59 research outputs found

    Performance of Deep Learning in Land Use Land Cover Classification of Indian Remote Sensing (IRS) LISS – III Multispectral Data

    Get PDF
    Identification of land use land cover is a very important task. However, methods existing for the above mention purpose are labor incentives, time-consuming, and costly. Remote sensing plays very important role in the mappings. classification of land cover features and offers very noteworthy and sensed information. The present study shows the semantic segmentation of Indian remote sensing (IRS) LISS-III multispectral image and the comparison of three algorithms U-Net, Deeplabv3+and Tiramisu. The deep neural network was used to perform the study. We present total 3 innovative datasets, built on these LISS-III images that has 4 different spectral bands (Band – 2 (Blue), Band-3 (Green), Band-4(Red), and Band-5 (Nearly Infrared), FCC (false color composite) images and the ground truth mask images. Dataset has 13500 labelled images. A fully-convolutional network (FCN) with skip connections is trained to take an input image of size 128 X 128 X 3 and outputs a matrix of shape 128 X 128 X 4 i.e., a one-hot encoded version of the mask. The experiment identifies 4 classes successfully (Water Bodies, Vegetation, Uncultivated Land, and Residential areas). The experiment showed that the U-Net algorithm has a very good capability for the classification of LISS -III images for land use land cover class detection then Tiramisu and Deeplabv3+. U-Net achieved accuracy 84%, Deelabv3+ achieved 29% whereas Tiramisu achieved accuracy 33%

    Probabilistic segmentation of remotely sensed images

    Get PDF
    For information extraction from image data to create or update geographic information systems, objects are identified and labeled using an integration of segmentation and classification. This yields geometric and thematic information, respectively.Bayesian image classifiers calculate class posterior probabilities on the basis of estimated class probability densities and prior probabilities. This thesis presents refined probability estimates, which are local, i.e pertain to image regions, rather than to the entire image. Local class probability densities are estimated in a non-parametric way with an extended k-Nearest Neighbor method. Iterative estimation of class mixing proportions in arbitrary image regions yields local prior probabilities.The improved estimates of prior probabilities and probability densities increase the reliability of posterior probabilities and enhance subsequent decision making, such as maximum posterior probability class selection. Moreover, class areas are estimated more accurately, compared to standard Maximum Likelihood classification.Two sources of image regionalization are distinguished. Ancillary data in geographic information systems often divide the image area into regions with different class mixing proportions, in which probabilities are estimated. Otherwise, a regionalization can be obtained by image segmentation. A region based method is presented, being a generalization of connected component labeling in the quadtree domain. It recursively merges leaves in a quadtree representation of a multi-spectral image into segments with arbitrary shapes and sizes. Order dependency is avoided by applying the procedure iteratively with slowly relaxing homogeneity criteria.Region fragmentation and region merging, caused by spectral variation within objects and spectral similarity between adjacent objects, are avoided by regarding class homogeneity in addition to spectral homogeneity. As expected, most terrain objects correspond to image segments. These, however, reside at different levels in a segmentation pyramid. Therefore, class mixing proportions are estimated in all segments of such a pyramid to distinguish between pure and mixed ones. Pure segments are selected at the highest possible level, which may vary over the image. They form a non-overlapping set of labeled objects without fragmentation or merging. In image areas where classes cannot be separated, because of spatial or spectral resolution limitations, mixed segments are selected from the pyramid. They form uncertain objects, to which a mixture of classes with known proportion is assigned.Subsequently, remotely sensed data are used for taking decisions in geographical information systems. These decisions are usually based on crisp classifications and, therefore, influenced by classification errors and uncertainties. Moreover, when processing spatial data for decision making, the objectives and preferences of the decision maker are crucial to deal with. This thesis proposes to exploit mathematical decision analysis for integrating uncertainties and preferences, on the basis of carefully estimated probabilistic class information. It aims to solve complex decision problems on the basis of remotely sensed data.</p

    Automatic near real-time flood detection in high resolution X-band synthetic aperture radar satellite data using context-based classification on irregular graphs

