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ABSTRACT 

This research focuses on extracting road models from stereo video sequences 

taken from a moving vehicle. The proposed method combines color histogram based 

segmentation, active contours (snakes) and morphological processing to extract road 

boundary coordinates for conversion into Matlab™ or Multigen OpenFlight™ 

compatible polygonal representations. 

Color segmentation uses an initial truth frame to develop a color probability 

density function (PDF) of the road versus the terrain. Subsequent frames are segmented 

using a Maximum Apostiori Probability (MAP) criteria and the resulting templates are 

used to update the PDFs. Color segmentation worked well where there was minimal 

shadowing and occlusion by other cars.  

A snake algorithm was used to find the road edges which were converted to 3D 

coordinates using stereo disparity and vehicle position information. The resulting 3D road 

models were accurate to within 1 meter. 
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1 INTRODUCTION 

1.1 The UCF Driver Simulator 

The University of Central Florida’s (UCF) College of Engineering has been using 

driving simulators for research over the last 10 years. Their first driving simulator (1996) 

consisted of a full size station wagon shell, multi-channel audio system and a Silicon 

Graphics ONYX™ computer with a single Reality Engine II (RE2) graphics pipeline 

driving  three Barco color video projectors and a 170° by 70° circular display screen (see 

Figure 1). Following the retirement of this system, a commercial motion platform based 

system was purchased. The new system allows for rapid interchange of standard vehicle 

cabs.  It uses Image Generators based on a cluster of PC’s with high power graphic 

generator cards. 

- Top View-
- Side View -

 

Figure 1 – UCF Driving Simulator 
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1.2 Road Model Generation for the UCF Driving Simulator 

The first database developed specifically for the UCF driving  simulator 

represents a two and a half mile portion of the UCF campus road network. Student 

assistants using traditional manual methods with the Multigen™ database generation 

toolset developed it. Building models consist of simple polyhedral models with textures 

manually applied. Roads were developed using Multigen RoadTools™ . Approximately 

three man-years were required to complete the first generation database. 

A great amount of effort was expended in correlating this database with the actual 

terrain. It was necessary to constantly compare the generated image from the driver’s eye 

point with a video sequence recorded from a moving vehicle representing the same 

viewpoint. Properly placing buildings to appear in the same place and matching the road 

geometry required numerous iterations. 

Given the level of effort required for generating a short segment of the UCF road 

network, it’s apparent that using these traditional techniques for developing a large road 

network are impractical due to the large labor effort requirements. 

1.3 Other Techniques for Generating Road Models 

There are various commercial tools for creating models of buildings and other 

above ground structures. Photomodeler™ [1] allows the user to extract 3D textured 

models from photographs. Typically, sets of photographs with different perspective views 

of an object are taken. Corresponding feature points between the photos are manually 

selected by the user; the software then uses photogrammetric algorithms to extract the 3D 

geometry and texture. The resulting model can be exported to other programs in a variety 

of formats.  
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Using Photomodeler™, it would be possible to obtain several hundred stereo 

image pairs of a roadway and generate hundreds of 3D models of road segments. The 3D 

models could then spliced together with a tool such as Multigen Creator™ and textured. 

While this provides an accurate road path, it increases the manual modeling effort 

significantly.  

Another approach would to be take aerial photographs and use a road extraction 

algorithm such as [2]. Unfortunately, aerial photography can cost hundreds of dollars per 

hour if the desired roads have not been photographed before or if the existing data is 

outdated.  

Skipping image data altogether, [3] takes Global Positioning System (GPS) 

measurements of the road lane boundaries using dual GPS receivers mounted on a 

horizontal boom. Lacking any vision processing the road edges must be extrapolated 

from the vehicles trajectory. 

1.4 Statement of the Problem 

Our goal was to model the road using stereo video cameras. We planned to collect 

video and position data using a specially equipped station wagon, and post-process it in a 

semi supervised fashion to extract sections of the campus road network. The extracted 3D 

information can then be used to create an accurate georeferenced road with respect to 

buildings in the visual database. 

1.5 Overview 

Our literature review in Chapter 2 focuses on previous systems that have used 

vision for modeling the road environment. Detailed discussions of underlying algorithms 

incorporated into our proposed method are put off to Chapter 3. 



 4

Chapter 3 begins with a systems analysis done to estimate the expected 3D 

accuracy of the extracted road boundaries. Next we describe the hardware and software 

used to collect our sensor data and then we present our proposed method for extracting 

3D road models from the collected sensor data. 

Chapter 4 describes our results in terms of obtaining 3D models for selected 

portions of the UCF campus road network and comparing them against orthorectified 

aerial photographs of the campus. Finally, Chapter 5 contains our conclusions, 

recommendations for improvements in our methodology, and suggestions for further 

research.
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2 LITERATURE REVIEW 

Since our task was to model roads using stereo video, our literature review was 

focused in the area of autonomous vehicular navigation for techniques used to recognize 

roads in ground level video. Working in an outdoor environment also required 

overcoming additional problems such as: 

• Lack of Controlled Lighting 

• Mixture of Natural and man-made features 

• Occlusions due to other vehicles 

• Weather Effects 

We will give a brief historical summary of different efforts over the years and 

then discuss various algorithms and platforms used for navigating over structured and 

unstructured environments.  

2.1 Overview/History 

2.1.1 ALV 

In the mid 80’s the U.S. Department of Defense (DOD) financed several 

Autonomous Land Vehicle (ALV) projects with the goal of cross-country driving. Two 

of these efforts were the Alvin [4] by Lockheed Martin and the Terregator [5] by 

Carnegie Mellon University (CMU). 

The Terregator was a six wheeled autonomous vehicle containing a single color 

television camera, a laser range sensor and an odometer. Remote hosts connected via RF 

links performed the vision processing and navigation. The initial efforts were to navigate 

a sidewalk on the CMU Campus given a plan of the routes available. Three techniques 
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were developed to detect the sidewalk, Edge Detection in the Image Gradient, Oriented 

Windows and Color Segmentation. 

Edge detection attempted to find the sidewalk by thresholding the image gradient, 

edge linking the resultant points and then searching for a pair of lines that met certain 

criteria (i.e. width, parallelism). This method had problems with low-contrast and jagged 

edges. This led to the Oriented Windows technique which would place a window in the 

detected image over the predicted road edge and rotate the window until the gradient of 

the column sums were maximized. This occurs when the window is oriented 

perpendicular to the sidewalk edge. Finally, a color segmentation technique was used to 

separate the image into sidewalk and terrain regions. Red, Green, Blue (RGB) color 

values normalized by the intensity were compared to typical values for sidewalk, grass, 

trees, etc. The sidewalk edges were found by fitting lines to the region boundaries. 

The Terregator would navigate by using its estimated position to predict the 

sidewalk edges, passing the edges to the vision system for comparison to the extracted 

road edges and using the error update vehicle position estimate. Navigation software 

would then generate corrective commands in order follow the pre-planned path. 

Alvin was an eight wheeled diesel powered all terrain vehicle with a fiberglass 

shell. Alvin’s mission was to follow a road from point A to B while avoiding obstacles. 

Its sensors consisted of an odometer coupled to an Inertial Navigation System (INS), a 

color video camera mounted on a pan/tilt mechanism and a laser range scanner. Alvin’s 

processing hardware was totally self contained and included an Image Processing 

subsystem capable of video rate operations such as 3x3 convolution and thresholding.  
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Alvin’s Vision Processing System used a flat earth model to extract the 3D 

coordinates of the road boundaries from the detected 2D boundaries in the cameras 

image. It then passed the 3D road boundary coordinates to navigation system so it could 

point the camera towards the center of the road, this kept the road boundaries in view 

even around turns. 

In 1987 [6] Alvin became the first robotic vehicle intentionally driven off road. It 

relied principally on the Laser Range Finder for detecting obstacles, its onboard hardware 

was not sufficient for stereo disparity processing in real time. 

2.1.2 Demo I/II/III 

After termination of the ALV program in 1989 the Army funded a series of efforts 

with progressively more ambitious aims known as Demo I/II/III [6].  Demo I (1990-92) 

used  a stereo disparity algorithm developed by the Jet Propulsion Laboraty (JPL) which 

ran at 0.5 Hz over a 64x60 image, its main focus was teleoperation. The range data was 

used to emphasize obstacles in the operators image. Demo II (1992-98) vehicles were 

HMMWVs which used stereo black and white cameras for  ranging and a panning color 

camera for road following. The Autonomous Land Vehicle in a Neural Network 

(ALVINN) neural based road follower [7] was used to pan the color camera when 

navigating on roads. Demo II was able to follow structured and unstructured roads in 

good weather. 
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The Demo III program (1998-2004) uses Experimental Unmanned Vehicles 

(XUVs) equipped with a sensor suite of fixed stereo color cameras, fixed stereo FLIR 

cameras and a gimbal mounted Laser Range Finder. At a demonstration in Ft. Indiantown 

Gap, Pennsylvania in 2002, the XUV’s were able to navigate over dirt roads, trails and 

woods. Positive (rocks, trees) and negative (ditches) obstacles were detected and avoided. 

Obstacle detection relied upon the Laser Range Finder without the use of any stereo 

disparity information from the video cameras.  

2.1.3 Navlab/CMU 

CMU followed on its ALV[5] efforts by building the Navlab[8] , a modified 

Chevrolet Panel Van in 1986. The Navlab overcame the primary limitation of the 

Terregator, it had enough room to carry several racks of equipment This vehicle served as 

the platform for a multitude of efforts for following structured and unstructured roads. 

The algorithms developed, such as the Supervised Classification Applied to Road 

Following (SCARF) algorithm [9] for following unstructured roads and ALVINN, found 

application in the Demo II and III program. Another road following algorithm 

RALPH[10] was used to develop a lane tracking system for warning drivers of vehicle 

weave or drift. 

2.1.4 Vamors/Vamp 

Simultaneously with the DOD ALV (1980’s) efforts the Europeans began an 

initiative to develop vehicles capable of autonomously navigating well structured roads 

like freeways. The Vamors[11], a commercial 5 ton van, was used for the initial 

development efforts using a single monochrome camera.  
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As opposed to US efforts the Europeans sought low level vision processing 

operations that operated in sub windows of the video stream. The sub windows were 

localized through a non-real time initialization process to lie on “interesting” areas of the 

road image, such the edges and horizon. They did this in order to implement the 

algorithms in hardware so as to process the image sensor data at video rates. This 

permitted them to approach the problem from a control engineering perspective (20 Hz 

video measurements .vs. 0.5 Hz seconds in ALV) .  

Dickmanns [12] developed the 4D approach which would compare the 2D 

projection of the internal 3D road model to the detected edges and other features of the 

current road image and would use the deviations to modify the computed vehicle 

location. A Kalman filter fused the corrections with INS sensors. 

The European efforts have continued to the present with extensions of the 4D 

approach to stereo cameras; the Expectation Based Multifocal Saccadic (EMS) method 

[13]. A Mercedes 500 SEL test vehicle known as the Vamp is used with a suite of 

sensors. These sensors include, stereo wide field of view (FOV) black and white cameras, 

a single narrow FOV color camera, a high resolution narrow FOV color camera all 

mounted on a pan/tilt platform and a bumper mounted radar. The Saccadic in EMS is a 

reference to how the human visual system is constantly scanning its environment in order 

to build an internal model of the surroundings. The wide FOV cameras are used to obtain 

road edge segments from sub-windows and the narrow FOV cameras focus on the road 

up ahead for vehicle detection and tracking. 
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2.1.5 ARGO/MOBLAB 

 Starting in  1993  the University of Parma developed the Mobile Laboratory 

(MOBLAB) [14] vehicle for the European PROMETHEUS project. The initial efforts 

were to develop an inverse perspective method [15] hosted on a real time massively 

parallel processor known as the PAPRICA, which stood for Parallel Processor for Image 

Checking and Analysis [16], that would convert the single black and white cameras road 

image to an overhead view . Road markings in the remapped image were detected by 

using a morphological operator to compare the local pixel values to its left and right 

neighbors. Thus, road markings could be detected even in the presence of shadows. 

The PROMETHEUS project ended in late 1994, the university continued its work 

with the acquisition of a Lancia Therma Passenger car which was converted for fully 

automatic driving [17]. This vehicle was dubbed the Argo after the mythical many eyed 

creature. The Generic Obstacle Lane Detection (GOLD) [18] system which makes use of 

the Inverse Perspective Match (IPM) method on stereo video to perform lane and 

obstacle detection was developed for the Argo. Argo was demonstrated in 1998 in the 

MilleMiglia in Automatico Tour. During this test, ARGO drove itself autonomously 

along the Italian highway network, passing through flat areas, mountains including high 

bridges and tunnels. The system was able to cover 2000km of road, 95% of the mileage 

was driven autonomously.  The original PAPRICA hardware has been replaced with PC’s 

based on the Pentium MMX. 

For further historical information on autonomous vehicle development see [6, 19]; 

the latter reference  in particular has descriptions of Japanese work in this field. 
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2.2 Road Modellers 

Some of the algorithms used for navigating structured (lane markings), 

unstructured (dirt roads) and terrain will now be presented. 

2.2.1 Unstructured Roads 

2.2.1.1 VITS  

The Vision Task Sequencer (VITS) [4] was implemented on the autonomous land 

vehicle Alvin. VITS builds symbolic descriptions of road and obstacle boundaries using 

both video and range sensors.  

VITS generates a scene description consisting of left and right road edge points 

and locations of potential obstacles. The road edge points are obtained by color 

segmentation, obstacles are located with the laser range scanner.  

The VITS color segmentation algorithm maps the RGB pixel values into the blue-

red plane. It then finds a linear discriminant function that separates the road pixel clusters 

from the terrain. A coordinate transformation is done that rotates the discriminant 

function so that it is horizontal, thus becoming a fixed threshold that separates the 

remapped pixel colors into road and non-road.  

This dynamic thresholding approach was not used in practice on the Alvin, typical 

values for the pixel remapping for the test track for were: 

    [ ][ ]' 0.5 0 0.5 TR R G B= − −   (1) 

, it was convenient to simply subtract the red color component from the blue and use a 

fixed threshold. This became known as the “Blue minus Red” segmenter. 
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The single threshold approach had problems handling shaded regions of the road. 

A “shadow box” technique was developed in which the red-blue plane was separated into 

two regions for the sunlit and shadowed pixels respectively. Separate linear discriminant 

functions were computed for the each region. 

2.2.1.2 SCARF 

The Navlab served as the development platform for SCARF [9] (Supervised 

Classification Applied to Road Following). SCARF can adaptively segment the roadway 

from its surroundings using a multi-class color classifier. The method is seeded by 

manually selecting a road and off road sections. The pixel colors are then clustered using 

a nearest mean clustering method. This is done by first arbitrarily assigning pixels to one 

of a predetermined number of classes. The class means are computed and then each pixel 

is checked to see if they are closer to another class. If a pixel is closer to another class it 

is switched and the class means recomputed again. Eventually no pixels have to be 

switched and the process ends. It has been empirically determined that four color classes 

suffice to represent road pixels and an additional four for non-road pixels. The models are 

computed as: 

    

1

1
i

i

i i
x Wi

T T
i i i i i

x Wi

N

C
N

∈

∈

=

= −

∑

∑
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    (2) 

Where mi is the mean, Ci is the covariance, and the color is defined as the vector 

x=[R G B]T. The probability of a pixel being in the road class using Bayes rule is: 

    ( | ) ( )( | )
( )

P road P roadP road
P

=
xx

x
  (3) 
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where P(x) is calculated by: 

  ( ) ( | ) ( ) ( | ) ( )P P road P road P offroad P offroad= +x x x  (4) 

and where P(road) and P(offroad) represent the expected area of the road and off-road 

region. 

