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Abstract

A new method is described for combining multisensory data for remote sensing applications. The

approach uses phenomenologicM models which allow the specification of discriminatory features that

are based on intrinsic physical properties of imaged surfaces. Thermal and visual images of scenes are

analyzed to estimate surface heat fluxes. Such analysis makes available a discriminatory feature that

is closely related to the thermal capacitance of the imaged objects. This feature provides a method

for labelling image regions based on physical properties of imaged objects. This approach is different

from existing approaches which use the signal intensities in each channel (or an arbitrary linear or

nonlinear combination of signal intensities) as features - which are then classified by a statistical or

evidential approach.

1 Introduction

Multispectral/multisource data acquired via remote sensing have been shown to be useful for a va-

riety of applications such as urban land-cover assessment, rain-rate classification, crop assessment,

geophysical investigation, and surveillance and monitoring for national defence activities. Various

techniques have been developed for combining the information in the different sensing modalities.
These techniques typically use statistical or evidential rules to achieve the desired classification.

The usual statistical approach consists of first forming a feature vector wherein each element

corresponds to the signal value (pixel gray level) from each sensor. This feature vector is then classified

by a statistical decision rule. Other features such as the mean intensity level in a beighborhood,

contrast, second and higher order moments, entropy measures, etc. have also been used as elements

of the feature vector, e.g. [1]. In such approaches, interpretation of the imaged scene based on the

fusion of information from the different sensors may be said to occur at the lower levels of analysis.

In some techniques, linear and/or nonlinear combinations of signal values from different sensors form

a feature, several of which are then fed to a classifier, e.g. [2]. In the latter case, interpretation may

be said to occur at higher levels of analysis, after an earlier stage of information fusion which extracts

discriminatory features. Other extensions to the standard statistical approach have been reported,

e.g., a fuzzy relaxation labelling approach for image interpretation has been reported [3] wherein a

Gaussian maximum likelihood classifier is used to provide initial probability estimates to the relaxation

process.

Different optimal classification rules have been developed for interpreting multisource data for

each of a variety of statistical models assumed for the data. The classifiers however do not address the

problem of choosing sufficiently discriminatory features from the infinite number of available features.

Such approaches therefore suffer from the disadvantage that the global optimality of the feature set

is impossible to guarantee. Also, training of such classifiers is difficult since very large training data

sets are warranted for achieving a reasonable error rate. It is also not clear what physical properties

of the imaged objects are being utilized by the classifier during the discrimination process.

Evidential approaches have also been developed for combining information from multiple sensing
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Figure 1. Combining thermal and visible data for surface heat flux estimation.

modalities, e.g. [4]- [6]. Such methods rely on a large set of heuristics rules which examine local

contrast measures for each sensor and compare outputs from different sensors to provide varying

degrees of support (certainty values) for a hypothesized class. A non-probabilistic framework is used for

updating these uncertainties to reach a final classification. Interpretation in such systems is attempted

at multiple levels of analysis. The rules, however, are based on manifestations of the differences in

the intrinsic physical properties of objects rather than on direct measures of the physical properties

themselves. Such approaches therefore do not fully exploit the synergy available in multisensor data

fusion.

Due to these reasons, it is desirable to first combine information from the different sensors based

on a physical model of the scene with the objective of evaluating intrinsic physical properties of the

imaged objects. Such an analysis allows for specification of physically meaningful and discriminatory

features which may then be used for scene interpretation by a probabilistic or evidential classifier at

higher levels of analysis.

This paper discusses the development and use of phenomenological scene-sensor models for the

fusion of information from infrared (IR) and visible data. A computational model is established in

which principles of heat transfer are used along with computer vision techniques to derive a map of heat
sinks and sources in the scene. The approach uses infrared imagery sensed in the 8#m - 12#m band,

monochrome visual imagery, and knowledge of ambient conditions at the imaged surface to estimate
surface heat fluxes in the scene. A feature which quantifies the surface's ability to sink/source heat

radiation is derived and is shown to be useful in discriminating between different types of material

classes such as vegetation and pavement.

