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Coastal benthic habitat mapping
and monitoring by integrating
aerial and water surface
low-cost drones
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Edoardo Casoli 1, Gianluca Mancini1, Tommaso Valente1,
Michele Scardi2,3 and Arnold Rakaj2,3

1Department of Environmental Biology, University of Rome “la Sapienza”-V. le dell’Università 32,
Rome, Italy, 2Experimental Ecology and Aquaculture Laboratory, Department of Biology, University of
Rome Tor Vergata, Rome, Italy, 3National Inter-University Consortium for Marine Sciences-CoNISMa,
Rome, Italy
Accurate data on community structure is a priority issue in studying coastal

habitats facing human pressures. The recent development of remote sensing

tools has offered a ground-breaking way to collect ecological information at a

very fine scale, especially using low-cost aerial photogrammetry. Although coastal

mapping is carried out using Unmanned Aerial Vehicles (UAVs or drones), they can

provide limited information regarding underwater benthic habitats. To achieve a

precise characterisation of underwater habitat types and species assemblages,

new imagery acquisition instruments become necessary to support accurate

mapping programmes. Therefore, this study aims to evaluate an integrated

approach based on Structure from Motion (SfM) photogrammetric acquisition

using low-cost Unmanned Aerial (UAV) and Surface (USV) Vehicles to finely map

shallow benthic communities, which determine the high complexity of coastal

environments. The photogrammetric outputs, including both UAV-based high

(sub-meter) and USV-based ultra-high (sub-centimetre) raster products such as

orthophoto mosaics and Digital Surface Models (DSMs), were classified using

Object-Based Image Analysis (OBIA) approach. The application of a supervised

learningmethod based on Support Vector Machines (SVM) classification resulted in

good overall classification accuracies > 70%, proving to be a practical and feasible

tool for analysing both aerial and underwater ultra-high spatial resolution imagery.

The detected seabed cover classes included above and below-water key coastal

features of ecological interest such as seagrass beds, “banquettes” deposits and

hard bottoms. Using USV-based imagery can considerably improve the

identification of specific organisms with a critical role in benthic communities,

such as photophilous macroalgal beds. We conclude that the integrated use of

low-cost unmanned aerial and surface vehicles and GIS processing is an effective

strategy for al lowing fully remote detai led data on shallow water

benthic communities.

KEYWORDS

SfM photogrammetry, seagrass, algal assemblages, cartography, GIS, OBIA, unmanned
aerial vehicles (UAV), unmanned surface vehicles (USV)
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GRAPHICAL ABSTRACT
1 Introduction

Coastal areas are vital for human activities and biological

processes, constituting a critical interface between land and sea

(Lakshmi and Rajagopalan, 2000). Although coastal areas cover

only 10% of the earth’s surface area, they host over 60% of the

world’s population and drive the growth of fisheries, infrastructure

development and tourism, resulting in additional pressure on natural

coastal ecosystems (Parravicini et al., 2012). Over half of the world’s

coastal ecosystems can be considered under “moderate” or “high”

threat from human development, implying an increased risk for

benthic communities and associated species (Bryant et al., 1995;

Dauvin et al., 2012; Morroni et al., 2020; Rakaj et al., 2021). Coastal

areas are often composed of habitat mosaics, including terrestrial

(above water) and marine (below water) features that play a key role

in ecosystem functioning. For instance, in tropical environments,

mangroves, coral, rocky reefs, and seagrasses usually form a

continuum of shallow water habitats in which organisms spend

parts of their early lifestages being nursery grounds for marine

biota (Nagelkerken et al., 2015). Similarly, in temperate waters,

coastal areas, including transitional waters (estuaries and lagoons),

intertidal zone as well as shallow marine underwater habitats, are the

result of the dynamic interactions between land and sea, resulting in

very high level of productivity (Courrat et al., 2009). Shallow

Mediterranean benthic habitats are generally dominated by seagrass

meadows, macroalgal beds, sandy, and rocky substrates that form

complex landscapes. This complexity influences the distribution of

living organisms that are dispersed neither uniformly nor randomly

but display various gradients or other types of spatial patterns due to

microhabitat availability and resource utilisation (Letourneur et al.,

2003). Considering such very highly localised and patchy diversity,
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how these organisms distribute spatially and temporally across

habitats is thus relevant for understanding species ecology and for

conservation purposes (Tait et al., 2021). Habitat availability and

spatio-temporal segregation are often important underlying factors

that explain the distribution of animal and vegetal assemblages along

coastal environments (Harmelin-Vivien et al., 1995; Seytre and

Francour, 2014; Ventura et al., 2015; Cheminée et al., 2017;

