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ABSTRACT

MULTI-MODAL ENHANCEMENT TECHNIQUES FOR 
VISIBILITY IMPROVEMENT OF DIGITAL IMAGES

Li Tao 
Old Dominion University 

Director: Dr Vijayan K. Asari 
Defense Date: December 12, 2005

Image enhancement techniques for visibility improvement of 8-bit color digital images 

based on spatial domain, wavelet transform domain, and multiple image fusion 

approaches are investigated in this dissertation research.

In the category of spatial domain approach, two enhancement algorithms are 

developed to deal with problems associated with images captured from scenes with high 

dynamic ranges. The first technique is based on an illuminance-reflectance (I-R) model of 

the scene irradiance. The dynamic range compression of the input image is achieved by a 

nonlinear transformation of the estimated illuminance based on a windowed inverse 

sigmoid transfer function. A single-scale neighborhood dependent contrast enhancement 

process is proposed to enhance the high frequency components of the illuminance, which 

compensates for the contrast degradation of the mid-tone frequency components caused 

by dynamic range compression. The intensity image obtained by integrating the enhanced 

illuminance and the extracted reflectance is then converted to a RGB color image through 

linear color restoration utilizing the color components of the original image. The second 

technique, named AINDANE, is a two step approach comprised of adaptive luminance 

enhancement and adaptive contrast enhancement. An image dependent nonlinear transfer 

function is designed for dynamic range compression and a multiscale image dependent 

neighborhood approach is developed for contrast enhancement. Real time processing of 

video streams is realized with the I-R model based technique due to its high speed 

processing capability while AINDANE produces higher quality enhanced images due to 

its multi-scale contrast enhancement property. Both the algorithms exhibit balanced 

luminance, contrast enhancement, higher robustness, and better color consistency when 

compared with conventional techniques.
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In the transform domain approach, wavelet transform based image denoising and 

contrast enhancement algorithms are developed. The denoising is treated as a maximum a 

posteriori (MAP) estimator problem; a Bivariate probability density function model is 

introduced to explore the interlevel dependency among the wavelet coefficients. In 

addition, an approximate solution to the MAP estimation problem is proposed to avoid the 

use of complex iterative computations to find a numerical solution. This relatively low 

complexity image denoising algorithm implemented with dual-tree complex wavelet 

transform (DT-CWT) produces high quality denoised images. A wavelet transform based 

contrast enhancement technique is developed based on the correlation between the 

modified wavelet coefficients and a corresponding change in image quality. Comparison 

of the proposed technique with a curvelet based method shows that the new technique is 

extremely fast while providing a similar quality in the resulting images.

Both pixel-based and region-based image fusion methods are investigated for the 

purpose of incorporating much more scene information into a single image based on the 

information contained in multiple registered (aligned) source images. The three features in 

the wavelet transform based multiresolution fusion scheme proposed in this dissertation 

are: 1) a match measure obtained in the spatial domain which is applied to guide the fusion 

process, 2) a double-thresholding scheme which is adopted when combining 

corresponding pixels or regions, and 3) a multi-resolution segmentation process conducted 

on the match measured images. The proposed image fusion schemes are also implemented 

with DT-CWT. A prototype DVI (driver visibility improvement) system is developed 

based on the pixel-level image fusion algorithm.

Research work is progressing for the development of an algorithm which can make 

robust and optimal balance between the dynamic range compression of low frequency 

components and the enhancement of high frequency components. A neighborhood 

dependent coefficient shrinkage function based on estimated noise content is being 

developed for this purpose. In addition, the interlevel and intralevel dependency will be 

considered into the wavelet transform based image enhancement algorithms. Furthermore, 

advanced MR segmentation techniques based on texture analysis, gradient analysis, 

watershed methods and statistical methods are also being investigated for performing 

optimal fusion of multiple images.
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Chapter I 1

CHAPTER I 

INTRODUCTION

1.1 Motivation for the Dissertation Research

Image enhancement is an important topic in digital image processing. It can help human 

viewers and computer vision algorithms obtain more accurate information from enhanced 

images. The visual quality and certain image properties, such as brightness, contrast, 

signal-to-noise ratio, resolution, edge sharpness, and color accuracy can be improved by 

the enhancement process. Many image enhancement algorithms have been developed 

based on various digital image processing techniques and applications. They can be 

developed in either the spatial domain or frequency domain.

Image enhancement techniques can be classified into various groups using different 

functionalities and criteria. For instance, image enhancement can be conducted on a single 

image using only the information contained in the original image while it can also be 

performed to create an enhanced image based on the information obtained from multiple 

input images. For example, image fusion is one of the enhancement techniques used to 

process multiple input images. On the other hand, image enhancement algorithms can also 

process images in different signal representation domains, such as the 2-D spatial domain, 

multiresolution (MR) representation in spatial domain (e.g., Gaussian and Laplacian 

pyramids), frequency domains (e.g., FFT domain and DCT domain), and 

spatial-frequency domain (e.g., wavelet transform domain). Due to different properties of 

various image processing techniques employed in image enhancement algorithms, each 

algorithm may have certain specialties compared to other algorithms in terms of 

capabilities, performance, speed, robustness, computation load, algorithm complexity, and 

so on. Therefore, it is necessary to investigate different image processing techniques to 

develop new image enhancement algorithms or improve existing algorithms for the 

purpose of improving the visibility in scenes and strengthening our capability to deal with 

various image processing and computer vision applications.

This dissertation research is dedicated to develop innovative image enhancement 

techniques for improving the visibility of low quality digital images caused by high
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Chapter I 2

dynamic range scene irradiance, noise, poor contrast, and very low illumination (low light 

condition). New image enhancement algorithms have been proposed and implemented 

based on various image processing techniques, and they are briefly introduced in the next 

section.

1.2 Summary of the Dissertation Contributions

The major research contributions achieved in this dissertation research are the following:

• Two new spatial domain nonlinear image enhancement algorithms are developed 

to solve the problems created by high dynamic range scene irradiance. Both 

algorithms deal with the issues of dynamic range compression, contrast 

improvement and color consistency. The first algorithm is originated from the 

concept of illuminance-reflectance (I-R) model of the scene irradiance. An 

adaptive dynamic range compression and an image dependent enhancement of 

mid-tone frequency components are performed on the estimated illuminance. The 

original reflectance value is combined with the treated illuminance for recreating 

the enhanced intensity image. The second enhancement algorithm, named 

AINDANE (Adaptive and Integrated Neighborhood Dependent Approach for 

Nonlinear Enhancement of color images) is a two-step approach comprising of 

adaptive luminance enhancement and an adaptive contrast enhancement processes. 

This configuration provides flexible control to the image enhancement process. A 

linear color restoration process is performed on the enhanced intensity image to 

restore its color information and maintain color consistency with the original color 

image. AINDANE provides better performance in terms of the visual quality of the 

image compared to that by the I-R model based algorithm due to its multiscale 

contrast enhancement mechanism. However, real-time video enhancement can be 

successfully realized using the I-R model based algorithm due to its relatively low 

computational complexity. Both algorithms are implemented in a newly developed 

software package named TESuite’ for still image and video enhancement. An 

embedded pocket PC based application is also developed.
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Chapter I 3

•  New wavelet transform based image enhancement techniques are developed for 

image denoising and image contrast enhancement. Wavelet coefficients extracted 

from the original image are appropriately modified to obtain reconstructed images 

with reduced noise and improved contrast. Image denoising is treated as a 

statistical problem with a bivariate pdf (probability density function), which is 

used to model the interlevel statistical dependency among wavelet coefficients. An 

approximate solution of the bivariate shrinkage function for estimating the ‘clean’ 

image with reduced noise is developed to avoid sophisticated computations. The 

results of the proposed denoising algorithm are observed to be equivalent to the 

best results in the literature. Contrast enhancement is implemented by performing 

a nonlinear or a piece-wise linear transformation to the detailed wavelet 

coefficients. Dynamic range compression of the approximation coefficients is also 

performed to provide luminance enhancement to the images. Both algorithms are 

implemented using the dual-tree complex wavelet transform (DT-CWT) technique 

for optimal results.

•  New wavelet transform based image fusion schemes, with a modified match 

measure calculation, image segmentation and decision making techniques, are 

developed. Both pixel-based and region-based approaches are investigated for 

performing multi-image fusion. In the proposed algorithms, match measure is 

computed in the spatial domain for reducing the computations and yielding more 

accurate results. Moreover, in the region-based fusion scheme, the regions are 

created by applying multi-resolution (MR) image segmentation on the match 

measure image. In both fusion schemes, corresponding pixels or regions are 

combined in wavelet domain using weighted averaging with the weight factors 

determined by match measure and activity measure. New double thresholding 

scheme based on the match measure value is designed to determine the values of 

weight factors according to their activity measures. More image features from 

source images can be appropriately incorporated into the fused images. Both 

wavelet transform based fusion algorithms are also implemented using DT-CWT, 

and a prototype image fusion software package named ‘Image Fusion (IF)’ is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter I 4

developed in a PC platform for fusion of still images and video files. The fusion 

algorithms are successfully applied for fusing multi-sensor, multi-illumination, and 

multi-focus images.

1.3 Organization of the Dissertation

The remaining chapters in this dissertation are organized as follows:

Chapter II presents a review of the conventional nonlinear image enhancement 

techniques, such as Retinex-based methods. These include the algorithms proposed in the 

field of computer graphics that have to deal with rendering of high dynamic range 

radiance map, similar to the problem of displaying high dynamic range images in the 

image processing field. A review of image enhancement techniques using wavelet 

transform focusing on image contrast enhancement and image denoising are also 

presented. This chapter also reviews the multi-resolution image fusion techniques which 

are either pixel based or region based.

In Chapter III, we present the two new spatial domain image enhancement algorithms. 

I-R model based algorithm will be introduced first followed by AINDANE. For both 

algorithms, the details of nonlinear dynamic range compression, single-scale or 

multi-scale neighborhood dependent contrast enhancement, and color restoration will be 

described and explained. Two algorithms will be separately discussed using various 

experimental results concerning their capability, adaptiveness, robustness, processing 

speed, and comparison with other techniques. Image statistics are also used to evaluate the 

effect of image enhancement in spatial domain. Comparison with other advanced 

techniques are performed and discussed in terms of clarity, processing speed, and color 

consistency.

Chapter IV presents wavelet transform based algorithms for image denoising and 

contrast enhancement. In image denoising, the statistical model considering the interlevel 

dependency of wavelet coefficients is introduced, and the derivation of the corresponding 

estimation problem of the ‘clean’ image is discussed. An approximate solution to the 

estimation problem is also presented. Finally, quantitative evaluation method is used to 

compare the proposed algorithm with other existing methods. In contrast enhancement,
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the correlation between the modified wavelet coefficients and the corresponding change of 

image quality is investigated. Nonlinear and piece-wise linear transfer functions for 

modifying the wavelet coefficients are developed to improve the local contrast in images. 

In addition, we propose to apply the dynamic range compression technique to the 

approximation images for luminance enhancement. This wavelet-based enhancement 

technique is implemented using DT-CWT and compared with a similar technique 

implemented with curvelet transform.

Chapter V presents wavelet transform based multi-resolution (MR) image fusion 

schemes for visibility improvement. Both pixel and region based approaches are 

investigated. The fusion scheme for each type of image fusion will first be introduced 

followed by detailed description of each step. A new match measure method and a new 

combination scheme are proposed, and a new region classification method is presented 

based on MR image segmentation applied on the match measure images. Both types of 

image fusion algorithms are implemented with DT-CWT technique. Experimental results 

and discussions are presented in this chapter. A new performance evaluation criterion is 

developed to evaluate and compare the efficiency of the proposed algorithms with the 

conventional techniques in the literature.

Chapter VI introduces the application systems developed in this dissertation work. 

Spatial domain algorithms based software packages for enhancement of still images and 

videos on both desktop/notebook PC and pocket PC are developed. Another software 

package for fusion of still images and video files for a prototype DVI (Drivers Visibility 

Improvement) system is also developed based on the pixel-level based image fusion 

algorithm proposed in this dissertation.

Finally, Chapter VII presents a summary of the major contributions of this dissertation 

work and suggestions for future work.
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CHAPTER II 

LITERATURE REVIEW

2.1 Overview of Nonlinear Image Enhancement in the Spatial Domain

Retinex based algorithms are effective techniques dealing with dynamic range 

compression and color constancy, which are developed from E. Land’s theory [1-3] of 

human visual perception of lightness and color. Since the introduction of Retinex, several 

variants [4-7] on the original method have been developed mainly to improve the 

computational efficiency while preserving the basic principles. However, those methods 

are not widely used because of comparatively low processing speed and some issues 

concerning the visual quality of enhanced images. Nevertheless, more algorithms and 

applications have been developed based on Retinex due to its deep understanding of the 

lightness and color perception [8, 9].

MSRCR (Mutiscale Retinex with Color Restoration)[10-14], proposed by Z. 

Rahman, et al, is a newly developed and widely cited image processing technique which is 

a Retinex based algorithm using logarithmic compression and spatial convolution to 

implement the idea of Retinex. It aims to synthesize local contrast enhancement, color 

constancy, and lightness/color rendition for digital color image enhancement. MSRCR 

generally works well with various types of images. However, it also has some drawbacks 

that need to be tackled for approaching optimal performance [15-18]. Since the standard 

MSRCR algorithm needs to process all spectral bands of color images, it takes a long time 

to enhance large images. Thus MSRCR is hard to use in real time applications without a 

hardware implementation of the algorithm. In addition, the nonlinear color restoration 

process may produce colors, which are not predictable and sometimes make images look 

unnatural. For images having a dark subject with a very bright background, MSRCR 

seems to have difficulty providing sufficient luminance enhancement for the subject 

without post-enhancement treatment, and MSRCR may also cause the decrease in the 

luminance of the background, which can deteriorate the quality of the enhanced images if 

no post-treatment is performed. Finally, images enhanced by MSRCR may have some 

artifacts appearing at the boundaries with a large luminance change between the bright and
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dark regions. This so-called “halo effect” is associated with the convolution.

Histogram equalization (HE) is a well-established technique for image enhancement. 

However, HE only works well for scenes that have uni-modal or weakly bi-modal 

histograms (i.e. very dark or very bright scenes). For scenes with strongly bi-modal 

histograms (i.e. scenes that contain both very dark and very bright regions), HE performs 

poorly. Therefore, adaptive histogram equalization (AHE) was introduced [19]. AHE, also 

called localized or windowed HE, produces a local contrast enhancement by performing 

HE within a window whose size is adjustable for an optimized result. AHE definitely 

performs better than normal HE. However, the contrast enhancement is so strong that two 

major problems arise: intensive noise enhancement in “flat” regions and “ring” artifacts at 

strong edges [20], To deal with those problems, a generalized version of AHE, contrast 

limiting AHE (CLAHE) was designed [21]. CLAHE has more flexibility in controlling the 

local contrast enhancement by selecting the clipping level of the histogram. Undesired 

noise amplification is reduced. In addition, the boundary artifacts can also be reduced 

using background subtraction [22]. Multi-scale AHE (MAHE) is the most advanced 

variation of HE. Unlike traditional single scale techniques, wavelet-based MAHE is 

capable of modifying/enhancing image components adaptively based on their 

spatial-frequency properties [23]. Those advanced HE variations generally have very 

strong contrast enhancement, which is especially useful in feature extraction applications 

like medical imaging for diagnosis. They are not commonly used in processing color 

images probably because their strong contrast enhancement may lead to excessive noise or 

artifacts and cause the image to look unnatural.

