VOC-PSPNet 0.80201 0.74216 0.79298 0.30767 0.52699 0.89723

According to Table 3, we can analyze the performance based on the color patterns.
First, DeepLab v3+ outperforms PSPNet in many evaluation metrics, as shown in the
comparison between rows 1 and 2, rows 3 and 4, rows 5 and 6, and rows 7 and 8. Second,
as for the initial parameters provided by pretrained models, VOC outperforms Cityscape in
most cases, as shown in the comparison between rows 3–4 and 1–2, and between the rows
7–8 and 5–6. Third, fusing thermal channels does not significantly outperform datasets
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with only RGB images when evaluating all categories. Therefore, we need to respectively
evaluate the performance in terms of their categories.

Since IoU is one of the most “perfect” and commonly used performance evaluation
metrics, in Table 4, we summarize the IoU metrics in terms of categories, in which the
background represents a category where the predicted segmentation does not belong to any
of the analyzed categories. First, in Table 4, the color patterns show that adding thermal
channels generally improves the performance of segmenting roof equipment and ground
equipment. Second, PSPNet outperforms DeepLab v3+ in some categories, despite its
overall poor performance—for example, in Table 4, the comparison between rows 1 and 2
and rows 3 and 4. Third, the initial parameters provided by the pretrained model VOC
constantly outperform those of Cityscape in many cases.

4.3. Evaluation of Mask R-CNN

A difference exists between instance and semantic segmentation when evaluating
prediction results. Semantic segmentation is a pixel-wise method, which means that
each pixel in an image only has one label. For example, if a pixel is predicted for the
roof equipment, it does not belong to the roof category. On the other hand, instance
segmentation is an object-wise method, which means that each pixel can belong to multiple
categories; for example, a pixel can be classified into both the roof and roof equipment
categories. Due to the multiple predictions for one class, it is sometimes difficult to match
the prediction with the ground truth for instance segmentation. Therefore, we need to
configure an IoU threshold to check the match between the prediction and the ground
truth. The IoU calculation is introduced in (3).

In this section, Mask R-CNN, as an instance segmentation algorithm, needs different
evaluation metrics from those in Section 4.2. Table 5 presents Mask R-CNN’s performance.
First, we needed to determine which predicted bounding boxes corresponded to correct
predictions, so we used IoU (3) to measure the predicted and ground-truth bounding boxes.
For a given IoU threshold, predicted bounding boxes that have an IoU with an annotated
object class’ bounding box above the threshold are considered true positives. However,
other annotated classes that do not satisfy this requirement are considered false negatives.
As (2) shows, we calculated the precision for predicted bounding boxes and segmentations
that met the IoU threshold requirement. Table 5 shows the precision values in various
situations, such as the precision values for an individual class, an IoU threshold greater
than 0.5, an IoU threshold greater than 0.75, or an object class with small, medium, and
large areas. Areas of small, medium, and large correspond to objects of areas less than 322,
between 322 and 962, and greater than 962 pixels, respectively.

Table 5. Performance evaluation of Mask R-CNN.

Index Algorithms Precision
Value

Precision
-Cars

Precision
-Facades

Precision
-Ground_
Equipment

Precision
-Roof_

Equipment

Precision
-Roofs

Precision
@ IoU ≥

0.5

Precision
@ IoU ≥

0.75

Precision-
Large

Precision-
Medium

Precision-
Small

1 RGB_
only_VOC 30.50027 48.50009 39.40096 7.894894 18.51801 38.18739 53.82021 31.2914 25.17297 30.15385 10.09727

2 RGB_
only_City 36.40356 56.87393 39.8599 13.93462 25.40921 44.08705 61.05142 37.09566 30.71153 35.43907 18.89682

3 RGB_
Thermal_VOC 34.67095 53.46492 38.34726 13.29906 23.57708 44.66644 59.18085 35.19486 32.31295 32.6255 13.10268

4 RGB_
Thermal_City 39.69939 59.65007 38.87487 18.22493 26.52003 49.22706 63.64552 41.1819 38.88473 39.07861 17.92202

Memory per iteration 4500–4600 MB
Training time per iteration 0.5–0.6 s

Color illustrates the numbers—the higher the number, the darker the color. First, as
shown in Table 5, adding thermal information allows for improvement of segmentation
performance. Rows 3 and 4 are noticeably darker than rows 1 and 2. Second, compared to
other categories, adding thermal information does not improve the segmentation perfor-
mance on the facade category. Third, the pretrained parameters using Cityscape datasets
outperform the pretrained parameters using VOC datasets. This observation is contrary
to the semantic segmentation in Section 4.2. Finally, as for the computational complexity,
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memory and training time per iteration are both smaller in the semantic segmentation case,
as shown in Tables 3 and 4.