It is assumed that the thermal image is segmented into closed regions by a suitable segmentation

algorithm (e.g., [7]) and that the thermal and visual images are registered. The thermal image is

processed to yield estimates of object surface temperature. This process requires the formulation of

an appropriate model which relates scene radiosity to surface temperature, and received irradiation at

the thermal camera to scene radiosity. Several object and scene parameters such as surface reflectivity,
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emissivity,reflectedsceneradiosityareincorporatedin themodel.The visualimage,whichisspatially
registeredwith thethermalimage,yieldsinformationregardingtherelativesurfaceorientationof the
imagedobject.The Lambertianreflectancemodelis usedalongwith theshape-from-shadingprinciple
for this purpose.Theaboveinformationalongwith informationregardingambienttemperature,wind
speed,and the date and time of imageacquisitionis usedin a computationalmodel that allows
estimationof surfaceheatfluxesin the scene.The estimatedsurfaceheatfluxesareusedto evaluate
a feature that is closelyrelatedto the lumped thermal capacitanceof the object. This featureis
shownto bea meaningfulanddiscriminatoryfeaturefor sceneinterpretation.A blockdiagramof the
approachis shownin figure 1.

Multisensoryimages,andin particular - thermaland visual images,havebeenusedin the past
for evaluatinga roughestimateof thermalinertia for variousremotesensingapplications[8] - [10].
The previouslydevelopedmethodsuseverysimplemodelsof the sceneand of the energyexchange
phenomenaocurringat theimagedscene.In contrastto thesepastapproaches,thetechniquedeveloped
in this paperis basedon anexplicit andmoredetailedphysicalmodelof theenergyexchangein the
sceneandprovidesmoremeaningfulanddiscriminatoryfeaturesfor classification.

Theremainderof this paperis organizedasfollows.Section2 describesanapproachfor extracting
accuratesurfacetemperatureestimatesfrom infraredimagery.Section3 discussesthe computation
of relativesurfaceorientationfrom visual imagery.Section4 describesthe estimationof surfaceheat
fluxesat the imagedscene. Section5 discussestwo differentwaysof using the surfaceheat flux
estimatesfor sceneinterpretation.Section6 presentsexperimentalresultsusingrealdata,andsection
7containsa summaryof the ideaspresentedin this paper.

2 Estimating Temperature from Thermal Images

A quantitative model has been derived for estimating the surface temperature of a viewed object using

the thermal image. Details of the derivation may be found in reference [11]. The salient points of this

model are presented below. The model is based on observations that are unique to the situation where

outdoor scenes are illuminated by solar radiation. The derivation of the model rests on the following

observations and results:

1. Most surfaces found in outdoor scenes may be considered to be diffuse emitters in the 8#m- 12#m

band. Furthermore, they possess high emissivities in this band - in the range of 0.82 to 0.96.

Hence, a constant value of 0.9 may be assumed for the IR emissivity of all imaged surfaces in

outdoor scenes.

2. The radiosity of an object's suface in a natural scene comprises surface emission, reflected solar

radiation, and reflection of radiation that emanates from other surfaces. These components
contribute to the total irradiation at the IR detector. Only 0.1% of the total solar energy lies in

the 8#m - 12#m band. Furthermore, the surface reflectivities to IR radiation are very low. On

the other hand, a large percentage of emission from scene objects lies in the 8#m - 12#m band

since their surface temperatures lie typically between 250K and 350K. Since IR emissivities are

also high the scene irradiation at the IR detector is dominated by emission from the surface of

the imaged object. The components due to reflected solar radiation and reflected emissions from

other objects may be safely ignored.

3. The view factor Foc between the camera and imaged surface depends on the viewing geometry

and typically involves the evaluation of complex integrals [12]. A reasonable approximation to
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Figure 2. View factor between camera and imaged surface. A¢ is the circular viewing surface of the

detector, wc is the solid angle subtended by the detector, Ao is projection of Ac onto the imaged

surface, d is the distance between the camera and the imaged surface, and 8c is the angle between the

surface normal and the viewing direction.

Foc is arrived at by making the following observations. Since the solid angle subtended by the

detector wc is usually very small (on the order of 2 mrad) we can approximate the projection of

the detector's viewing surface onto the imaged surface to be a planar circular patch, denoted by

Ao in figure 2.