In the field of computer graphics [24-29], various algorithms have been developed to 

deal with a similar problem: how to display a high dynamic range image on a display 

device with limited dynamic range. However, the techniques developed in both areas may 

not be shared due to the following two reasons. First, in image processing, the input is an 

image that has been degraded and recorded by an imaging device of limited dynamic 

range. In computer graphics, the input is an undistorted array of simulated real-world 

luminance with high dynamic range. Second, in image processing, the task is to enhance 

the visibility of imperfect images by compressing the dynamic range and improving the 

contrast. The subjective correspondence with the original view of the scene generally
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cannot be maintained. In computer graphics, however, the subjective correspondence 

needs to be maintained. Visibility and contrast are simulated to produce visually accurate, 

not enhanced (changed) images.

Larson et al. [24] developed a tone reproduction operator that preserves visibility of 

high dynamic range scenes using a new histogram adjustment technique, based on the 

population of local adaptation of luminance in a scene. To match a subjective viewing 

experience, the method incorporates models for human contrast sensitivity, glare, spatial 

acuity, and color sensitivity. This technique and other similar techniques, developed for 

computer graphic applications, is not suitable for image enhancement due to its global 

processing approach and lack of contrast enhancement, which may lead to feature loss or 

degradation at some areas in the image. Chiu et al. [25] were the first in computer graphics 

to consider that tone mapping should be spatially non-uniform; in other words, the tone 

mapping should be neighborhood dependent. This method and MSRCR are similar in 

spirit. Therefore, they share the same problem of halo artifacts. Schlick [26] proposed a 

simple and fast non-uniform tone mapping scheme which is dependent on the intensity of 

each pixel itself. It is not adaptive enough to account well for contrast enhancement in 

image processing.

In order to eliminate the notorious halo effect, Tumblin and Turk [27] introduced 

the low curvature image simplifier (LCIS) hierarchical decomposition of an image. Each 

stage in this hierarchy is computed by solving partial differential equations inspired by 

anisotropic diffusion. At each hierarchical level, the method segments the image into 

smooth (low-curvature) regions while stopping at sharp discontinuities. The hierarchy 

describes progressively smoother components of the image intensity (luminance). A set of 

image details are obtained by subtractions between images at adjacent levels. Tumblin and 

Turk attenuate the smooth components and reassemble the images to create a low-contrast 

version of the original while compensating for the wide changes in the illumination field. 

This method drastically reduces the dynamic range, but tends to overemphasize fine details. 

The algorithm is computationally intensive and requires the selection of at least 8 different 

parameters. Pattanaik et al. [28] presented a tone mapping algorithm, which is made more 

realistic by incorporating human visual perception behavior into the model. They 

performed the image decomposition by the Laplacian pyramid (difference-of-Gaussian
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pyramid) approach. This technique produces dynamic range compressed images with 

good tonality and accurate color rendering. However, the halo effect in the images 

produced by their algorithm is much more severe than that produced by MSRCR.

2.2 Overview of Wavelet Transform Based Image Processing

The fourier transform has long been the mainstream of transform-based signal processing 

since the late 1950s. However, a more recent transformation, called the wavelet transform, 

has shown great promise for various image processing applications which include image 

denoising, contrast enhancement, compression, segmentation and classification, etc. 

Although wavelet transform cannot replace Fourier transform, it really has some unique 

signal processing capabilities which are not possessed by Fourier transform. Unlike the 

Fourier transform whose basis functions are sinusoids, wavelet transforms are based on 

small waves of varying frequency and limited duration. This allows wavelet coefficients to 

provide both spatial (or temporal) and frequency information (i.e. space-frequency or 

time-frequency analysis), whereas the non-local Fourier transform gives only frequency 

information. Mallat [30] first proposed multiresolution analysis (MRA) by using the 

wavelet transform to provide a new powerful approach to signal processing and analysis. 

Multiresolution theory unifies techniques from several fields, including subband coding 

from signal processing [31], quadrature mirror filtering (QMF) from speech recognition 

[32], and pyramidal image processing [33]. Due to the close links to these techniques and 

its specials properties, the wavelet transform has been investigated for many applications 

which include prediction and filtering [34], estimation [35], image denoising [36], image 

coding or compression [37], image enhancement [38], detection and classification [39], 

and synthesis [40]. Most importantly, the wavelet transform has been adopted in the 

state-of-art image and video compression standards like JPEG-2000 and MPEG-4 [41, 

42].
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2.2.1 Wavelet transform based image denoising

The visual quality of images is frequently corrupted by noise introduced during the image 

acquisition and transmission phases. The goal of image denoising is to remove the noise, 

for both aesthetic and image processing reasons, while retaining important image features 

as much as possible. Traditionally, denoising is achieved in the spatial domain by 

approaches such as Wiener filtering, which is the optimal estimator in the sense of mean 

squared error (MSE) for stationary Gaussian processes. However, the requirement for a 

stationary and accurate statistical model of the underlying process leads to poor 

performance on natural images which violate these assumptions. As a result, applying the 

Wiener filter to natural images tends to produce blurred edges. In practice, adaptive 

methods [43, 44] are mostly used. Adaptive methods are fast and can effectively suppress 

noise for many natural images. More importantly, their adaptivity allows them to work for 

non-stationary processes. The main problem with such methods is their assumption that 

natural images are independent random processes, which usually is not true.

Since the last decade, wavelet transform has been studied extensively for suppressing 

noise in natural images [36, 45-48] because of its effectiveness and simplicity. It is now 

well-known that wavelet transforms with some regularity have strong decorrelation 

abilities, and can well represent an image with just a few large coefficients. Therefore, it is 

far more reasonable to assume that the wavelet coefficients are more independent than 

original spatial domain pixels. This explains why impressive denoising results have been 

achieved by simply thresholding or shrinking each wavelet coefficient independently [36, 

45, 46]. Indeed, this kind of approach has much better results than the traditional methods 

[43,44], both subjectively and objectively.

The pioneering work by Donoho et al [49] inspired the research on wavelet transform 

based denoising. They tried to constrain the smoothness of denoised signals and to find the 

asymptotically optimal minimax regression estimator, which turned out to be a simple 

thresholding process but outperformed many previous denoising methods (e.g. [43, 50]). 

This idea was later developed by Starck et al [51] for image denoising. Donoho's work 

was mainly based on deterministic signal analysis. Because noise is naturally a stochastic 

process, many researchers adopted probabilistic models and Bayesian inference 

approaches to achieve denoising in the wavelet domain. The representative models include
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the non-Gaussian independence model [36], hidden Markov tree model (HMT) [52], 

Gaussian scale mixture model (GSM) [45] and Markov field model [46]. These ideas for 

image denoising are summarized as follows:

1. Non-Gaussian independence models, typically generalized Gaussian distribution 

(GGD) and Gaussian mixture models, are used to characterize the distribution of 

wavelet coefficients [36, 47, 53, 54], Although the resulting denoising equations are 

relatively simple, they are often effective in terms of MSE and impressive denoising 

results have been obtained. The main problems are the Gibbs-like artifacts around 

edge areas due to ignoring strong remaining correlations in these areas.

2. Gaussian models exploiting inter- and/or intra- scale correlations are used by [55-58]. 

For image denoising, a significant decrease of MSE (relative to the above 

independence model) was reported when noise variances are relatively high. However, 

these models ignore the non-Gaussian nature of wavelet coefficients and due to limited 

amount of data available for estimating the needed parameters, artifacts can often be 

seen due to parameter estimation errors.

3. Non-Gaussian models exploiting inter- and/or intra- scale correlations are proposed in, 

for example [45, 59, 60, 52]. These models include the well-known hidden Markov 

tree (HMT) models [52, 61, 62], Markov field models [59, 60, 63, 64] and scale 

mixture Gaussian (GSM) models [45]. These models are sophisticated and have very 

powerful representation strengths. They can be used not only for image denoising, but 

also for segmentation [65], detection [39], and enhancement [38], However, for image 

denoising, the formulations using these models usually do not result in closed-form 

solutions and high-complexity numerical iterative methods have to be used. Another 

problem with these models is none of them can represent edge areas very well and thus 

have unavoidable artifacts in these areas. Recently, Kingsbury [66-68] proposed 

DT-CWT which has approximate shift invariance and better directional selectivity 

compared to other types of wavelet transforms. Therefore, DT-CWT is believed to 

exhibit better performance in image processing than other wavelet transforms, and 

some improved results have been obtained [69-71],
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2.2.2 Wavelet transform fo r image enhancement

Wavelet-based image enhancement is mainly used to enhance the perceptual sharpness of 

an image but this method can generally improve the image local contrast too. Due to its 

spatial-firequency analysis capability, wavelet transform is well suitable for augmenting 

the edge features in images. In a standard scenario of an image enhancement experiment 

for improving image sharpness, for example, when a given input image is blurred with 

known degradation model, restoration techniques can be applied together with other 

frequency enhancement techniques [72, 73]. The enhancement scheme described here can 

be applied as an additional enhancement utility.

Given a blurred image, classic image enhancement methods will try to recover the lost 

high-frequency components so that lost image features can be completely or partially 

restored and the processed image will look sharper and more pleasing to human observers. 

Traditionally this was performed by so-called unsharp filters [73], which are linear (and 

generally shift-invariant) processors. It is well known that linear shift invariant (LSI) 

filters modify only the existing frequencies but cannot generate new frequency 

components, and thus cannot recover the lost high-frequency components in principle. 

Nonlinear filtering methods were also studied by several authors [74-77]. However, so far 

there are only ad hoc solutions and designing general-purpose nonlinear filters remains 

difficult.

Recently, several multiscale image enhancement approaches have been proposed with 

interesting results [78, 79, 38, 80]. Image enhancement in a multiscale context can be 

considered as the estimation of coefficients in high frequency subbands based on those in 

lower-frequency subbands. All of these approaches attempt to utilize the inter-scale 

dependency (mainly related to edges) to extrapolate lost high-frequency components. 

Greenspan et al. [78] and Burt et al. [79] used zero-crossings of the second derivative of 

smoothed images to locate edges, and based on the ideal step edge model they estimated 

the inter-scale relations of edges. They then used these relations to estimate edges in finer 

scales from those of the low-frequency subbands. Kinebuchi and Woo [38, 80] assumed a 

different approach: they first used a hidden Markov tree model (HMT) [52,61] to infer the 

probability of each hidden state and corresponding variances. Then a Gaussian mixture 

model (GMM) (corresponding to the hidden states) is used for each wavelet coefficient
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and the wavelet coefficients in the highest subband are generated randomly (by sampling) 

using the estimated state probabilities and variances. In estimating variances, the property 

of exponential decay of variances was assumed [81] with roughly estimated exponents.

The image enhancement techniques previously reviewed are mainly used to recover 

lost high frequency components, but may also help improve local image contrast. 

However, those enhancement techniques are different from contrast enhancement which 

needs no restoration of lost high frequency components but which do need enhancement 

of certain existing high frequency components. Multi-scale image contrast enhancement 

has been proposed and implemented using either wavelet [82] or curvelet [83] transform. 

In [82], Velde proposed enhancing the faintest edges and keeping untouched the strongest 

by modifying the wavelet coefficients in a similar way as the coefficient thresholding in 

wavelet denoising. However, multi-scale contrast enhancement technique based on 

wavelet transform has not been extensively investigated due to the limitations of real 

DWT. Due to the improved capabilities of DT-CWT, better contrast enhancement results 

are expected by using DT-CWT instead of normal DWT.

2.3 Overview of Multiresolution Image Fusion

Image fusion can be broadly defined as the process of combining multiple input images 

into a smaller collection of images, usually a single one, which contains the relevant 

information from the inputs. In order to better understand a scene from an image, not only 

the position and geometry, but more importantly, the semantic interpretation matters. In 

this context, the word relevant should be considered in the sense of ‘relevant with respect 

to the task the fused images will be subject to’, in most cases high-level tasks such as 

interpretation or classification. Since the fused image generally possesses more scene 

information than any single input image, image fusion can also be considered as an image 

enhancement process. For example, fusing multi-focus images (e.g. images with various 

focal depths) can produce a fused image which exhibits clear details of all objects in the 

scene.

The image fusion process can take place at different levels of information 

representation. A common categorization method is to distinguish between pixel, feature
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(or region) and symbol level [84], although indeed these levels can be combined 

themselves [85]. Image fusion at pixel-level represents the lowest processing level 

referring to the merging of measured physical parameters (usually pixel intensity) [86, 87]. 

It generates a fused image in which each pixel is often determined from a set of pixels (a 

window) in the various sources. Fusion at feature-level requires first the extraction (e.g. by 

image segmentation procedures) of the features contained in the input images [88, 89]. 

Those features can be identified by characteristics such as size, shape, contrast, and texture. 

The fusion is thus based on those extracted features and enables the detection of useful 

features with higher confidence. Fusion at symbol level allows the information to be 

effectively combined at the highest level of abstraction [90, 91]. The input images are 

usually processed individually for information extraction and classification. This results in 

a number of symbolic representations which are then fused according to decision rules 

which reinforce common interpretation and resolve differences. The choice of the 

appropriate level depends on many different factors such as data sources, application and 

available tools. At the same time, the selection of the fusion level determines the necessary 

pre-processing involved. For instance, fusing data at pixel-level requires co-registered 

images at subpixel 'accuracy because the existing fusion methods are sensitive to 

misalignment.

Currently, many image fusion applications employ pixel-based methods. The 

advantage of pixel-level image fusion is that the source images contain the original 

physical information, and the fused image generally exhibits more scene information than 

those produced by fusion at feature level. Furthermore, the algorithms are rather easy to 

implement and time efficient. It should be noted that an important pre-processing step in 

pixel-fusion methods is image registration, which ensures that the information from each 

source is referring to the same physical structures in the real-world. However, for many 

image fusion applications, it is more meaningful to combine objects rather than pixels. As 

an intermediate step from pixel based toward object-based fusion schemes, one may 

consider region-based approaches. Such approaches have the additional advantage that the 

fusion process becomes more robust and avoids some of the well known problems in 

pixel-level fusion such as blurring effects and high sensitivity to noise and misregistration.

MR analysis techniques have been extensively used in image fusion due to its strong
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capability of representing multi-scale image features. The first MR image fusion approach 

was proposed in the literature by Burt [92]. His implementation used a Laplacian pyramid 

and a sample-based maximum selection rule with activity measure defined by the 

magnitude of the coefficient. Toet [93] presented a similar algorithm but using the 

ratio-of-low-pass pyramid. His approach is motivated by the fact that the HVS is based on 

contrast, and therefore, a fusion technique which selects the highest local luminance 

contrast is likely to provide better details to a human observer. Another variation of this 

scheme is obtained by replacing the linear filters by morphological ones [94, 95]. Burt and 

Kolczynski [86] proposed to use the gradient pyramid together with a combination 

algorithm that is based on an activity and a match measure. In particular, they define the 

activity of as a local energy measure and match measure as a normalized correlation 

computed in a window with a size of either l x l , 3 x 3  or 5 x 5 .  The combination process 

is a weighted average of corresponding pixels with the weights being determined by the 

decision process for each pixel location at each level and band with a threshold. The 

decision process works in such a way that in case of a poor match (no similarity between 

the inputs), the source coefficient having the largest activity will yield the composite value, 

while otherwise, a weighted sum of the sources coefficients will be used. The authors 

claim that this approach provides a partial solution to the problem of combining 

components that have opposite contrast, since such components are combined by selection. 

In addition, the use of window-based (versus pixel-based) operations and the gradient 

pyramid provide greater stability in noise, compared to the Laplacian pyramid based 

fusion.