Cheminée et al., 2021). One necessary step to comprehend these

spatio-temporal dynamics in marine organism distribution consists in

the characterization at appropriate spatial scales of the seascapes

(Castellanos-Galindo et al., 2019). Furthermore, some species of

seagrasses and macroalgae are among the most important marine

ecosystem engineers, forming extended carpets and canopies which

provide a wide range of ecological services such as primary

production, carbon sequestration, nutrient recycling, dissipation of

wave energy, and nursery habitats for many juvenile species (Heck

et al., 2003; Sales et al., 2012; Cheminée et al., 2013; Cheminée et al.,

2017; Morris et al., 2020). The increase of human activities such as

coastal development, fisheries and marine traffics exacerbates the

anthropogenic pressure on coastal ecosystems through pollution,

alteration of sedimentary processes and habitat fragmentation, that

together with climate change, strongly affect the distribution of

seagrass meadows (Boudouresque et al., 2009) and macroalgal

forests (Duarte et al., 2018), impacting, in turn, ecosystem

functionig (Claudet and Fraschetti, 2010; Coll et al., 2012; Chand

and Bollard, 2021). This dynamic scenario demands baseline

information and adequate monitoring to understand the processes

driving the ongoing ecological shifts. In this framework, solid spatial

knowledge of habitat and species distribution over fine spatial and

temporal scales is critical to support all stages of marine spatial

planning, to provide scientific knowledge for decision-makers and
frontiersin.org
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guidance for the sustainable exploitation of marine resources (Levin

et al., 2014; Martin et al., 2014; Fabbrizzi et al., 2020). Different

technologies and methods based on remote sensing such as aerial

imagery has been used for decades, and earth-observation satellites

are now a staple of ecological monitoring globally (Tait et al., 2021).

Spatial mapping of shallow-water benthic habitats using satellite data

has been widely performed in temperate (Mumby and Edwards, 2002;

Borfecchia et al., 2019) and tropical environments (Roelfsema and

Phinn, 2010). New proprietary satellite systems (QuickBird, GeoEye-

1, Ikonos, Worldview-4) offer up to 31 cm spatial resolution for

panchromatic imagery (Alkan, 2018) and commercial aerial

photography capable to reachup to 6 cm pixel area (Zhang and Hu,

2012). However, their use for ultra-fine scale ecological studies is still

hindered by considerable limitations such as high costs per scene,

revisit time, spatial resolution, and cloud cover which may negatively

affect many applications for mapping shallow-water benthic

environments (Anderson and Gaston, 2013). In this scenario,

unmanned aerial vehicles (UAVs) represent a valuable tool for local

scale monitoring thanks to their relatively low cost and high

customizability, which allow fast and automatic data acquisition

over difficult or dangerous areas to access (Hardin and Hardin,

2010). UAVs equipped with Inertial Measurement Units (IMU),

GPS and RGB cameras can deliver georeferenced imagery that can

be processed by a plethora of Structure from Motion (SfM)

photogrammetry software, opening new possibilities for the

development of effective algorithms capable of producing ultra-high

spatial resolution orthophoto mosaic and digital elevation models

(DEMs). In fact, UAVs and SfM processing have been successfully

applied for natural resource assessment and environmental

monitoring of the coastal areas (Burns et al., 2015; Nikolakopoulos

et al., 2017; Ventura et al., 2018; Burns et al., 2019; Taddia et al., 2019;

Kabiri, 2020; Ventura et al., 2022). These products, other than playing

a key role in assessing 3D habitat complexity and health conditions of

specific biotopes such as biogenic reefs in tropical (Raoult et al., 2017;

Burns et al., 2019; Fallati et al., 2020; Nieuwenhuis et al., 2022) and

temperate (Zapata-Ramıŕez et al., 2013; Marre et al., 2019; Prado

et al., 2020; Ventura et al., 2020) environnements, can also provide

valuable information for fine-scale assessment and monitoring of

seagrass and macroalgal beds limits, level of fragmentation, and

restoration activities (Marre et al., 2020; Rende et al., 2020; Ventura

et al., 2022). Moreover, UAVs provide a means to map the

distribution and behaviour of many organisms in shallow aquatic

environments that typically have high contrast against the substrate

(Raoult and Gaston, 2018; Raoult et al., 2018; Williamson et al., 2021).

Despite the recent extensive adoption of drones for marine research,

this methodology still presents some constraints in providing a

detailed analysis of the benthic community in terms of species

assemblages. Underwater operator surveys must combine and

integrate this form of remote-sensed imagery with biological data.

For that purpose, Unmanned Surface Vehicles (USVs) can provide

accurate information on habitat distribution in shallow waters,

potentially overcoming underwater operator survey constraints

through remote imagery acquisition.

This study aimed to employ two types of low-cost unmanned

vehicles (UAVs and USVs) as integrated aerial and underwater

acquisition tools for shallow coastal habitat mapping, combining

SfM-based outputs consisting of aerial and underwater imagery of
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benthic assemblages. To analyse high and ultra-high spatial resolution

maps, taxonomic identification by experts and supervised image

classification to identify and provide information on the structure

of distinct benthic habitats were employed within the same study area,

according to the various levels of detail. Subsequently, we evaluated

the accuracy of image classifications based on the Support Vector

Machine (SVM) supervised learning algorithm to map shallow

benthic habitats using both UAV and USV-based imagery. Finally,

in this study we propose some general guidelines to encourage the

adoption of this integrated methodological strategy in the mapping of

local coastal habitats and associated biotopes and future applications

for monitoring proposes.
2 Material and methods

2.1 Study area

The study area (3 Ha) is located north of Civitavecchia in the

central Tyrrhenian Sea, Italy (11°44’2.233”E; 42°9’43.043”N). This is

an important ecological area within a marine Site of Community

Importance (SCI), “Fondali tra Punta S. Agostino e Punta Mattonara”

and the natural monument “La Frasca” on the coastal side (Figure 1).