The likelihood P(x|road) is found as the maximum of each of the road’s color 

class probabilities: 

   ( ) ( ){ }( | ) max |
r

r rw
P road P w P w=x x    (5) 

where wr represents each color class model. 

Each of the road color probabilities is represented by a Gaussian function: 

  ( ) ( ) ( )1/ 23/ 2 11( | ) 2 exp
2

T
r r r rP road C Cπ −− −⎡ ⎤= − − −⎢ ⎥⎣ ⎦

x x m x m  (6) 

The maximum of this function can be computed by finding the maximum of its 

natural logarithm: 

  
( ) ( )

( )

1

3

1ln( ( | )) max
2

1 ln 2
2

r

T
r r r rw

r r

P road L C

L Cπ

−⎧ ⎫= − − −⎨ ⎬
⎩ ⎭

⎡ ⎤= − ⎣ ⎦

x x m x m
 (7) 

where Lr is computed once per frame. 

The results obtained compare very well against edge based detection schemes 

especially for dirt roads or partially obscured road edges. SCARF was able to perform 

better than a human selected color threshold value (recall the ALV/Alvin) in segmenting 

out the road from the background.   
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SCARF also detects intersections. A parameterized model of a branch intersection 

is used to generate bit masks representing perspective views of various types of 

intersections or straight road segments. The measure of fitness is computed as the sum of 

absolute differences between the image area classified as being on the road and the 

generated bit masks. The road segment is classified as the corresponding class of the best 

fitting bit masks road model. Curved roads are approximated with a straight road at an 

angle. 

2.2.1.3  XUV 

Part of the Demo III efforts involved developing a neural network (NN) approach 

[20] that takes range and color information to segment ill-structured dirt, grave and 

asphalt roads. A tele-operated XUV was used to collect color video and laser range 

information.  

The training and testing data consisted of 107 video frames randomly chosen from 

the recorded data and matched up with the laser range data that was closest in time. A 

sparse sampling grid was used to apply a variety of filters to obtain fourteen different 

features from the color and range data. Truth data was obtained by manually segmenting 

the color and range images into road and non-road regions. The types of features used as 

inputs to the neural net were: 

• Joint RGB histogram and component histograms 

• Color texture features obtained using Gabor Filters 

• Mean and Covariance of the laser range about each sampling point. 
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The neural net contained one hidden layer of 20 units. Various input feature 

configurations were used: Color, Texture, Color + Texture, Color + Laser, etc. For each 

of the frames chosen, a separate NN was trained and its performance against the other 

106 frames measured. The mean and standard deviation of the NN performance for each 

feature combination were then tabulated.  

The best single feature to use was found to be Color; adding Texture and Laser 

Range features did not increase the ensemble accuracy of the 107 NN’s but decreased the 

standard deviation. 

A flat earth model can be used to convert the NN classified pixels into a 3D point 

cloud. [20] did not address extracting or fitting a road model to the 3D points. 

2.2.2 Structured Roads 

2.2.2.1 YARF 

YARF (Yet Another Road Follower) [21] was developed to permit the Navlab to 

follow well structured roads at higher speeds than SCARF was capable of. YARF was 

designed to extract the middle yellow lane markers and the solid outside lines and fit a 

road model to the extracted coordinates. 

YARF uses color hue information to segment out the yellow lane markers, detects 

them using blob processing and compute their centroids. The solid white line is searched 

for using a horizontal stripe template that is correlated against the blue image component. 

The stripe template is sized according to the expected stripe width in the image, which for 

a flat earth model varies with the image row. 
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The computed yellow stripe locations and solid bar centers are collected over 

several frames and converted to the same 3D world coordinate system. An M-estimator 

[22] is used to fit a road model comprised of a centerline and lane boundaries to the 

extracted feature locations.  

2.2.2.2 LOIS 

Likelihood of Image Shape (LOIS) [23] is a lane tracker that uses a deformable 

template approach. A single camera is used to capture the road image. The projection of 

the road edges onto the 2D image plane can be approximated by a parabolic equation of 

the form bymykx ++= ** 2 , where x and y are the pixel coordinates. 

A likelihood function is defined whose value is proportional to how well a 

particular set of parameters matches the pixel data in a specified image. For each pixel in 

the image the distance to the closest parabola is found and the normal to the curve at that 

point computed. The projection of the image gradient to the normal is computed and 

weighted by its distance to the curve with a function of the form ( ) 2*1
1,

d
df

α
α

+
= , 

where d is the distance from the pixel to the curve. The likelihood function is then 

expressed as: 

  ( ) )),(,(*),(),(,, yxdfyxnormalyxGradientbmkL
x y

α∑∑ •=  (8) 
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LOIS searches through parameter space using the Metropolis Algorithm [24]. For 

an initial set of values [ ]Tk m b=v a random perturbation dv is selected and the 

likelihood function ( )L v and ( )L +v dv are compared. If the new likelihood is greater the 

perturbation is accepted, it is less it is accepted with a probability between 1 and 0. The 

probability density function is an exponential function of the form: 

    
( ) ( )

( , ) i

L L v
Tp e α

⎛ ⎞− +
⎜ ⎟
⎝ ⎠=

v dv

v dv    (9) 

The “temperature” iT decreases as the number of iterations increases. This makes 

the probability of accepting a lower likelihood decrease over time. What this method does 

is allow transitions to a less likely set of parameters in the early stages when the 

temperature is “hot”, this prevents being trapped in a local minima. LOIS finds the most 

likely curve shape with maximum support for image gradients oriented normal to the 

curve. This reduces the effect of shadows since most of the vertical gradients are ignored. 

Figure 2 shows LOIS results after 40 iterations for a road with shadows. 

 

 

Figure 2 – LOIS Results on a Road with Shadows 

(Reprinted with permission from "Tracking Lane and Pavement Edges Using 
Deformable Templates" in Proceedings of SPIE Vol. 3364 "Enhanced and 

Synthetic Vision 1998", pages 167-176, by K.C. Kluge, C.M. 
Kreucher and S. Lakshmanan) 
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2.2.2.3 ARGO/MOBLAB/GOLD. 

Bertozzi and Broggi have done extensive work with autonomous vehicle 

navigation [11, 15, 17, 18]. They use inverse perspective mapping to generate a top view 

of the roadway for determining the road boundaries and for finding obstacles. As Figure 

3 shows their technique has shown very good results in real road situations. However 

they do not require a lot of precision in the farthest end of the image for steering their 

vehicle. Since there are less pixels on the road as the range increases, the boundary 

location accuracy suffers. 

 

Inverse Perspective
Transform

Edge detected
Edge Thinning

& Linking

FUSION

 

Figure 3 – Inverse Perspective Mapping for Road Localization 

(Reprinted with permission from VisLab, Artificial Vision and Intelligent Systems Lab, Univ of 
Parma, Italy (http://vislab.unipr.it/GOLD/)) 
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2.2.3 Road Followers 

Road followers are designed to provide a steering command directly to a 

Navigation System. They do not attempt to provide road lane coordinates needed to 

construct a 3D road model. 

2.2.3.1 ALVINN 

ALVINN (ALV Neural Network) [7] is a neural network that is trained by 

observing the camera image and the drivers steering input. ALVINN uses a reduced 

resolution image fed directly to a 30x32 array of input units these are connected to a 

single hidden layer of 4 units and these in turn connect to 30 output units.  

Once training is complete ALVINN will output a bell like curve with a narrow 

peak whose location corresponds to the road curvature. 

Left Straight Right

4
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Figure 4 – ALVINN 
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2.2.3.2 RALPH 

The Rapidly Adapting Lateral Position Handler (RALPH) [10] uses a single 

camera to determine a vehicles position in its lane and to measure the amount of road 

curvature up ahead. 

RALPH uses a reduced resolution image of like ALVINN. RALPH distorts the 

image to remove the perspective effect and then computes the column averages. A 

gradient of the column average vector will show peaks corresponding to the road 

boundaries. The location of the peaks also shows where the vehicle is laterally positioned 

on the road.  

If the road is angled or curved the gradient peaks are blurred in comparison to a 

straight ahead segment. RALPH can determine the degree of curvature by distorting the 

image and determining which of the transformations has the highest gradient contrast. 

RALPH is able to “lock” onto roads in conditions where the lane markers are not readily 

visible, it can follow discolorations in the middle of the road , it can even lock onto 

vehicles in front of it. 

RALPH was demonstrated in 1995 on the Navlab 5 a 1990 Pontiac Trans Sport in 

the “No Hands Across America” [25] tour where it was able to autonomously drive 

98.2% of 2797 mile course from Pittsburgh to San Diego. 
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2.2.3.3 Vanishing Point Based Method 

A technique for determining road curvature is described in [26] that uses the 

vanishing points of the road edges. The road image in a single camera is divided into 

horizontal stripes which become shorter in height nearer to the horizon. The stripes 

represent road segments of equal length. A sobel edge detector is used to extract edge 

points which are linked together into line segments using a Hough transform. The 

vanishing point is defined as the intersection of the lines on which left and right road 

edge segments lie on. 

For a straight road the vanishing points computed for each horizontal stripe would 

lie close to each other. A curved road is indicated by a shift in the vanishing point as one 

moves up through the image. The degree of shift corresponds to the road curvature and 

can be converted to a steering command.  

2.3 Conclusion 

Graefe and Kuhnert in the introductory chapter of the 1992 Vision-based Vehicle 

Guidance stated “It will certainly take a long time before autonomous vehicles will be an 

everyday appearance on public roads …” [27]. While a general purpose road follower is 

still years away, we see that for special purpose situations such as modeling portions of 

the UCF Campus road network we can use the techniques of color based pixel 

classification, inverse perspective matching, stereo disparity , oriented operators and sub-

windowing as a starting point to develop a semi-supervised road modeller. 
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3 APPROACH 

3.1 System Analysis 

This System Analysis was performed to estimate the expected 3D accuracy of the 

extracted road boundaries. The System Analysis begins with a description of the nominal 

system architecture, the various coordinate transformations involved in going from 2D 

image plane measurements to 3D world coordinates and the throughput requirements. 

The System Analysis decomposes the nominal architecture into the major 

components and estimates the error contributions of each component. Finally through an 

error block diagram we roll up the individual contributions to obtain the overall system 

accuracy. 

3.1.1  System Description 

The system is comprised of a pair of color CCD video cameras mounted on top of 

a 1984 Ford LTD Station Wagon along with a Solid State Compass, GPS receiver and an 

odometer. All data is collected by a Dual Pentium III PC and saved to a RAID disk array. 

The data is post-processed using Matlab software and an initial set of road boundaries 

input by the user. 

The Matlab software finds the road boundaries in the video data then, using the 

other sensors, converts the 2D road boundaries to 3D world coordinates. 
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3.1.1.1  System Block Diagram 

A block diagram of the system is shown in Figure 5. This diagram combines the 

capture and post-processing steps. 

Figure 5 – System Block Diagram 

 

Capture software combines the video and sensor data creating an AVI (Audio-

Video Interleaved) file. The AVI file is processed by Matlab software routines which 

separate the video and sensor data and feed them to various software modules. 

The stereo image data is processed to extract 3D coordinates of the road 

boundaries which are converted to world coordinates using the navigation filter output. 

3.1.1.2 Coordinate System Definition 

This section describes the different coordinate systems involved in converting 

pixel coordinate to world coordinates. 
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3.1.1.3 Camera Coordinates 

The format of the saved video data is 1280x480 (640x320 also supported) with 

the first video line used to store sensor data. Each frame is made up of a left and right 

640x480 images concatenated together, see Figure 6. 

480

1

12806401

Sensor Data

Left Right

 

Figure 6 – Video Frame Format 

 

We will assume our cameras are located on the X axis of a R.H.S. which has 

positive X towards the right, positive Y pointing down and positive Z pointing forward 

with respect to the vehicle. The left camera is located at the origin with the right camera a 

distance B away. This camera coordinate system fixed to the left camera’s optical center 

and rolls and pitches with the vehicle (i.e. cameras are assumed fixed with respect to the 

vehicle). 
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Figure 7 – Camera Coordinate System 

 

Assuming a locally flat earth, a point P visible to both cameras would have 

Universal Transverse Mercator (UTM) [28] coordinates Px, Py and elevation Pz (relative 

to sea level) and is projected onto the cameras 2D sensors at coordinates u,v and u',v'. 

A top-down view would look as follows, 
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Figure 8 – Top Down View of Camera Coordinate System Relative to UTM 

 

The Z axis of the camera coordinate system always points in the direction of the 

vehicles forward orientation, note that when traveling around a curve the vehicles 

forward orientation and the vehicles direction of travel are not aligned. 

The image analysis S/W will find a set of points in the left and right images and 

determine that they correspond to projections of the same point P in 3D space. Assuming 

negligible roll we have the following. 

-Y

Vehicle
Pitch

u,v

P

Flat Earth

Image
Plane

+Z

 

Figure 9 – Side View of Projection of 3D World Point P into Camera Coordinate System 
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A pair of optical rays can be constructed that begins at each camera’s u,v 

coordinate, passes through the optical center and converge at P. Therefore P’s location in 

the cameras coordinate system is x,y,z. 

3.1.1.4 World Coordinates 

The world coordinate system shall be Universal Transverse Mercator Projection 

(UTM) [28] .UTM uses a projection of 6o wide strips of the earth onto a transverse 

cylindrical surface wrapped around1 the earth at one of the 60 central meridians. 

Eastings

Northings

 

Figure 10 – Universal Transverse Mercator Projection 

 

Latitude and Longitude measurements taken with the GPS shall be converted to 

UTM using the appropriate central meridian for Orlando, Florida. 

UTM x and y coordinates are in meters and by convention the origin is placed 3o 

left of the central meridian at the equator so x (eastings) is always positive. 

The following figure relates the coordinate systems from measured image plane 

coordinates to world coordinates. 
                                                 

1 Actually the imaginary cylinder is partially below the surface near the equator in order to 

minimize the error at the +/-3o points from the meridian 
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Figure 11 – Coordinate Systems Relationship 

 

3.1.2 Throughput Requirements 

3.1.2.1 Video Capture 

The cameras used are the Sony DFW 500 models that use a Firewire™ (IEEE 

1394 [29]) interface to the PC. The maximum 1394 bandwidth is 400 Mbit/s of which a 

maximum of 85%[30] can be allocated to isochronous (constant data rate) transfer. The 

DFW 500 is capable of capturing 4:2:2 YUV (Luminance, Blue Chrominance, Red 

Chrominance) [31] at resolutions of 640x480 and 320x240 and at frame rates of 30 Hz, 

15 Hz, 7.5 Hz, etc or synced to an external trigger which can have a maximum rate of 15 

Hz [32]. 