Ranchin and Wald [96] presented one of the first wavelet-based fusion systems. This 

approach is also used by Li et al. [97]. Their implementation considers the maximum 

absolute value within a window as the activity measure associated with the pixel centered 

in the window. For each position in the transform domain, the maximum selection rule is 

used to determine which of the inputs is likely to contain the most useful information. This 

results in a preliminary decision map which indicates, at each position, which source 

should be used in the combination. This decision map is then subject to a consistency 

verification. In particular, Li et al. apply a majority filter in order to remove possible 

wrong selection decisions caused by impulsive noise. The authors claim that their scheme
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performs better than the Laplacian pyramid-based fusion due to the compactness, 

directional selectivity and orthogonality of the wavelet transform. Wilson et al. [98] used a 

DWT fusion method and a perceptual-based weighting based on the frequency response of 

the HVS. Indeed, their activity measure is computed as a weighted sum of the Fourier 

transform coefficients of the wavelet decomposition, with the weights determined by the 

contrast sensitivity. They define a perceptual distance between the sources and use it 

together with the activity to determine the weights of the wavelet coefficients from each 

source. Actually this perceptual distance is directly related to the matching measure: the 

smaller the perceptual distance, the higher the matching measure. The final weighting 

process is guided by the perceptual distance and activity measure with a distance threshold. 

When the perceptual distance is larger the threshold, maximum selection rule is used to 

determine which coefficient will be chosen. Otherwise, a weighted averaging process will 

be applied with the weight being determined by the relative relation between the two 

coefficients. In the experimental results presented by the authors, the fused images 

obtained with their method are visually better than the ones obtained by fusion techniques 

based on the gradient pyramid or the ratio-of-low-pass pyramid.

Koren et al. [99] used a steerable wavelet transform for the MR decomposition. They 

advocate their choice because of the shift-invariance and no-aliasing properties this 

transform offers. For each frequency band, the activity is a local oriented energy. Only the 

components corresponding to the frequency band whose activity is the largest are included 

for reconstruction. Liu et al. [100] also used a steerable pyramid but rather than using it to 

fuse the source images, they fuse the various bands of this decomposition by means of a 

Laplacian pyramid. In [101], Rockinger considered an approach based on a shift-invariant 

extension of the DWT. The detail coefficients are combined by a maximum selection rule, 

while the coarse approximation coefficients are merged by averaging. Due to the 

shift-invariance representation, the proposed method is particularly useful for image 

sequence fusion, where a composite image sequence has to be built from various input 

image sequences. The author shows that the shift-invariant fusion method outperforms 

other MR fusion methods with respect to temporal stability and consistency.

Pu and Ni [102] proposed a contrast-based image fusion method using also the DWT. 

They measure the activity as the absolute value of what they call directive contrast which
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is the ratio between the coefficient in one subband and the coefficient at the same position 

in the reference subband, and they use a maximum selection rule as the combination 

method of the wavelet coefficients. They also proposed an alternative approach where the 

combination process is performed on the directive contrast itself. Li and Wang [103] 

examined the application of discrete multiwavelet transforms to multisensor image fusion. 

The composite coefficients are obtained through a pixel-based maximum selection rule. 

The authors showed experimental results where their fusion scheme performs better than 

those based on comparable scalar wavelet transforms. Another MR technique is proposed 

by Scheunders [104] where the fusion consists of retaining the modulus maxima [105] of 

the wavelet coefficients from the different bands and combining them. Noise reduction 

can be applied during the fusion process by removing noise related modulus maxima. In 

the experiments presented, the proposed method outperforms other wavelet-based fusion 

techniques.
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CHAPTER III

NONLINEAR IMAGE ENHANCEMENT IN THE SPATIAL DOMAIN

In this chapter, we investigate the image visibility improvement in the spatial domain 

based on image processing of a single image. Two new nonlinear image enhancement 

algorithms are developed: illuminance-reflectance model (I-R) and adaptive integrated 

neighborhood dependant approach for nonlinear enhancement (AINDANE). Both of them 

have to deal with the three major technical problems which have been addressed in the 

previous chapter: dynamic range compression, local contrast enhancement, and color 

consistency. The derivation of both algorithms will be introduced in detail and discussed 

with experimental results and performance comparison with other techniques.

3.1 Illuminance-Reflectance Model Based Algorithm

Illuminace-reflectance model is a physical description of the creation of a radiance map of 

real world scenes. It divides the object radiance into two parts: the light intensity 

(illuminance) incident on object surface and the light refection properties (reflectance) of 

the object surface. The separation of illuminance and reflectance provides a method to 

process images for the purpose of obtaining an improved visual perception of those scenes 

for human viewers or computer vision algorithms.

An effective method for estimation of illumiance and reflectance is developed. The 

proposed algorithm uses a windowed-inverse-sigmoid function to adaptively compress the 

dynamic range of the illuminance while the reflectance is unchanged to maintain 

important image features. In addition, the mid-frequency components of the reflectance 

are enhanced using a new center-surround method to improve the image contrast to obtain 

a well-balanced result between global lightness rendition and local contrast quality. The 

low-complexity and adaptiveness enable the new algorithm to be suitable for real time and 

mobile applications while consistent and robust performance can be achieved. The 

applications of this algorithm are presented in Chapter VI.
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3.1.1 I-R Algorithm

The structure of the I-R algorithm is illustrated in Fig. 3.1. It is composed of four major 

steps: (1) illuminance estimation and reflectance extraction; (2) adaptive dynamic range 

compression of illuminance; (3) adaptive mid-tone frequency components enhancement 

and (4) image restoration, which combines illuminance and reflectance to recover the 

enhanced intensity image and then performs color restoration to obtain color images.

Illuminance
Reflectance RIlluminance I

estimation &

Reflectance

Extraction

Output

Intensity Image L

Enhanced 

Intensity Image

Input Color Image

Adaptive Dynamic 

Range Compression

Adaptive Mid-Tone 

Frequency Enhancement

Figure 3.1 Structure of the proposed algorithm for color image enhancement.

For input color images, the intensity image L(x,y) can be obtained using either one of 

the following two methods:

L(x, y) = 0.2989 • r(x, y ) + 0.587 • g(x, >0 + 0.114-b(x, y) (3.1 a)

or L(x, y) = max [r(x, y), g(x, y), b(x, >0] (3.1b)
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where r, g  and b are the RGB components of color images in RGB color space. The first 

method, the NTSC standard, is commonly used for converting color images to grayscale 

images. The second method is in fact the definition of the value (V) component in HSV 

color space. The latter method is used in the I-R algorithm. The reason for this will be 

explained later in section 3.1.2.

The I-R algorithm is based on the commonly accepted assumptions about image 

formation and human vision behavior. First, the image intensity L(x, yj can be simplified 

and formulated as:

L{x, .y) = I(x, y)R(x, y) (3.2)

where R(x, y) is the reflectance and I(x, y) is the illuminance at each position (x, y) in the 

scene. Second, the illuminance /  is assumed to be contained in the low frequency 

components of the image while the reflectance R mainly represents the high frequency 

components of the image. This assumption can be easily understood considering that R 

generally varies much faster than /  in most regions of an image with few exceptions, like 

the shadow boundaries where an abrupt change of I  exists. In addition, in a real world 

scene, the dynamic range of the illumination variation can be several orders larger than the 

dynamic range of the reflectance. Therefore, compressing the dynamic range of the 

illuminance is an effective way for image enhancement. Finally, there is a widely accepted 

conclusion about human vision, namely that human eyes respond to local changes in 

lightness rather than to global brightness levels. Therefore, it is possible to keep the 

visually important features represented by reflectance while the image’s dynamic range 

(induced mainly by illuminance) can be compressed.

Accurate estimation of illuminance of a scene from an image is a difficult task. Many 

techniques have been developed to deal with this problem [5,8,9]. In the I-R algorithm, the 

Gaussian low-pass filtered result of the intensity image is used as the estimation of the 

illuminance. In the spatial domain, this filtering process is actually a 2D discrete 

convolution with a Gaussian kernel, which can be mathematically expressed as
M -X  N - 1

I{x ,y ) = ^ JY JL{m,n)G{m + x,n  + y) (3.3)
m= 0 n= 0

where I  is the illuminance, L is the original intensity image and G is the 2D Gaussian 

function with size M x N .  Gaussian kernel (mask) G is defined as
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G(x, y ) — q ~ exp (3.4)

where q is the factor for normalizing G by

(3.5)

and c is the scale (Gaussian surround space constant), which determines the size of the 

neighborhood. In our algorithm, c = 2~5 is commonly used. Finally, illuminance is 

normalized as

for 8-bit depth images.

After the illuminance /  is obtained using Eq. (3.3), the reflectance R is computed 

using Eq. (3.2). One example showing the results of I  and R from an image is provided in 

Fig. 3.2(b) and 3.2(c) with the original intensity image shown in Fig. 3.2(a). It can be 

observed from those images that the illuminance comprises the low- and mid-tone 

frequency information of the image. Because this is not the real illuminance as defined in 

physics but an approximation, this estimated illuminance actually is a combination of both 

illuminance and the low /mid- tone frequency components from the reflectance. The 

visually salient features (high frequency reflectance) and a small part o f illumination 

information are contained in the reflectance R in which the major illumination effect is 

removed. Therefore, important image features can be retained even after the dynamic 

range compression of illuminance. Based on those observations, reflectance and 

illuminance are also regarded as details and base.

The adaptive dynamic range compression of illuminance is realized in our algorithm 

using the windowed inverse sigmoid (WIS) function. The sigmoid function is defined as

This function is used as the intensity transfer function for dynamic range compression by 

performing the following steps described in Eqs. (3.8) - (3.10).

(3.6)

= K [ f ( y - ) -  / ( V n,,n ) ]  +  / O ml„  )max (3.8)
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Figure 3.2 Flowchart and intermediate results of I-R algorithm:
(a) original image; (b) estimated illuminance; (c) extracted reflectance; (d) dynamic range 
compressed illuminance; (e) mid-tone frequency components enhancement from (d); (f) 
enhanced image.
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/ 1 -1
v V  ,

/  ”- v  .  n______ min
M /lltJl

v - vmax min

(3.9)

(3.10)

where Eq. (3.8) is for linearly mapping the input range [0 1] of normalized illuminance /„ 

to the input range [f(vmin) /(vmaJ ]  for WIS. Eq. (3.9) is the inverse sigmoid function. Eq. 

(3.10) is applied to normalize the output illuminance /„" to range [0 1]. Parameters vmax, 

and vmin are used to tune the curve shape of the transfer function. One example of the 

dynamic range compressed illuminance In,enh is shown in Fig. 3.2(d).

JZ
c

c

04

Inverse Sigmoid (Vmin -  -6) 
Inverse Stgmwd (Vmin -  -3) 
inverse Sigmoid (Vmm -  -4.5) 
Identity transfer function

0  2

0.1 0.2 0.3 0.4 0.5
In

0.7

Figure 3.3 WIS with different parameters applied for intensity transformation.

A set of various curve shapes of WIS transfer function is provided in Fig. (3.3) with 

a = 1 in Eq. (3.7). Those curves are produced by Eqs. (3.8) - (3.10) with different 

parameters: vmax= 3, vmm = -6 for the dotted red curve; vmax= 3, vmm = -3 for the dashed red 

curve; and vmax= 3, vmm= -4.5 for the solid red curve. Identity transfer function (blue line) 

is also provided for comparison. The inverse sigmoid function can be used to decrease the 

intensity of the over-bright pixels while dramatically increasing the intensity of dark 

pixels. Therefore, dynamic range compression of the illuminance is realized.

The parameter vmin, and a can be manually adjusted by users to time the dynamic 

range compression. In the I-R experiments, vmax and a are generally set to 3 and 1,
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respectively, while the value of vmi„ is also made image dependent to obtain adaptive 

control over the dynamic range compression. In our algorithm, Lmax is the maximum 

intensity of the original image, vmi„ is empirically determined by the global mean Lm of the 

intensity image L based on image enhancement experiments, using

It has been noted that the illuminance also contains the mid-tone and low frequency 

components from reflectance which has been degraded during the dynamic range 

compression. For an original image with low contrast or a slowly-varying reflectance map, 

the degradation of mid-frequency features may be rather severe and thus it can impair the 

quality of output images. Therefore, a new center-surround type of local contrast 

enhancement method is proposed to compensate for this degradation. This mid-tone 

frequency enhancement is carried out using the following two equations

I ’n,enh(x, y )  is the illuminance after mid-tone frequency enhancement and R e(x, y) is the 

ratio between L(x, y) and its low-pass version Lcom(x, y) which is computed through the 

same operations as in Eqs. (3.3) through (3.5), but with a larger scale c (representing a 

lower cut-off frequency) that is 10 by default. One example of illuminance image after 

dynamic range compression and mid-tone frequency enhancement is shown in Fig. 3.2(e). 

Similar to vmin, P is also made image dependent to achieve adaptive control of the process, 

and its value is determined by the global standard deviation cr of the input intensity image 

L(x, y) as:

- 6  fo r  Lm <25% L,

v
I  - 7 0
- ^ - x 3 - 6  fo r  25%LmiU <Lm <60%L, 

-3  fo r  Lm> 6 0 % L _max

(3.11)

(3.12)

where the exponent is given by

Lc0m (*>y) (3.13)

2 for cr < 30 
P = <-0.03cr + 2.9 for 30 <cr< 80- 

1/2 for  cr > 80
(3.14)
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According to this definition, P and cr have a linear relationship with cre(30, 80]. This 

empirical relationship is determined based on a large number of image enhancement 

experiments and is found quite robust for natural images. Here, the global standard 

deviation cr of L(x, y) is considered as an indication of the contrast level of the original 

intensity image. It should be noted that P  also can be manually adjusted by users to tune 

the contrast enhancement process.

The mid-tone frequency components enhancement described in Eqs. (3.12) and (3.13) 

can also be regarded as an intensity transformation which is illustrated in Fig. 3.4. Since 

I^ent, is normalized to 1, In,enh (x, y)E(x,y) will be larger than I„,enh (x, y) if E(x, y) is less than 

1 (e.g. the center pixel is brighter than surrounding pixels leading to R(x, y) < 1). 

Otherwise, if E(x, y) is larger than 1 (e.g. the center pixel is darker than the surrounding 

pixels with R(x, y) > 1), Inenh (x, y)E(x'y> will be smaller than In,enh (x, y). In this way, the 

local contrast (or details) of the compressed illuminance image can be improved. Here, the 

ratio R(x, y) is obtained from the original intensity image L(x, y) and its low-pass filtered 

result Lconv (x, y) but not from the estimated illuminance I, since the reflectance’s mid-tone 

and low frequency information has been lost or degraded in I.

The parameters of P  and vmm are introduced in this algorithm to increase the 

adaptiveness and flexibility of the algorithm. Meanwhile, they can also improve the 

robustness of the enhancement algorithm to produce consistent results for images captured 

under various types of lighting conditions.
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Figure 3.4 Transformation for mid-tone frequency enhancement of illuminance.
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The enhanced intensity image L ’ is finally obtained by combining the illuminance 

I ’„ ,e n h  and reflectance R using Eq. (3.2) as L'{x,y) = I 'nenh(x,y)R (x ,y). One example of

the enhanced intensity image is presented in Fig. 3.2(f). For color images, a linear color 

restoration process based on the chromatic information of the original image is applied to 

converting the enhanced intensity image to RGB color image. The RGB values (r \ g ’,b  ’) 

of the restored color image are obtained as

r' = ̂ r  g ' ^ g  b ' ^ b  (3.15)
L L L

where L and L ’ are the intensity of the original image and enhanced image, respectively.

Thus, the color consistency between the original color image and the enhanced color can

be achieved.

3.1.2 Results and Discussion

In this section, several important features of the algorithm will be discussed with 

experimental results. Then the performance of the proposed algorithm will be compared 

with other enhancement techniques both by visual analysis and by the verification in face 

detection. Finally, robustness of the I-R algorithm and statistical analysis of its 

performance will be introduced to illustrate the image enhancement effects.