This area included in a small bay, encompassing shallow sandy and

rocky shorelines with gentle slope, is characterised by a rocky coast,

halophilous vegetation and a healthy pinewood. The shallow

infralittoral rocky bottoms are characterised at depths from 0.1 m

up to 3 m by complex communities constituted by seagrass patches of

Posidonia oceanica (L.) Delile, brown (Phaeophyta), red

(Rhodophyta), and green (Chlorophyta) photophilous algal

assemblages that host a large number of endemic species (Gravina

et al., 2020). Considering this complex landscape, the shallow water

and the high heterogeneity of benthic habitats, this area was selected

to apply this integrated methodological approach encompassing aerial

and underwater imagery acquisition using an unmanned aerial

vehicle (UAV) and an unmanned surface vehicle (USV),

respectively. Therefore, for a fine-scale characterisation inside the

total mapped area, we identified two additional subplots to improve

the image classification routine and detect specific cover classes

characterizing the submerged benthic habitats. More specifically, for

the UAV fine scale classification we chose an area with very high

heterogeneity (microhabitat availability) and complex topographic

characteristics (outcropping rocks) which allowed the presence of

indicator species such as seagrasses, brown (Fucales) and green

(Ulvales and Cladophorales) algae. For ultra-fine scale mapping and

classification using USV a representative area of the deeper seabed

displaying Posidonia oceanica patches and hard rocky substrata with

photophilic algae was chosen (Figure 1).
2.2 Imagery acquisition with UAV

High-resolution optical aerial images were acquired using a

modified DJI Mavic 2 Pro quadcopter (Figure 2) in May 2022. This

consumer-grade UAV is a lightweight (0.9 kg) and easy-to-carry

drone equipped with a fully stabilised 3-axis gimbal Hasselblad L1D-

20c camera with a 1-inch CMOS RGB sensor with a resolution
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FIGURE 2

The two unmanned vehicles used in this research for mapping above and below water coastal habitats. (A, B) Mavic 2 pro (UAV) equipped with additional
GNSS antenna for PPK and (C, D) Power Dolphin (USV) equipped with Gopro Hero 10 action camera.
FIGURE 1

The study area along the central Latium coast where shallow benthic habitats were mapped using low-cost unmanned aerial (UAV) and water surface
vehicles (USV). The white and blue polygons represent the areas mapped for large and fine-scale classification using UAV-based imagery, whereas the
red polygon identifies the area mapped by the USV for ultra-fine classification of benthic communities. The positions of checkpoints (CPs) and tape
measure used for accuracy assessments are reported.
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capability of 5472 x 3648 (20 MP). Considering a GPS flight speed of 5

m/s and a flight height of 40 above mean sea level (AMSL), to

maintain a sufficient overlap (>70%) between images, we took photos

every 2 s by using the time-lapse mode with auto white balance and

shutter priority (1/400 sec) to avoid motion blur in the acquired

imagery. A circular polarizer (CPL) filter was used to minimise the

effect of sun-glint. Even though the drone was equipped with a built-

in GPS/GLONASS receiver, we mounted an additional GNSS antenna

with Post Processing Kinematics (PPK) capabilities. With PPK, the

acquired images can be georeferenced at centimetre-scale resolution

and do not require a real-time connection between the base station

and the rover. As the base station, we used Rinex 3.03 files

downloaded from the nearby Continuously Operating Reference

Station (CORS) of Civitavecchia of the Latium Permanent GNSS

Network. GNSS Rinex files from the UAV (rover unit) and the base

station (CORS) were post-processed with the Toposetter 2.0 app to

obtain an accurate positioning of the images along the track of the

pre-established autonomous flight path defined with the DJI Pilot app

(https://www.dji.com/it/downloads/djiapp/dji-pilot ) running on a

mobile device connected to the remote controller via Android

debug bridge (ADB). Finally, the image coordinates were inspected

spatially using RTKPLOT of RTKLib software to check the accuracy

of post-processed coordinates (Takasu and Yasuda, 2009).
2.3 Imagery acquisition with USV

Immediately after the UAV fight, high-resolution underwater images

were acquired using the Power Dolphin (PowerVision Inc., Beijing,

China) (Figure 2). This aquatic Unmanned Surface Vehicle (USV) was

chosen based on its low-price range comparable to other consumer-level

USVs. This device was operated by remote control and mobile device

with the Vision+2 app, communicating through a built-in Wi-Fi signal.