    Get PDF
    This thesis is an outcome of the project “Flood and damage assessment using very high resolution SAR data” (SAR-HQ), which is embedded in the interdisciplinary oriented RIMAX (Risk Management of Extreme Flood Events) programme, funded by the Federal Ministry of Education and Research (BMBF). It comprises the results of three scientific papers on automatic near real-time flood detection in high resolution X-band synthetic aperture radar (SAR) satellite data for operational rapid mapping activities in terms of disaster and crisis-management support. Flood situations seem to become more frequent and destructive in many regions of the world. A rising awareness of the availability of satellite based cartographic information has led to an increase in requests to corresponding mapping services to support civil-protection and relief organizations with disaster-related mapping and analysis activities. Due to the rising number of satellite systems with high revisit frequencies, a strengthened pool of SAR data is available during operational flood mapping activities. This offers the possibility to observe the whole extent of even large-scale flood events and their spatio-temporal evolution, but also calls for computationally efficient and automatic flood detection methods, which should drastically reduce the user input required by an active image interpreter. This thesis provides solutions for the near real-time derivation of detailed flood parameters such as flood extent, flood-related backscatter changes as well as flood classification probabilities from the new generation of high resolution X-band SAR satellite imagery in a completely unsupervised way. These data are, in comparison to images from conventional medium-resolution SAR sensors, characterized by an increased intra-class and decreased inter-class variability due to the reduced mixed pixel phenomenon. This problem is addressed by utilizing multi-contextual models on irregular hierarchical graphs, which consider that semantic image information is less represented in single pixels but in homogeneous image objects and their mutual relation. A hybrid Markov random field (MRF) model is developed, which integrates scale-dependent as well as spatio-temporal contextual information into the classification process by combining hierarchical causal Markov image modeling on automatically generated irregular hierarchical graphs with noncausal Markov modeling related to planar MRFs. This model is initialized in an unsupervised manner by an automatic tile-based thresholding approach, which solves the flood detection problem in large-size SAR data with small a priori class probabilities by statistical parameterization of local bi-modal class-conditional density functions in a time efficient manner. Experiments performed on TerraSAR-X StripMap data of Southwest England and ScanSAR data of north-eastern Namibia during large-scale flooding show the effectiveness of the proposed methods in terms of classification accuracy, computational performance, and transferability. It is further demonstrated that hierarchical causal Markov models such as hierarchical maximum a posteriori (HMAP) and hierarchical marginal posterior mode (HMPM) estimation can be effectively used for modeling the inter-spatial context of X-band SAR data in terms of flood and change detection purposes. Although the HMPM estimator is computationally more demanding than the HMAP estimator, it is found to be more suitable in terms of classification accuracy. Further, it offers the possibility to compute marginal posterior entropy-based confidence maps, which are used for the generation of flood possibility maps that express that the uncertainty in labeling of each image element. The supplementary integration of intra-spatial and, optionally, temporal contextual information into the Markov model results in a reduction of classification errors. It is observed that the application of the hybrid multi-contextual Markov model on irregular graphs is able to enhance classification results in comparison to modeling on regular structures of quadtrees, which is the hierarchical representation of images usually used in MRF-based image analysis. X-band SAR systems are generally not suited for detecting flooding under dense vegetation canopies such as forests due to the low capability of the X-band signal to penetrate into media. Within this thesis a method is proposed for the automatic derivation of flood areas beneath shrubs and grasses from TerraSAR-X data. Furthermore, an approach is developed, which combines high resolution topographic information with multi-scale image segmentation to enhance the mapping accuracy in areas consisting of flooded vegetation and anthropogenic objects as well as to remove non-water look-alike areas