The proposed algorithm processes intensity/luminance images for image 

enhancement of color images. In fact, the algorithm can also be applied to treat each 

spectral band of color images to perform image enhancement. However, processing all 

color bands separately is definitely more complex and more time consuming than only 

processing the intensity image. Multi-band processing is not found significantly superior 

to intensity processing in terms of the quality of enhanced images. Therefore, 

intensity-only processing is still useful and preferred for certain image processing 

applications when rapid processing or low computational load is needed, like real time 

video processing.

In the proposed algorithm, two methods (NTSC and HSV) are applied to extract 

intensity images from RGB color images. These two methods produce slightly different 

results which can be seen in Fig. 3.5. The images produced by Eq. (3.1a) (NTSC) exhibit a 

lower brightness level in intensity images and produces inconsistent or shifted colors like

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter III 27

the red range colors in the enhanced image from those in original image. Therefore, Eq. 

(3.1b) (HSV) is preferred for extraction of intensity images from color images.

(d) (e)

Figure 3.5 (a) original image; (b) intensity image obtained by Eq. (3.1b); (c) intensity 
image obtained by Eq. (3.1a); (d) enhanced color image from (b); (e) enhanced color

image from (c).
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The curve shape of WIS can directly affect the dynamic range compression of the 

illuminance. Fig. 3.3 illustrates how the curve shape changes by adjusting the value of vmin 

manually or image dependent for adaptive control. The effect of vmin is illustrated in Fig. 

3.6 with a sample image treated with various vmin values, one of which shown in Fig. 

3.6(c) is set by Eq. (3.11). The image’s illuminance enhancement can be readily adjusted 

by tuning vmin. The value of vmin set by Eq. (3.11) produces better results than manual 

adjustment results [Fig. 8(b) and 8(d)] without over or under enhancement of brightness.

(c) (d)

Figure. 3.6 Image enhancement with different v mj„: (a) original image; (b) enhanced 
image with v mjn = -3; (c) enhanced image with v min = -4.9, set by Eq. (3.11); (d) enhanced 

image with v mi„ = -7. Note: This sample image is provided by [16].

The parameter P  in Eq. (3.14) is used to tune the enhancement for mid-tone frequency 

components to compensate the image contrast which is poor in the original image or has 

been significantly degraded due to dynamic range compression. The effect of P on image
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enhancement is illustrated in Fig. 3.7 with the sample image processed with various P 

values. P  is determined by Eq. (3.14) for Fig. 3.7(c), which produces a more appropriate 

result compared to the other two enhanced images with manually set P  values. For 

example, the wood grains are well enhanced without producing severe halo effect in Fig. 

3.7(c), but an obvious halo effect is observed in Fig. 3.7(d).

(c) (d)
Figure 3.7. Image enhancement with different P: (a) original; (b) enhanced image with P 
= 1/2; (c) enhanced image with P = 1, set by Eq. (3.14); (d) enhanced image with P = 2.

In Fig. 3.8, two sets of sample images are provided for performance comparison 

among MSRCR, Retinex and the I-R methods. Retinex is realized using the Matlab® code 

provided in [2] by Frankie and McCann. A commercial software PhotoFlair® 

('www.truview.com) is used to implement MSRCR. It can be observed that the images 

processed by I-R method demonstrate a higher visual quality than those processed by 

MSRCR and Retinex. The I-R method yields better color accuracy and better balance 

between the luminance and contrast across the whole image due to its contrast.
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(a)
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(b)
Figure 3.8 Comparison among different techniques: (a) original images (first row), by 
MSRCR (second row), by Retinex (third row), and by the I-R method (last row); (b) the

images layout is the same as in (a).
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However, its color correction capability creates incorrect colors (e.g. the right side 

enhanced results in both set (a) and set (b)) and the lightness rendition looks unnatural in 

some areas (e.g. the wall in the right side image in set (a)). In addition, both MSRCR and 

Retinex show more visible halo effect than the I-R algorithm, which also affects the color 

and lightness rendition. It is also found that both MSRCR and Retinex seem to have some 

difficulty enhancing images captured under non-uniform lighting conditions. They 

produce insufficient luminance enhancement in the dark regions with a high-lighted 

background, like the woman in the image in set (a) and the lawn and trees in set (b); or 

produce an over-enhancement effect to the bright regions from the original image, like the 

chair surface enhanced by Retinex in set (a). This problem consistently occurs in similar 

types of images. Moreover, MSRCR performs even worse in lightness rendition by 

incorrectly decreasing the brightness of some of the high-lighted areas (e.g. the book cover 

in set (a), the surface of the chair and the sky in set (b)), which yields a tonality much 

different from that of the original. On the other hand, our proposed algorithm generally 

performs well on the test images showing a more balanced result between luminance 

enhancement and local contrast enhancement without incorrect colors being created.

The robustness of this algorithm is evaluated by performing image enhancement on 

the input image twice: the first enhancement processing is carried out on the original 

image, then the second enhancement processing is performed on the output image 

obtained from the first enhancement. An example of this process is presented in Fig. 3.9 

accompanied by the results produced by MSRCR and Retinex. Obviously, after double 

enhancement, the proposed algorithm produces the minimal change from the first 

enhancement result while image quality is degraded in images produced by MSRCR and 

Retinex, in which incorrect lightness, color rendition, halo effect, and image noise become 

much more visible after the second enhancement. It is believed that the higher robustness 

of our algorithm is due to its adaptiveness in processing.
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(d)
Figure 3.9 Robustness evaluation: (a) original image, (b) MSRCR, (c) Retinex and (d) the 

proposed algorithm. Left: enhanced results from the original images (enhanced once); 
right: enhanced results from the left column images (enhanced twice).
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The statistical properties of images, image mean and the zonal standard deviation, are 

used to assess the visual quality of images in terms of brightness and contrast which are 

directly associated with those statistical parameters. The local brightness is measured by 

the image local mean while the local contrast is evaluated by taking the regional standard 

deviations. As shown in Fig. 3.10(a), we plotted the local mean and local standard 

deviations of all blocks (block size: 55 x 55 pixels) of a sample image (Fig. 3.9(a)) before 

and after image enhancement. It can be seen that in some regions of the sample image, the 

luminance enhancement is dramatic (eg. the shadows of the wall and the lady) but in some 

regions it is almost the same as the original luminance (eg. the regions of the window). 

This is exactly matched with the scheme of our nonlinear luminance enhancement stage, 

which can adaptively compress the dynamic range. For the local contrast enhancement, 

the effect is obvious in the regions where the luminance distribution is relatively uniform 

in the original image.
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Figure 3.10 Statistical analysis of the image [Fig. 3.9(a)] before and after image 
enhancement, (a): red curve and blue curve are the local mean of each block of the original 
and the enhanced image, respectively; (b): green curve and black curve are the local 
standard deviation of each block of the original and enhanced image, respectively.
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3.2 Adaptive and Integrated Neighborhood Dependent Approach for Nonlinear
Enhancement (AINDANE)

In this dissertation, another new non-linear image enhancement algorithm named 

AINDANE is proposed based on the essential features about the visibility improvement 

for 8-bit digital color images. Low visibility is generally presented in images as dark 

shadows, over-bright regions and blurred details. All these are all related to the luminance 

and contrast properties of images; therefore, it is a logical way to develop an image 

enhancement algorithm based on the processing of the luminance and contrast of images.

The proposed algorithm consists of two separated processes: adaptive luminance 

enhancement and adaptive local contrast enhancement, which are applied in a successive 

way to enhance images. Luminance enhancement is equivalent to dynamic range 

compression while the local contrast enhancement is a multi-scale neighborhood 

dependent process that is intended to preserve visual details and approximate the tonality 

of the original image. In other advanced algorithms, like the original Retinex [2] and 

multi-scale Retinex with color restoration (MSRCR) [3], both processes are implemented 

together. The separation of the two processes provides AINDANE more flexibility and 

capability to tune and control the whole image enhancement process.

For enhancement of color images by AINDANE, color images are first converted to 

intensity images prior to luminance and contrast enhancements for faster processing and 

consistent color rendition. The averaged luminance information of neighboring pixels, 

which is needed for local contrast enhancement, can be obtained using 2D discrete 

convolution. In order to obtain better results, image enhancement techniques should be 

made image dependent (adaptive). It requires that the image enhancement process can be 

tuned (controlled) by certain properties of images, such as the statistical information. After 

luminance and contrast enhancements have been performed, a linear color restoration 

process is applied to convert the intensity images back to color images using the chromatic 

information of the original image. Compared to other image enhancement techniques, 

AINDANE produces better image quality with well-balanced luminance and contrast as 

well as accurate and natural color rendition.
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3.2.1 AINDANE Algorithms

First, color images in the RGB color space are converted to intensity (grayscale) images 

using the NTSC standard method defined in Eq. 3.1(a) that is for obtaining the luminance 

(intensity) information of color images on additive color device. Image intensity I(x, y) is 

then normalized as

= 1 (2* ’/ } • (3-16)

Intensity images are treated by an enhancement process to elevate the intensity values of 

low-intensity pixels using a specifically designed non-linear transfer function defined by

£  ( f f " " ° " > + ( l-L j .Q 4 .( l - z )+ f f - - )) (J 1?)

It can be observed from Eq. (3.17) that the non-linear transfer function is image dependent 

with a parameter z, which is related to the image histogram and is defined as

0 for Lcdf < 20%Lmm

z — for  2 0 % !_  < Lcdf < 6 0 % ^
100

_1 f or L c d f  >  6 0 % L ^

where L c d f  is the intensity level corresponding to a cumulative distribution function (CDF) 

of 0.1. Lmax is the maximum intensity of the original image. That is, when more than 90% 

of all pixels have intensity higher than 60% Lmax, z  is 1. If 10% or more of all pixels have 

intensity lower than 20%Lmax, z is 0. For all other cases, when the grayscale of 10% or 

more of all pixels are higher than 20%Lmax and lower than 60% Lmax, z = (L c d f  - 50)/100. 

Obviously, L c d f  is used as an indication to determine how dark the 10% of pixels in an 

image are. If they are really dark (e.g. L c d f  < 50), luminance needs to be enhanced more. 

If they are not that dark (e.g. L Cd f  » 100), less luminance enhancement will be needed. If 

most of the pixels have sufficient brightness (e.g. L c d f  > 150), no luminance enhancement 

will be needed. Fig. 3.11 illustrates the CDF of an intensity image with respect to the gray 

level L c d f • The range of z and the relationship between z and L c d f  are determined 

empirically based on image enhancement experiments and authors’judgment. In addition, 

z can be a user adjustable parameter for manually tuning the luminance enhancement 

process.
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Figure 3.11 CDF of an intensity image.
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Figure 3.12 Nonlinear transfer function for luminance enhancement.

The transfer function is actually a combination of three simple mathematical functions and 

it is graphically shown as the curve 6 (z = 0) in Fig. 3.12 with a dotted straight line (line 1) 

for comparison, which in fact represents the identity transformation. The first two terms in 

Equation (3.17) are plotted as curve 2 and line 3, respectively, and the summation of them 

yields curve 4. The last term in Equation (3) is shown in the graph as curve 5. The addition 

of curve 4 and curve 5 after normalization (division by 2 in Equation (3)) produces the 

transfer function shown as curve 6. It can be seen that this transformation largely increases 

the luminance of darker pixels (regions) while brighter pixels (regions) are less enhanced. 

Thus this process also serves as dynamic range compression. Therefore, the line shape of 

the transfer function is important no matter what mathematical functions are used. Simple
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functions are applied for faster computation. Similar curve shapes produced by other types 

of functions will have similar effects on luminance enhancement if they are used as the 

transfer function. It should be noted that this transfer function is designed for the purpose 

of luminance enhancement and it can also provide appropriate dynamic range 

compression from which good enhanced results will be obtained through the contrast 

enhancement process. The effect of z on the transfer function is illustrated in Fig. 3.13. As 

z approaches 1, the transfer function curve gets closer to the identity transformation. The 

graph indicates that brighter images (with larger z) have less luminance enhancement in 

order to prevent over-enhancement.

Intensity Transfer Functions
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Figure 3.13 Nonlinear transfer functions with different z values.

After luminance enhancement, the contrast enhancement process is applied to restore 

the contrast of the luminance-enhanced images, which has been degraded during the 

previous process (the images look gray-out). The restored contrast may be even higher 

than that of original images for high visual quality. However, the normal global contrast 

enhancement technique is unable to fulfill that request. It simply increases the luminance 

for bright pixels and decreases the luminance for the dark pixels. As a result, the dynamic 

range can be significantly expanded. On the other hand, this method has limited 

performance for bringing out fine details where adjacent pixels have small luminance 

differences because the surrounding pixels are not considered when one pixel is being 

processed. Therefore, a surrounding pixel (neighborhood) dependent contrast
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enhancement technique must be implemented to achieve sufficient contrast for image 

enhancement without losing the dynamic range compression. While an image is processed 

with such a method, pixels with the same luminance can have different outputs depending 

on their neighboring pixels. When surrounded by darker or brighter pixels, the luminance 

of the pixel being processed (the center pixel) will be boosted or lowered respectively. In 

this way, picture contrast and fine details can be sufficiently enhanced while dynamic 

range expansion can be controlled without degrading image quality.

The luminance information of surrounding pixels is obtained using 2D discrete spatial 

convolution with a Gaussian kernel, which in essence is one type of neighborhood 

averaging. A Gaussian kernel is used due to its closeness to the way in which the human 

visual system works. This computation is described by Eqs. (3.3) to (3.5). In practice, 

convolution in the spatial domain can be computed by multiplication in the frequency 

domain. After the surrounding intensity information is obtained by a 2D convolution, the 

center pixel’s intensity is compared with the convolution result. These two operations are 

both carried out on the original image. If the center pixel’s intensity is higher than the 

average intensity of surrounding pixels, the corresponding pixel on the 

luminance-enhanced image (Ln ’ ) will be increased, otherwise it will be decreased. As a 

result, the contrast of the luminance-enhanced image can be adaptively improved without 

counteracting the effect of luminance enhancement.

The center-surround contrast enhancement is performed as per the following two 

equations:

S(x, y) is the pixel intensity after contrast enhancement and r(x, y) is the intensity ratio 

between Lconv(x, y) and L(x, y). P is an image dependent parameter, which is used to tune 

the contrast enhancement process. If the contrast of original image is poor, P  will be larger 

and further increase the contrast enhancement. P is determined by the global standard 

deviation cr of the input intensity image I(x, y) as

S ( x , y )  = 2 5 5  •£„ •(*, y ) ’ U'y> (3.18)

where the exponent is defined by

40„v(*,t ) (3.19)
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P =

3 for a  < 3 
2 7 - 2 ( 7 for  3 <o < 10

1 for cr >10

According to this definition, P is 1 if a  is greater than or equal to 10, and P equals to 3 

when cr is less than or equal to 3. For all other cases, there is a linear relationship between 

the power P and cr. This relationship is determined based on image enhancement 

experiments. Here, the global standard deviation cr of L(x, y) is considered as an indication 

of the contrast level of the original intensity image. It should be noted that P can be 

changed by users to manually adjust the contrast enhancement process.