The Power Dolphin is a device that floats on the water surface and is

propelled by two horizontal rear propellers. The built-in camera is

mounted on the front of the USV with a user-adjustable tilt

mechanism that can be oriented up and down in real-time using a

remote control, independently of the direction of the USV (Diefenbacher,

2022). This device is also equipped with a GPS and depth echosounder,

allowing to continuously collect depth data and reference coordinates.
Frontiers in Marine Science 05
However, considering the low resolution of the built-in camera (1/2.3-

inch CMOS 12 MP sensor), we decided to improve the acquisition of

underwater imagery by adding a GoPro Hero 10 action camera with a 23

MP sensor. The camera was attached under Power Dolphin’s hull,

pointing 90° downwards and acquiring photos every 1 sec. No

protective housing was used, as this device is waterproof up to 10 m.

The underwater imagery collected was then georeferenced using the

onboard GPS and scaled during the photogrammetric processing using

images representing the tape measure as a reference. Themain features of

the two systems used for imagery acquisition are reported in Table 1 in

the supplementary material section.
2.4 Image processing and classification

The UAV- and USV-based imagery were processed using Agisoft

Metashape v 1.8.1. With this low-cost SfM software package, 3D

models and 2D raster products can be generated in a fully automated

five-step process, comprising: (i) alignment of the photographs, (ii)

calculation of a sparse point cloud, (iii) calculation of a dense 3D, (iv)

polygonal mesh model generation and texture mapping, (v)

generation of Digital Surface Models (DSMs) and orthorectification

of the imagery (De Reu et al., 2013). Firstly, we performed the

alignment of images with the parameter accuracy set to ‘high’. After

the photoalignment, this initial bundle adjustment created sparse

point clouds from overlapping digital images. The sparse point clouds

included the position and orientation of each camera position and the

3D coordinates of all image features. The internal camera geometry

was modelled by self-calibration during the bundle adjustment (Price

et al., 2019). Subsequently, dense point clouds were built based on

multi-view stereopsis (MVS) algorithms with high-quality and mild

depth filtering. After filtering the dense point clouds according to

points confidence (points with values less than three were removed),

these were used for producing polygonal meshes and DSMs using an

Inverse Distance Weighting (IDW) interpolation. Finally, the DSMs

generated ortho-rectified RGB photomosaics of emerged and

submerged habitats.

Orthophoto mosaics and DSMs generated in Metashape were

exported as raster images (GeoTIFF format, in the reference system

WGS84/UTM zone 33 N, EPSG:32633) and transferred to a
TABLE 1 Residuals of the bundle adjustment transformation on seven checkpoints (CPs) and the total RMSE (cm).

UTM coordinates UTM 32 N Individual residuals after bundle adjustment transformation (cm)

Label Easting Northing Elevation Easting Northing Elevation 3D

CP 1 725897.1 4671334 1.56 CP 1 -5.523 4.803 -6.130 9.547

CP 2 725875.3 4671306 0.416 CP 2 -4.072 -0.002 -14.729 15.281

CP 3 725933.4 4671377 -0.173 CP 3 -2.185 -7.520 -16.005 17.818

CP 4 725881.4 4671419 -0.729 CP 4 4.025 -2.183 4.837 6.660

CP 5 725838.3 4671411 -0.607 CP 5 7.392 -1.001 -1.228 7.560

CP 6 725800.5 4671350 -0.774 CP 6 5.388 0.484 7.447 9.204

CP 7 725844.3 4671346 -0.217 CP 7 1.284 -0.725 -6.590 6.753

Total RMSE 4.681 3.508 9.520 11.174
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geographical information system (GIS) using ArcMap 10.6 software

(Esri, 2011) for subsequent Object-Based Image Classification (OBIA)

processing. At this stage, classification methods based only on pixel

information are time-consuming and limited due to the spectral

similarities. Therefore, we reduced the pixel complexity by

segmenting the orthophotos into more meaningful objects to speed

up the aerial and underwater imagery classification. A means-shift

(MS) algorithm was applied using the segment means-shift function

in ArcMap. The MS is a non-parametric segmentation/clustering

algorithm that uses the number of pixels and the Euclidean distance

defined within a spectral space to segment an image (Lee et al., 2009).

In our case, the spectral details, spatial details, and minimum segment

size parameters were set to 20, 15 and 600, respectively. The spectral

detail setting was used to discriminate between objects based on

spectral signatures. In contrast, spatial detail was used to discriminate

between objects based on the shape of the features to produce sharper

segments (Gaw et al., 2019). A minimum mapping unit of 500 pixels

(approximately 5 cm2) was chosen. After the segmentation process,

we manually selected a set of image objects as training samples to

train the Support vector machine (SVM) algorithm, which is a

supervised machine learning classifier well adapted to solving non-

linear, high dimensional space classifications that have become

increasingly popular in remote sensing classification (Heumann,

2011; Pipaud and Lehmkuhl, 2017). Spectral reflectance signature

files for both segmented UAV- and USV-based orthomosaics were

generated after collecting training samples in the Training Sample

Manager Toolbar. We manually selected a set of image objects as

training samples to train the SVM algorithm. The SVM model uses

each band’s mean and standard deviation to classify the image objects

in the whole dataset.