A single firewire adapter can connect to two or more cameras. Two cameras 

operating at 15 Hz, 640x480 resolution would require: 
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 2 * 15 fps * 640 * 480 * 16bits/pixel = 147 Mb/s < 400 Mb/s x 0.85 

For a standard PC the PCI bus will burst transfer in 64 byte (16 Dword) chunks 

before the bus is rearbitrated. Assuming a 2.4 microsecond latency time gives us a max 

sustained data rate of 100 MB/s [33]. This must be cut in half since the video data is 

transferred to memory first and then out of memory to the hard drive. 

The hard drives used are a striped set of 9 GB SCSI drives which have been 

verified to support 28 MB/sec data transfer rate. 

Experiments conducted on a dual Pentium III (450 MHz) with 256 MB of 

memory with 2 Sony DFW 500 cameras and a single firewire adapter have shown that 

capturing at 10 Hz (external sync) can be done with no missed frames. 

3.1.2.2 Other Sensors 

Compared to the video requirements, the requirements for the other sensors are 

trivial. 

• GPS Sensor at 1 Hz Raw Measurement Rate : 256 bytes/second 

• Solid State Compass 10 Hz Angles- Accelerations : 130 bytes/second 

• Odometer 10 Hz Odometer  :  40 bytes/second 

3.1.3  Error Analysis 

3.1.3.1 Intrinsic Camera Errors 

Intrinsic camera errors cause a point/edge in real world space to project to a 

different position in the cameras CCD sensor than would be expected if ideal pinhole 

camera optics were used. 
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3.1.3.2 Optical Errors  

Optical Distortion in lenses causes “barrel” or “pincushion” distortion in images 

(see Figure 12), wide FOV lenses in particular have a lot of distortion. 

 

Undistorted Pin-Cushion 
Distortion

Barrel 
Distortion  

Figure 12 – Types of Lens Distortion 

 

We will assume that lens distortion can be modeled with the radial distortion 

model used in calibration technique described in[34] which has been implemented in 

Matlab by[35] . This yields a maximum pixel error of less than 1 pixel due to errors in the 

estimation of radial distortion coefficients. 

The Optical Transfer Function (OTF) of a lens determines the maximum resolution 

possible. Since there is no means to obtain direct CCD readings of the Sony camera due 

to the use of a Bayer Filter [36] in its design we will use the lens manufacturer’s design 

parameters for the Circle of Confusion (COC). The Circle of Confusion describes how 

much a point source that is not at the focused distance (i.e. 50 ft, infinity) is blurred as 

shown in Figure 13. Points B and C in Figure 13 will remain in focus as long as their 

respective COCs remain small enough do that it is approximately 70% covered by an 

image element as shown in Figure 14. 
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Figure 13 – Circle of Confusion 
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Figure 14 – COC Coverage by Pixel 

 

A COC with a diameter equal to the diagonal element size has coverage of:  

 
2

2
Circle of Confusion Area

Unit Element Size
2 0.637 63.7%r or

d
π

π= = =  (10) 

The manufacturer of the lens used has listed acceptable COC’s for various 

standard CCD sizes. This table is reproduced below. 
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Table 1 – Permissible COC by CCD Type 

CCD Type Permissible Circle of Confusion 

2/3" 0.021mm 

1/2” 0.016mm 

1/3” 0.011mm  

1/4” 0.008mm 
Source: From Rainbow CCTV (http://www.rainbowcctv.com/tech/depth.html) 

The lens is a Rainbow S48WI and can be used with 2/3, ½ and 1/3 type CCD’s. 

The CCD used by the Sony DFW-V500 camera is a Wfine™ CCD Type 1/3, which has 

an element size of 7.4 by 7.4 micrometers (10.46 micrometers diagonal). From the 

manufacturer’s table we see that the COC is adequate for this CCD and therefore we can 

use a pixel error of ½ as the error contribution of the lens. (OTF) 

Blurring of the image can also be caused by linear and random motion. The linear 

motion of the camera over the road results in an optical flow where distant parts of the 

image are still while the close up portions blur as they speed by. Random motion is due to 

vehicle vibration being transferred to the camera and causing jitter. 

The Modulation Transfer Function (MTF) degradation due to linear motion is 

[37] 

    
xl

xl
linear fa

fa
MTF

π
π )sin(

=     (11) 

where: 

 al = angular distance moved in radians = vrtint 

vr = relative angular velocity in radians per second 

tint = integration time (shutter speed) (typical CCD value is 1 to 10 milliseconds) 
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fx = spatial frequency in cycles per radian 

 

Equation 11 can be rewritten to express the angular distance motion in fractions 

of the detector angular subtense and the spatial frequency in terms of fractions of the 

detector cutoff frequency. The detector angular subtense (DAS) is related to the cutoff 

frequency by the following equation: 

  
length focal effective

sizedetector1 subtenseangulardetector ===
dcof

α  (12) 

Using this definition Equation 11 is rewritten as follows: 
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For a point at a distance d lying on the road and assuming the cameras are at a 

height h and the vehicle has forward velocity dot-d the angular motion is: 
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For typical values of d equal to 15 m, speed at 50 km/hr and h equal to 2 m we get 

an angular velocity of 0.106 radians per second which for an integration time of 1 

millisecond yields an angular movement of 0.106 milliradians. For a detector size of 7.4 

micrometers and focal length of 4.8 millimeters, our DAS is equal to 1.54 milliradians 

and we see the motion of the point expressed as a fraction of a DAS is 0.068. Holst [37] 

gives a rule of thumb that for motion comprising less than 0.2 DAS there is a negligible 

degradation of the MTF. 

In Figure 15 we see the linear MTF for distances of 16.8, 12.2 and 7.6 meters (55, 

40 and 25 ft) given a speed of 50 km/hr, and integration time of 1 millisecond. If we 

compare this to Figure 16 where the distance is kept to 7.62 meters but the shutter speed 

is varied from 1 to 10 milliseconds we see that for a low shutter speed the MTF 

degradation is slight but for slow shutter speeds (such as those needed in low light 

conditions) we see a significant MTF degradation. 
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Figure 15 – Linear MTF as Function of Normalized Spatial Frequency 
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Figure 16 – Linear MTF as a Function of  Shutter Speed 

 

MTF degradation due to sinusoidal and random motion are given by the following 

equations expressed in fractional DAS motion and normalized spatial frequency. 

 

    sin
sinusoidal 0 (2 )x
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a fMTF J
fα

=    (15) 

where J0 is the zero order Bessel function and asin is the amplitude the sinusoidal 

motion and: 
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where σrms is the rms random displacement in milliradians 
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Equations 15 and 16 however require that there be many sinusoidal or random 

motions occurring during the integration time which would require frequencies in the 

kilohertz range. According to[38] such frequencies will not be passed by the vehicle 

suspension. Typically frequencies on the order of  1.5, 8 and 13 Hz will affect the vehicle 

pitch at a speed of 50 km/hr.  

Experimental data using a solid state compass collected for the vehicle while 

stationary and moving shows that the power spectral density (PSD) is significantly 

attenuated beyond 1 Hz for smooth roads. Comparing the PSD of the vehicle pitch while 

in motion to the PSD of the sensor being shaken by hand shows how much the 

suspension is attenuating high vibration frequencies. 

 

 

Figure 17 – Pitch Power Spectral Density for Stationary Vehicle 
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Figure 18 – Pitch Power Spectral Density for Vehicle at 30 MPH 

 

 

Figure 19 – Pitch Power Spectral Density for Sensor Being Shaken by Hand 

 

Since the resonant frequencies are low for the pitch we can use Equation 15 and 

compute the fractional DAS motion for the 15 Hz component shown in Figure 18. The 15 

hz motion is described by: 

    int0 t)2sin( wtaal π=    (17) 

which has a maximum value of: 



 38

   
15     ws 0.001    t0.015818

t2(max)
int0

int0

===−=
=
dBa

waal π
  (18) 

and yields al ≈ 1.5 milliradians or a fractional DAS coverage of 1. The MTF for 

this is shown in Figure 20 along with the MTF of the RMS value for the fractional DAS 

coverage. The lower frequency peaks at 12.5 and 2.5 Hz will yield RMS values for the 

fractional DAS coverage of 0.24 and 0.08 respectively which according to the Holsts rule 

of thumb results in negligible MTF degradation.   

0 0.5 1
0

0.5

1

MTF vibration 1 f x,

MTF vibration 0.707 f x,

f x
f dco  

Figure 20 – Linear MTF for Fractional DAS Coverage of 1 

 

3.1.3.2.1 Bayer Filter 

Low cost digital cameras such as the Sony DFW-V500 use a single CCD with a 

Bayer filter[36] to obtain color information. As shown in Figure 21, the Bayer filter is 

made of individual color filters on the CCD elements, where 50% of the pixels have 

green filters, 25% red filters and the remaining 25% blue. 
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Figure 21 – Bayer Filter 

 

In order to obtain a full RGB at each pixel it is necessary to interpolate the 

missing colors. The exact algorithms used by the varying camera manufacturers to 

demosaic the image are proprietary[39]. We will assume a simple linear interpolation is 

equivalent to convolving the following Kernels with the image: 
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where the image is processed as follows: 
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Figure 22 – Color Interpolation 

 

Figure 16 shows the Fourier transform of the impulse response for HB/HR and HG 

HR/HB Fourier Response Magnitude HG Fourier Response Magnitude

FX
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Figure 23 – Frequency Response of Demosaicing Filters 
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The interpolation filters act like low pass filters, with the Red and Blue filters 

showing more frequency rolloff than the Green filter.Using the Green filters response, 

since natural scenery has a preponderance of shades of green, we see an additional error 

contribution of 2 pixels rms by the demosaicing process. 

3.1.3.3 Calibration Errors (Extrinsic) 

Extrinsic calibration of the stereo cameras also includes rectification of the 

cameras so that corresponding points in the image pair lie on the same row. A set of 

images of a calibration pattern shown in Figure 24 were used to obtain the stereo camera 

parameters used to rectify one of the images (see Figure 25). Comparison of the left and 

right images shows a pixel error of 0.21812 in the vertical positions of the corresponding 

points. 

 The stereo calibration software also contains routines for computing the 3D 

camera coordinates of corresponding points. Table 2 has a comparison for the estimated 

3D range vs. the measured range for the points shown in Figure 27. 

 

                                                 

2 The Camera Calibration Toolbox developed by Jean-Yves Bouguet uses a Harris Corner Finder 

[40] to detect the pattern corners. A sub-pixel precision of 0.1 pixel is claimed by the developer. 
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Figure 24 – Left and Right Images of Calibration Pattern 

 

 

Figure 25 – Rectified Image Pair 

 

Figure 26 – Extracted Grid Points for Left and Right Rectified Images of Test Pattern 
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Figure 27 - Corresponding Points 

 

Table 2 – Estimated .vs. Measured Distances for Test Pattern in Camera 
Coordinate System 

Values in Meters 

Estimated Measured 

8.98 9.09 9.08 8.98 9.04 9.06 9.08 9.09

8.34 8.32 8.17 8.22 8.12 8.14 8.17 8.19

7.22 7.13 7.11 7.21 7.19 7.22 7.26 7.29

Std Deviation of Error = 0.11 (4.2 inches) 

Std Deviation of % Error = 1.4 % 

 

3.1.3.4 Inverse Perspective Errors 

Inverse Perspective Mapping transforms u,v camera coordinates to 3D 

coordinates. For a single camera system the world is assumed to lie on a flat plane and 

the 3D coordinates lie on the intersection of the projected ray from u,v with the plane. 

The computed intersection point is sensitive to pitch errors so it is necessary to 

use an attitude measuring system such as a solid state compass. 
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Figure 28 shows the range error resulting from a ΔΡ pitch error.  

R

h ΔP
P

ΔR
 

Figure 28 – Range Error from Pitch Error 

 

 For R=15 m, h=2 m and ΔΡ=±1deg we have: 

    ( )arctan , tan 1Rp R h p
h

⎛ ⎞= = ⋅ ±⎜ ⎟
⎝ ⎠

  (20) 

which yields R= ±h tan(82.4) or ΔR = +1.7, -2.2 m. 

For working ranges from 7.6 m to 30.5 m (25 ft to 100 ft) we see the bounding 

errors in figure Figure 29. 
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Figure 29 – Range Error for +/- 1 degree Pitch Error 

 

3.1.3.4.1 Stereo System 

A stereo system bounds the range error with the disparity measurement error. If 

we assume a ± 1 pixel error3 in the disparity we see the Figure 29 above becomes: 

We can express this range error in the 3D camera coordinates as a bounding box,  

    
2

1 0

x

x
c

x

x n
y nR
z n

±⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥±Δ⎢ ⎥ ⎢ ⎥= +
⎢ ⎥ ⎢ ⎥±
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

X     (21) 

where nx, ny and nz are the direction cosines of the unit vector from the camera 

origin to x,y,z. 

The world coordinates Xw are then affected by the range error: 

                                                 

3 Sub pixel accuracy has been demonstrated on various systems [41] [42]  but will be ignored for 

this analysis. 
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⎢ ⎥±⎡ ⎤− Δ ⎢ ⎥Δ = ⎢ ⎥ ⎢ ⎥±⎣ ⎦ ⎢ ⎥
⎣ ⎦

R R T RX   (22) 

where R and T are the rotation matrix and translation vector to go from camera 

coordinates to world coordinates. 

3.1.3.4.2 Boundary Segmentation Error 

The boundary segmentation error is the error in determining the correct pixel 

boundary between the road and terrain. 

A segmentation performance of 0.8 is assumed which is consistent with reported 

results for road color segmentation[2], neural network[20] and Hidden Markov Model 

(HMM)[43] classifiers. 

The segmentation performance was used to generate a series of class membership 

images as shown in Figure 30. 

A fast snake algorithm [44] was then used to find the edges of the Gaussian 

filtered gradient of the class membership and the final boundary compared to the known 

boundary for a series of images in which the boundary was being shifted according to a 

sinusoidal pattern. As shown in Figure 31, after the snake has “captured” the boundary it 

is able to follow the moving boundary over time with a RMS pixel error of less than 1.5 

pixels.  
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Figure 30 – Synthetic Segmentation Image (top) and Gradient (bottom) 

 

 



 48

 

Figure 31 – RMS Pixel Error Over Time 

 

3.1.3.5 Navigation Errors 

The navigation errors are represented by the errors in the rotation matrix and 

translation vector used in converting from camera centered coordinates to world 

coordinates. 
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3.1.3.5.1 Odometer 

The odometer is a Hall effect sensor attached to the speedometer output shaft of 

the transmission. A 50% duty cycle square wave is produced whose frequency is a 

function of speed as shown in Table 3. Measurements were made of the accuracy of the 

odometer sensor by constructing a digital counter and determining the counts given over 

a 37.0 m (121.5 ft) distance. The results are shown in Table 4 which shows each 

odometer count represents approximately 0.27 m (10.5 in) of forward motion. 