The contrast enhancement process defined in Eqs. (3.18) and (3.19) is actually an 

intensity transformation process and can be understood using Fig. 3.14. Since Ln’ is 

normalized to 1, L„’(x, y)E(x,y) will be larger than Ln’(x, y) if E(x, y) is less than 1 (i.e. the 

center pixel is brighter than surrounding pixels leading to r(x, y)<  1). Otherwise, if E(x, y) 

is larger than 1 (i.e. the center pixel is darker than the surrounding pixels with r(x, y)>  1), 

L„’(x, y)E(x’ y) will be smaller than L„’(x, y). In this way, the contrast of the 

luminance-enhanced image can be improved. Here, the ratio r(x, y) is obtained from the 

original intensity image L(x, y) and its low pass filtered result L ’(x, y), since the contrast 

information in the luminance enhanced image has been changed and degraded during the 

nonlinear luminance enhancement process.
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Figure 3.14 Intensity transformation for contrast enhancement.
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For better results of image enhancement, contrast enhancement is performed with 

multiple convolution results using different scales. The final output is a linear combination 

of the contrast enhancement results based on multiple scales. A convolution with a small 

scale, such as a few neighboring pixels, can provide luminance information about the 

nearest neighborhood pixels, while the convolution with a large scale comparable to the 

image dimensions can provide the information about the large-scale luminance variation 

over the whole image. Generally, contrast enhancement with smaller scale convolutions 

tend to enhance local contrast or fine details, and the contrast enhancement with larger 

scale convolutions can produce a global tonality closing to the original image for smooth 

and natural looking results. A medium scale can provide a mixture of both details and 

image rendition. Convolutions with multiple scales can yield much more complete 

information on the image’s luminance distribution, and hence lead to a much more 

balanced image enhancement. However, if faster processing or certain special effect is 

wanted, a single-scale convolution may be used for contrast enhancement. For example, 

only a medium scale convolution can be applied to achieve fast processing while the result 

is still acceptable. The contrast enhancement with multi-scale convolutions can be 

described by the following equations:

where c, (/ = 1, 2, 3, ...) represents different scales and w, is the weight factor for each 

contrast enhancement output S/x, y). By default, w, = 1 In, i = 1, 2, 3,... n (n is the number 

of scales), based on our image enhancement experiments, n = 3 is typical and yields 

enhanced images having a well-balanced and natural visual effect. Both fine details and 

overall tonality can be accounted for in the output images. In this work, the three scales, 5,

Gi(x,y) = K e ' (3.20)

La^j(x,y)= Z Z G' (m+x,n+y) (3.21)

Lm Ax>y) (3.22)

Si(x,y)  = 255-Ln\ x , y f ^ y) 

S ( x , y ) = £  w,<S,(x,;j/)

(3.23)

(3.24)
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20 and 120, are commonly used, or a simple guide can be followed: the smallest scale is 

1-5% of the image size, the medium and the largest scales are 10-15% and 25-45% of the 

image size, respectively. c„ w, and n are usually fixed in our image enhancement 

experiments while they can still be changed to obtain optimal result or certain special 

effect.

So far, both luminance and contrast enhancements have been performed in the 

luminance space. The enhanced color image can be obtained through a linear color 

restoration process based on the chromatic information contained in the input image. 

Mathematically, the color restoration process for images in RGB color space can be 

expressed as

LXx,  v)
SJ(x,y)  = S { x , y ) - f i - ^ - X J (3.25)

L(x,y)

where j  = r , g ,b  represents the R ,G,B spectral band respectively, and Sr, Sg and S'* are 

the RGB values of the enhanced color image. A parameter X is introduced here in order 

to manually adjust the color hue of the enhanced color images. X is a constant smaller 

than but very close to 1, which takes different values in different spectral bands. When all 

Xs are equal to 1, Eq. (3.25) can preserve the chromatic information of the input color 

image for minimal color shifts.

3.2.2 Results and Discussion

The proposed algorithm has been applied to enhance a large number of digital images for 

performance evaluation and comparison with other algorithms. Some typical results as 

well as detailed discussion about various characteristics of the algorithm are presented in 

this section.

Images enhanced with various parameter values are illustrated in Fig. 3.15. The 

effects of those parameters are clearly shown and are in agreement with the description 

provided in the previous section. If the parameters are manually adjusted, image quality 

can be changed to obtain optimized result. With the adaptiveness implemented in our 

algorithm, the parameter adjustment can be conducted automatically according to the 

quality of the original image. Automatic tuning can produce results better than or at least 

equivalent to those obtained with default parameter values.
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(0 (iO (iiO
Figure 3.15 Image enhancement results with various parameter values: (a) original image; (b) images 

enhanced using single scale convolution and with z=0 and P=  1: (i) c=5, (ii) c=20, and (iii) c=240; (c) images 

enhanced by multiscale c and with different z values and P=l: ( i)z = l, (ii)z=0.5, and (iii)z=0; and (d) images 

enhanced by multiscale c and with different P  values and z=0: (i) P = \, (ii) P=2, and (iii) P=3.
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Figure 3.16 Luminance enhancement with adaptive factor z of different values: (a) 
original image, (b) result obtained from INDANE (z=0), and (c) result obtained from

AINDANE (z*0).

The AINDANE algorithm has been applied to process a large number of digital images 

taken by digital cameras under varying lighting conditions. The enhanced images have 

good quality, with fine details, well-balanced contrast and luminance across the whole 

image, and natural color rendition of appropriate color saturation. AINDANE has various 

adjustable parameters, which have been finely tuned by conducting several experiments to
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achieve consistently high quality results for different types of images. Some of the 

parameters are image dependent and are introduced to make the algorithm more adaptive. 

For example, the parameter z  in Eq. (3.17) (nonlinear transfer function) is determined by 

the image’s histogram and is used to adjust the luminance enhancement to avoid over or 

insufficient enhancement of luminance. The example in Fig. 3.16 shows the effect of z  on 

enhanced images. The original image was taken with sufficient illumination. The 

enhanced image processed by INDANE [32] (without adaptiveness, z = 0 and P = 1) looks 

worse than the original in terms of contrast and color saturation. Flowever, AINDANE (z * 

0) produced a better result in which the person’s face looks more real with outlines and 

edges being clearly brought out. The general contrast is improved by AINDANE.

P is another image dependent parameter used for contrast enhancement in AINDANE. 

It is used to ensure that the contrast of low-contrast images will be increased to obtain 

good visual effect. The sample image in Fig. 3.17 is the same one as we use in the I-R 

algorithm for illustrating the effect of P  on contrast enhancement. We can see although P  

has different form in the two algorithms due to different scheme, it always can provide 

similar good and robust contrast enhancement result for the same sample image. The 

original image was captured with insufficient illumination under the caps and has poor 

contrast on the wood board. AINDANE with adaptive control parameter (P *  1) produces 

an enhanced image with much higher contrast than that obtained by INDANE that has no 

adaptive-ness (P = 1). Grains in the wood region became obvious and maintain the overall 

luminance level.

It can be found that AINDANE shares certain similarity with MSRCR. However, 

AINDANE has several advantages over MSRCR in terms of color rendition and flexibility 

in algorithm tuning. In MSRCR, each spectral band is individually processed, and color 

restoration for improving color constancy is realized using a non-linear process. These 

processes might produce some color artifacts, which cannot be predicted from the original 

image, making enhanced images look unnatural or incorrect in colors. As in MSRCR, 

dynamic range compression and contrast enhancement are implemented jointly, which 

makes the algorithm more difficult for timing than AINDANE where the two processes are 

separated and can be tuned independently.

In both enhancement techniques, the convolution result is compared with the center
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pixel in the form of the intensity ratio. However, AINDANE is completely different from 

MSRCR on the way it uses this ratio. AINDANE performs a power-law transformation to 

the luminance-enhanced image using the ratio as the

(c)

Figure 3.17 Contrast enhancement with adaptive factor P of different values: (a) original, 
(b) result obtained by INDANE (P= 1), and (c) result obtained by AINDANE (/V  1).

exponent. As a result, the image’s contrast can be enhanced. MSRCR however, perform a 

logarithmic transformation to the ratio followed by a gain-offset process, and both 

dynamic range compression and contrast enhancement are accomplished at the same time.
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(C)

Figure 3.18 Image enhancement comparison: (a) original images, (b) AHE, (c) retinex, (d) 
MSRCR, (e) INDANE, and (f) AINDANE using two sample images captured with a

non-uniform lighting environment.
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(f)
Figure 3.18 (Continued).

In Fig. 3.18, two sample images are provided for comparison among the performance of 

Retinex, MSRCR, INDANE, AINDANE and AHE. Retinex was realized using the 

Matlab® code provided in Reference [44] by Frankie and McCann. A commercial software 

PhotoFlair® (www.truview.coml was used to implement MSRCR. It can be observed that
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the images processed by AINDANE have a higher visual quality than those processed by 

MSRCR, AHE and INDANE. AINDANE yields higher color accuracy and a better 

balance between the luminance and contrast across the whole image due to its 

adaptive-ness and flexibility involved in the processing. In the first sample image, AHE 

brings out the person standing in the shadow. However, artifacts appear on the white pillar 

and the face of the person in sunshine gets even dimmer. The whole image looks quite 

unnatural with such a brightness distribution. In the second sample image, AHE produces 

a lot of artifacts and noise, and luminance enhancement is not sufficient. The images 

enhanced by Retinex demonstrate high contrast and good illuminance. However, its color 

constancy works poorly in some places (The face of the man in the shadow is much whiter 

than it should be, and the color of different parts of the table top is inconsistent.) and the 

lightness rendition looks a little unnatural (The table top is too bright.). In addition, both 

MSRCR and Retinex show a much more visible halo effect than our proposed algorithm. 

It is also found that MSRCR seems to have some difficulty enhancing images in 

non-uniform lighting conditions. The luminance enhancement in the darker regions is 

insufficient. It is even worse in the sense that the brightness of some of the bright areas is 

incorrectly reduced to yield a tonality difference from the original. More comparisons 

between MSRCR, Retinex, and AINDANE are provided in Fig. 3.19. The previously 

discussed issues, incorrect lightness and color rendition as well as insufficient luminance 

enhancement, are still clearly visible. Obviously, MSRCR provides strong contrast 

enhancement but the luminance enhancement is poor. The luminance of high-brightness 

regions are even largely degraded after enhancement. In addition, the color rendition looks 

unnatural with high color saturation. Retinex performs much better than MSRCR. 

However, its color correction capability may also create incorrect colors. For example, the 

cloud in the left image is bleached although the cloud color is correct in the original image. 

Moreover, both MSRCR and Retinex provide insufficient luminance enhancement to the 

woman’s face because of the highlighted background and the unbalancing between the 

luminance enhancement and contrast enhancement. On the other hand, the proposed 

algorithm generally performs well on those test images showing a more balanced result 

between luminance enhancement and contrast enhancement and no incorrect colors are 

created.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter III 50

(d)
Figure 3.19 Image enhancement comparison: (a) originals, (b) MSRCR, (c) retinex, and 

(d) AINDANE on two sample images under non-uniform lighting environment.
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3.2.3 Analysis o f  the I-R based Algorithm, AINDANE and MSRCR 

From one point of view, the I-R model based algorithm, AINDANE and MSRCR may be 

considered similar techniques because they all make use of neighborhood dependent 

processing. However, the proposed algorithms are essentially different from MSRCR in 

terms of the manner in which images are processed and the performances.

First, let us discuss MSRCR. It can be observed that the single-scale Retinex (SSR) 

operation implemented in MSRCR (there are three SSR for each spectral band) is similar 

to the extraction of the scene reflectance previously discussed in the I-R model based 

algorithm except that logarithmic operation is used in SSR. The SSR process has two 

purposes: removal of the effect of illumination (i.e., compress the dynamic range) by 

eliminating the low frequency components and enhancement of the image contrast by the 

logarithmic operation. Due to these properties of SSR, MSR shows strong capability of 

contrast enhancement which may make images look unnatural as a result of over 

enhancement of image contrast. In addition, the loss of low frequency components may 

also make the lightness rendition different from that in the original image. Since the 

multiband process tends to decrease the color saturation, color restoration is then applied 

in MSRCR. However, the color restoration is found to produce incorrect colors in some 

output images although it is able to provide color correction (or color constancy) to the 

output images.

Compared to MSRCR, the proposed algorithms process images in a different way. For 

I-R model based algorithm, the high frequency components are obtained as the reflectance 

which is not degraded by the dynamic range compression. Thus the enhancement for high 

frequency components is not required. Only mid-tone frequency components are enhanced, 

and low frequency components do not need to be treated. Combined with single-band 

processing, the processing speed is greatly improved to achieve real time video processing 

maintaining the quality of the enhanced images. As for AINDANE, the entire image is 

processed with dynamic range compression which makes all frequency components 

degraded in terms of contrast. Therefore, multi-scale contrast enhancement is used to 

provide an all-round improvement of the image contrast. Multi-scale processing is also the 

reason why AINDANE performs better than I-R model based algorithm. In both 

algorithms, low frequency components are better kept compared to MSRCR, which makes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter III 52

the lightness rendition of the output images closer to that of the original images. This 

feature can let the output images look more natural. Due to the single band processing, 

AINDANE is also much faster than MSRCR. Finally, the linear color restoration used in 

our algorithms is able to prevent the incorrect color rendition appeared in MSRCR 

technique.
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CHAPTER IV

IMAGE DENOISING AND CONTRAST ENHANCEMENT 
BASED ON WAVELET TRANSFORM

In this chapter, we present the investigation of two wavelet transform based image 

processing techniques: image denoising and contrast enhancement. The two techniques 

are based on the modification of wavelet coefficients to achieve their goals. For image 

denoising, it eliminates added noise information while, for image contrast enhancement, it 

enhances faint image features. The algorithm development of both techniques will be 

introduced and discussed separately in two sections. Both techniques are implemented 

using DT-CWT (dual tree complex wavelet transform) to obtain optimized results. The 

performance of both techniques is evaluated using objective assessment methods as well 

as the comparison with other techniques.

4.1 Wavelet Transform Based Image Denoising

The image denoising technique developed in this dissertation is based on the bivariate 

wavelet coefficient statistic model presented in [111] and the wavelet coefficient 

shrinkage method presented in [112].

4.1.1 Algorithm

In this section, we consider denoising an image corrupted by additive white Gaussian 

noise. The noisy image can be expressed as:

y  = x + n (4.1)

where n is independent Gaussian noise; j c  and y  are clean and noisy images, respectively. 

The goal of image denoising is to estimate x as accurately as possible with a given y. To

deal with this estimation problem in the original spatial domain is difficult. However, it

can be simplified in a transformed domain. Considering an invertible linear transform 

denoted by T and applying it to Eq. (4.1), we have

Ty = Tx + Tn (4.2)

If T is the wavelet transform, in the wavelet transform domain the problem can be
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formulated in the same manner as in Eq. (4.1):

u = v + n (u = Ty v = Tx n = Tn) (4.3)

where u, v and n are wavelet transformed versions (wavelet coefficients) of y, x  and n in 

Eq. (4.1). Image denoising is a classical problem in estimation theory. In this dissertation, 

the maximum a posteriori (MAP) estimator will be used to estimate v from the noisy 

observation u.

The statistics of wavelet transform coefficients has been found to exhibit certain 

interlevel and intralevel dependency between coefficients. In our image denoising 

algorithm, the interlevel dependency is considered. To take into account the interlevel 

dependency between coefficients, we need to consider both wavelet coefficients and their 

parents in this problem. Thus Eq. (4.3) becomes:

Hj = v, + «,, u2 = v2 + n2 (4.4)

where 112 and u\ are noisy observations of and vi, and «2and n\ are noise samples. The 

coefficients with subscript 2 are the corresponding parents of coefficients with subscript 1. 

The expressions in Eq. (4.4) can be combined using vector formulation as:

u = v  + n (4.5)

where u = (u\, M2), v  = (vi, V2), and n = (m, ni).

The standard MAP estimator for Eq. (4.5) is

v(u) =  a r g m a x [ P v|u (v  111)] ( 4 .6 )
V

which means that the estimation of v  should maximize the conditional probability P v\u(y\u). 