The approximations indicated above allow for the derivation of a simple model that relates the

surface temperature of the imaged object to the digitized value of the IR sensor's signal due to

irradiation at the sensor [11]. The resulting model is expressed as:

_x2 C1 _ 1)dA = K,,Lt + Kb0.9 , Ab(exv(C  ,T) (I)

where, C1 and C2 are constants in Planck's equation and have values: C1 = 3.742 x l0 s W#m/m 2

and C2 = 1.439 x 104 #inK. T is the surface temperature of the imaged object, ,k is the wavelength

of energy, A1 = 8#m and A2 = 12#m. Lt is the pixel gray level value of the digitized thermal image.

Ka and Kb are constants for a particular imaging setup and are obtained by appropriate camera
calibration as described below.

The model established above provides a simple algorithm for surface temperature estimation. At

the outset a table of values of F(T_) = 0.9 f_/ c_As(e:cv(C2/ATO_I)d)_ is created for different values of Ti
via numerical integration of this expression. A scene containing two objects at two different known

temperatures is imaged. The corresponding gray level values are used in equation (1) to solve for the

constants Ka and Kb. Thereafter, the temperature of other surfaces in other scenes can be determined

by first evaluating the right-hand side of equation (1) using the corresponding gray level. Then the

table of values of F(Ti) created above is looked up for a matching value. The value of the associated

index Ti now provides the surface temperature estimate.
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In general, an exact match will not be found and a linear interpolation is performed as follows to

acquire a reasonably accurate estimate of the surface temperature. Consider a particular gray level

value Lt in the thermal image which corresponds to a surface temperature of Ts. Let the right-hand

side of equation (1) evaluate to G, i.e., G = KaLt ÷ Kb. On searching for a match in the table of

values of F(T_) assume that G is found to lie between adjacent entries F(Tm) and F(Tn) such that

F(T,n) < G < F(T,). The desired value of surface temperature is then computed as:

-T_
T, =Tm + F (TT--__) -F-(Tm ) ( C - F (Tm ) ) (2)

In deriving the above approach for temperature estimation, the effect of atmospheric attenuation

has been ignored. This is justifiable for the following imaging situations:

1. The surfaces whose temperatures are to be estimated appear in the same scene that was used

for calibration.

2. The distance between the calibration surfaces and the thermal camera is the same as the distance

between the surfaces whose temperatures are to be estimated and the camera.

3. The distance between imaged surfaces and the thermal camera is on the order of only a few

hundred meters [13].

If neither of the above conditions apply, appropriate models need to be applied to account for atmo-

spheric attenuation loss [13]- [15].

3 Inferring Surface Reflectivity and Relative Orientation

In order to estimate heat fluxes it is necessary to estimate not only surface temperature as described
above but also surface reflectance to visible radiation and also surface orientation relative to the

incident (solar) radiation. The visual image of the scene provides clues to both these quantities.

In the following discussion it is assumed that the infrared and visual images of a scene are spatially

registered, and that the images are segmented a priori into regions by a method such as that described

in [7].

The use of shading information to recover the shape of an object has been addressed by several

researchers, e.g. [16]-[20]. These techniques, however, can be applied only if certain conditions are
satisfied. The bi-directional reflectance distribution function of the surface must be known a priori.

Image resolution must be high enough to allow the rendition of several surface patches near the occlud-

ing boundary, or there need to exist background patches of known surface orientation surrounding the

region of unknown surface orientation. These conditions are difficult to satisfy when imaging objects

in a natural scene. We also note that while the aforesaid efforts attempt the problem of determining

the (x, y, z) direction cosines of the surface normals of the imaged surface, our problem is a much

simpler one, i.e., to arrive at an accurate estimate of cosOi, where 0i is the angle between the surface
normal and the direction of incident radiation. A simpler method may be used for this purpose as

described below.

Real surfaces in outdoor scenes exhibit a combination of diffuse and specular reflectivities. The

diffuse component has been found to dominate in commonly occurring surfaces [21]. Hence, it is

reasonable to assume that the imaged surfaces are Lambertian reflectors. If Lv represents the gray
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level of a pixel in the visual image, the relative surface orientation of the surface patch corresponding

to that pixel is related to the brightness value by:

Lv = Kp cosOi + C_ (3)

where, Kp = p Kv, p is the surface reflectance, Kv, C_ are constants of the visual imaging system
and are determined via calibration. The calibration process simply consists of imaging two different

surfaces at known orientations to solar radiation and of known reflectivities, whence the constants K,

and C_ are easily computed.