    Methods for Real-time Visualization and Interaction with Landforms

    Get PDF
    This thesis presents methods to enrich data modeling and analysis in the geoscience domain with a particular focus on geomorphological applications. First, a short overview of the relevant characteristics of the used remote sensing data and basics of its processing and visualization are provided. Then, two new methods for the visualization of vector-based maps on digital elevation models (DEMs) are presented. The first method uses a texture-based approach that generates a texture from the input maps at runtime taking into account the current viewpoint. In contrast to that, the second method utilizes the stencil buffer to create a mask in image space that is then used to render the map on top of the DEM. A particular challenge in this context is posed by the view-dependent level-of-detail representation of the terrain geometry. After suitable visualization methods for vector-based maps have been investigated, two landform mapping tools for the interactive generation of such maps are presented. The user can carry out the mapping directly on the textured digital elevation model and thus benefit from the 3D visualization of the relief. Additionally, semi-automatic image segmentation techniques are applied in order to reduce the amount of user interaction required and thus make the mapping process more efficient and convenient. The challenge in the adaption of the methods lies in the transfer of the algorithms to the quadtree representation of the data and in the application of out-of-core and hierarchical methods to ensure interactive performance. Although high-resolution remote sensing data are often available today, their effective resolution at steep slopes is rather low due to the oblique acquisition angle. For this reason, remote sensing data are suitable to only a limited extent for visualization as well as landform mapping purposes. To provide an easy way to supply additional imagery, an algorithm for registering uncalibrated photos to a textured digital elevation model is presented. A particular challenge in registering the images is posed by large variations in the photos concerning resolution, lighting conditions, seasonal changes, etc. The registered photos can be used to increase the visual quality of the textured DEM, in particular at steep slopes. To this end, a method is presented that combines several georegistered photos to textures for the DEM. The difficulty in this compositing process is to create a consistent appearance and avoid visible seams between the photos. In addition to that, the photos also provide valuable means to improve landform mapping. To this end, an extension of the landform mapping methods is presented that allows the utilization of the registered photos during mapping. This way, a detailed and exact mapping becomes feasible even at steep slopes

    Detection of Texture Objects on Multichannel Images

    Get PDF
    A method for detecting extended texture objects on multi-channel images is proposed. The method is based on the representation of multi-digit digital images by a set of bit images and their approximation by three-dimensional Markov chains with two states. It is proposed to use transition probabilities for three-dimensional Markov chains and brightness characteristics averaged within a sliding window as textural features. To reduce computational resources, determination of signs is carried out by the bit planes of the senior, most informative digits of the digital image. The detection of texture objects is based on the analysis of the histogram of the texture feature and the brightness of the pixels. The simulation results confirm the effectiveness of the proposed method

    Coastal benthic habitat mapping and monitoring by integrating aerial and water surface low-cost drones

    Get PDF
    Accurate data on community structure is a priority issue in studying coastal habitats facing human pressures. The recent development of remote sensing tools has offered a ground-breaking way to collect ecological information at a very fine scale, especially using low-cost aerial photogrammetry. Although coastal mapping is carried out using Unmanned Aerial Vehicles (UAVs or drones), they can provide limited information regarding underwater benthic habitats. To achieve a precise characterisation of underwater habitat types and species assemblages, new imagery acquisition instruments become necessary to support accurate mapping programmes. Therefore, this study aims to evaluate an integrated approach based on Structure from Motion (SfM) photogrammetric acquisition using low-cost Unmanned Aerial (UAV) and Surface (USV) Vehicles to finely map shallow benthic communities, which determine the high complexity of coastal environments. The photogrammetric outputs, including both UAV-based high (sub-meter) and USV-based ultra-high (sub-centimetre) raster products such as orthophoto mosaics and Digital Surface Models (DSMs), were classified using Object-Based Image Analysis (OBIA) approach. The application of a supervised learning method based on Support Vector Machines (SVM) classification resulted in good overall classification accuracies &gt; 70%, proving to be a practical and feasible tool for analysing both aerial and underwater ultra-high spatial resolution imagery. The detected seabed cover classes included above and below-water key coastal features of ecological interest such as seagrass beds, “banquettes” deposits and hard bottoms. Using USV-based imagery can considerably improve the identification of specific organisms with a critical role in benthic communities, such as photophilous macroalgal beds. We conclude that the integrated use of low-cost unmanned aerial and surface vehicles and GIS processing is an effective strategy for allowing fully remote detailed data on shallow water benthic communities

    New Techniques in Scene Understanding and Parallel Image Processing.