By using Bayes rule, we obtain:

v ( m)  =  a r g m a x [ P Blv ( « | v )  • Pv (v )J

=  a r g m a x [ P n (u -v ) -  P v ( v ) ] '
V

Eq. (4.7) can be further transformed into

v ( m)  = argmax[log(Pn (« -  v ) )  + log(Pv ( v ) ) ] . (4.8)
V

It can be seen that the estimation of v  is formulated in terms of the probability density 

function (pdf) of the noise P n and the pdf of the coefficients of true signal P v. Therefore, to 

use this equation to estimate the true signal, we must know both P y  and P „ . The models of 

these density functions are essential for this estimation problem.
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Here, we assume the noise is i.i.d (independent identical distribution) Gaussian, and 

the noise pdfPn(#i)can be written as:

1

2  Kol
•exp

nx + n 22 A

2 cr,
(4.9)

n /

where cr2 is the noise variance (square of the noise standard deviation). It should be noted

that Eq. (4.9) is only a simplified (or approximated) pdf for obtaining meaningful result. 

The equation is used to model the statistics of the wavelet coefficients with interlevel 

dependency, which in fact is not circularly symmetric. That means a more accurate noise 

pdf should have two different variances.

By combining Eq. (4.8) and (4.9), we have

(m i-v , ) 2 (w2 - v 2)2
v(«) = argmax + lo g (P » ) (4.10)

2cr 2n n

If Pv(v) is assumed to be strictly convex and differentiable, Eq. (4.10) is equivalent to the

two equations given below:

M1~V,

1—
1

a-

« 2 - V 2 , ’  d

1

-log(Pv(v))

=  0

=  0

(4.11)

(4.12)

In order to accurately model the joint pdf of signal coefficients (Pv), a computation 

described below is conducted. The joint histograms of level 1 and level 2 wavelet 

coefficients of 100 randomly selected natural images are calculated and the averaged joint 

histogram is presented in Fig. 4.1(a). From the experiment, it is found that the variances of 

the wavelet coefficients of natural images are quite different from level to level. Therefore, 

a joint pdf which has two adjustable marginal variances should be considered as [111]:

2 /ro" j  o" -
•exp -V3-.

/  \ 2 v,

\ a \ J
+

f  \ 2 V,

V ° 2  J
(4.13)

where <j\ and 05 are variances of the child coefficient (vi) and parent coefficient (V2), 

respectively. Eq. (4.13) can be considered as a variant of bivariate Gaussian distribution or 

a variant of bivariate Laplace distribution. The two random variables vi and V2 are
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uncorrelated but not independent. A plot of Eq. (4.13) (eg. a\ = 2, 02 = 1) is presented in

0 . 1 5 - - " "

Lael 2 coefficient (perent)

(a)

L a d  2 coefficient (perent) -20 -20
L a d  1 coefficient (child)

(b)

Figure 4.1 (a) Joint pdf of level 1 and 2 wavelet coefficients of natural images; (b) joint
pdf defined in Eq. (4.13).

Fig. 4.1(b) for comparison with experimental data illustrated in Fig. 4.1(a). It can be 

observed that both distributions have a similar appearance. Data analysis also reveals that 

they are in good agreement. From this pdf, we have

log(Pv(v)) = - V3 -
/  \

+ + log (4.14)

which can be further changed to
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dv i
(4.15)

/  \ 2 ( \
V1 + V2

I*7! J 1^2  J

and

d  log(Pv(v ) )= -^ T -dv
(4.16)

+
\ ° 2  J

Substituting Eq. (4.15) and (4.16) into Eq. (4.11) and (4.12) produces

1 +

and

1 +

V3o-2
o-i s J

S c j 1v n

cr^s

=  U , (4.17)

=  U -, (4.18)

where

.v =
f  * \ 2

+
V C T 2  J

(4.19)

Eqs. (4.17) and (4.18) do not have an analytical solution, which means there is no simple 

expression for the bivariate shrinkage function (or MAP estimator). The solution can be 

found using iterative numerical methods [111] which, however, significantly increases the 

complexity of the denoising algorithm.

In our wavelet based image denoising algorithm, we propose a bivariate shrinkage 

function which can be considered as an approximate solution to Eqs. (4.17) and (4.18). 

which is written as

(V^cr,2 + u \a \  -  V3cr2)+
V) =■ (4.20)

where vx is the estimated child coefficient. Accordingly, the deadzone (DZ) for coefficient 

shrinkage can be expressed as:

DZ = jj[wj ,u2): ■Jufcr? + < V3cr2 j. (4.21)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter IV 58

A plot of Eq. (4.20) with oj = 7, 02 = 4, <x„ = 4 is shown in Fig. 4.2. The flat ellipse region 

that has the coefficient estimate equal to zero is the deadzone defined by Eq. (4.21). This 

result is in good agreement with that obtained using the iterative method presented in 

[111], but our algorithm is much simpler in computing the shrinkage function.

Figure 4.2 Bivariate shrinkage function proposed in Eq. (4.20).

The approximate solution in Eq. (4.20) is proposed using three facts. First, if we let 

cTj = a 2 -  a , Eq. (4.20) becomes

V V :2 2 + 1*2

v, =   r l  =- • (4-22)
V “ l + M 2

Eq. (4.22) is actually the solution to Eqs. (4.17) and (4.18) under the condition 

<Tj = cr2 = cr. The dead zone defined in Eq. (4.22) is a circular region represented as

y[uf + « 2 --------— > 0 . This result indicates that there exists a meaningful connection
cr

between Eq. (4.20) and Eq. (4.22). This connection makes us believe there is a certain 

validity of Eq. (4.20). The second fact is that the 3D surface produced by Eq. (4.20) (Fig. 

4.2) is very close to that obtained using an iterative method [111]. This result suggests that 

the proposed approximate solution and the numerical solution describe similar 

mathematical relations among the variables. The last fact that supports the validity of Eq.
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(4.20) is the image denoising experiments in which Eq. (4.20) yields very good results for 

various noisy images which contain different levels of noise. Therefore, it is reasonable to 

believe that those results are not just a matter of coincidence. Therefore, we believe that 

the validity of Eq. (4.20) can be verified by the three facts discussed above.

In order to compute v, (see Eq. (4.20)), oi, cr2 and cr„ must be known. cr„ is estimated 

from the wavelet coefficients in the subband of the lowest level with the highest resolution 

using a robust median estimator proposed in [113]

= median^]) u £ subband HH  (4.23)
0.6745

where u is the noisy coefficient and HH  is the subband of the highest resolution. txi, cr2 can 

be estimated in an empirical way based on window operation. Recalling the observation 

model presented in Eq. (4.4), because Vi and n\ as well as v2 and « 2 are independent of 

each other, we have

and = cr] + a 2n (4.24) 

where cr2 and cr^ are marginal variances of u\ and w2, respectively. From experiments, we 

observe that u\ and w2 can be modeled as Gaussian distributions with zero mean. Thus 

a 2 and <t 22 can be computed empirically as in

<72i  = T7T 2 > , V , / )  and = - ^ -  £ w 22( * \ / )  (4-25)
N  w (x ',y ')e fV  M  W (x ',y ')eW

where IT is a window in which the number of pixels is . The window sizes used in the

algorithm are either 7 x 7 or 5 x 5. The window based method produces location 

dependent variances. Theoretically, the window size can expand to the full subband size 

while jVw becomes the number of all the pixels in a subband. However, the experiments 

show better results obtained using window based operation. Using Eqs. (4.24) and (4.25), 

the standard deviation of vi and v2 can be estimated as

<*i = v f e ,  ~ d ») 311(1 d 2 = A l  - ° l )  (4.26)

The denoising algorithm can be summarized as follows:

(1) Perform the wavelet transform on the noisy image up to level J  (J = 5 is 

commonly used in our experiments) using DT-CWT.
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(2) Calculate the noise variance using Eq. (4.23).

(3) For each subband in the decomposition levels up to level J  -  1

a) Calculate the marginal variances from the current subband and its parent 

subband (the subband one level is higher with the same orientation as the 

current subband) using Eq. (4.25).

b) Calculate a\ and 02 using Eq. (4.26).

c) Estimate the wavelet coefficients in the child subband using Eq. (4.20).

(4) Perform inverse DT-CWT transform on the estimated coefficients to obtain the 

denoised image. It should be noted that the wavelet coefficients in the highest 

level ./have not been changed during the previous steps.

4.1.2 Results and discussion

Image denoising experiments have been conducted using the proposed algorithm. Three 

commonly used grayscale test images: Barbara, Boat and Lena shown in Fig. 4.3, are 

adopted in the experiments. First, the noisy test images with different levels of noise are 

obtained by adding white Gaussian noises with different standard deviations in the 

original test image. Then the denoising algorithm is applied to the noisy images to obtain 

denoised images. The performance of our algorithm is evaluated by visual inspection and 

comparison with published results produced by other developed algorithms.

We compared our proposed algorithm to various effective denoising algorithms 

published in literatures in terms of peak signal-to-noise ratio (PSNR) which is defined in 

decibels for 8 -bit depth grayscale images.

where X(pc, y) is the image without the additive noise while Y(x, y) is either the noisy image 

or denoised image. M is the number of pixels in the image.

Table 4.1 PSNR values of denoised images for different test images and noise levels (cr„)

PSNR = 201og10 -----
\  e J

where s  is the root-mean-square (rms) error given by

(4.27)

(4.28)

(The values in the colum n o f  Original N o isy  are values o f  noisy im ages before denoising).
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Original
Noisy

BayesShrink 
in [114]

AdaptShr 
in [115]

HMT
in

[116]

LAWMAP 
in [117]

The
system

in
[118]

SI-AdaptShr 
in [115]

CHMT 
in [119]

Proposed

Barbara

olib* 28.15 30.86 - 31.36 31.99 33.35 - - 33.36

iniibe 24.55 24.65 29.96 29.23 29.60 31.10 31.14 - 31.10

o<NIIb= 22.18 22.14 28.36 27.80 27.94 29.44 29.52 - 29.56
ct„ = 25 20.15 20.17 27.23 25.99 26.75 28.23 28.33 - 28.45
< *  =  30 18.65 - 25.11 25.80 - - - 27.54

Boat

£ ii o 28.19 31.80 - 32.28 32.25 - - - 33.06

IT)IIb= 24.60 29.87 - 30.31 30.40 - - - 31.20

£ II K
)

O 22.20 28.48 - 28.84 29.00 - - - 30.01
cr„ =  25 20.18 27.40 - 27.68 27.91 - - - 29.00
a n =  30 18.61 26.60 - 26.83 27.06 - - - 27.96
Lena

oIIbs 28.16 33.32 - 33.84 34.10 34.96 - 34.9 34.88

<*=15 24.57 31.41 32.39 31.76 32.23 33.05 33.41 - 33.50

o<NIIbC 22.19 30.17 31.07 30.39 30.89 31.72 32.12 - 32.29
a „  = 25 20.16 29.22 30.70 29.89 29.89 30.64 31.11 29.9 31.28
<* = 30 18.64 28.48 - 28.35 29.05 - - - 29.53

The PSNR results of our algorithm and some other published algorithms are presented 

in Table 4.1. Performances of seven algorithms are compared with our algorithm in the 

table, which include BayesShrink [114], AdaptShrink [115], locally adaptive 

window-based denoising using MAP (LAWMAP) estimator [117], hidden Markov tree 

(HMT) model [116], undecimated wavelet transform presented in [115] and [118], and the 

DT-CWT [119]. It can be observed that our PSNR values are among the highest in the 

table, which verifies the effectiveness and performance of our algorithm although it is a 

relatively low-complexity image denoising algorithm.
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(C)
Figure 4.3 Test images: (a) Barbara; (b) Boat; and (c) Lena.
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Figure 4.4 Noisy images with crn =10 (left column) and denoised results (right column).
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Figure 4.5 Noisy images with crn =30 (left column) and denoised results (right column).
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Several examples of denoised images produced from noisy images with different 

noise levels are presented in Figs. 4.4 and 4.5. The noisy images are shown in the left 

column while the corresponding denoised results are provided in the right column. It can 

be seen that high quality image denoising is achieved with our proposed algorithm.

4.2 Wavelet Transform Based Image Contrast Enhancement

In this section, the image quality change caused by the modification of wavelet 

coefficients will be first investigated. Then an optimized transfer function for the 

modification of wavelet coefficients will be proposed to obtain high quality contrast 

enhancement for images.

The modification of the wavelet coefficients is one of the core issues in the wavelet 

transform based contrast enhancement. However, the characteristics of reconstructed 

images affected by the coefficient change has not been systematically studied. In this 

dissertation, image processing experiments have been conducted to investigate this critical 

problem.

We first introduce a specifically designed non-linear transfer function which is used to 

modify the wavelet transform coefficients. The function can be expressed as

w, i f  |wJ<Sj

+ i f  <|wj <sr2 and W >  0

(4.29)

• |S2 -  S, | -  S i i f  S1 <|w, | <S 2 and w ' < 0  

wt i f  |w,.| > S 2

| wi - S, i f  S, < |w(| < S2 and w, > 0
with w' = < , ,

I + S  j  i f  S x < |w,-| < S 2 and wt < 0

where w, and wa are the input (original) and output (modified) wavelet coefficients, 

respectively. Si and S2 are two nonnegative constants with Si < S2. A plot of Eq. (4.29) is 

provided in Fig. 4.6 with Si = 0, S2 = 25, and G = 0.5. In the same plot, the identity 

transformation is also illustrated for comparison. The plot shows that the value change is 

only made to the wavelet coefficients whose absolute values lie in the range [Si S2] which

vs2-s,
\w

s, -s,
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corresponds to relatively small wavelet coefficients. The purpose of increasing the 

magnitude of those wavelet coefficients is to enhance the trivial image features where the 

intensity of bright pixels are increased while the intensity of dark pixels are decreased.

40

30

-10

-20

-30

-40
20-30 -10 0  10 

Input VNtaelet Coefficients
30 40-40

Figure 4.6 Transformation of wavelet coefficients.

The image quality change due to wavelet coefficient modification can be understood 

by using the sample images shown in Fig. 4.7, where the contrast enhanced image in (b) is 

obtained by reconstructing the modified wavelet coefficients from the original image. The 

coefficient modification is conducted in each subband using Eq. (4.29) with G = 0.5, Si = 

0 , and S2 = max(|wj|), in which w\ represents all the original coefficients in the subband. 

The image contrast has been largely improved by modifying (enhancing) the image 

features of all scales. But in this case, the noise is also enhanced. For comparison, an 

enhanced image produced by global contrast enhancement is also presented in (c) where 

many faint image features (e.g., the ripples and the features in the dark regions) have not 

been sufficiently enhanced. This is because wavelet transform is an multi-resolution (MR) 

decomposition and all image features with different spatial frequencies can be extracted 

and represented in the wavelet domain. On the other hand, the global contrast 

enhancement is unable to deal with all image details since its processing is not locally 

dependent.

Strong noise amplification can be observed in Fig. 4.7(b), which makes the image 

look slightly blurred and not clean. This is due to the large increase of those small wavelet
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coefficients close to the origin (see Fig. 4.6) because a significant part of those small 

coefficients is noise related. In order to suppress the unwanted noise, the transfer function 

needs to be tuned to avoid amplification of those small coefficients. In Fig. 4.8(a), a 

transfer function that is still produced by Eq. (4.29) but different from the one shown in 

Fig. 4.6 is presented with

(c)
Figure 4.7 Contrast enhancement result: (a) original low contrast image (by courtesy of 
[83]); (b) enhanced by wavelet coefficient modification; (c) enhanced by global contrast

enhancement.
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Si = Ci<7„ (4.30)

where c\ is a constant (ci = 1 for the plot in Fig. 4.8(a)) and on is the noise standard 

deviation which is obtained using the robust median estimator from the lowest level (finest 

scale) coefficients (see Eq. (4.23)). The contrast enhanced image with Si = a„ (<r„ = 0.9 for 

the original image shown in Fig 4.7(a)) and S2 = max(|wj|) is shown in Fig. 4.8(b) which 

exhibits a much lower noise level compared to the image in Fig. 4.7(b). The default value 

of parameter ci is 1 while it is adjustable based on the image enhancement result.