Table 3 – Frequency Measurement of Odometer at Various Vehicle Speeds 

Speed km/hr (mph) Frequency (Hz) 

 Run  1 Run 2 

8 (5) 13.99 14.02 

16 (10) 20.53 20.53 

24.1 (15) 25.45 26.96 

40.2 (25) 43.86 42.01 

56.3 (35) 58.47 56.18 

 

Table 4 – Odometer Counts for Fixed Distance 

Odometer Count for a Distance of 37.0 m (121.5 ft) 

Run Count 

1 139 

2 139 

3 138 

4 139 
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Odometer Count for a Distance of 37.0 m (121.5 ft) 

Run Count 

5 139 

6 138 

 

3.1.3.5.2  Compass 

A solid state compass is used which consists of three accelerometers and three 

magnetometers in an orthogonal arrangement. Experimental measurements show a 

stationary measurement noise of ±0.5 degrees RMS with a frequency response as shown 

in Figure 17. From these results we will assume a measurement noise of ±1 degrees in 

roll pitch and yaw in determining the vehicle attitude with respect to the world 

coordinates. 

3.1.3.5.3 GPS 

The GPS is used to determine the vehicle position in the world coordinate system. 

GPS measures the lat, long and altitude using satellite signals from a constellation of 

satellites that are currently in view[45] . Since the configuration of viewable satellites is 

constantly changing the measurement accuracy varies over time. Planning software [46] 

can be used to determine the best times to take measurements. 
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GPS data was collected for several roads on the UCF campus to compare raw 

measurements versus differential global positioning system (DGPS) measurements before 

and after the Selective Availability (SA) was turned off4. 

Since DGPS requires a base station in addition to a remote unit, the base unit 

antenna was placed on top of the Engineering I building. 

Two DGPS procedures were used: 

• A post-processed version where special firmware on the GPS devices was 

used to collect additional measurements which were processed by 

proprietary Novatel software.  

• A real time version where correction measurements were sent from the 

base station to the remote unit over a wireless network link.  

As shown in Figure 32 and Figure 33 the performance of the real time DGPS with 

SA off was as good as or better than the post-processed DGPS with SA on. For the real-

time DGPS with SA off; the results were ±0.3 meters error in horizontal position and 

±0.6 meters error in altitude. 

                                                 

4Selective Availability is intentional degradation of the Global Positioning System (GPS) signals 

available to the public and was turned off by Order of the President of the United States on Midnight May 

1, 2000.  
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Figure 32 – Real Time DGPS with SA Off 
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Figure 33 – Post Processed DGPS with SA On 

 

3.1.3.6  System Accuracy 

The system accuracy can be obtained by determining the effect of the previous 

errors on the 3D accuracy of points in the camera coordinate system and then analyzing 

the effect of errors in the camera to world coordinate transformation. 



 54

For a set of matching points with coordinates [U1, V1]T and [U2, V2]T in the left 

and right images respectively the 3D location is obtained by finding the closest point of 

approach of the respective 3D vectors formed by the ray from the U,V point to the focal 

point. Noise in the U,V points will affect the computed closest point of approach.  

Going through all our error sources we summarize their contribution/effect on ΔV 

and ΔU in Table 5. 

Table 5 – Pixel Error Sources 

Source Pixel Error Note 

Optics 0.5 Section 3.1.3.1.1 

Vibration 2 Section 3.1.3.1.1 

Bayer Filter 2 Section 3.1.3.1.2 

Rectification 0.2 Section 3.1.2 

Segmentation 1.5 Section 3.1.3.3.3 

Stereo Disparity 1 Section 3.1.3.3.2 (Does not affect 
the pixel position, only the  3D 
triangulation) 

 

The 3D error ΔP is determined by performing a Monte-Carlo computation using  

Gaussian distributed U,V. Assuming a grid of points as shown in Figure 34 is projected 

as shown in Figure 35 and the 3D position is triangulated with a pixel position error of 

3.2 pixels and with a disparity error of 1 pixel we have an error in the camera coordinate 

system as a function of distance as shown in Figure 36. 



 55

 

Figure 34 – Grid of  Road Boundary Points 
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Figure 35 – Projection of Road Boundary Points into Left and Right Camera Image Planes 
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Figure 36 – Inverse Projection Error of Road Grid Points as a Percent of the Grid Point Distance 

 

The transformation matrix from camera coordinates to world coordinates is: 

     
W T T
C ⎡ ⎤= −⎣ ⎦R R R T    (23) 

where, 

    

Roll( ) Pitch( )Yaw( )
x

y

z

t
t
t

φ θ ψ=

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

R

T
   (24) 

and the Roll, Pitch and Yaw matrices are computed using the Rodrigues[47] 

formula for rotation about a vector, 
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 (25) 

and nx, ny, nz are the axis unit vectors and ( )w x  is the anti-symmetric matrix 

function. 
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Assuming we are located at 0 degrees latitude and 0 degrees longitude while 

driving east at sea level with no pitch or roll in the vehicle; we have, using small angle 

approximations: 

     
1

1
1

φ ψ
φ θ
ψ θ

−⎡ ⎤
⎢ ⎥′ = −⎢ ⎥
⎢ ⎥−⎣ ⎦

R    (27) 

The translation vector T becomes the vector from the left camera to the ground 

point directly below the GPS sensor, expressed in the camera coordinate system; and 

corrupted by the GPS measurement noise. 
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The overall system error can be expressed as the expected value of the absolute 

difference between world coordinate position of the road grid points and the inverse 

projected road grid points corrupted by pixel noise, attitude measurement noise and GPS 

measurement noise. 

   

{ }T T T TE ′ ′ ′ ′⎡ ⎤ ⎡ ⎤− − −⎣ ⎦ ⎣ ⎦
′ = + Δ
′ = + Δ
′ = + Δ

R R T X R R T X

X X X
R R R
T T T

  (29) 

Performing a Monte Carlo run using Gaussian distributions for φ, θ, ψ with a 

mean of zero and a standard deviation of 1 degree and Gaussian distributed GPS standard 

deviation errors of 0.3 meters horizontal, 0.6 meters in altitude with zero mean gives us 

the results shown in Figure 37, where σW  is the error in meters for the UTM X,Y 

,altitude distance computed using an inverse projection and fσW is error in meters for the 

inverse projection which assumes a flat world (zero altitude). 
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Figure 37 – Error in UTM Distance .vs. Grid Point Distance in Meters 

 

The preceding discussions are summarized in the error block diagram of Figure 

38.  Note that the world coordinate position error is directly affected by the position of 

the points in the camera coordinate system. Creating a first order approximation of 

Equation 29 we get: 

  ( ){ }T T T T TE ⎡ ⎤ ⎡ ⎤Δ − Δ + Δ + − Δ⎣ ⎦⎣ ⎦R R T R T X R R T X  (30) 

which shows for a fixed R and T the position error is directly affected by the true 

position of the points in the camera coordinate system and the triangulation error 

obtained when inverse projecting the 2D camera point projections which have been 

corrupted pixel noise. 
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Figure 38 – Error Block Diagram 

Revisiting Figure 37 we note that if we assume a flat world by ignoring the GPS 

altitude measurements (trace Wf) we still don’t get appreciably better results. However, if 

we decompose the position errors and look at the individual coordinates as shown by 

Figure 39 we see that the primary source of error is due to the Z world coordinate (this 

translates to Eastings in the UTM system). We see that the Z component begins diverging 

significantly from the other components beyond 10 meters. If our goal were to achieve 

just a couple of feet of error then we know that we need to perform our road modeling 

giving greater weight to road boundary points that are closer . 
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Figure 39 – Position Error .vs. Camera in Meters for the Individual UTM Coordinates  

(X=Northings, Z=Eastings, Y=Altitude) 
 

3.2    Hardware  Description 

The system hardware consists of a mobile platform and a base station. The mobile 

platform is a station wagon carrying various sensors and recording equipment. The base 

station is fixed and transmits RTCM [48] correction messages via the internet which is 

picked up by a cellular modem on the station wagon. This communications link is only 

active when operating in DGPS mode. See Figure 40 for a system level view of the 

mobile platform and base station. 
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Figure 40 – System Level view of Sensor Capture Hardware 

 

3.2.1 Mobile Platform 

A 1984 Ford LTD station wagon is used to carry the video and sensor capture 

hardware. The station wagon has been previously used by the UCF Driver Simulation 

Laboratory to collect field data for simulator validation studies and comes equipped with 

a Hall Effect Vehicle Speed Sensor (VSS) mounted on the transmissions speedometer 

output shaft. See Figure 41. 
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Figure 41 – 1984 FORD LTD Station Wagon Used for Mobile Platform, Vehicle Speed Sensor 
Attached to Transmission Shown in Inset. 

 

Two video cameras, a GPS antenna and a solid state compass are mounted on a 

specially constructed carrier as shown in Figure 42. The carrier attaches to the roof  of the 

vehicle thru the use of four Quick-N-Easy gutter clamps and contains a stiff aluminum U-

beam which provides a rigid surface for attaching cameras and sensors. The U-beam 

attaches to the carrier using four rigid rubber shock mounts. 

The rest of the sensor capture hardware is located in the cargo section of the 

station wagon with the exception of the operator station in the rear passenger seat which 

contains the monitor, mouse and keyboard. See Figure 43. 
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Figure 42 – Roof Mounted Carrier for Cameras, GPS Antenna and Compass 

 

Figure 43 – Rear shot of Station Wagon Cargo Area Showing Mobile PC and Other Equipment. 

A dual Pentium-III PC runs the capture software. Power is provided by a 300 

Watt power inverter attached to a 12 Volt Marine Battery. 
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The PC contains an internally mounted disk array consisting of two 9 GB SCSI 

drives striped together as one logical drive using the Windows Disk Management utility. 

This disk capacity allows 90 minutes of data collection at the sensor sampling rates used. 

3.2.2 Cameras 

The video cameras are equipped with 4.8mm wide field of view lenses. The 

combination of the camera’s type 1/3 CCD and the lens results in a field of view of 53° 

horizontal by 41° vertical. A lens hood with an ultraviolet filter are used to reduce glare 

from the sun and prevent ultraviolet scatter from the sky casting a bluish tinge to the 

imagery. 

The cameras are mounted on pant/tilt tripod heads attached to the aluminum U-

beam. The pan/tilt heads have full-three way action with each axis movement controlled 

by separate locking handles. Quick release plates permit the cameras to be removed from 

the tripod heads without disturbing their adjustments. Earlier attempts to use low cost 

CCTV camera mounts demonstrated the need for being able to precisely adjust the 

cameras in all three axis and to be able to remove and replace the cameras without 

affecting the camera orientation. 

3.2.3 Sensor Capture Operation 

During sensor capture operations, the video cameras are synchronized by driving 

their external sync inputs with a TTL clock signal from the signal generator. The cameras 

are controlled via their 1394 interface to the PC. Streaming video is captured, time 

stamped and saved to the RAID. 
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The GPS receives satellite measurements via its antenna and computes a position 

which it reports via an RS232 serial interface to the PC. If the GPS receives RTCM 

correction messages via its second serial port it reports DGPS corrected position 

messages. The RTCM messages are forwarded from the internet to the GPS by the PC. 

The PC connects to the internet via a cellular modem installed in a PCMCIA adaptor card 

and connected to the cellular phone which uses an external roof mounted antenna. 

The electronic compass provides a continuous stream of angle measurements and 

raw acceleremoter and magnetometer measurements to the PC via an RS232 serial port. 

The VSS pulse signals are passed through an optocoupler, filtered and sent to the clock 

counter card’s screw terminal connector. 

Measurements from the GPS, compass and VSS are timestamped and saved to the 

system drive. See Figure 44 for the system interconnect diagram of the Mobile Platform. 
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Figure 44 – System Interconnect Diagram for Mobile Platform 

 

3.2.3.1 Other Hardware Considerations 

3.2.3.1.1 Power 

System power is provided by a 12 Volt marine battery with a reserve capacity of 

140 minutes for a 25 amp load. The battery supplied 12 VDC is converted to 120 VAC 

by a dual outlet power inverter rated at 300W continuous output. 

One of the inverter’s outlets provides power directly to the PC; the other outlet is 

connected to a power strip that distributes power to the monitor, signal generator, and 
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various AC/DC power supplies. The AC/DC power supplies provide power to the GPS, 

compass and the cooling fan for the Power Inverter’s heat sink.  

Although laboratory measurements of current draw indicated an expected battery 

life of 150 minutes, field results showed a battery life of only 45 minutes. The laboratory 

equipment configuration tested consisted of the mobile platform’s PC with an external 4 

drive RAID and a 17 inch monitor. The RAID was stressed during the measurement 

using Adaptec’s SCSIBench32  drive benchmarking utility. Power usage by the other 

equipment (i.e. GPS, compass, etc) was negligible. Replacing the 15” CRT used in the 

field with a 14” flat panel display extended the battery life from 45mins to over 2 hours. 

3.2.3.1.2  AC Line Filter 

The signal generator proved to be sensitive to noise on its power line. A Constant 

voltage transformer was used to condition the Power Inverter’s pseudo-sine wave AC 

output prior to routing it to the signal generator. 

3.2.3.1.3 Cooling 

Several hardware changes were implemented to overcome cooling problems 

encountered in the operation of the hardware.  

• Mounting the Power inverter on a fan cooled aluminum heat sink.   

• Adding hard drive cooling fans to Internal RAID drives. 

• Adding additional cooling fans to the PC case. 
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3.2.3.1.4 Base Station 

The base station consists of a GPS receiver, antenna and PC. The GPS receiver is 

mounted on the roof of UCF’s Engineering I building inside a NEMA enclosure located 

next to an antenna mast (see Figure 45). The GPS antenna is mounted at the top of the 

mast. The GPS receivers serial channels and remote power on signal for the GPS Power 

Supply are routed to the Senior Design Lab in the floor below via a 30 meter (~100 foot) 

ruggedized cable. The controlling PC and remote power on switch are contained within a 

metal storage cabinet.  

One of the serial channels is used for controlling the GPS receiver and the other is 

used for receiving a continuous stream of RTCM correction messages that are forwarded 

to the campus network. The remote power on signal controls a solid state relay mounted 

in the NEMA enclosure on the roof. When switched on the relay connects line power to 

the GPS’s power supply.  
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Figure 45 – GPS Antenna on Mast 

(Top right inset shows closeup of GPS Antenna with its choke ring, bottom right inset shows GPS receiver 
in NEMA enclosure) 

3.2.3.1.5 Equipment List 

Table 6 and Table 7 contain parts list of the equipment used in the Mobile 

Platform and Base Station respectively. 
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Table 6 – Mobile Platform Equipment List 

Item Description Notes 
1 VSS Magnetic Sensor Corporation 

413031-10 (2 pulses/rev) 
2 VSS Signal Conditioner Custom Built Optocoupler w/ 

Noise Filter 
3 Solid State Compass MicroStrain 3DM 
4 GPS Card Novatel OEM 3151RM 
5 Power Conditioner SOLA Constant Voltage 

Transformer 23-13-030-2 
6 Signal Generator Feedback  
7 PC Asus P2BDS Dual Pentium III 

Motherboard 
8 PCI Counter Timer Data Translation DT322 
9 1394 PCI Adaptor Generic TI Chipset 
10 ISA Multiport Serial Card Boca IOAT66 
11 Data Interface Cable 3COM ERIC-2 
12 PCMCIA Adaptor Generic 
13 Cellular Modem Megahertz 3CXM556 
14 Cell Phone Ericsson KH668 
15 RAID Striped 9GB SCSI Drives  
16 4.8 mm lens C-Mount Rainbow S48WI 
17 Stereo Cameras Sony DFW-V500 
18 Camera Mounts Bogen/Manfrotto 3030 
19 Mobile GPS Antenna Novatel Antenna 511 
20 800Mhz Cellular Antenna Radio Shack 17-318 
21 300 Watt DC Inverter Wang Tech 
22 Marine Battery Interstate Battery SRM-24 

 

Table 7 – Base Station Equipment List 

Item Description Notes 
1 PC Generic PC with dual serial ports, 

ethernet card, PS/2 mouse & keyboard. 
2 NEMA Enclosure w/ 120VAC solid 

state relay and power supply. 
Standard 12x10x6 Size, 25W 
+5V/+12V/-12V power supply. 

