6,619 research outputs found

    Lane Line Detection and Object Scene Segmentation Using Otsu Thresholding and the Fast Hough Transform for Intelligent Vehicles in Complex Road Conditions

    Get PDF
    An Otsu-threshold- and Canny-edge-detection-based fast Hough transform (FHT) approach to lane detection was proposed to improve the accuracy of lane detection for autonomous vehicle driving. During the last two decades, autonomous vehicles have become very popular, and it is constructive to avoid traffic accidents due to human mistakes. The new generation needs automatic vehicle intelligence. One of the essential functions of a cutting-edge automobile system is lane detection. This study recommended the idea of lane detection through improved (extended) Canny edge detection using a fast Hough transform. The Gaussian blur filter was used to smooth out the image and reduce noise, which could help to improve the edge detection accuracy. An edge detection operator known as the Sobel operator calculated the gradient of the image intensity to identify edges in an image using a convolutional kernel. These techniques were applied in the initial lane detection module to enhance the characteristics of the road lanes, making it easier to detect them in the image. The Hough transform was then used to identify the routes based on the mathematical relationship between the lanes and the vehicle. It did this by converting the image into a polar coordinate system and looking for lines within a specific range of contrasting points. This allowed the algorithm to distinguish between the lanes and other features in the image. After this, the Hough transform was used for lane detection, making it possible to distinguish between left and right lane marking detection extraction; the region of interest (ROI) must be extracted for traditional approaches to work effectively and easily. The proposed methodology was tested on several image sequences. The least-squares fitting in this region was then used to track the lane. The proposed system demonstrated high lane detection in experiments, demonstrating that the identification method performed well regarding reasoning speed and identification accuracy, which considered both accuracy and real-time processing and could satisfy the requirements of lane recognition for lightweight automatic driving systems

    Lane Detection System for Intelligent Vehicles using Lateral Fisheye Cameras

    Get PDF
    The need for safety on roads has made the development of autonomous driving one of the most important topics for Computer Vision research. This thesis focuses on the lane detection problem using images obtained with lateral fisheye cameras, firstly by studying the state-of-the-art and the spherical model, then by developing two methods to solve this task. While the first is based on traditional Computer Vision, the second makes use of a Convolutional Neural Network. Results are then compared

    Automated Visual Database Creation For A Ground Vehicle Simulator

    Get PDF
    This research focuses on extracting road models from stereo video sequences taken from a moving vehicle. The proposed method combines color histogram based segmentation, active contours (snakes) and morphological processing to extract road boundary coordinates for conversion into Matlab or Multigen OpenFlight compatible polygonal representations. Color segmentation uses an initial truth frame to develop a color probability density function (PDF) of the road versus the terrain. Subsequent frames are segmented using a Maximum Apostiori Probability (MAP) criteria and the resulting templates are used to update the PDFs. Color segmentation worked well where there was minimal shadowing and occlusion by other cars. A snake algorithm was used to find the road edges which were converted to 3D coordinates using stereo disparity and vehicle position information. The resulting 3D road models were accurate to within 1 meter

    Visual computing techniques for automated LIDAR annotation with application to intelligent transport systems

    Get PDF
    106 p.The concept of Intelligent Transport Systems (ITS) refers to the application of communication and information technologies to transport with the aim of making it more efficient, sustainable, and safer. Computer vision is increasingly being used for ITS applications, such as infrastructure management or advanced driver-assistance systems. The latest progress in computer vision, thanks to the Deep Learning techniques, and the race for autonomous vehicle, have created a growing requirement for annotated data in the automotive industry. The data to be annotated is composed by images captured by the cameras of the vehicles and LIDAR data in the form of point clouds. LIDAR sensors are used for tasks such as object detection and localization. The capacity of LIDAR sensors to identify objects at long distances and to provide estimations of their distance make them very appealing sensors for autonomous driving.This thesis presents a method to automate the annotation of lane markings with LIDAR data. The state of the art of lane markings detection based on LIDAR data is reviewed and a novel method is presented. The precision of the method is evaluated against manually annotated data. Its usefulness is also evaluated, measuring the reduction of the required time to annotate new data thanks to the automatically generated pre-annotations. Finally, the conclusions of this thesis and possible future research lines are presented

    Visual Analysis in Traffic & Re-identification

    Get PDF

    Visual computing techniques for automated LIDAR annotation with application to intelligent transport systems