For comparison purposes, a subset of 0.3 Ha of the UAV-based

orthophoto mosaics was classified using SVM without running MS

segmentation to avoid spectral smoothing and detect specific

cover classes.

To optimise the results, we then performed a post-classification

routine (Droppova, 2011) on all the classification outputs by

removing some misclassified regions of pixels and small isolated

objects. This task was carried out using the Spatial Analyst

extension in ArcMap, which provides a set of generalisation tools

for the post-classification processing task involving three main steps:

a) filtering the classified output using the ‘Majority Filter’ tool; b)

smoothing the ragged class boundaries and clumping the classes using

the ‘Boundary Clean’ tool and, c) generalising classified output by

reclassifying small, isolated regions of pixels to the nearest classes with

the ‘Region group’, ‘Set Null’ and ‘Nibble’ tools).
2.5 Accuracy assessment
of cartographic outputs

We used GNSS coordinates of seven checkpoints (CPs) to assess

the horizontal (x and y) and vertical (z) positional accuracy of UAV-

based SfM products. For checkpoint (CPs) coordinates’ acquisition,

an Emlid Reach RS+, a low-cost single-frequency (L1 - 1575.42 MHz)

GNSS receiver, was employed. We used both small reflective target

and natural features such as rocks that were easily detectable in the

UAV imagery. The quality of the photogrammetric models based on
Frontiers in Marine Science 06
the CPs residuals was computed as the difference between the position

estimated through PPK and the coordinates of the manually surveyed

CPs. We computed the Root Mean Square Error (RMSE) for each

mapped area in the E, N, and U directions and 3D. Small values of the

Root Mean Square Error (RMSE) indicate good image alignment

processes and block adjustments resulting in accurate 3D point

clouds, digital elevation models (DEMs), and orthophoto mosaics.

Before starting imagery acquisition, four metric tape measures

were positioned on the seabed from 0.1 up to 2.5 m depth to have a

constant reference distance during field operation and for scaling and

estimating the accuracy of the underwater 3D models acquired with

the USV. Snorkelers followed the tape measure during underwater

video acquisition for ground truth data collection (Figure 1).

To assess the proportional accuracy of the underwater USV-based

model, we compared the known dimensions of objects (lengths

measured along the metric tape measures) to their estimated

dimensions in the model. The measurement accuracy for each

linear distance estimated from the 3D models was expressed as a

percentage of difference (Young et al., 2017).

A confusion matrix for each mapped area (from large-scale UAV-

based to ultra-fine scale USV-based imagery) was calculated to

evaluate the accuracy of the final classifications, including (i)

producer’s accuracy, (ii) user’s accuracy; (iii) overall accuracy (OA);

and (iv) the Kappa Index of Agreement (KIA). The confusion

matrices were built using GNSS-based ground truth data points

collected by snorkelers along the tape measure and randomly

placed accuracy assessment points (distinct from the training

sample areas). An expert classified each point manually by visually

inspecting the original true colour orthophotos. Due to the ultra-high

spatial resolution, visual photo interpretation could be considered

very reliable for assessing the accuracy of thematic maps (Lechner

et al., 2012).
3 Results

3.1 UAV-based large/fine-scale mapping and
classification

The whole study area (3 Ha) was mapped after a flight time of

25’35’’ from a height of 40 m, leading to the acquisition of 339 aerial

images (Supplementary Material Figure 2). After PPK, all the UAV

GPS antenna positions showed a high ambiguity-fixed solutions

percentage (Q1 = 100%, Supplementary Material Figure 1),

resulting in a planimetric precision estimated after bundle

adjustment at each CPs of 5.8 cm. In contrast, the altimetric

precision was 11.1 cm (Table 1). The orthophoto mosaics and DSM

showed a spatial resolution of 1.3 cm/pix and 1.6 cm/pix, respectively

(Figures 3A, B). The 3D mesh model of the mapped with the UAV

area is available at the following link: https://skfb.ly/oBEEL

The high-resolution imagery allowed for a fine-scale

characterisation of the site after MS segmentation and SVM

classification (Figure 4). In fact, eleven cover classes encompassing

both above and below the sea surface features are identified with an

OA and KIA accuracy value of 0.77 and 0.75%, respectively

(Supplementary Material Table 1). Among these, five major seabed

cover classes representing broad benthic community-level categories
frontiersin.org

https://skfb.ly/oBEEL
https://doi.org/10.3389/fmars.2022.1096594
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org


Ventura et al. 10.3389/fmars.2022.1096594
were identified: Posidonia oceanica patches, soft bottoms with

Cymodocea nodosa, hard bottoms with photophilic algae, hard

bottoms with photophilic algae mixed with seagrass detritus (dead

leaves and rhizomes), and sand. Significant seabed cover

misclassification errors involved spectral confusion among classes

with very similar spectral signatures, such as ‘beach’ class constituted

by fine and wet sand (with a total of 35.6% of samples interpreted as

coarse sand and banquette), hard bottoms with photophilic algae

(with a total of 27.3% of samples interpreted as hard bottoms with

photophilic algae with detritus and sand). Posidonia oceanica was

classified with more than 90% user and producer accuracy, while

Cymodocea nodosa reported only a 60% user accuracy value.