30

in
1
o

-30

-40
-40 -30

(a)

Figure 4.8 Contrast enhancement with noise suppression: (a) coefficient transfer function;
(b) enhanced image.

Similar to Si, the value of S2 can be tunable based the quality of the enhanced image. 

The value of S2 can be assigned in two ways. In the first way, S2 is set based on the 

maximum absolute value (Mwc) of wavelet coefficients of each subband. For example, S2 

can be expressed as:

S2 = c2m- Mwc (31)

where C2m is a constant less than or equal to 1. So if we choose ci = 1 and C2m = 0.5, we 

amplify all coefficients with the absolute value between a and half of the maximum 

absolute value of the subband. A plot of the transfer function with ci = 1 and C2m = 0.5 is 

shown in Fig. 4.9(a) with the enhanced image shown in Fig. 4.9(b). Significant contrast 

loss can be observed as compared to Fig. 4.8(b) due to the lower amplification of the 

wavelet coefficients. However, the high-lighted features (corresponding to coefficients of 

large magnitudes) in Fig. 4.8(b) are also decreased to prevent over-enhancement.
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In the second way for assigning the value of S2, $2 can be derived from the noise 

standard deviation. A simple implementation of that method can be written as

S2 = C2s-<Tn (4.32)

where C2S is an adjustable constant. The advantage of this method is that S2 is independent 

of Mwc, which means that to set the value of S2 does not need the knowledge of Mwc. In 

addition, this method allows the user to have an estimation as to which part of the image 

information will be enhanced. For instance, by using Sj = an and S2 = 10<r„, we can amplify 

all coefficients with a SNR range between 1 and 10.

01So

-30

-40
-40 -20

(a)
Figure 4.9 Contrast enhancement with S2 = 0.5Mwc: (a) coefficient transformation

function; (b) enhanced image.

Until now, the modification of wavelet coefficients is implemented only using a 

center symmetric transfer function. However, what effects can asymmetric transfer 

function impose on enhanced images? To answer this question, we apply only the positive 

or the negative part of the transfer function shown in Fig. 4.8(a) to the positive or negative 

coefficients, respectively. The results are presented in Fig. 4.10 where the contrast of the 

two images is obviously inferior to that of the image in Fig. 4.8(b). Moreover, the image 

artifacts (e.g., square shaped pattern and straight streaks) become more visible in the 

images in Fig. 4.10, especially in the image in Fig. 4.10(b).
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(a) (b)

Figure 4.10 Images enhanced with asymmetric transfer function: (a) only positive 
coefficients processed; (b) only negative coefficients processed.

The line shape of the transfer function is also closely related to the characteristics of 

the enhanced images. For example, the parameter G can be adjusted to change the 

curvature (or nonlinearity) of the transfer function. Except that, the middle part (between 

S\ and S2) of the transfer function can be either a single nonlinear function (e.g., the 

transfer function in Eq. (4.29)) or a combination of linear and nonlinear functions. In 

addition, the middle part of the transfer function can be split into two segments, and both 

of them can be implemented using different mathematical functions. In our wavelet 

transform based contrast enhancement, a combination of two linear functions (two straight 

lines) is also designed to be used as the transfer function for coefficient modification, 

which is formulated as in

w = <

- S , )  g, + s ,

k, +S|) gi -s,
k-sJ- 8 2 -s;
k+s„)-8,-s;

w, i f  |w,| < S',
i f  .S’, < |w;| < Sm and wt > 0

i f  5, < |w(| < S m and wt < 0

i f  S m < < S2 and wt > 0

i f  S m < |w,| < S’2 and w, < 0

w i i f  k | > ^ 2

(4.33)

with g, =(s; -s,)/(s„ -s.) and gl =(s2 -s;)/(s2 - s . )
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where Sm and 5° are the coordinates of the joint of the two straight lines while gi and g2

are the slopes of the two straight lines. One example of the transfer function in Eq. (4.33) 

is shown in Fig. 4.11(a). The two-segment configuration of the middle part of the transfer 

function provides a more flexible control over the modification of wavelet coefficients, 

such as which coefficients need to be modified and to which extent they need to be 

changed. One example of contrast enhancement using Eq. (4.33) is provided in Fig. 

4.11(b). Compared to the results obtained by the nonlinear transfer function, the result in 

Fig. 4.12 is less noisy. However, some faint image feathers (e.g., sea waves) in the image 

in Fig. 4.11(b) are not enhanced as much as the images in Fig. 4.7 and 4.8.

20<o
S0

-30

-40 -20 -10 0  10 
kiput Wtaeiet Coefficients

(a) (b)

Figure 4.11 (a) Piece-wise linear transfer function; and (b) contrast enhanced image
produced by linear transfer function.

All the previous discussions about the coefficient modification, including those in the 

literature, are only related to the detail coefficients while the treatment of the 

approximation coefficients seems to not be considered. This is because the approximation 

images only provide the information about the large-scale intensity variation across the 

whole image while the image contrast is mainly related to the local intensity variation. 

Therefore, processing of the approximation images will not help in improving the image
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*!? f

(a) (b)

Figure 4.12 Contrast enhancement with the processing of both detail and approximation 
coefficients: (a) original image; (b) enhanced image.

(a) (b)

Figure 4.13 Color image enhancement: (a) original image; (b) enhanced image.

contrast. However, it can improve the image quality in another way, e.g., brightness 

enhancement which can be realized by performing dynamic range compression on the 

approximation images, such as with the dynamic range compression techniques discussed 

in Chapter III. One example showing the processing of both detail coefficients and 

approximation coefficients is presented in Fig. 4.12. The detail coefficients are modified
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Figure 4.14 Image enhancement produced by curvelet transform based contrast
enhancement algorithm.

using Eq. (4.29) with S\ = crn, S2 = Mwc, and G = 1/2. The approximation coefficients are 

modified by using the Gamma correction with y= 0.5. It can be observed that the image in 

Fig. 4.12 exhibits good luminance and contrast enhancement. Except enhancing grayscale 

images, the proposed algorithm can also process color images by only treating the 

intensity information of the image, and the enhanced color image is recovered using the 

same method discussed in Chapter III. One example of color image enhancement is shown 

in Fig. 4.13.

Finally, the proposed wavelet transform based contrast enhancement algorithm is
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compared with the curvelet transform based contrast enhancement algorithm described in 

[83]. The enhancement results produced by [83] are presented in Figure 4.14. The overall 

quality of those images is similar to that of our results. However, compared to curvelet 

transform, DT-CWT is much faster in processing.
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CHAPTER V

ENHANCEMENT BY FUSION OF MULTIPLE IMAGES

The purpose of image fusion system is to integrate complementary and redundant 

information from multiple registered (aligned) source images to create a composite one 

that provides a more complete description of the scene than any individual source image. 

To develop a fusion algorithm, some of the challenges have to be properly dealt with. 

Considering the two registered images shown in Fig. 5.1, in the visual image it is very 

difficult to distinguish the person in camouflage from the background while the person is 

clearly visible in the infrared (IR) image. On the other hand, some objects in the scene (e.g. 

the fence), which are nearly imperceptible in the IR image, are readily discernible in the 

visual image. In order to properly merge the scene information from the source images, 

different types of scene information and various properties of the images need to be 

carefully classified and treated:

•  Complementary information: some scene information appears in one source image but 

not in the others, e.g., the person in Fig. 5.1(b) or the fence in Fig. 5.1(a).

• Common information: scene information appears in all source images. However, same 

scene information may look different in different source images because of the 

dissimilar (or even opposite) contrast. For instance, the bushes along the bottom of the 

images and the house roof are represented differently in the two images in Fig. 5.1.

•  Properties o f  images: source images captured from different types of sensors which 

generally have different sensing capability, different dynamic range and different 

resolution, noise, etc.

It has been commented that image fusion can be implemented at either the pixel level 

or the feature level based on MR decomposition. This chapter presents the improved MR 

image fusion algorithms which employ DT-CWT to obtain the MR decomposition of input 

images. Both pixel-based and region-based image fusion algorithms have been 

investigated and both of them will be discussed in this chapter. It should be noted that we 

confine our discussion to fusion of two registered source images with the output of a 

single fused image.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) (b)

Figure 5.1 Example of multisensor source images to be fused: (a) visual image; (b) IR 
image. Images courtesy of TNO Human Factors Institute, The Netherlands.

5.1 Pixel-Based Image Fusion

5.1.1 Algorithm

An improved pixel level image fusion technique based on (dual tree complex) DT-CWT 

MR decomposition has been developed. The fusion scheme is shown in Fig. 5.2 which 

processes two source images (A and B) and consists of 6 modules including both forward 

and inverse DT-CWT transforms. The match measure extracts image similarity 

information from the source images in the spatial domain while activity measure computes 

the pixel importance from the MR decompositions of the sources. The obtained 

information is then used by the decision map and combination to create the MR 

decomposition of the fused image. Finally, the inverse DT-CWT reconstructs the fused 

image. Each module is described and discussed in details in this section.

•  DT-CWT: This module performs MR decomposition of the source images using 

DT-CWT. The detail coefficients will be used in the next step to compute an activity 

measure. If any source image is a color image, it has to be converted to a grayscale image 

prior to the wavelet transform. This is because one of the source images may be either a 

monochromatic or a grayscale image for many applications. In addition, even for fusion of 

color images, the separate processing of each spectral band is not practical because 

multi-band process needs much more computations and may readily produce image
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artifacts. To obtain optimized image fusion result, the source images are generally 

decomposed to level 5 in our experiments. If the source image size does not allow the MR 

decomposition up to 5 levels (i.e. the width or height of the source image is not equal to 

a-25 where a  is a positive integer.), the source image will be resampled to the closest size 

which allows such MR decomposition. Moreover, if image enhancement of the source

Image A Image B

DT-CWT DT-CWT

Match
Measure

Fused Image

Decision Map

Combination

Inverse
DT-CWT

Figure 5.2 Pixel-based MR fusion scheme.

images is needed, it should be done before DT-CWT transform. Examples of level 1 

subband images of the image shown in Fig. 5.1(a) are presented in Fig. 5.3. Higher 

grayscale value represents a larger absolute value of the complex wavelet transform 

coefficient, which then indicates a sharp intensity change in the original image. Moreover, 

the grayscale value at each pixel location is also independent on the orientation of the 

salient image feature. That is why the same image feature may appear different in different 

subband images which are produced by wavelets with various orientations.
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Figure 5.3 DT-CWT subband images of six orientations at level 1: (a) 15°; (b) 45°; (c) 75°;
(d) -15°; (e) -45°; ( f ) -75°.

•  Match measure: This module computes the similarity between corresponding pixels in 

both source images. Match measure is important for multi-sensor image fusion because 

the image from one imaging sensor may provide different type of information at each 

pixel location when compared with the image recorded by the other sensor. This issue has 

been discussed previously in this chapter. Match measure is critical in our fusion algorithm 

because it determines where the source images differ (or similar) and to which extent so 

that source images can be combined in an appropriate way. In order to properly compare 

the two corresponding pixels, neighborhoods surrounding the pixels should also be 

considered. In our image fusion scheme, match measure is defined as a normalized 

correlation averaged over a neighborhood of the samples as in:

2 ^ I j ( x  + m,y + ri)Ij(x + m,y + n)
(x+m,y+n)ew

£  (Ij (x + m,y + n))2 + (I* (x + m,y + n))2
(x+m, y+rt)ew

(5.1)

where i A and / aare successively subsampled source images at level j ,  and w is the 5x5

neighborhood. The subsampled images should have the same matrix sizes as those of 

wavelet detail coefficients. The value of mAB is an estimation of the similarity of image 

features at pixel level, e.g., mAB = 1 indicates identical patterns, mAB < 1 shows less

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter V 79

similarity between features, mAB = 0  indicates that the grayscale values of all the pixels in 

the two neighborhoods are zero.

We propose to compute match measure in the spatial domain instead of the transform 

domain for more accurate estimation of pattern similarity and less computational 

complexity. The conventional approach to calculating match measure is to apply Eq. (5.1) 

to all subbands of transformed source images in the wavelet domain. For instance, there 

are six subbands at each decomposition level produced by DT-CWT, thus Eq. (5.1) will be 

used six times at each level in the conventional method while the proposed approach only 

uses Eq. (5.1) once at each level. The match measure result of subsampled source images 

(Fig. 5.1) at level 1 is presented in Fig. 5.4 as a grayscale image. The values of match 

measure have been linearly scaled to the range [0 255] for display. The grayscale value at 

each pixel location represents the similarity between the neighborhoods which are 

surrounding the corresponding pixels on both subsampled source images at level 1. Higher 

grayscale value indicates higher degree of resemblance. It can be seen that the person in 

camouflage is one of the most dissimilar features between the two images in Fig. 5.1. The 

proposed match measure method will be further discussed in Section 5.1.2.

(a) (b) (c) (d) (e)

Figure 5.4 Multi-level match measure results are shown as a grayscale images: (a)-(e)
level 1 through level 5.

•  Activity measure: This module computes the ‘saliency’ of each pixel in the transform 

domain. The meaning of saliency depends on the properties of source images and the 

objective of particular fusion application. Based on the fact that the human vision system 

(HVS) is primarily sensitive to local contrast changes (e.g. edges), most fusion algorithms
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compute the activity measure as some sort of energy calculation. In our fusion scheme, the 

magnitude of the detail coefficients is used to calculate the activity measure as in:

£ / = Z K ‘|. £ y '= i K |  <5-2>*=1 *=1

where a * and b ) are the complex detail coefficients of the two source images at level j

and orientation k\ E* and E 8 are activity measures at level j  for both source images,

which are the summation of the magnitudes of the detail coefficients of all 6 subbands at 

each decomposition level. Eq. (5.2) also has its physical meaning which can be understood 

by considering that each coefficient of a MR decomposition has a set of ‘family-related’ 

components in other orientation bands and other levels. They represent the image feature(s) 

at the same (or nearby) spatial location in the original image. Therefore, it is reasonable to 

take into account the coefficients in all subbands when the image property at one spatial 

location is being determined.

The activity measures obtained in Eq. (5.2) may need to be low-pass filtered to 

suppress the salient features caused by the impulsive noises in source images. In our 

fusion algorithm, a spatial convolution with a 3x3 Gaussian mask with a standard 

deviation of 0.5 is used for this purpose. Similar to the visualization of match measure, the 

activity measures of the subsampled source images (Fig. 5.1) at level 1 are presented in 

Fig. 5.5 as grayscale images. Higher grayscale indicates higher saliency which means a 

significant intensity change in source images. More detailed discussion of activity 

measure is provided in Section 5.1.2

(a) (b)
Figure 5.5 Activity measure result of images shown in Fig. 5.1: (a) result for visible

image, (b) result for IR image.
•  Combination: This module performs the combination of the MR decompositions of the
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two source images to create a composite MR decomposition that will be transformed to 

spatial domain. In the implementation of our fusion scheme, a linear combination of the 

detail coefficients of the source images is used to obtain the detail coefficients of the fused 

image, which can be expressed as in:

Fj = Cj • Aj +Cj • Bkj (5.3)

where Fk is the detail coefficient of fused image at level j  and orientation k\ C* and Cf

are the weight factors at level j ,  which are dependent on match measure and activity 

measure but independent on orientation. The dependency of weigh factors on match and 

activity measures is determined by the decision map.