3 GPS Card Novatel OEM 3151RM 
4 Relay Control Box Custom Built 
5 GPS Antenna Novatel GPS-701 with choke ring 
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3.3 Software Description 

This section describes the software used on the mobile platform to capture the 

sensor data and the software used on the base station to provide DGPS corrections over 

IP to the mobile platform. Windows 2000 is used as the operating system on both the 

mobile platform PC and the base station PC.  

3.3.1 Sensor Capture 

3.3.1.1 Video Capture 

Video capture is performed using a modified version of the CMU Video Capture 

Code [49] to generate time stamped stereo AVI files. The CMU code is written in 

Microsoft Visual C++ and was modified to work with two cameras simultaneously and to 

capture both camera frames and write them side by side into an AVI file as shown in 

Figure 46.  

During video capture, each frame is time stamped by bit encoding the time in 

milliseconds since system startup into the first 32 pixels (1 bit per pixel) of the first line 

of video from each camera. The video is captured in its native YUV422 [31] format and 

saved uncompressed into the AVI file. Two types of video sequences are captured, 

calibration video sequences of test patterns for use by the stereo calibration software, and 

road video sequences for use by the road extraction software. 
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Figure 46 – Screenshot of Stereo Video Capture Software 

 

Figure 47 – Closeup of First Video Line Showing Timestamp Bit Encoded Into Pixels 
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3.3.1.1.1 Stereo Calibration Video 

Stereo image pairs for the camera calibration software are generated using 

VirtualDub 1.5.10 [50] to select frames from the calibration video which show the 

calibration patterns in several orientations and Microsoft Photo Editor™ 3.0 to extract the 

left and right parts of the frame. 

3.3.1.1.2 Stereo Road Video 

The road video sequences captured in YUV422 format must be edited and 

converted to an uncompressed RGB format for use by the road extraction software. This 

is performed by using VirtualDub together with AviSynth 2.5 [51]. AviSynth works as a 

frame server, it uses an AviSynth Script (AVS) text file (see example below) which 

functions as a script to instruct the frame server what conversions need to be performed. 

For example, if Windows Media Player™ opens the file output12.avs shown below, 

AviSynth will convert the video from YUV422 to an RGB format on a frame by frame 

basis and pass it to the media player; the player sees an RGB formatted file. If 

VirtualDub is used to open the AVS file (see Figure 48 for a screenshot), it will also see 

an RGB formatted file. Any editing performed on the file and saved to an output file will 

result in an RGB format output file. The conversion from YUV422 to RGB performed by 

AviSynth also converts the timestamp bit encoded into the pixels from their sixteen bit 

values of 0xFF80 or 0x0080 for bit value “1” or “0” into 24 bit RGB triplets of 

0xFFFFFF or 0x000000.  

Example AVS file: Output12.avs 
 
AVISource("I:\nov13run\output12.avi") 
ConvertToRGB24() 
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Figure 48 – Screenshot of VirtualDub 

 

3.3.2 Instrumentation Capture 

SensorCap (see Figure 50) is a Visual C++ application that was developed to 

perform instrumentation capture. SensorCap is run concurrently with the video capture 

software to capture the GPS, odometer and compass measurements. 

SensorCap uses asynchronous threads to read the GPS and compass 

measurements. During capture, each thread use the windows messaging interface to send 

messages to a file writing thread. For the odometer, SensorCap creates a named pipe 

connection to an odometer server program and creates a callback routine that handles any 

messages received from the server. The callback routine uses the windows messaging 

interface to forward odometer messages to the file writing thread during capture. All 

messages received from the sensors are time stamped before being written to the capture 

file. 
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The odometer server is a small Visual C++ server application that was written to 

interface with the Data Translation Timer/Counter Card. It continually polls the DT330 

card for the count of odometer pulses received, timestamps it using the Windows Win32 

Library precision timer function QueryPerformanceCounter [52] and forwards the data to 

any clients that may have connected its named pipe. The odometer server can also be 

compiled to function as an odometer emulator on PCs without the DT330 that are being 

used for software development. 

Figure 49 shows an example of a sensor capture file. Sensor data is captured in a 

text file with one line per sensor reading. Each line is composed of comma separated 

fields, with the first field representing the timestamp. The second filed contains a token 

identifying the sensor data. The format of the rest of the data fields is shown in Table 8.  

2338095,$COMPR,6.230393,0.003931,3.349185
2338110,$ODOM,0,1405721893710
2338106,$COMPG,2436,1714,690,1938,1961,3241
2338111,$GPGGA,190743.0,2835.4933367,N,08111.4150776,W,2,08,1.0,17.34,M,,,2,0000*20

 

Figure 49 – Example of Sensor Capture File 
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Table 8 – Format of Sensor Data 

Token Data Format 
$COMPG 16 bit counts for Raw Magnetometer x,y,z and Raw Accelerometer x,y,z 
$COMPG Roll, Pitch, Yaw in Radians 

Global positioning system fixed data: 
UTC Time hhmmss.sss 
Latitude ddmm.mmmm 
N/S Indicator  N = North, S = South 
Longitude dddmm.mmmm 
E/W Indicator  E = East, W = West 
Position Fix  0 = Invalid, 1 = Valid GPS, 2 = Valid DGPS 
Satellites being used (0-12) 
Horizontal dilution of precision 
Altitude in meters according to WGS-84 ellipsoid 
Altitude Units M = Meters 
Geoid seperation according to WGS-84 ellipsoid (Not Used) 
Geoid seperation units M = Meters (Not Used) 
Age of DGPS data in seconds (Only Valid when Position Fix = 2) 
DGPS Station ID (Only Valid when Position Fix = 2) 

$GPGGA 

Checksum 
$ODOM Odometer Reading, System Clock 
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Figure 50 – Screenshot of SensorCap 

3.3.2.1 Remote GPS Section 

The GPS card is configured using the manufacturer’s software, GPSolution [53]. 

The GPS retains its configuration even if its power is cycled. The configuration report for 

the remote GPS is shown in the following figure: 
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$RCCA,COM1,38400,N,8,1,N,OFF*36
$RCCA,COM2,38400,N,8,1,N,OFF*35
$RCCA,COM1_DTR,HIGH*70
$RCCA,COM2_DTR,HIGH*73
$RCCA,COM1_RTS,HIGH*67
$RCCA,COM2_RTS,HIGH*64
$RCCA,UNDULATION,TABLE*56
$RCCA,DATUM,WGS84*15
$RCCA,USERDATUM,6378137.000,298.257223563,0.000,0.000,0.000,0.000,0.000,0.000,0.000*6A
$RCCA,SETNAV,DISABLE*5C
$RCCA,MAGVAR,0.000*33
$RCCA,DYNAMICS,HIGH*1B
$RCCA,UNASSIGNALL*64
$RCCA,ACCEPT,COM1,COMMANDS*5B
$RCCA,ACCEPT,COM2,RTCM*44
$RCCA,UNLOCKOUTALL*20
$RCCA,RESETHEALTHALL*37
$RCCA,UNFIX*73
$RCCA,RTCMRULE,6CR*32
$RCCA,RTCM16T,*48
$RCCA,CSMOOTH,20.00*7E
$RCCA,ECUTOFF,0.00*45
$RCCA,FREQUENCY_OUT,DISABLE*12
$RCCA,CLOCKADJUST,ENABLE*47
$RCCA,MESSAGES,ALL,ON*67
$RCCA,SETCHAN,12*56
$RCCA,DGPSTIMEOUT,60,120*51
$RCCA,SETDGPSID,ALL*1D
$RCCA,LOG,COM2,GPGGA,ONTIME,1.00,0.00*67
$RCCA,LOG,COM2,GPGSV,ONCHANGED,0.00,0.00*32
$RCCA,LOG,COM2,GPGSA,ONCHANGED,0.00,0.00*25
$RCCA,LOG,COM1,GPGGA,ONTIME,1.00,0.00*64

 
Figure 51 – Configuration Report for Remote GPS Card 

As Figure 51 shows the GPS card powers up with its serial ports set to a 38,400 

baudrate, it will accept RTCM correction messages on its second serial port and will send 

out global positioning fixed data messages on both its ports once a second. Information 

on the other configuration setting can be obtained from [48]. 
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A modified version of WinDGPS [54] is used to relay any RTCM messages 

received over the internet from the DGPS server to the second serial port of the GPS card 

(see Figure 52). WinDGPS is written in Delphi was modified (using Borland Delphi 7 

Personal Edition) to use up to eight serial ports and to support baudrates up to 38400. 

Windows 2000 Virtual Private Networking is used to set up the internet connection over 

a cellular modem. The default modem configuration string for the PCMCIA cellular 

modem card is modified to force a connection at 4800 baud instead of the default 14400 

baud. 

 

Figure 52 – Screenshot of WinDGPS 

3.3.2.2 Base Station 

The base station sends out RTCM104 messages in binary format every 2 seconds 

over the internet. GPSSolution (see Figure 54) was used to configure the GPS card as 

shown in the following figure: 
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$RCCA,COM1,38400,N,8,1,CTS,OFF*3C
$RCCA,COM2,38400,N,8,1,CTS,OFF*3F
$RCCA,COM1_DTR,HIGH*70
$RCCA,COM2_DTR,HIGH*73
$RCCA,COM1_RTS,HIGH*67
$RCCA,COM2_RTS,HIGH*64
$RCCA,UNDULATION,TABLE*56
$RCCA,DATUM,WGS84*15
$RCCA,USERDATUM,6378137.000,298.257223563,0.000,0.000,0.000,0.000,0.000,0.000,0.000*6A
$RCCA,SETNAV,DISABLE*5C
$RCCA,MAGVAR,0.000*33
$RCCA,DYNAMICS,HIGH*1B
$RCCA,UNASSIGNALL*64
$RCCA,ACCEPT,COM1,COMMANDS*5B
$RCCA,ACCEPT,COM2,COMMANDS*58
$RCCA,UNLOCKOUTALL*20
$RCCA,RESETHEALTHALL*37
$RCCA,FIX,POSITION,28.60151555,-81.19857042,41.398,0*58
$RCCA,RTCMRULE,6CR*32
$RCCA,RTCM16T,*48
$RCCA,CSMOOTH,20.00*7E
$RCCA,ECUTOFF,0.00*45
$RCCA,FREQUENCY_OUT,DISABLE*12
$RCCA,CLOCKADJUST,ENABLE*47
$RCCA,MESSAGES,ALL,ON*67
$RCCA,SETCHAN,12*56
$RCCA,DGPSTIMEOUT,60,120*51
$RCCA,SETDGPSID,ALL*1D
$RCCA,LOG,COM2,RTCM1,ONTIME,2.00,0.00*0B
$RCCA,LOG,COM1,CTSB,ONTIME,2.00,0.50*32
$RCCA,LOG,COM1,TM1B,ONTIME,30.00,0.00*6A
$RCCA,LOG,COM1,PRTKB,ONTIME,10.00,0.00*5D
$RCCA,LOG,COM1,POSB,ONTIME,1.00,0.00*3C
$RCCA,LOG,COM1,MKPB,ONNEW,0.00,0.00*6E

 

Figure 53 – Configuration Report of Base Station GPS card 

 

The fixed position was initially obtained by running the GPSCard in a position 

averaging mode for 48 hours. 
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Figure 54- Screenshot of GPSolution 

 

The RTCM messages sent out over the GPS card’s second serial port are received 

by IP->Com [55] (see Figure 55) and then sent out over TCP/IP port 2101. 
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Figure 55 – Screenshot of IP->Com 

 

3.4 Proposed Method 

3.4.1 Distortion Correction & Rectification 

As discussed in section 3.1.3.1, stereo video captured using wide field of view 

lenses must be distortion corrected and rectified as a necessary first step. Calibration is 

performed manually using the Camera Calibration Toolbox developed by Jean-Yves 

Bouguet [35]. 

Bouguet’s method was largely inspired by the camera calibration techniques 

developed by Zhengyou Zhang [56]. The method uses a checkerboard pattern with a 

known spacing and size. Given an ideal pinhole camera and m (at least three) images of 

the pattern for different angular orientations with respect to the camera; the projection of 

the pattern’s corner points into image space can be expressed as: 

   [ ]
0

0, 0
0 0 1

u
s with v

α λ
β

⎡ ⎤
⎢ ⎥= = ⎢ ⎥
⎢ ⎥⎣ ⎦

o A R t O A   (31) 



 84

where Õ represents the homogenous 3D coordinates [ ]1 TX Y Z  of a corner 

point, õ represents the homogenous 2D projection of the point into the image space 

[ ]1 Tu v , R and t are the rotation matrix and translation vector, which relate the world 

coordinate system to the camera coordinate system; and s is an arbitrary scale factor. The 

expression [ ]R t  is also known as the extrinsic parameter matrix. 

A represents the intrinsic parameters of the camera, with ( )0 0u v  the coordinates 

of the center point of the imaging plane,  and  are scaling factors for the u and v axes 

and  represents the skew between the image axis. 

The model plane is assumed to be lying in the XY plane at Z=0, this leads to 

rewriting Equation 31 as: 

    [ ]1 2,s with= =o H O H r r t   (32) 

Õ now represents the reduced homogenous vectors [ ]1 TX Y  and r1 and r2 are 

the first two columns of the rotation matrix R. 

For each image the homography H can be estimated by minimizing the following 

functional: 
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The measured corner points in image space are represented by oi. Õi represents 

the known 3D world coordinates of the corner points. 
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The non-linear minimization of Equation 33 is performed using the Levenberg-

Marquardt Algorithm [57]. An initial guess for H is obtained by rewriting Equation 32 

as: 
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then stacking Equation 4 n times (corresponding to all the corner points) so that it 

is in the form Lx=0, L will be a 2n by 9 matrix, and solving for x. The solution [58] of x 

is obtained by obtaining the singular value decomposition of T T=L L UDV  and taking x 

as the last column of VT. Since H has 6 degrees of freedom, n should be greater than 3, 

which is satisfied by the simplest 2x2 checkerboard with 9 corners. 

Once the H’s correponding to the m images have been found, the intrinsic 

parameters can be found by minimizing the following functional using Levenberg-

Marquardt over all m images containing n points each. 