Inside the selected subarea of 0.3 ha, the SVM classification was

performed on the raw RGB orthomosaics without applying MS

segmentation. This choice implied a longer computation time (+3h

20’) to train SVM, classify, and generalise classified raster outputs.
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However, working at pixel levels, without smoothing spectral

signatures during segmentation, allowed a more detailed

classification of the benthic habitats by splitting the two classes

(‘hard bottoms with photophilic algae’ and ‘hard bottoms with

photophilic algae and seagrass detritus’) into four additional cover

classes with high ecological interest (Figures 5, 6). In fact, hard

bottoms with photophilic algae can be distinguished by water depth

(0-50 cm and > 50 cm) and according to the presence of algal

assemblages dominated by Fucales brown algae of the genus

Cystoseira spp., or green algae (Cladophorales and Ulvales).

Seagrass cover classes represented by Posidonia oceanica and

Cymodocea showed higher user and producer accuracy values than

the large-scale classification carried out after MS segmentation. The

other benthic cover classes displayed comparable values of percentage

cover, with only slightly lower OA and KIA values (0.75 and 0.71,

respectively) due to the misclassification of rocks covered by
FIGURE 3

(A) High spatial resolution UAV-based RGB orthophoto mosaic and (B) Digital surface models (DSM) with depth contour interval at 50 cm.
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Cystoseira spp. As shallow rocks with other photophilic algae

(represented by the ‘hard bottoms with photophilic algae (0- 50

cm)’ class) (Supplementary Material Table 2).
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3.2 USV-based ultra-fine scale mapping
and classification

Images were acquired from the surface using the PowerDolphin

USV to map an area of 150 m2. The dimensions of the underwater

objects (tape measure) rendered in the mesh model of the seabed

matched strongly with their actual dimensions with a mean

procedural accuracy for the length of 98.08% ± 0.02, resulting in a

total error of 0.017 m. The generated orthomosaics (Figure 7A) and

DSM showed an ultra-high spatial resolution of 1.3 and 2.2 mm/pixel,

respectively. Through hill-shade map, a fine terrain representation

based on topographic shielding factors for improving seabed

morphology visualisation was generated using elevation data

(Figure 7B). The 3D mesh model of the mapped area with the USV

is available at the following link: https://skfb.ly/oBEHt

The SVM classification allowed the identification of five cover classes

that implied a more detailed definition of the benthic habitat variability

compared to the UAV-based classification. The benthic cover was mainly

represented by hard calcareous bottoms covered by a carpet of

photophilic red (52%) and brown algae (33%) (Figures 8, 9). Inside the

broad cover class ‘hard bottom with photophilic algae’ previously

identified also by UAV-based imagery, we mapped at the species level
FIGURE 4

Thematic map showing the eleven cover classes identified after MS
segmentation and SVM classification of the UAV-based high spatial
resolution orthophoto mosaic.
FIGURE 5

Comparison between large and fine scale UAV-based thematic maps. (A) UAV-based orthomosaics; (B) UAV-based large scale classification results after
MS segmentation and SVM classification; (C) UAV-based fine scale classification results after SVM classification carried out without MS segmentation.
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the arborescent algal cover (Figure 10), mainly represented by red algae

(Jania rubens, Corallinales) and brown algae (Padina pavonica,Halopteris

scoparia and Dictyota dichotoma). After MS segmentation, we reported

lower per-class accuracies than other classifications, resulting in OA and

KIA values of 73.4% and 0.61, respectively (Supplementary Material

Table 2). Significant seabed cover misclassification errors involved

spectral confusion among small sandy patches (with 53.6% of samples

interpreted as brown and red algae) and brown algae (with a total of 53%

of samples classified as red algae). In addition, the tape measure was

classified as brown algae (Padina pavonica) due to its white colour.

Similarly, to other classification method, Posidonia oceanica is identified

in most cases with both user and producer accuracy values of > 80%.
4 Discussion

This study demonstrated that integrating consumer-grade

unmanned aerial and surface vehicles (UAV and USV) is an

effective tool for the characterization and mapping of shallow

benthic habitats at fine and ultra-fine scales. Coastal benthic

habitats, such as shallow rocky bottoms and seagrass beds, are

among the most heavily anthropogenically-impacted marine

ecosystems and are also among the most productive in terms of

ecosystem functioning implying rigorous monitoring programs

(O’Connor, 2013). Seagrass and seaweed are sensitive to changes in
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the ecosystem, making them valuable indicators of ecosystem health