It is possible to obtain via stereoscopic image analysis, laser radar imagery, or from registered digital

terrain data, the orientation of one elemental surface patch in the entire surface that is represented by

a given image region. This orientation is best acquired for the elemental area that provides a refiable

estimate, e.g., one that lies within a large planar patch. The region reflectivity p is then computed

using equation (3). Knowing p, the value of cosOi is easily computed at each pixel in that region using

equation (3). The surface is assumed to be opaque, hence, the absorptivity is computed as (_s = 1 - p.

The above procedure is applied to each region in the image to provide estimates of p and cosOi at each

pixel in the entire image.

The assumption that viewed surfaces are opaque and are Lambertian is sometimes violated by the

presence of transparent objects (e.g. glass windows, lakes), or regions of specular reflection (e.g. a

polished surface). It is assumed that such regions in the imagery are detected by means other than

that presented in this paper.

4 Estimating Surface Heat Fluxes

In this section, the various heat fluxes at the surface of the object are identified and the relationship

between them is specified. A method for estimating these heat fluxes is then presented. This method

uses values of surface temperature deduced from the thermal image, and surface reflectivity and relative

orientation deduced from the visual image. Section 5 describes methods for interpreting imaged scenes

using these heat flux estimates.

Consider an elemental area on the surface of the imaged object. Assuming one-dimensional heat

flow, the heat exchange at the surface of the object is represented by figure 3. Wi is the incident

solar radiation, 01 is the angle between the direction of irradiation and the surface normal, the surface

temperature is To, and Wabs is that portion of the irradiation that is absorbed by the surface. We,

denotes the heat convected from the surface to the air which has temperature Tamb and velocity

V, Wrad is the heat lost by the surface to the environment via radiation and Wcd denotes the
heat conducted from the surface into the interior of the object. Irradiation at the object surface also

includes that emanating from other scene components. As discussed in section 2, the magnitude of

this absorbed irradiation is small when compared to total solar irradiation absorbed in visible and IR

bands. The contribution of the former may therefore be ignored.

At any given instant, applying the law of conservation of energy to the heat fluxes flowing into the

surface of the object and those flowing out from the surface, we have,

wob. = wed + we. + w od (4)

where, W_ad = 0.9 a (T_ - T_,_b),

Waba = Wi cosOi OLs, (5)
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Figure 3. Exchange of heat fluxes at the surface of the imaged object.

a denotes the Stefan-Boltzman constant, and as denotes the solar absorptivity of the surface. The

convected heat transfer is given by

Wcv = h(Ts - T_,nb) (6)

where, h is the average convected heat transfer coefficient, and depends on the properties of the

surrounding air (e.g. velocity, viscosity, temperature, etc.), and on the geometry and the nature of the

object's surface. We note that W_d is immediately available when T_mb is known since Ts is deduced

from the thermal image as discussed in section 2.

In order to estimate the heat flux absorbed by the surface, it is first neccesary to determine the

magnitude of the incident radiation on a horizontal surface and then compensate for the orientation

and the reflectivity of the imaged surface. One approach is to directly measure the incident solar

radiation using a pyrheliometer. Alternately, as was done in the experiments described later, an

appropriate analytical model may be used to estimate this quantity. The variation (with day of the

year and time of day) of the intensity of solar radiation incident on a horizontal surface on the ground

has been modelled by Thepchatri, et al. [22] based on the data presented by Strock and Koral [23].

The empirical model accounts for diurnal and seasonal variations. This model is used for specifying

Wi. Thus, knowing cosSi and as as described in section 3, W_bs may be computed using from equation

(5).

The convective heat flux is obtained by using equation (6). The temperature for the object's surface

is obtained from the thermal image as described in the previous section. The ambient temperature

Tamb is known. The problem therefore lies in estimating the average convected heat transfer coefficient

h. A plethora of empirical correlations have been established for computing h for various thermal and

hydrodynamic conditions [24]. The simplifying assumption that the portion of the surface being viewed

is flat allows the use of convecion correlations developed for external flow over flat plates [24]. The

procedure for estimating the convected heat flux is as follows: knowing the wind velocity and the

air temperature, the Reynolds number is computed, where the characteristic length of the object is
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Figure 4. Equivalent thermal circuit of imaged surface.

assumed to be 1 meter. The value of the Reynolds number determines whether laminar or mixed

flow conditions exist. Accordingly, the appropriate correlation is used. The Nusselt number is thus
obtained and thence the convected heat transfer coefficient h. Equation (6) is now used to provide

the estimate of convected heat flux.