4.4. Discussion

To analyze the algorithms’ performance, we show five successful and failed cases
in Figures 5 and 6. In the first case, these segmentation algorithms implemented on
different datasets have good performances; however, none of these semantic segmentation
algorithms can detect the roof equipment that is indicated by the left arrow in Figure 5;
as shown in Figure 6, only Mask R-CNN using RGB-fused thermal datasets can detect
that roof equipment object. Another observation in case one is that the facade pixels
surrounded by roof pixels can barely be detected by PSPNet, as shown by the right arrow
in Figure 5; conversely, as shown in Figure 6, it is not difficult for Mask R-CNN to detect
that facade object. One mistake made by Mask R-CNN that should be pointed out is
that the algorithm incorrectly detects the road as belonging to the roof category in the
“RGB-only-VOC” column, as shown by the red arrow in Figure 6. In the second case, as
shown by the arrows in Figure 5, it is hard for the roof pixels surrounded by facade pixels
to be detected. However, adding a thermal channel slightly improves the performance,
as shown by the arrows. In Figure 6, this is not a problem for Mask R-CNN; however,
Mask R-CNN failed to detect a large area of the roof category in the “RGB-only-City”
column, as shown by the red arrow. In case three, as shown by the upper arrow, none
of the semantic segmentation algorithms can detect this roof equipment in Figure 5, but
“RGB-Thermal-City” detects this roof equipment in Figure 6. As shown by the lower arrow,
none of the semantic segmentation algorithms can detect this ground equipment—most of
them predict that area as belonging to the roof category, while PSPNet and Mask R-CNN
predict that area as belonging to the roof equipment category. The fourth case illustrates
that adding a thermal channel can help to detect and separate roof equipment. As shown in
Figure 5, “RGB-only-City-PSPNet” cannot even predict any roof equipment objects. With
the assistance of a thermal channel, “RGB-Thermal-City-PSPNet” can fully detect all roof
equipment objects. Mask R-CNN performs well in this case, but not in the “RGB-only-VOC”
column in Figure 6. The fifth case illustrates that adding a thermal channel allows for the
improvement of ground equipment segmentation. This can be observed in both semantic
and instance segmentation.

In summary, first, adding a thermal channel has a better effect on improving the
segmentation of roof and ground equipment than improving other categories in most cases.
Second, Mask R-CNN is good at differentiating small objects, such as equipment and cars,
and this may be a result of its neural network structure. As mentioned in the methodology,
Mask R-CNN first proposes ROIs, and then predicts the semantic information on them.
Large objects, such as roofs and facades, occupy a large portion of the whole image, so
Mask R-CNN may not detect salient features from these objects. In contrast, for the small
objects—such as equipment and cars—because Mask R-CNN can see their whole shapes,
it can easily detect them. For example, in the second case in Figure 6, there are four
cars in the ground truth, but Mask R-CNN can only detect three of them. On the other
hand, semantic segmentation can detect all four cars. Third, with the assistance of thermal
information, equipment segmentation performance is improved, but both semantic and
instance segmentation can still confuse roof equipment and ground equipment; since only
2D information is provided, the algorithms cannot distinguish between equipment on the
roofs and on the ground. This could be solved by implementing depth/height information
into the analysis [50].
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5. Conclusions and Future Studies

Several important conclusions can be drawn from this study. First, adding thermal
channels allows for improving the semantic and instance segmentation performance. Sec-
ond, the thermal channel performs differently for different types of classes; its performance
also differs when using different algorithms. Third, Mask R-CNN, as an instance segmenta-
tion algorithm, can individually predict small objects such as roof equipment and ground
equipment; it does not predict the same object as a whole group of pixels in a picture,
as is the case in semantic segmentation algorithms. The benefit of using the instance
segmentation algorithm is that it allows researchers to distinguish different roof and facade
objects, which further allows researchers to index individual thermal bridges and heating
losses from building envelopes more conveniently. Fourth, in terms of time and memory
complexity, both PSPNet and DeepLab v3+ outperform Mask R-CNN, since these two
semantic segmentation approaches do not need to propose ROIs, and their networks are
simpler than Mask R-CNN’s network.

There are some drawbacks to this study; for example, according to Table 2, the number
of instances of roof equipment and ground equipment is smaller than other objects in
our datasets. This imbalance might cause inaccuracy for segmenting roof equipment and
ground equipment objects. In future research, we need to balance the ratio of different
objects in the dataset. Second, despite the performance improvement by adding the thermal
features to the networks, the main limitation of using thermal information is its reliability
across different geographical locations with various climate zones, seasons, and weather
conditions. Thus, the models trained in this study may have a poor performance on the
data collected from a place with distinct weather conditions. This issue could be potentially
addressed by enlarging the training datasets, since a more extensive dataset can include
more cases to improve training performance. Although there are insufficient open-source
data shared between civil engineering projects for energy audits using thermal images,
object segmentation tasks need a large dataset to improve segmentation accuracy. Thus, we
plan to use synthetic thermal imagery data to enlarge the database. The synthetic data can
potentially be generated using our previous work on creating synthetic 3D environments
and annotated aerial photogrammetry data [20,60].

Furthermore, after reviewing current open-source datasets, we did not find helpful
outdoor scene datasets for building envelope energy audits in the field of civil engineering.
As one of the conclusions drawn, our datasets contribute to the building science field by
enabling researchers to easily distinguish roof and facade objects for energy audits. We
plan to improve our studies in these fields. First, we plan to investigate the semantic
segmentation using 3D models. As we have learned, although instance segmentation has
enabled researchers to index objects, they still cannot relate heat loss to the location of a
building. Directly segmenting objects from 3D models can provide an alternative approach.
Additionally, 3D models provide depth information, with which roof equipment and
ground equipment can be easily distinguished. Finally, as we only explored input fusion
approaches in this study, we plan to implement other fusion approaches for segmentation.
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