    ( ) 2

1 1
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m n
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The function ô(A,Rj,tj,Oj) is the projection of point Oj in image i, as given by 

Equation 32.  

An initial guess for A is obtained by using the orthogonality of vanishing points 

constraint [59]. For [ ]1 2 3j j
=R r r r , estimates for r1 and r2 have already been 

obtained; r3 can be found by using the orthogonality property of rotation matrices, 

T =R R I . 
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Since real cameras have lens distortion, Bouguet initially computes their intrinsic 

parameters as shown above in Equation 35 and uses this as the initial guess for 

minimizing the following functional: 

    ( ) 2
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Where k represents the distortion coefficients described by the following: 
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where x and y are the ideal image plane coordinates, xd and yd are the distorted 

coordinates, [ ]1 2 3 4 6k k k k k k=  and 2 2r x y= + . 

The homogenous pixel coordinates now become: 
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Figure 56 shows a mosaic of a typical set of calibration images taken from the 

viewpoint of the left camera. Since the calibration video sequence captures both cameras 

there will also exist a corresponding set of calibration images for the right camera. The 

calibration pattern was positioned vertically at five different angles with respect to the 

camera image plane and at one tilted back position. 
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A two step process is performed. First, the calibration for each camera is 

performed using their corresponding images. This step gives us the intrinsic parameters 

for each camera. Next a stereo calibration is performed to obtain a stereo calibration file 

which will enable us to rectify the captured stereo video road sequences and to obtain the 

3D position of corresponding image points in these road sequences.  

 

Figure 56 – Mosaic of Calibration Images 

Bouguet uses the Gauss-Newton method to perform stereo calibration. An initial 

estimate of the homography between the left and right camera is made by taking the 

median of the m left to right homographies. 
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The intrinsic and extrinsic coordinates of each camera computed previously along 

with the initial Rleft→right and t left→right are formed into a column vector p as follows: 
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The Rodrigues formula [60] is used to parametize the rotation matrix into a three 

parameter column vector. The function f(p) takes the model points and projects them into 

each camera. The errors between the projected model points and the measured points for 

m images with n points each are stacked into an column vector e that is 4*n*m elements 

high (2*n*m for the left camera and 2*n*m for the right). The Jacobian of f(p) is 

computed, this represents the sensitivity of each of the 4*n*m elements of the error 

vector to each variable in the parameter vector. Finally the parameter vector is updated as 

follows until the maximum iteration limit has been reached or the maximum element of 

e  is below a threshold. 
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3.4.1.1 Obtaining the Intrinsic Coordinates for Each Camera 

Once a suitable set of calibration images have been collected Matlab is used to 

run the calib_gui script from the Camera Calibration Toolbox. Default parameters are 

used with the exception of the following: 

The default mechanism for attempting to automatically count the grid pattern size 

is disabled, this normally works well for solid checkerboard patterns but is not suited to 

our pattern. As a result the grid pattern size must be manually entered. 

The toolbox automatically extracts the corner points using a corner detector, these 

point locations are then manually refined by running the manual_corner_extraction script 

from the command line. 

The aspect ratio, center point and skew are assumed fixed by manually setting the 

following matlab variables at the command line prior to performing the calibration step 

using the gui: 

est_aspect_ratio = 0; 

center_optim=0; 

est_alpha=0; 

In addition a second order radial distortion model [61] is chosen by setting the 

following variable at the command line 

est_dist = [ ]1 0 0 0 0 T ; 

Typical output for the calibration step is shown in Figure 57. 
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Aspect ratio not optimized (est_aspect_ratio = 0) -> fc(1)=fc(2). Set
est_aspect_ratio to 1 for estimating aspect ratio.
Principal point not optimized (center_optim=0). It is kept at the center of the
image.
Skew not optimized (est_alpha=0) - (DEFAULT)
Distortion not fully estimated (defined by the variable est_dist):
     Fourth order distortion not estimated (est_dist(2)=0).
     Sixth order distortion not estimated (est_dist(5)=0) - (DEFAULT) .
     Tangential distortion not estimated (est_dist(3:4)~=[1;1]).

Focal Length:          fc = [ 335.26191   335.26191 ] ± [ 10.99124   10.99124 ]
Principal point:       cc = [ 159.50000   119.50000 ] ± [ 0.00000   0.00000 ]
Skew:             alpha_c = [ 0.00000 ] ± [ 0.00000  ]   => angle of pixel axes =
90.00000 ± 0.00000 degrees
Distortion:            kc = [ -0.21969   0.00000   0.00000   0.00000  0.00000 ] ± [
0.04823   0.00000   0.00000   0.00000  0.00000 ]
Pixel error:          err = [ 0.24219   0.23909 ]

Note: The numerical errors are approximately three times the standard
deviations (for reference).

 

Figure 57 – Typical Results for Single Camera Calibration of 320x240 Images 

 

After performing the calibration for each camera it is necessary to save the results 

for use by the stereo calibration routines. 

3.4.1.2 Stereo Calibration 

The stereo_gui script from the Camera Calibration Toolbox uses the saved camera 

calibration files for the left and right camera to compute the relative rotation matrix and 

translation vector between the left and right cameras using the method previously 

described. This information along with the jointly optimized intrinsic camera coordinates 

is saved into a stereo calibration file.  
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3.4.1.3 Rectification of the Stereo Video Road Sequences 

The stereo calibration file is used to rectify the left right image pairs of the road 

video. Rectification of a stereo image pair results in horizontal epipolar lines so that any 

feature in one image will lie on the same horizontal line in the other image. A matlab 

script based on the rectify_stereo_pair toolbox script is used to rectify the captured avi 

files. 

Figure 58 shows a before and after comparison of a stereo pair. The rectified 

stereo pair are shown in the lower half of the figure. Note how corresponding features 

line vertically in the rectified imagery. 

 

 

Figure 58 – Example of Rectification of Stereo Pair 
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3.4.2 Initialization 

The proposed method requires an initialization frame containing the road 

boundaries in the left and right image and selection of a horizon line that will limit the 

area for performing segmentation. Setting the horizon line at the true horizon yields poor 

results, therefore a horizon line lying about 10 pixels (for a 320x240 resolution frame) 

below the true horizon is chosen. 

Figure 59 shows a typical starting frame after initialization of the boundaries and 

selection of a horizon. 

 

 

Figure 59 – Typical First Frame Showing Initial Boundary Selections. 

 

3.4.2.1 Color Histogram Initialization 

The initial boundaries are used to define road and terrain regions. The color 

distribution of pixels lying on the road and terrain below the user selected horizon are 

used to initialize the color histograms. See 3.4.3 for a discussion of the color 

segmentation algorithm used. Figure 60 shows a typical set of road and terrain regions. 
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Figure 60 – Terrain and Road Templates 

3.4.2.2 Snake Initialization 

The left and right boundaries are used to initialize active contours (Snakes) that 

will follow the road boundaries. The boundaries are subdivided into an equal number of 

segments  

3.4.3 Color Histogram Based Segmentation 

Our color segmentation method is based on a simplified version of the Color 

Predicate  (CP) method used for skin segmentation [62]. The Color Predicate method 

uses the Hue-Saturation-Intensity (HSI) color space which is related to the RGB color 

space by the following equations [63] [page 27]: 

 

   

( ) ( )[ ]
( ) ( )( )[ ]

( ) ( )[ ]

( )BGRI

BGR
BGR

S

BGGRGR

BRGR
H

++=

++
−=

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−+−

−+−
= −

3
1

,,min31

cos 2/12

2
1

1

  (42) 



 94

 

The CP method uses a training image which has been roughly pre-segmented into 

a target and background. Pixels with intensities that are too large or small are ignored. 

The rest of the pixels are subdivided by intensity regions, typically the four most 

significant bits of a 8 bit intensity scale or 16 levels. For each level the pixel hue and 

saturation value are used to increment the corresponding index in a histogram map for 

pixels inside the target area. Typical index ranges for a hue and saturation histogram are 

to use the 6 most significant bits for 8 bit values, i.e. a 64 by 64 index array. Pixels 

outside the target area decrement the corresponding index count. The neighboring index 

locations are also incremented or decremented according to a Gaussian weighting 

function. When all the pixels have been processed the histograms are thresholded to a 

binary 1 or 0 dependent on the index count being positive or negative. 

New images are segmented by classifying the pixels according to their HSI values 

as target, background or unknown in accordance with the binary histograms. 

3.4.3.1 Color Model 

Our color segmentation method uses the YUV color space and ignores intensity 

variations. The RGB pixel values are converted into the YUV color space using the 

following equation [64]: 
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Equation 43 assumes that the RGB pixel values have been normalized into a 0 to 

1 range. The YUV output values will be in the range 0 to 1. A full white normalized RGB 

pixel [1 1 1] will be represented by a YUV value of [1 0.5 0.5]. Y represents the pixel 

intensity, U and V are the blue and red chrominance respectively. 

3.4.3.2 Color Histogram 

Our color segmentation method uses the difference in color distribution between 

the road and terrain to classify the image pixels lying below the horizon line. From Bayes 

rule we have: 
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where ci represents the pixel color vector [ ]Ti iu v . Equation 44 gives us the 

conditional probability of a pixel being in the road or terrain given a specific color. 

Taking the ratio of the conditional probabilities gives us: 
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For typical two lane roads, given the wide field of view of the cameras, it is 

evident from looking at the template sizes in Figure 60 that P(Road)>P(Terrain) 

,therefore we can replace the ratio ( )
( )

P Road
P Terrain

with 1α >  to give us: 
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P(ci|Road) and P(ci|Terrain) are the color histograms of the Road and Terrain 

regions respectively. For a specific pixel color, we see that if the ratio is greater than 1 we 

can classify the pixel as road. 

The 2D color histograms for the road and terrain regions are determined in the 

UV coordinate system. The 0 to 1 range of U and V is divided into 100 equally spaced 

bins. 

3.4.3.3 Histogram Spatial Filtering 

The color histograms are smoothed using a 5x5 averaging filter and then 

normalized to form pdf’s. These pdf’s are used to classify incoming frames using 

Equation 46 into road and non-road pixels as shown in Figure 61. 

 

Figure 61 – Classification into Road Pixels 



 97

3.4.3.4 Filtering and Morphological Operations 

To remove isolated points and smooth the binary road image prior to performing 

gradient operations the image is filtered with a 3x3 majority operator that operates like a 

median filter by convolving the image with a 3x3 summing kernel and thresholding as 

one any value greater than 4. Then a 3x3 averaging filter smooths the median filtered 

road image to give the results shown in Figure 62. 

 

Figure 62 – Smoothed median filtered Bayesian 

 

The horizontal and vertical gradients are obtained using the Sobel filter and the 

gradient magnitude is computed. All three gradient images are low pass filtered using a 

rotationally symmetric Gaussian lowpass filter of size 5 with a standard deviation 1 (see 

Figure 63). 
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Figure 63 – Gaussian Low Pass Filter Kernel of Size 5,  = 1 

 

Taking the gradient of the median and low pass filtered binary road image yields 

artifacts, due to the rectification process, horizon removal and classification errors; that 

do not lie in the vicinity of the true road boundaries. To prevent the active contours from 

attaching to such false boundaries we have developed two masks that are used to 

attenuate the gradient images.  

The first mask is created by taking the union of the image area above the horizon 

and the white fill created by the rectification process at the image boundaries. The union 

is morphologically dilated [65] twice using a 3x3 structuring element to obtain the static 

mask shown in Figure 64. 
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Figure 64 – Horizon and Rectification Mask 

 

The second mask is dynamic and is created by dilating the road template as 

defined by the left and right road boundaries found in the previous frame. This road mask 

is applied to the second frame onwards of the video sequence. The road mask prevents 

the active contour’s ability to wander away from the true road boundaries in a single 

frame while still permitting it to follow the changes in the roadway curvature over time. 

A typical road mask is shown in Figure 65. 

 

Figure 65 – Road Mask 
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The preceding operations give us images of the left and right road boundaries as 

shown in Figure 66  

 

Figure 66 – Horizontal (Top) and Vertical (Middle) Components and the Magnitude After Applying 
the Masking Operations 

 

3.4.4 Snake Algorithm for finding Road Boundaries 

Having obtained the left and right road boundaries, we use a variant of the active 

contour algorithm (snake) introduced by Kass [66] and modified by Williams and Shah 

[44]. 

The traditional snake model as developed by Kass seeks to minimize the 

following energy functional:  

   dssEssE ext ))](())()((
2
1[ 221

0
xxx +′′+′= ∫ βα  (47) 
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Where x(s)=[x(s), y(s)] is a parametric representation of a spline and  and  are 

weighting parameters controlling the snakes resistance to bending and changes in the 

radius of curvature. Eext represents external forces and is typically set to the negative of 

the image gradient  

    2))(),(( sysxIEext ∇−=    (48) 

Williams and Shah proposed minimizing the following energy functional using a 

discrete greedy algorithm: 

    ∫ ++= dsEEEE imagecurvcont )( γβα   (49) 

Assuming discrete points on a closed contour are labeled 0 to n, the greedy 

algorithm selects the new location of a point from the local 3x3 neighborhood. 

Eimage is the image force which can be defined as a gradient or the image intensity. 

Econt is the absolute difference between the distance from point i to i-1 and the average 

distance: 
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Econt attempts to keep the points evenly spaced to counteract a tendency of the 

Kass technique to bunch up points near areas of strong external forces. The second term 

Ecurv is a curvature term defined as: 
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Where iu  is the vector from point i-1 to i. This definition for Ecurv has the 

advantage of being rotationally invariant for discrete digital curves. 

Our snakes technique minimizes the following energy functional 
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The Elength and Ecurv terms are identical to the Econt and Ecurv terms respectively of 

Equation 49. Eimage is set to the negative of the gradient magnitude as computed in section 

3.4.3.4. 

The Econtour term is used to force points that are far from the image gradient 

toward the gradient by using the normal projection of the image gradient on the 

neighboring points as an additional force moment. 

Using a greedy algorithm technique we search the neighborhood about each point 

for a minimum local energy. Since our contours are not closed the first and last points are 

treated differently than the interior points. The first and last points are only permitted to 

move horizontally. Once the minimum local energy location is found for each point in the 

contour we adjust the point coordinates. This process is repeated until the stopping 

criteria is met. Our stopping criteria is when two or less points have been moved in a pass 

or the maximum allowed iterations have been reached. Additional constraints restrict the 

permissible movement of the snake points so as to stay in a valid image area. 
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Holding the first and last points fixed vertically prevents our snake from growing 

or shrinking. We also resample the interior points to equalize the segment lengths after 

each boundary has been found. This is necessary because we have found that even with 

the Econt term in the energy functional of Equation 52, the snake points tend to become 

unevenly distributed. 

3.4.5 Matching Boundary Points Between Stereo Pairs 

Since the road boundaries found by the snake can differ in vertical extent between 

the left and right frames it is necessary to find which portion of the boundary exists in 

both frames. Since the stereo frames have been rectified, we know that corresponding 

points lie on the same horizontal line, therefore all that is necessary to find the common 

sub segment is to find the intersection of the vertical extents.  