(Dokulil, 2003). The type, distribution, and condition of algal

assemblages can drive water quality (pH, dissolved oxygen,

suspended sediment) and local benthic and fish assemblages health

(food resources, habitat), making the quantification of these species

very useful in identifying mechanisms responsible for changes at both

community and ecosystem-level (Airoldi et al., 1995; Benedetti-

Cecchi and Cinelli, 1995; Kislik et al., 2020). In this context, the

identification and fine mapping of canopy-forming species is a critical

point in monitoring actions among coastal areas, which often exhibit

significant habitat heterogeneity, even on a small scale, and are subject

to various anthropogenic stressors (agricultural run-off and discharge

of sewage, sedimentary alteration). Although numerous studies have

already focused on the dynamics of seagrasses under the impact of

human activities and have defined seagrass distribution and temporal

trends on a large scale (Duarte, 2002; Telesca et al., 2015; Chefaoui

et al., 2018), only a few have associated spatial, temporal and

structural local data to these changes (Leriche et al., 2006; Pergent-

Martini et al., 2022). To answer this question, UAV platforms can

provide high spatial resolution at a frequency greater than traditional

methods such as satellites, piloted aircraft, and LiDAR. We reported

how some algal taxa could be detected directly as a good proxy for

monitoring environmental quality changes (Cystoeira spp.

Cladophorales and Ulvales) after refining the classification

approach used for UAV imagery. We could detect, using the
FIGURE 6

Bar plots reporting the percentage cover of each benthic cover class of UAV-based fine scale classification reported in Figure 4C.
FIGURE 7

(A) The orthophoto mosaic derived from USV-based underwater imagery and (B) seabed morphology visualised through the hill shading map. The areas
covered by Posidonia patches are missing due to significant errors during the DSM generation.
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FIGURE 8

Comparison between large scale UAV-based and ultra-fine scale USV-based thematic maps. (A) USV-based underwater orthomosaics over imposed on
the UAV-based aerial orthomosaics; (B) UAV-based large scale classification results after MS segmentation and SVM classification; (C) USV-based ultra-
fine classification results after SVM classification and MS segmentation.
FIGURE 9

Bar plots reporting the percentage cover of each benthic cover class of USV-based ultra-fine classification reported in Figure 7C.
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complete information available at the pixel level, the most critical

algal assemblages among a limited shallow area with a relatively good

level of accuracy. These sensing instruments may even provide quasi-

continuous temporal coverage that results in a detailed description of

the ecological dynamics that characterise most coastal species with

fast development and short life cycles (e.g., algal blooms). We

demonstrated that low-altitude UAV imagery is powerful in

detecting and quantifying submerged vegetation over shallow areas

characterised by fair water clarity and can be integrated into

monitoring programs where recurrent sampling and mapping are

needed. Therefore, as reported in other studies (Duffy et al., 2018;

Yang et al., 2020), UAV-based imagery is a flexible, low-cost, and

time-effective technique for monitoring intertidal and shallow water
FIGURE 10

(A) Detailed view of the USV-based underwater orthophoto mosaic in which the shrubby algal assemblage is visible and (B) the results after MS
segmentation and SVM classification.
FIGURE 11

Processing times (in hours) of the main steps used in this work to
classify high (UAV-based) and ultra-high (USV-based) imagery.
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marine vegetation. Nevertheless, the acquisition methods carried out

with a single instrument (e.g., UAV) show resolution limits that

cannot be exceeded (e.g., species recognition and organism counting).

Therefore, to achieve a precise characterization of the benthic

assemblages, an integrated use of several acquisition instruments is

necessary. Therefore, the integration of USV with consumer-grade

UAV for photogrammetric acquisition makes it possible to

characterise complex benthic communities at a broader resolution

scale (from large to ultra-fine). The use of the USV for benthic habitat

mapping can be considered an emerging tool to be implemented in

monitoring plans since classification accuracy decreases with water

depth, particularly in water deeper than 3 m (Shintani and Fonstad,

2017), limiting the use of UAV-based optical data to a narrow stretch

of coast. Aerial images cannot capture the taxonomic detail with the

same accuracy as in-situ surveys, whereas USV-based data can

provide comparable results regarding species identification. This

has the advantage of adding accurate spatial information that can

help address other research questions and monitoring goals.

However, without using an image segmentation approach, there

are several technical challenges that scholars need to be fully aware of,

including extensive processing time to train the classifiers and define

the training sample, as well as the long and complex post-processing

routine linked to more ‘salt-and-pepper’ artefacts due to spurious

pixel classifications (Figure 11). Therefore, for extensive scale

assessment where broad classification is needed, it is advisable to

reduce the amount of computer memory available per processing unit

by smoothing the spectral complexity of UAV imagery, before

training the classifier. This step becomes mandatory for the imagery

acquired using the USV due to their ultra-high spatial resolution.