Having estimated the convected heat flux, the radiated heat flux, and the absorbed irradiation as

described above, the conduction heat flux is then deduced using equation (4).

5 Scene Interpretation

The estimated surface heat fluxes may be used to derive physically meaningful interpretations of the

scene. Two different methods are discussed. The first approach assumes that only a single data set

of the scene is available, and it consists of the thermal image, the visual image, and values of scene

parameters obtained at a particular instant of time. The second method assumes that a sequence of
data sets obtained at different time instants is available. The first approach is more suitable for scenes,

the contents of which change frequently, e.g., one that contains automobiles. The second approach is

suitable for scenes containing objects that are stationary over the sequence of data sets, e.g., scenes

containing only vegetation, buildings and pavements.

5.1 Analysis of a Single Multisensory Data Set

The estimated surface heat fluxes may be used to evaluate how well an object can act as a heat

source/sink. Thus a highly discriminatory feature may be extracted which is closely related to an

intrinsic physical property of the imaged object. Considering a unit area on the surface of the imaged

object, the equivalent thermal circuit for the surface is shown in figure 4. CT is the lumped thermal
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Object Thermal Capacitance

( x 10-8 Joules/Kelvin)

Asphalt Pavement 1.95

Concrete Wall 2.03

Brick Wall 1.51

Wood(Oak) Wall 1.91
Granite 2.25

Automobile 0.18

Table 1: Normalized values of lumped thermal capacitance.

capacitance of the object and is given by

CT = DVc

where, D is the density of the object, V is the volume, and c is the specific heat. The resistances are

given by:
1 1

Re. = _ and R_,,d = 0.9a(T_ + T_,,,b)(T_ + T_,mb)

From figure 4 it is clear that the conduction heat flux Wcd estimated in the previous section depends

on the lumped thermal capacitance CT of the object. A relatively high value for CT implies that

the object is able to sink or source relatively large amounts of heat. An estimate of Wed, therefore,

provides us with a relative estimate of the thermal capacitance of the object, albeit a very approximate

one. Table 1 lists values of CT of typical objects imaged in outdoor scenes. The values have been

normalized for unit volume of the object.

Note that the thermal capacitance for walls and pavements is significantly greater than that for

automobiles and hence Wcd may be expected to be higher for the former regions. Plants absorb a

significant percentage of the incident solar radiation. The energy absorbed is used for photosynthesis

and also for transpiration. Only a small amount of the absorbed radiation is convected into the air.

Therefore, the estimate of the W_d will be almost as large (typically 95%) as that of the absorbed heat

flux. Thus, Wed is useful in estimating the object's ability to sink/source heat radiation, a feature

shown to be useful in discriminating between different classes of objects. However, in order to minimize

the feature's dependence on differences in absorbed heat flux, a normalized feature was defined to be

the ratio

R = W,d/Wob,

Although the heat flux ratio, R = W_d/Wabs, does capture a great deal of information about the

imaged object, it is not discriminatory enough to unambiguously delineate the identity of the imaged

object. Other sources of information are therefore warranted. Hence, information such as the surface

reflectivity, p, of the region which is derived from the visual image, and average region temperature

which is derived from the thermal image are also used to facilitate region labeling. Section 6 presents

experimental results of using this approach on real multisensory data.

5.2 Analysing Temporal Sequence of Multisensor Data

If a temporal sequence of multisensor data consisting of thermal imagery, visual imagery and scene

conditions is available, then it is possible to extract a more reliable estimate of the imaged object's
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relative ability to sink/source heat radiation.

heat flux Wed and the thermal capacitance CT of the object is given by:

Observe that the relationship between the conducted

A finite (backward) difference approximation to this equation may be used for estimating CT as

CT -- Wed (t2 - tl) (7)
(T,(t2) - T,(tl))

where, tl and t2 are the time instants at which the data were acquired, Ts(tl) and Ts(t2) are the cor-

responding surface temperatures, and W_d is the conducted heat flux which is assumed to be constant

during the time interval. However, Wed does vary and an average value of (Wcd(tl) + Wed(t2))�2 is

used in equation (7).