    Get PDF
    There has been tremendous research interest in the areas of computer and robotic vision. Scene understanding and parallel image processing are important paradigms in computer vision. New techniques are presented to solve some of the problems in these paradigms. Automatic interpretation of features in a natural scene is the focus of the first part of the dissertation. The proposed interpretation technique consists of a context dependent feature labeling algorithm using non linear probabilistic relaxation, and an expert system. Traditionally, the output of the labeling is analyzed, and then recognized by a high level interpreter. In this new approach, the knowledge about the scene is utilized to resolve the inconsistencies introduced by the labeling algorithm. A feature labeling system based on this hybrid technique is designed and developed. The labeling system plays a vital role in the development of an automatic image interpretation system for oceanographic satellite images. An extensive study on the existing interpretation techniques has been made in the related areas such as remote sensing, medical diagnosis, astronomy, and oceanography and has shown that our hybrid approach is unique and powerful. The second part of the dissertation presents the results in the area of parallel image processing. A new approach for parallelizing vision tasks in the low and intermediate levels is introduced. The technique utilizes schemes to embed the inherent data or computational structure, used to solve the problem, into parallel architectures such as hypercubes. The important characteristic of the technique is that the adjacent pixels in the image are mapped to nodes that are at a constant distance in the hypercube. Using the technique, parallel algorithms for neighbor-finding and digital distances are developed. A parallel hypercube sorting algorithm is obtained as an illustration of the technique. The research in developing these embedding algorithms has paved the way for efficient reconfiguration algorithms for hypercube architectures

    Detección de baches en vías urbanas a partir de imágenes de alta resolución espacial, mediante técnicas de GEOBIA

    Get PDF
    Nowadays, quality and road maintenance are necessary and indispensable elements for the well-functioning of traffic in cities. The constant monitoring and its quick repair are important in order to avoid collapses and, in this way, reduce the time in the journeys of citizens. Currently, the geospatial technologies have emerged as new alternatives to solve different types of problems. The high-resolution images captured from unmanned aerial vehicles (UAV) represent an alternative to solve current problems. The present study shows the implementation of geospatial technologies for mapping existing holes or potholes in the roads, seeking to delimit the object of study from geographical objects analysis techniques (GEOBIA) and fuzzy logic functions, it allows to identify characteristics that are difficult to detect or that had not been considered before. The information captured was evaluated and the process rigorously obtaining a project execution at a low cost. The investigation was carried out with very high-resolution images at 2.6 centimetres of spatial resolution, which allowed to map the existing potholes within the study area automatically, decreasing the detection and verification times of the roadway that runs a worker specialized in field, these yields of the process are possible considering the quality of the captured images. &nbsp;En la actualidad, la calidad y el mantenimiento vial son aspectos necesarios e indispensables para el adecuado funcionamiento del tránsito en las urbes contemporáneas. Su constante monitoreo y rápida reparación hacen que se eviten colapsos y de esta manera disminuir tiempos en los trayectos de los ciudadanos, actualmente las tecnologías geoespaciales han surgido como nuevas alternativas para la solución de distintos tipos de problemáticas. Las imágenes de alta resolución capturadas a partir de vehículos aéreos no tripulados (UAV) representan una alternativa para resolver problemas cotidianos. El presente estudio muestra la implementación de las tecnologías geoespaciales para el mapeo de huecos o baches existentes en las vías, con lo que se busca delimitar el objeto de estudio a partir de técnicas de análisis de objetos geográficos (GEOBIA) y funciones de lógica difusa; así será posible identificar características de difícil detección o que no se habían tenido en cuenta antes. La información capturada se evaluó y proceso rigurosamente obteniendo una ejecución de proyecto a bajo costo. La investigación se realizó con imágenes de muy alta resolución a 2,6 centímetros de resolución espacial, lo que permitió mapear los baches existentes dentro de la zona de estudio de manera automática, disminuyendo los tiempos de detección y verificación de la calzada vial que ejecuta un trabajador especializado en campo. Estos rendimientos del proceso son posibles si se tiene en cuenta la calidad de las imágenes capturadas

    Book of short Abstracts of the 11th International Symposium on Digital Earth

    Get PDF
    The Booklet is a collection of accepted short abstracts of the ISDE11 Symposium

    Urban scene description for a multi scale classication of high resolution imagery case of Cape Town urban Scene

    Get PDF
    Includes abstract.Includes bibliographical references.In this paper, a multi level contextual classification approach of the City of Cape Town, South Africa is presented. The methodology developed to identify the different objects using the multi level contextual technique comprised three important phases
    corecore