Even though after MS segmentation of USV-based imagery, small

spectral difference among similar classes are too smoothed, making

impossible to distinguish species with similar colours (e.g., Dictyotales

from Sphacelariales), we performed a very detailed habitat

characterisation of the deeper rocky bottoms by identifying the

patchy algal assemblages. The OBIA processing applied in ArcMap

can be substituted with other approaches available in the eCognition

software (Trimble Geospatial Imaging, Munich, Germany), which has

a powerful multi-resolution algorithm for image segmentation

capable of reducing computational complexity and processing times

compared to MS segmentation (Fu et al., 2013). Moreover, the lengthy

trial-and-error processing time required to configure the suitable

parameters for image segmentation can be reduced by enabling a

more statistically-based solution for selecting scale parameters

(Drăgut ̧ et al., 2014).
Another primary aspect to investigate during monitoring

campaigns is the presence of organisms with a key role in benthic

communities. Research on target species, such as herbivorous, deposit-

feeders or filter-feeders, is critical for the development of conservation

andmanagementmeasures of coastal areas since they play a vital role in

the sea floor dynamics (Boncagni et al., 2019; Morroni et al., 2020;

Grosso et al., 2022; Pensa et al., 2022). When the research is focused on

benthic organisms living in shallow rocky-bottom areas, data collection

through SCUBA diving and snorkelling has traditionally been the most

widely chosen method. However, among recent benthic sampling

techniques, remote photographic recording methods offer a variety of

advantages by reducing the time spent by divers underwater and

logist ics costs (Piazza et al . , 2019). More specifical ly ,
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photogrammetric outputs such as 2D plots or transects cropped from

large orthophotos can be usable in software specifically dedicated to the

elaboration of benthic images (e.g., PhotoQuad, Seascape, CPC,

ImageJ), enabling the analysis and comparison of defined seabed

areas to investigate changes in the benthic communities over time

(Piazza et al., 2019). In this context, the adoption of the integrated

approach with UAV and USV to evaluate any modification due to

small-scale habitat variability, registering the position of sessile

specimens (e.g., algae, bryozoans, sponges, bivalves) and determining

the abundance, the distribution, and the aggregation patterns of vagile

fauna (e.g., sea urchins, sea cucumbers, sea stars and epimegabenthos

assemblages in general), is unprecedented and fulfils the main aim of

fine-scale monitoring programmes.
4.1 Methodology constraints

Although our approach can provide a fast, low-cost, and accurate

method for fine-scale mapping of shallow benthic underwater

habitats and other above-water coastal features of ecological

interest, several drawbacks should be considered when field

operations are carried out in sub-optimal conditions. In fact, we

performed UAV imagery acquisition with calm sea conditions with

wind speed < 1 knot (Beaufort scale = 0) and in very shallow waters

where moderate water turbidity have a limited effect on light

penetration (mean measured value of Secchi disk transparency =

4.2 ± 0.3 m). However, along the deeper edges of the mapped area, at

depths > 3 m, the imagery was more affected by transparency,

resulting in a less sharp identification of seagrassmeadows patches

which also involved image alignment issues during photogrammetric

processing. Sea conditions and weather are also key factors to be

carefully evaluated during USV operation. This tool is highly

promising in shallow lagoons and back-reef monitoring, although

in open coastal areas are necessary low hydrodynamic conditions for

optimal imagery acquisition, due to limited stability and

manoeuvrability. However, the distance from the seafloor of the

camera sensor mounted on USV can be an important limitation in

obtaining reliable models in very shallow waters (< 1 m).

Seasonality can also play a crucial role in achieving reliable maps for

thematic cartography because macroalgae assemblages can considerably

vary over seasons (e.g., summer vegetative phase versus wintry

quiescence period of Cystoseira spp. that may lead to the impossibility

of thalli detection). Significant accumulation of phanerogamic detritus

(dead P. oceanica leaves) can affect the mapping of both above-water

features (covered by thick banquettes layers) and below-water substrata

(by depositing in sandy patches and holes inside rocky reef) in winter.

Regarding aerial and surface platforms configuration most limiting

factors for using such tools over large areas are primarily due to the

LiPo battery that implies short-medium (< 30 min) flight times. This

aspect is less evident for USV platforms which are capable of slow

navigation over a longer time (> 2 hours).
5 Conclusions

Understanding heterogeneity within benthic habitats is a primary

step for the environmental monitoring of perturbed and pristine
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coastal ecosystems. Drones open the possibility to capture data that is

useful to finely depict hard bottoms assemblages, seagrass and other

above-water features (e.g., banquette, artificial structures), which can

play a crucial role in coastal dynamics. Traditional boundary mapping

has often been conducted using satellite and airborne imagery. Still, it

can be considerably improved with UAV-based imagery, highlighting

the need to investigate the fragmentation within meadows, which can

provide researchers, stakeholders and ecosystem managers with data

on whether a meadow is potentially deteriorating or recovering (Duffy

et al., 2018). The combination of aerial and underwater imagery

provides high-quality and cost-effective data that can be stored for

assessment over time, offering valuable information that can be used

in the case of retrospective analyses.

Potential improvements to the methods described here are

extensive, including using fixed-wing platforms for increased flight

efficiency and spatial coverage, enhanced imaging acquisition

(multispectral sensors), and positioning (direct imagery

georeferencing with RTK systems) techniques. Finally, applying

powerful algorithms for image segmentation and classification

capable of processing large datasets will be highly informative in

aquatic system management and decision-making, showing great

promise in applying UAV and USV high spatial resolution imagery

for shallow benthic habitats conservation and monitoring.
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