Section 6 presents experimental results obtained by applying the above temporal analysis method

to multisensory data.

6 Experimental Results

The methods described in the previous sections were apphed to real multisensory data acquired from

outdoor scenes. Calibrated remote sensing data were not available along with values of ambient scene

parameters such as wind speed and temperature. Hence, thermal and visual imagery were acquired

from a ground based imaging setup consisting of an Inframetrics infrared imaging system and a video

imaging system. An anemometer was used to measure wind speed and a digital thermometer was used

to calibrate the thermal imaging system so as to allow absolute temperature estimates as discussed

in section 2. The two methods discussed in the previous section were applied to several sets of data

which were acquired at different times of the day and during different seasons of the year.

The results obtained using one data set are presented in figures 5 through 8. Figure 5 shows the

visual image of a scene containing an automobile, buildings, asphalt pavement and vegetation. Figure

6 shows the thermal image of the same scene. The techniques described in the preceeding sections

of this paper were used to estimate the surface heat fluxes, whence the ratio R = W_d/W_bs was

computed at each pixel. A histogram of these values was computed for each region and the mode of

the histogram was found. This value was chosen as the representative value of R for the region. Figure

7 shows the values obtained for each region. As predicted by the discussion in section 5, automobiles

produce the lowest value of this feature, pavements and buildings produce intermediate values and

vegetation produces the highest values.

In addition to the feature R, the average region temperature, and the surface reflectivity were also

used in a decision tree classifier to label regions as building, pavement, vegetation or automobile. The
classifier used heuristic rules of the form:

IF { R e [0.2,0.9] AND p e [0.35,1.0] } OR { R e [-.8,-.3] } THEN label = bldng

The resultant classification is shown in figure 8.

The method of temporal analysis of the scenes was tested on data acquired at intervals of three

hours. Table 2 presents the mean and standard deviation of the value of CT estimated for different

classes of scene objects. The estimated values compare very favorably with those listed in table 1.

Except for the concrete and brick walls, the estimated values for each class are of the same order of
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Object Average CT Std. Devn.

(xl0 -_ J/K) (xl0 -6J/K)

Automobile 0.08 0.08

Concrete Wall 0.22 0.37

Brick Wall 0.37 0.38

Asphalt Pavement 1.05 0.46

Vegetation 1.5 2.7

Table 2: Values of lumped thermal capacitance estimated using the method described in section 5.2.

magnitude as listed in table 1, and are ordered in a similar manner. The walls do not compare favorably

possibly due to the wide variation in wall thickness that is difficult to account for and also due to the
unknown thermal conditions on the interior surface of the walls. In general, a significant offset may

be expected in the estimated values due to the many approximations used in the computation of the

heat flux estimates. Inspite of this limitation, it is obvious that the approach described above makes

available a very useful and meaningful method for the interpretation of multisensory data. Note also

that the value of CT is a deterministic value which is completely defined by a physical definition for a

particular class of objects. Hence, a deterministic measure of the technique's performance is available

by comparing the estimated and true values of CT. Such a measure is not available in purely statistical

interpretation techniques. This is one of the major advantages of a phenomenological approach to scene

interpretation when compared to the purely statistical approach.

7 Conclusions

A new method has been described for interpreting scenes using multisensory data. The phenomenologi-

cat approach combines information from the different imaging modalities to derive meaningful features.

The approach is based on physical models of the energy exchange between the imaged surface and

the environment. The thermal and visual images yield estimates of surface heat fluxes which in turn

provide a measure of the relative ability of the imaged surface to source/sink heat energy. The inter-

pretation thus relies on a rough estimate of the lumped thermal capacitance of the object which has

been shown to vary widely for different classes of objects in outdoor scenes. The developed approach

was tested on real multisensory data. Due to the unavailability of a calibrated remote sensing data

and accompanying values of ambient scene conditions, the testing was performed using terrain based

imaging equipment. The approach described above may be easily applied to multisensory imagery

acquired by airborne or satellite-based sensors.
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