    Get PDF
    106 p.The concept of Intelligent Transport Systems (ITS) refers to the application of communication and information technologies to transport with the aim of making it more efficient, sustainable, and safer. Computer vision is increasingly being used for ITS applications, such as infrastructure management or advanced driver-assistance systems. The latest progress in computer vision, thanks to the Deep Learning techniques, and the race for autonomous vehicle, have created a growing requirement for annotated data in the automotive industry. The data to be annotated is composed by images captured by the cameras of the vehicles and LIDAR data in the form of point clouds. LIDAR sensors are used for tasks such as object detection and localization. The capacity of LIDAR sensors to identify objects at long distances and to provide estimations of their distance make them very appealing sensors for autonomous driving.This thesis presents a method to automate the annotation of lane markings with LIDAR data. The state of the art of lane markings detection based on LIDAR data is reviewed and a novel method is presented. The precision of the method is evaluated against manually annotated data. Its usefulness is also evaluated, measuring the reduction of the required time to annotate new data thanks to the automatically generated pre-annotations. Finally, the conclusions of this thesis and possible future research lines are presented

    Vision-based prediction of human driver behavior in urban traffic environments

    Get PDF
    Heracles M. Vision-based prediction of human driver behavior in urban traffic environments. Bielefeld: Bielefeld University; 2014.We address the problem of inferring the appropriate behavior of a human driver from visual information about urban traffic scenes. The visual information is acquired by an on-board camera that monitors the scene in front of the car, resulting in a video stream as seen by the driver. The appropriate behavior consists in the actions a responsible driver would typically perform in the depicted situations, including both longitudinal and lateral control. As solving the problem would enable a technical system to generate independent behavioral expectations, potential applications are in driver assistance and autonomous navigation. While autonomous vehicles have mastered highway, off-road, and urban traffic environments by now, their perceptual basis has fundamentally shifted towards non-visual sensors. The same is true of driver assistance systems, which are in addition limited to specific functions like collision avoidance or lane keeping. Partly, the reason lies in the complexity of urban traffic scenes, being rich in visual information and often densely populated by other traffic participants. Moreover, their diversity complicates their relationship to driving behavior: Many situations require the same behavior while others allow for several alternatives. In this context, we propose a novel framework based on scene categorization that approaches the problem from its behavioral side: Subdividing the behavior space induces visual categories for which dedicated classifiers are then learned. The visual complexity is handled by decomposing the traffic scenes into their constituent semantic entities and computing object-level features. While using known techniques, our linking them to actual human driver behavior is also novel. To validate our approach, we conduct experiments on video streams recorded in real urban traffic, including a detailed comparison to the state-of-the-art. Our results give compelling evidence of the superior robustness of our system, compared to the filter-based representation of the current method. This finding is consistent with general results in scene categorization and emphasizes their importance for behavior prediction. Moreover, our scene categorization based behavior prediction framework offers exciting possibilities for future research. Examples include a route-planning layer on top of the proposed system to go beyond reactive behavior, multi-modal extensions by audio or tactile sensors to enrich the perceptual basis, and real-time applications in the automotive domain

    Multi-Modal Enhancement Techniques for Visibility Improvement of Digital Images

    Get PDF
    Image enhancement techniques for visibility improvement of 8-bit color digital images based on spatial domain, wavelet transform domain, and multiple image fusion approaches are investigated in this dissertation research. In the category of spatial domain approach, two enhancement algorithms are developed to deal with problems associated with images captured from scenes with high dynamic ranges. The first technique is based on an illuminance-reflectance (I-R) model of the scene irradiance. The dynamic range compression of the input image is achieved by a nonlinear transformation of the estimated illuminance based on a windowed inverse sigmoid transfer function. A single-scale neighborhood dependent contrast enhancement process is proposed to enhance the high frequency components of the illuminance, which compensates for the contrast degradation of the mid-tone frequency components caused by dynamic range compression. The intensity image obtained by integrating the enhanced illuminance and the extracted reflectance is then converted to a RGB color image through linear color restoration utilizing the color components of the original image. The second technique, named AINDANE, is a two step approach comprised of adaptive luminance enhancement and adaptive contrast enhancement. An image dependent nonlinear transfer function is designed for dynamic range compression and a multiscale image dependent neighborhood approach is developed for contrast enhancement. Real time processing of video streams is realized with the I-R model based technique due to its high speed processing capability while AINDANE produces higher quality enhanced images due to its multi-scale contrast enhancement property. Both the algorithms exhibit balanced luminance, contrast enhancement, higher robustness, and better color consistency when compared with conventional techniques. In the transform domain approach, wavelet transform based image denoising and contrast enhancement algorithms are developed. The denoising is treated as a maximum a posteriori (MAP) estimator problem; a Bivariate probability density function model is introduced to explore the interlevel dependency among the wavelet coefficients. In addition, an approximate solution to the MAP estimation problem is proposed to avoid the use of complex iterative computations to find a numerical solution. This relatively low complexity image denoising algorithm implemented with dual-tree complex wavelet transform (DT-CWT) produces high quality denoised images

    Object Detection in 20 Years: A Survey

    Full text link
    Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.Comment: This work has been submitted to the IEEE TPAMI for possible publicatio
    • …
    corecore