3.4.5.1 Stereo Disparity Refinement 

The common subsegments for the left and right road boundaries from the left 

frame are used to find corresponding points between the left and right frames that lie 

close to a road boundary. A set of evenly set points are extracted from the subsegments 

by interpolation. For each point, the corresponding match in the right frame is found by 

finding the minimum correlation distance between corresponding 7 by 3 pixel patches. 

The correlation distance is determined by performimg a Sum of Square Differences 

(SSD) correlation using the grey level image and the grey level gradient magnitude. 
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The grey level image is computed by taking a simple average of the RGB 

components, ( ) 3BGRgrey ++=  and then filtering with a rotationally symmetric 

Gaussian lowpass filter of size 5 with a standard deviation 0.75. The grey gradient is 

computed by applying the vertical and horizontal sobel filter to the grey level image and 

obtaining the magnitude. 
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where II ∇σσ ,  represent the standard deviation of the squared difference between 

the left and right frames 7 by 3 pixel patches. 
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The disparity search space for d shown in Equation 56 is limited to a range of 0 to 

50 pixels for 320 by 240 pixel frame sizes which corresponds to a range of infinity to 

approximately six meters.Range as a function stereo disparity in pixels is given by the 

following: 
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Where b is the baseline in meters, d is the disparity in pixels fov is the field of 

view in degrees and hres is the camera resolution in pixels. 

An example of the stereo matching procedure is shown in figure Figure 67 for 

typical road stereo pairs. 

 

Figure 67 – Matching Points Between Left and Right Road Images  

 

3.4.6 Extraction of 3D Coordinates 

The 3D world coordinates of the road boundaries are found by triangulation and 

coordinate transformation of the left and right point matches. Please refer to section 

3.1.1.2 for a description of the coordinate systems used. 
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3.4.6.1 Intersection of Coincident Rays (Camera Relative) 

We use a routine from the Camera Calibration Toolbox which determines the 3D 

camera coordinates of the left and right point correspondences. This routine determines 

the point of closest approach of two vectors representing the inverse projection of the 

point correspondences. The first vector passes thru the left image plane coordinates and 

the left cameras focal point which is defined to be at the origin. The second vector passes 

thru the image plane coordinates and the focal point of the right camera after they have 

been translated into the left camera’s coordinate system. 

For rectified stereo images converting from the right camera coordinate system to 

the left is performed by adding the camera baseline found during the rectification process 

described in 3.4.1.3. The focal points of the cameras are: 

   [ ] [ ]0 0 0 0 0T T
left right b= =f f    (57) 

where b is the rectified stereo baseline. 

The image plane coordinates are obtained from the point correspondences using 

the following equation: 
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where x is the image plane coordinates, f is the focal length , [ ]Tu v  are the pixel 

coordinates of the corresponding points and [ ]Tcx cy  are the pixel coordinates of the 

camera center. 

The inverse projection unit vectors leftn and rightn are then: 
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Assuming the two vectors are not parallel, the closest point of approach X is: 
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3.4.6.2 Navigation Solution Using GPS 

Converting from the camera relative coordinates found in the preceding section 

into world coordinates requires that the camera position be known.We developed a GPS 

only solution due to the poor performance of the solid state compass. The solid state 

compass performs poorly on a moving platform due its lack of a rate gyro which results 

in any acceleration being interpreted as a tilt by the compass’s firmware. 

The raw GPS latitude and longitude readings are converted into meters relative 

from the base station position. A 48 hr position average is used as the base station 

position. We have developed second order polynomial equations to convert the latitude 

and longitude deltas into distances which closely approximate land surveys taken of the 

UCF campus. 

The classical equations to convert latitude/longitude coordinates into grid 

coordinates using a transverse mercator projection are given by Snyder [28]: 
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Where x and y are in meters, a is the radius in meters and f is the ellipsoid 

flattening factor of the earth model,  and  are the latitude and longitude in radians, 0 

and 0 are the latitude and longitude of the designated origin for the x, y coordinate grid; 

and M0 is the true distance from the equator to 0. 

Like the UTM; the Florida Coordinate System (FCS) also uses a transverse 

mercator projection for the eastern half of the state. The difference between the FCS and 

UTM projections for the Orlando/UCF area is summarized in the following table: 
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Table 9 – Transverse Mercator Projection Parameters for UTM and Florida 
Coordinate System 

Parameter FCS UTM 

a (meters) 6378137 6378137 

f  1
298.25722210088

 1
298.25722210088

 

False Easting (meters) 200000 500000 

False Northing (meters) 0 0 

Origin  24  20’ 00” 0  

Central Meridian  −81  −81  

k0 0.9999 0.9996 

 

We have implemented these equations in Matlab and validated the results against 

the freely available GeoPosCalc [67] and Corpscon [68] data conversion utilities using 

the WGS84 [69] datum. 

Using the Snyder equations we generated the UTM coordinates for a 10 by 10 

minutegrid with a 1 minute grid spacing (approximately 18 km by 16 km)centered on the 

“center” of the campus survey at 28.60211819 N and 81.20027213 W [70] and compared 

them against the Corpscon results for the FCS. The relative distances of the grid points to 

the center differed by the ratio of 0.9999/0.9996, i.e the ratio of the respective k0 factors. 

A least squares fit of the following equation to the FCS over the grid area was then 

obtained: 
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Where x′ , y′are the grid coordinates relative to the grid center at lat lon 

coordinates 0φ , 0λ , 22e f f= − with the equatorial radius and flattening factos, a and f 

taken from Table 9. The fitting parameters, latk and lonk are obtained by minimizing 

following error: 
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For FCSx′  and FCSy′ representing the grid coordinates relative to the origin at 

0φ , 0λ obtained using Equation 61 with the FCS projection parameters. 

Minimizing Equation 63 yields the following results: 

Table 10 – Fitting Parameter Values 

Coefficient Latitude Longitude 

k1 4.255394309135730e-008 3.903712494678972e-010 
k2 -.406854361615458e-010 -8.524189272125915e-008 
k3 9.963091255383771e-001 1.667173372644590e-003 
k4 -.675822473819229e-003 1.001484988434475e+000 
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Figure 68 shows the squared error in meters of the polynomial approximations 

over the grid area. The maximum error is on the order of 0.08 m (0.26 ft). This error is 

within the range of typical state land survey accuracy standards of one part in 5,000 to 

one part in 10,000 [71]. 

 

 

Figure 68 – Error Over Campus Area 

 

The time stamped positions are then smoothed by separating the x and y 

coordinates into separate vectors and applying an overlapping piecewise second order 

polymomial fit to the parametric representation of the x and y coordinates as functions of 

time. The heading is obtained by differentiating the polynomial approximations and 

taking the arctangent of their ratio. 
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3.4.6.3 Conversion to World Coordinates 

The video timestamps are used to obtain synchronized camera positions by linear 

interpolation. The corresponding camera relative coordinates found in 3.4.6.1 are then 

converted into world coordinates by applying the following transformation matrix. 
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Where x and y are the grid coordinates of the road boundary point relative to the 

origin, x′  and y′are the FCS coordinates from Equation 62, X is the road boundary 

point’s camera relative coordinates, R and T are the rotational matrix and translation 

vector and hdg is the camera heading in radians. The translation vector was obtained by 

measuring the distance from the left cameras optical center to a point lying on the ground 

directly below the GPS antenna, 

3.4.7 Polygonal Model Extraction 

In order to create a suitable polygonal model given the extracted 3D world 

coordinates it is necessary to reject outliers thru robust filtering and define polygons to 

connect the smoothed data points. 
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3.4.7.1 Robust Parametric Fitting 

Although the road boundary world coordinates consists of overlapping left right 

segments each consisting of multiple points, we only use the closest point in each 

segment. Since we have assumed a constant zero pitch while in reality the vehicle pitches 

due to road imperfections, acceleration and braking effects; some of the selected road 

boundary points have significant errors and need to be rejected. We accomplish this by 

performing a robust second order curve fit to reject these outliers. 

The road boundary x and y coordinates are processed independently using a 

parametric representation. Median filtering is performed using a neighborhood size of 

three to reject outliers then a second order fit is performed using the following lorentzian 

distance measure. 
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where ix and ( )if t  represent the measurement and fit respectively and σ is the outlier 

threshold. 

The outlier threshold is computed by taking the mean of the absolute x and y 

deltas from the parametric representation of the road boundaries: 
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Figure 69 shows a typical result, this figure represents a closeup view of a portion 

the the left road boundary. The raw input points are denoted by a +, the solid line is the 

robust fit and the dashed line represents the cars path; note how the outliers are bypassed: 

 

Figure 69 – Outlier Removal Detail 

 

3.4.7.2 Polygonization 

We have used two different polygonization methods: 

The first method takes the left and right road boundaries and increases the point 

density by interpolation, it then forms left right point pairs that are spaced at minimum 

threshold distance and which lie on the closest perpendicular to the right boundary. These 

point pairs are extracted and assigned sequential vertex numbers; odd numbers for the left 

boundary points and even for the right boundary points as illustrated below: 
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Figure 70 – Left and Right Boundary Point Matching 

 

Polygons are then defined using the vertex sequence shown in the following 

figure: 
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Figure 71 – Vertex Sequence 

This method is suitable for defining a patch model which can be rendered in 

Matlab and overlayed onto a texture mapped surface as shown in the following figure: 

 

Figure 72 – Demo of Matlab Rendering Road Model 

(Rendered Sky Texture Map courtesy of Lopez-Fabrega Design, http://www.lfgrafix.com) 
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The second method uses a C++ routine adapted from [2] which uses the 

OpenFlight™ API to generate a Multigen Creator™ compatible flt format model. Left 

right point pairs are found by finding the intersection of right boundary normals spaced a 

fixed distance apart with the left boundary. The rectangle formed by consecutive point 

pairs is then subdivided into smaller rectangles representing thel left right and center lane 

markings and the left and right lanes. An example of a road model is shown in the 

following figure. 

 

Figure 73 – Section of Road Model 

 

3.4.8 Summary of Proposed Method 

In summary our proposed method is composed of the following steps: 

1.  Collect time stamped road video, calibration video and time stamped GPS 

sensor data 
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2. Obtain the camera calibration data and use this to rectify the stereo road video. 

3. Choose the initial road boundaries and use a color histogram classifier to 

identify the road pixels. 

4. Extract the boundary coordinates of the road area using a snake algorithm. 

5. Convert the 2D boundary coordinates into 3D by matching points between the 

stereo frames that are near the road boundaries and determining the closest point of 

approach of the vectors representing the inverse point projection. 

6. Convert the GPS data into grid coordinates relative to the base station, smooth 

the navigation data and synchronize with the video sequence. 

7. Use the heading and position information from the navigation data to convert 

the 3D boundary coordinates into world coordinates. 

8. Perform a robust piecewise second order curve fit of the world coordinates. 

9. Select left right boundary pairs lying on a perpendicular radial line and create a 

polygonal model.
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4 RESULTS 

Various data collection runs were performed on portions of the UCF road campus 

network at pixel resolutions of 320 by 240 and 640 by 480 . The following campus map 

is highlighted to show the areas selected for generation of 3D road models. 

 

Libra 

Observatory

Gemini East 

Orion 

Gemini North

 

Figure 74 – UCF Campus Map 

(Map courtesy of the University of Central Florida) 
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The following table describes the different road segments: 

Table 11 – Campus Road Segments 

Segment Resolution Description 
Obs320 320x240 Observatory Road, two lane no side 

markers 
Obs640 640x480 Same road section as Obs320 
Libra320 320x240 Libra. Two lane road with bicycle path , 

sidewalk. And sidemarking. Road 
boundary obscured by passing car. 

Gemeast320 320x240 Gemini East. Four Lane divided roadwith 
grass median, bicycle path and 
sidemarking 

Orion320 320x240 Orion. Four Lane divided road with grass 
median, bicycle path and sidemarking. 
Road boundaries obscured by construction. 

Gemnorth320 320x240 Gemini North. Four Lane divided road 
with grass median, bicycle path and 
sidemarking.  
Road surface pockmarked and median 
broken by large turnaround. 

 

4.1 Segmentation Results 

The following figures show the segmentation results for two of the road segments 

listed in Table 11. The original left and right color frames are on top. The bottom frames 

show the result of the majority operator to remove isolated pixels. Pixels classified as 

Road are in white. 
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Figure 75 – Segmentation of Observatory Segment at Frame 10 of Sequence 

 

 

Figure 76 – Segmentation of Observatory Segment at Frame 40 of Sequence 
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Figure 77 – Segmentation of Orion Segment at Frame 10 of Sequence 

 

Figure 78 – Segmentation of Orion Segment at Frame 40 of Sequence 
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4.2 Road Boundary Extraction Results 

The following figures show the road boundary extraction results of the snake 

routine for the Gemeast road segment. The first figure shows the left and right boundaries 

found by the snake algorithm overlayed onto the source image. The lower portion of the 

figure represents the boundary gradients that the snake algorithm uses. The crosses 

represent the snake node points and the circles are the common overlap area between the 

left and right frames. These overlapping points are passed to the stereo disparity routine 

for refinement prior to being triangulated. 

 

 

Figure 79 – Snake Results from Gemeast Road Segment 
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The following figure shows the camera relative 3D coordinates of a single frame 

of the Observatory segment. Since this road is very straight the left and right boundary 

points should be at constant 3D relative coordinates  A scatter plot of the location of the 

left and right boundary points for the for the three closest points is shown in Figure 81 

and Figure 82 

 

Figure 80 – 3D Camera Relative Road Boundaries 
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Figure 81 – Scatter Plot of Left Boundary Points 

 

Figure 82 – Scatter Plot of Right Boundary Points 
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The left points exhibit more noise than the right points because they are farther 

away from the camera in addition to the effect of mismatches in the disparity refinement. 

The efficacy of the robust filtering of the 3D points after transformation to the world 

coordinate frame is seen in the following figure. Note how outliers are rejected, the raw 

input points are the + and *, the left and right boundary points respectively. 

 

 

Figure 83 – Comparison of Gemeast Road Segment Boundaries with Path of Car 
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The following figure shows the road boundaries for the Gemini East segment 

overlayed on an orthorectified aerial picture of the road section obtained from the U.S. 

Geological survey. The boundary has a constant offset bias but follows the shape of the 

road. The + and * points represent the raw left and right boundary points. Similar results 

can be seen in the next figure using an orthorectified picture provided by UCF. 

 
Figure 84 – Gemeast Road Segment Boundaries Overlayed on DOQ 

(Image Courtesy of the U.S. Geological Survey) 
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Figure 85 – Gemeast Road Segment Boundaries Overlayed on DOQ 

(Image Courtesy of  UCF) 
 

Multiplying the scale of the orthorectified images by 0.97 to 0.98 results in 

a better match as shown in the following figures. 
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Figure 86 – Gemeast Road Segment Boundaries Overlayed on DOQ 

(Image Courtesy of the U.S. Geological Survey) 

 
Figure 87 – Gemeast Road Segment Boundaries Overlayed on DOQ 

(Image Courtesy of  UCF) 



 130

 

This indicates that a projective transform [58] using GPS truth needs to be 

done to align the road boundary coordinates to the image boundaries. A projective 

transform requires knowing the true GPS coordinates of selected points in the 

image. This information is not available for the road portions of the aerial 

imagery; therefore, a heuristic approach was used to match manually selected 

road boundary in the image to the “closest” computed road boundary coordinates. 

The closest point was selected as the either the nearest computed boundary point 

to the manually selected point or the computed boundary point with the smallest 

distance to the vector formed from the origin to manually selected point. The 

method yielding the best match for each particular road segment was then used to 

obtain a least squares fit using the following projective transform. 

 
11 12 13

21 22 23

31 321 1 1

x h h h x
y h h h y

h h

′⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥′ =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (67) 

where the ,x y  and ,x y′ ′ represent the pixel coordinates of the corresponding truth 

and road boundary points. 

The results of the projective transform alignment are shown in the 

following figures: 
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Figure 88 – Gemeast Road Segment Boundaries Overlayed on DOQ 

(Image Courtesy of UCF) 

 
Figure 89 – Orion Road Segment Boundaries Overlayed on DOQ 

(Image Courtesy of UCF) 
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Figure 90 – Gemnorth Road Segment Boundaries Overlayed on DOQ 

(Image Courtesy of UCF) 
 

Plots of the boundary errors before and after applying a projective 

transform are shown in Figure 91, Figure 92 and Figure 93 and show an error less 

than 1 meter RMS after using the projective transform. 
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Figure 91 – Gemeast Road Segment Boundary Error 

 

Figure 92 – Orion Road Segment Boundary Error 
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Figure 93 – Gemnorth Road Segment Boundary Error 

4.3 3D Model Extraction Results 

The following figures are Multigen Creator™ screenshots of the Openflight 

models of the Gemeast, Orion and Gemnorth road segments. These models were created 

using the program discussed in section 3.4.7. 
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Figure 94 – OpenFlight Model of Gemeast Road Segment 

 

Figure 95 – OpenFlight Model of Orion Road Segment 
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Figure 96 – OpenFlight Model of Gemnorth Road Segment 
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5 CONCLUSION & SUGGESTIONS FOR FUTURE WORK 

5.1 Conclusion 

In this dissertation the problem on how to create a georeferenced 3D road model 

from stereo video was addressed. A method based on using a modified version of the CP 

algorithm using YUV color and a novel extension of the fast snakes algorithm was 

proposed to produce stereo class images. The stereo class images were processed using 

stereo disparity and robust filtering to obtain 3D road boundary information  

We have developed a model of our system and used it to predict the system 

performance. Our boundary accuracy was found to be in agreement with our model 

prediction once they were properly aligned to georeferenced aerial images of the roads. 

Our error model can also be used as a design aid for mobile stereo vision processing 

tasks. 

We have successfully extended the road modeling techniques of Bossard [3] to 

include vision techniques to measure the road width.  A comparison of our method with 

Bossard’s techniques is given in the following table: 

Table 12 – Comparison of Proposed Method with Bossard’s Techniques 

 Proposed Method Bossard  
Data Collection Stereo Video and DGPS Dual DGPS 
Approach to 
finding road 
boundaries 

Color based 
segmentation with 
Snakes  

Direct measurement of 
single lane boundaries 

Segmentation Bayesian Classification 
using UV color 
histograms 

N/A 

Automation After selection of initial 
boundaries, process is 
fully automated 

Manual editing of 
boundary points 
necessary to compensate 
for GPS dropouts 

Model Output OpenFlight OpenFlight 
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 Proposed Method Bossard  
Features Adapts to changing road 

widths and color 
 

Limitations Works on segments. 
Susceptible to GPS 
dropouts 
Does not handle 
intersections. Cars and 
sidewalks cause 
boundary to wander. 

Susceptible to GPS 
dropouts. 
Cannot adapt to changing 
road width. 

 

Matlab software implementing the proposed method along with sample data is 

available on the UCF Driver Simulation Lab public FTP site at 

ftp://storage.cecs.ucf.edu/Groups/DSimPublic/. Contact the Driver Simulation Lab 

administrator at dsim@mail.ucf.edu for downloading instructions. 

5.2  Suggestions for Future Work 

Future research should be done to address the limitations of the proposed method. 

Methods for detecting the loss of a road boundary due to poor segmentation 

would enable the development of contingencies that would use the opposite boundary to 

estimate the boundary location. One approach would be to use a lane following technique 

to bound the extents of the road template, an excursion from this bounded template would 

indicate a poor boundary. 

Hybrid techniques incorporating stereo disparity into the snake algorithms such as 

those proposed by [72] should be considered. Another area for investigation is to develop 

a means of selecting optimal snake coefficients given a class of boundaries. 

Other improvements to the hardware configuration should be done to improve the 

quality of the collected road and sensor data.  

mailto:dsim@mail.ucf.edu
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The data collection platform should be upgraded with faster processors and 

increased memory to improve the performance of the system at high resolutions where 

the system was limited to a 5 Hz frame rate. 

To improve the DGPS performance the analog cellular modem link should be 

replaced with a digital wireless cellular card to improve dropout performance. The GPS 

cards should be upgraded to newer models supporting more satellite channels and 

providing centimeter level accuracy. This will permit the use of altitude data in 

developing road models for hilly terrain. 

The manually adjusted lenses should be replaced with an auto iris lens system 

controlled by software via an analog i/o card. Gradient lens filters will also reduce 

excessive light from the sky thereby improving the color contrast of the collected road 

data. Alternatively, one could consider replacing the Sony cameras with High Dynamic 

Range Camera (HDRC©) technology FireWire cameras which have a dynamic range 

comparable to the human visual system. 

Finally, the solid state compass needs to be upgraded to a unit that incorporates 

gyros into its tilt compensation mechanism. This will improve the accuracy of the 

navigation solution by providing a backup system that can function during short 

disruptions of the satellite signals due to terrain or building interference. 
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----- Forwarded message from Alberto Broggi <broggi@ce.unipr.it> ----- 
Date: Wed, 15 Mar 2006 00:37:09 +0100 
From: Alberto Broggi <broggi@ce.unipr.it> 
Reply-To: broggi@ce.unipr.it 
Subject: Re: Permission to reprint images in dissertation 
To: pe685631@pegasus.cc.ucf.edu 
I see no problem in using the images you mentioned. 
Please credit them as coming from 
VisLab, Artificial Vision and Intelligent Systems Lab, Univ of 
Parma, Italy (vislab.unipr.it) 
Thanks, 
ALberto Broggi 
 
On Tue, Mar 14, 2006 at 11:19:34AM -0500, pe685631@pegasus.cc.ucf.edu 
wrote: 
Dr. Broggi, 
I am a doctoral student at the University of Central Florida in Orlando, 
Florida; United States. I would like to reprint some of your webpage 
images(http://vislab.unipr.it/GOLD/ )(see attachments) in my doctoral 
dissertation (with full accreditation) "Automatic Generation of a 
Road Database for a Driver Simulator" which will be made available thru 
UMI, a company that provides copies of doctoral dissertations for a fee. 
The requested permission extends to any future revisions and editions of my 
dissertation, including non-exclusive world rights in all languages. These 
rights will in no way restrict republication of the material in any other 
form by you or by others authorized by you. 
 
If you are not the copyright holder of these images please inform me who is 
The copyright holder or if there is no copyright claimed. 
 
Sincerely, 
Pedro Claudio 
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----- Forwarded message from "Kreucher, Chris M." 
<christopher.kreucher@gd-ais.com> ----- 
Date: Fri, 24 Mar 2006 10:02:40 -0500 
From: "Kreucher, Chris M." <christopher.kreucher@gd-ais.com> 
Reply-To: "Kreucher, Chris M." <christopher.kreucher@gd-ais.com> 
Subject: RE: Request to reprint figure from article 
To: pe685631@pegasus.cc.ucf.edu 
Pedro, 
You have my permission to use the image in your dissertation, provided 
you give proper reference to its source. 
You may also be interested in results of a related algorithm, called 
LANA, published in C. Kreucher and S. Lakshmanan, "LANA: A Lane Extraction 
Algorithm that uses Frequency Domain Features", IEEE Transactions on 
Robotics and Automation, 15(2):343 - 350, April 1999. 
-- Chris 
-----Original Message----- 
From: pe685631@pegasus.cc.ucf.edu [mailto:pe685631@pegasus.cc.ucf.edu] 
Sent: Wednesday, March 22, 2006 2:15 PM 
To: Kreucher, Chris M. 
Subject: Request to reprint figure from article 
Dr. Kreucher, 
Thank you for sending me a copy of your Master's Thesis "A Tool for 
Query and Analysis of MPEG Encoded Video". 
I would like to reprint portions of the following 
figure(see attachments) in my doctoral dissertation "Automatic 
Generation of a Road Database for a Driver Simulator" which will be 
Made available thru UMI, a company that provides copies of doctoral 
Dissertations for a fee. 
I have received permission from the publisher, SPIE, as shown below in 
Their email. 
This image is contained in the article "Tracking Lane and Pavement 
Edges Using Deformable Templates" by K.C. Kluge, C.M. Kreucher and S. 
Lakshmanan which appeared in the Proceedings of SPIE Vol. 3364 "Enhanced 
and Synthetic Vision 1998", pages 167-176. The image appears on page 170, 
Figure 1. 
The requested permission extends to any future revisions and editions 
Of my dissertation, including non-exclusive world rights in all 
languages. These rights will in no way restrict republication of the 
material in any other form by you or by others authorized by you. 
Sincerely, 
Pedro Claudio 
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----- Forwarded message from "Kluge, Karl C." <KARL.C.KLUGE@saic.com> ----- 
Date: Wed, 22 Mar 2006 15:54:09 -0500 
From: "Kluge, Karl C." <KARL.C.KLUGE@saic.com> 
Reply-To: "Kluge, Karl C." <KARL.C.KLUGE@saic.com> 
Subject: RE: Request to reprint figure 
To: pe685631@pegasus.cc.ucf.edu 
Pedro, 
You are welcome to use the illustration. If you need explicit permission 
from the coauthors, let me know -- I have Sridhar's email address, but am 
uncertain about Chris's address. 
Karl 
-----Original Message----- 
From: pe685631@pegasus.cc.ucf.edu [mailto:pe685631@pegasus.cc.ucf.edu] 
Sent: Wed 3/22/2006 3:16 PM 
To: kck@cs.cmu.edu 
Subject: Request to reprint figure 
Dr. Kluge, 
I am a doctoral student at the University of Central Florida in Orlando, 
Florida. I would like to reprint portions of the following 
figure(see attachments) in my doctoral dissertation "Automatic 
Generation of a Road Database for a Driver Simulator" which will be made 
available thru UMI, a company that provides copies of doctoral 
dissertations for a fee. 
I have received permission from the publisher, SPIE, as shown below in 
their email. 
This image is contained in the article "Tracking Lane and Pavement Edges 
Using Deformable Templates" by K.C. Kluge, C.M. Kreucher and S. Lakshmanan 
which appeared in the Proceedings of SPIE Vol. 3364 "Enhanced and Synthetic 
Vision 1998", pages 167-176. The image appears on page 170, Figure 1. 
The requested permission extends to any future revisions and editions of 
my dissertation, including non-exclusive world rights in all languages. 
These rights will in no way restrict republication of the material in any 
other form by you or by others authorized by you. 
Sincerely, 
Pedro Claudio 
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----- Forwarded message from Sridhar Lakshmanan 
<lakshman@engin.umd.umich.edu> 
----- 
Date: Wed, 22 Mar 2006 22:49:59 -0500 (EST) 
From: Sridhar Lakshmanan <lakshman@engin.umd.umich.edu> 
Reply-To: Sridhar Lakshmanan <lakshman@engin.umd.umich.edu> 
Subject: Re: Request to reprint figure 
To: pe685631@pegasus.cc.ucf.edu 
Pedro: Fine with me. Go for it! 
Sridhar Lakshmanan 
On Wed, 22 Mar 2006 pe685631@pegasus.cc.ucf.edu wrote: 
Dr's. Kluge, Lakshman 
I am a doctoral student at the University of Central Florida in Orlando, 
Florida. I would like to reprint portions of the following 
figure(see attachments) in my doctoral dissertation "Automatic 
Generation of a Road Database for a Driver Simulator" which will be made 
available thru UMI, a company that provides copies of doctoral 
dissertations for a fee. I have received permission from the publisher, 
SPIE, as shown below in their email. 
This image is contained in the article "Tracking Lane and Pavement Edges 
Using Deformable Templates" by K.C. Kluge, C.M. Kreucher and S. Lakshmanan 
which appeared in the Proceedings of SPIE Vol. 3364 "Enhanced and Synthetic 
Vision 1998", pages 167-176. The image appears on page 170, Figure 1. 
The requested permission extends to any future revisions and editions of 
my dissertation, including non-exclusive world rights in all languages. 
These rights will in no way restrict republication of the material in any 
other form by you or by others authorized by you. 
Sincerely, 
Pedro Claudio 
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----- Forwarded message from Beth Huetter <bethh@SPIE.org> ----- 
Date: Tue, 21 Mar 2006 10:56:54 -0800 
From: Beth Huetter <bethh@SPIE.org> 
Reply-To: Beth Huetter <bethh@SPIE.org> 
Subject: RE: 
To: pe685631@pegasus.cc.ucf.edu 
Dear Pedro Claudio, 
Thank you for your request to reprint Fig. 1 of K.C. Kluge, C.M. 
Kreucher and S. Lakshmanan "Tracking Lane and Pavement Edges Using 
Deformable Templates" in Proceedings of SPIE Vol. 3364 "Enhanced and 
Synthetic Vision 1998", pages 167-176. 
Publisher's permission is hereby granted under the following conditions: 
(1) you obtain permission of the author(s); (2) the material to be used 
has appeared in our publication without credit or acknowledgment to 
another source; and (3) you credit the original SPIE publication. 
Include the authors' names, title of paper, volume title, SPIE volume 
number, and year of publication in your credit statement. 
Please write back if you have any other questions or concerns. 
Sincerely, 
Beth Huetter for 
Eric Pepper, Director of Publications 
International Society for Optical Engineering (SPIE) 
P.O. Box 10, Bellingham WA 98227-0010 USA 
360/676-3290 (Pacific Time) eric@spie.org 
-----Original Message----- 
From: pe685631@pegasus.cc.ucf.edu [mailto:pe685631@pegasus.cc.ucf.edu] 
Sent: Tuesday, March 21, 2006 10:00 AM 
To: reprint_permission 
Subject: 
I am a doctoral student at the University of Central Florida in Orlando, 
Florida. I would like to reprint portions of the following 
figure(see attachments) in my doctoral dissertation "Automatic 
Generation of a Road Database for a Driver Simulator" which will be made 
available thru UMI, a company that provides copies of doctoral 
dissertations for a fee. 
This image is contained in the article "Tracking Lane and Pavement Edges 
Using Deformable Templates" by K.C. Kluge, C.M. Kreucher and S. Lakshmanan 
Which appeared in the Proceedings of SPIE Vol. 3364 "Enhanced and Synthetic 
Vision 1998", pages 167-176. The image appears on page 170, Figure 1. 
The requested permission extends to any future revisions and editions of 
My dissertation, including non-exclusive world rights in all languages. 
These rights will in no way restrict republication of the material in any 
other form 
Sincerely, 
Pedro Claudio 
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