The combination of approximation coefficients of source images is conducted in a 

different manner compared to detail coefficients due to their different physical meanings. 

For example, detail coefficients with large magnitudes represent sharp intensity changes in 

images, such as edges, spots, lines and region boundaries. The approximation image, 

however, is a coarse representation of the original image and has reserved some of its 

properties like the average intensity and texture information. Thus, approximation 

coefficients with large magnitudes do not necessarily correspond to salient features. 

Accordingly, activity measure is not suitable for approximation images.

The approximation coefficients of the fused image are usually calculated using a 

simplified version of Eq. (5.3) where both weight factors are real constants (e.g. 0, 1/2, 

and 1) which are independent on match and activity measures but dependent on the quality 

of fused image and is application-orientated. In practice, a simple arithmetic average (i.e. 

both weight factors are 1/2) is often used to yield the composite approximation 

coefficients. However, there really are technical reasons behind this simple averaging, 

which are based on the assumption that the source images contain additive Gaussian noise 

and that, the given decomposition level is high enough. Important image features have 

already been captured by detail coefficient. Therefore, the approximation images contain 

mostly noise and averaging them reduces the variance of the noise while ensuring that an 

appropriate mean intensity is maintained. This issue is discussed in Sections 5.1.2.

•  Decision map: This module is the key point in image fusion, which determines the 

values of the weight factors in Eq. (5.3) based on the match and activity measures. Various 

decision making schemes have been developed [85-94]. However, most of them use single
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thresholding and consider only two cases. Thus no smooth transition is made between 

those two cases. In our image fusion scheme, we propose a double thresholding method to 

determine the weight factors in Eq. (5.3) in the following three cases:

Case 1:
C? =■j Ej +E j

c B = E *

B

B

Case 2:

Ej  + Ej

c a E f
J E f +Ej

C B _  E ;

J El  + E b

B

i f  m f  >0.9

■T + { \ - T ) - Wa, 

■T + { \ - T ) - Wb,
i f  0.7 < mAB < 0.9

where T
m

j

A B 0.7

0 .9 -0 .7
and

| WA = 1 i f  Ej > Ej , otherwise 0 
\WB =\ i f  Ej < E b, otherwise 0

Case 3:
|c;=l c;=0, i f  m f <0.7 and E f  > E f
\C* = 0 C f =1, i f  m*B < 0.7 and E f < E B
1 J  J  ^  J  J  J

In case 1, the match measure is high which represents very highly similar patterns, and the 

fused coefficient is the linear combination of the coefficients of both input images with the 

weight factors determined by the relative relation between the two activity measures. On 

the contrary, in case 3, the match measure is low, which represents very dissimilar patterns, 

and thus only the more salient feature (larger activity measure) is included in the fused 

image. Between these two extreme cases, case 2, which represents medium similarity, 

provides a smooth transition with the weight factors set by a linear combination of the two 

extreme cases. The coefficient T in case 2 modulates the relative importance between 

those two terms based on the relative position of match measure with respect to the two 

thresholds. If the match measure is close to 0.9, the weight factors are determined in a way 

more similar to case 1. Otherwise, if the match measure is close to 0.7, the weight factors 

are determined in a way more similar to case 3. Finally, the expressions discussed above 

should ensure that the sum of the two weight factors C f and C f  be 1.

Examples of the decision maps of the subsampled source images (Fig. 5.1) are shown 

in Fig. 5.6. It can seen that more image information is merged in the fused image from the
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IR image than the visual image since the decision map image since the IR image contains 

much more high-lighted pixels than those in the decision map for the visual image. This is 

because the visual image has a larger area composed of dark pixels compared to the IR 

image, which contains less scene information than those bright areas in the IR image. The 

gray areas appearing in both decision map images represent those similar areas between 

the two source images. In addition, a large number of discrete bright spots are uniformly 

scattered across almost the whole decision map image for the visual image while they are 

paired by dark spots in the decision map image for the IR image. These spots are created 

by either small-scale salient image features or by image noise. The decision map module is 

discussed in Section 5.1.2.

(a) (b)

Figure 5.6 Decision maps for the level 1 wavelet coefficients of the source images: (a)
visual image; (b) IR image.

•  Inverse DT-CWT: This module concludes the image fusion process by performing 

inverse DT-CWT transform on the composite wavelet coefficients yielded by the 

Combination module to create the fused image. After this step, additional image 

processing may be needed as discussed below.

A color restoration process is needed to transfer the chromatic information of the 

source images to the fused image. If only one of the source images is a color image, the 

color information is certainly obtained from that image. However, if  both source images 

are color images, the chromatic information should be obtained from one or both of the 

source images: If one, which image should be used? In our image fusion experiments, only
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the source image which contains more color information than the other will be used for 

color restoration so that the color artifacts can be avoided. Here the meaning of the word 

‘more’ can be understood by considering a fusion of two visual images which are captured 

on exactly the same scene. One of the images is recorded in daytime while the other is 

captured at night with insufficient illumination. Obviously, the first image contains more 

color information of the scene for the second image has many dark regions where the color 

information is lost or degraded by noise.

A linear color restoration method is used in our algorithm, which can be expressed as

in:

I ? = l F ' J I ’ i = r ’ or or b (5-4)

where image A is assumed to be the color image which contains more color information. 

Its RGB bands are i f , and its intensity image is I4 which is used in the fusion process. 

Similarly, f  is the intensity image (produced by inverse DT-CWT) of the fused image 

whose RGB components are i f .

Since image fusion tends to degrade the image contrast, the fused image can be 

post-processed by some image enhancement algorithm to improve its quality, like the 

contrast enhancement and nonlinear image enhancement techniques discussed in the 

previous chapters.

5.1.2 Results and Discussion

The image fusion results of the two source images shown in Fig. 5.1 are provided in 

Fig. 5.6. in which figure (a) is produced by our proposed fusion scheme and figure (b) is 

yielded by the well-known Maximum Selection scheme [92], which is implemented in our 

image fusion experiments using DT-CWT for the MR decomposition of source images. 

The two fused images look almost the same except some slight differences. One of them 

appears on the road that is located close to the upper left comer of the image. A more 

careful observation can reveal that Fig. 5.7(b) has slight higher contrast than the image in 

Fig. 5.7(a) which, however, is less noisy than the other. This is because the Maximum 

Selection rule is more suitable for selecting all salient features which also include noise 

while our fusion scheme tends to fuse the features from both source images, which can
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result in less noise and lower contrast.

85

(a) (b)

Figure 5.7. Image fusion results produced by: (a) the proposed scheme and (b) the
Maximum Selection scheme.

(d) (e) (f)

Figure. 5.8 Match measure results obtained in wavelet transform domain between 
corresponding subbands: (a) 15°; (b) 45°; (c) 75°; (d) -15°; (e) -45°; (f) -75°.

In our proposed fusion scheme, the match measure is computed on the grayscale

source images in spatial domain while, in the existing fusion algorithms, it is commonly

computed on MR decomposed images in transform domain. Some examples of the match

measure results obtained in wavelet transform domain are presented in Fig. 5.8. Those

results are very different from what is shown in Fig. 5.4. However, the image fusion
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results shown in Fig. 5.7 demonstrate how our match measure computation method works 

appropriately without any unusual image artifacts or distortions found related to the new 

match measure approach. This result and higher computational efficiency provide our 

method some advantages over other match measure approaches. Moreover, this result also 

shows strong spatial correlation between the images in spatial domain and their 

transformed version in wavelet domain.

In wavelet transform based fusion schemes, the absolute values of the wavelet 

coefficients are commonly used to calculate activity measures. However, there are 

different methods to compute activity measures using wavelet coefficients. The mostly 

used method is to use the absolute value (magnitude) of the wavelet coefficient in each 

subband as the activity measure. Thus activity measure is orientation dependent while the 

activity measure defined in our fusion scheme (Eq. (5.2)) is independent of the orientation 

of wavelets. Based on the consideration that an image pixel is determined by all subbands 

at the pixel location. This type of activity measure calculation is intended to make all 

subbands at each pixel location behave in the same way while they are processed in image 

fusion. Therefore, there is only one decision map for each source image at each MR 

decomposition level in our fusion scheme, but there are six decision maps for each source 

image at each level in other fusion schemes which use DT-CWT and orientation dependent 

activity measures. In our image fusion experiments, the orientation dependent activity 

measure is also implemented in our fusion algorithm to investigate the difference between 

these two types of activity measure definitions. The experimental results are provided in 

both Fig. 5.9 and Fig. 5.10. In Fig. 5.9, the six decision maps for the visual image shown in 

Fig. 5.1(a) are presented while the final fused image is provided in Fig. 5.10. It is obvious 

that the decision maps shown in Fig. 5.9 are rather different from the decision map shown 

in Fig. 5.6(a) and the decision maps are not the same for all subbands. However, the fused 

image shown in Fig. 5.10 is almost the same as the one in Fig. 5.7(a) which is produced by 

the orientation independent decision map shown in Fig. 5.6(a). It is unexpected that the 

difference between these two types o f decision maps does not result in any significant 

difference between the fused images. More experimental results presented in the 

remainder of this section will show similar phenomena.
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(d) (e) (f)
Figure 5.9 Decision maps for the six subbands of the visual image at level 1: (a) 15°; (b)

45°; (c) 75°; (d) -15°; (e) -45°; (f) -75°.

Figure 5.10 The fused image produced by subband dependent activity measure.

It has been mentioned in Section 5.1.1 that the combination of the approximation 

coefficients of source images are application and image quality orientated. This can be

(a) (b)
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(C) (d)
Figure 5.11 Image fusion results with composite approximation coefficients obtained in 

different ways: (a) from visible image; (b) from IR image; (c) determined by decision map
and (d) maximum selection.

easily understood using the fused images shown in Fig. 5.11, in which the fused images 

are produced with approximation coefficients selected in different ways. The fused images 

in Fig 5.11(a) and (b) are created only using the approximation coefficients from image (a) 

and (b) in Fig. 5.1, respectively. In 5.11(a), the person becomes visible but some features 

in the IR image are missing in the image. In addition, the halo effect around the person is 

the most significant among all the fused image examples. On the contrary, in 5.11(b), 

although the features in the IR image are strongly represented with the removal of the halo 

effect, contrast reversal is very severe and makes the image look unnatural. 5.11(c) is 

created using the highest level decision map to select the approximation coefficients from 

both source images. The image quality would be very good if those unexpected dark 

regions could be eliminated. This image also shows that the decision maps created by the 

fusion scheme are not applicable to approximation coefficients. The approximation 

coefficients of 5.11(d) are obtained from both source images using the maximum selection 

rule. It has the highest visual quality among these

(a) (b)
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Figure 5.12 Fusion of multi-illuminance color images. (See the description in page 90). 

four images in Fig. 5.11. Compared to the image in Fig. 5.11(a) which is obtained using 

the averaged approximation coefficients from both source images. Image in Fig. 5.11(d) 

shows equivalent visual quality with no halo effect. However, some features are less 

represented and the contrast in some areas is degraded in Fig 5.11(d). Therefore, the 

averaging of source image approximation coefficients is still more preferred in most 

existing fusion schemes.
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Figure 5.13 Color image fusion obtained by: (a) maximum selection scheme; and (b)
orientation dependent activity measure.

Fig. 5.12 shows an example of the fusion of multi-illuminance color images. The two 

source images are presented in Fig. 5.12(a) and 5.12(b) which are captured in the daytime 

and at night (i.e. under different illumination conditions), respectively. The image fusion 

process is conducted on grayscale images and color restoration is applied to convert the 

grayscale fused image to a color image. Figures 5.12(c) through (f) are obtained using the 

same image fusion process as the Fig.5.11(a) through (d) except the color restoration. 

Different selection methods are applied to choose the approximation coefficients for the 

fused images. Figure 5.12(g) is produced by averaging the approximation coefficients 

from both sources, which is the same as Figs.5.7(a) and 5.7(b). It can be easily determined 

that Fig.5.12(c) and 5.12(e) have the highest visual quality among all the samples and they 

are virtually the same image with only trace of difference. This result is different from 

what is observed in Fig. 5.11. This discrepancy lies in the fact that in the previous example, 

both source images contribute quite equally and both images have similar average 

intensity while in the second example, the day time source image, which is much higher in 

average intensity than the night image, contributes much more than the other image. In 

addition, the IR image in the previous example shows large scale image features which are 

contrast reversed compared to the other source image, but this problem does exist in the 

second example. Finally, another two fused images are presented in Fig. 5.13 for 

comparison, which are obtained using maximum selection scheme and orientation 

dependent activity measure, respectively. The result agrees with what is discussed 

previously in this section, which confirms the performance of our proposed fusion scheme
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and validity of the orientation independency of the activity measure and decision map.

5.2 Region-Based Image Fusion

5.1.1 Algorithm

A new region based MR image fusion algorithm has been proposed in this dissertation. 

The framework of this image fusion algorithm is presented in Fig. 5.14. The major 

contribution of the proposed algorithm is that pyramid image segmentation is first 

employed to achieve the MR segmentation of the multilevel match measure images which 

are computed at pixel level on source images in spatial domain. Then the MR 

segmentation of source images is conducted using the same segmentation maps obtained 

from the segmentation of match measure images. In the second step, MR decomposition 

of source images is performed using DT-CWT. In the third step, the wavelets coefficients 

of source images are combined in a region-based manner through a double-thresholding 

scheme governed by the match and activity measures of the corresponding regions. Finally, 

the fused image is reconstructed via the inverse wavelet transformation of the composite 

wavelet coefficients obtained in the last step. Experimental results demonstrate that the 

segmentation of match measure images better serves the purpose of image fusion.

The fusion scheme shown in Fig. 5.14 is similar to the pixel-based method shown in 

Fig. 5.2 because region-based method can be considered as an extension or generalized 

form of pixel-based method. Region-based image fusion deals with the merge of regions 

of the source images while pixel-based method works on fusion of individual pixels of the 

sources. If the region size decreases to a pixel, then the region-based method becomes a 

pixel-based method. The major difference between these two methods lies in the 

introduction of image segmentation in the region-based techniques. The essence of 

region-based fusion is the effort to integrate the objects (or the constituent parts of the 

objects), instead of individual pixels, to form the sources into the composite image. 

Therefore, image segmentation is the key component in the region-based fusion scheme, 

which is applied to find various objects in source images by classifying an image into 

different parts based on the intensity distribution and texture. Below, each functional 

modules included in the fusion scheme is described in detail. Since most of the modules
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were discussed in Section 5.1, the focus is on the segmentation module and its interaction 

with the other modules.

Image BImage A

DT-CWTDT-CWT

Combination

Match 
Measure I

Activity
Measure

Activity
Measure

Match 
Measure II

Decision Map

Inverse
DT-CWT

Fused
Image

Pyramid MR 
Segmentation

Figure 5.14 Region-based MR fusion scheme.

Match measure I: This module computes the match measure at pixel level and is exactly 

the same as our proposed match measure module discussed in the pixel-based fusion 

scheme. The match measure result is then used as the input, which contains information 

from both sources, for MR segmentation to classify different regions on the source images 

in a joint way.

Pyramid MR segmentation: In this module, we propose performing multi-resolution 

segmentation on pixel-level match measure images instead of the source images 

themselves. Generally, MR segmentation is conducted on source images separately or 

jointly in either spatial domain or transform domain. Compared to those conventional 

techniques, the proposed MR segmentation on match measure images has some
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advantages. First, it is more efficient because it does not segment both source images 

separately. Match measure images contain the information from both sources. Second, it 

serves the goal of image fusion better because the fusion of two pixels or two regions is 

firstly guided by the match measure and secondly by the activity measure. The segmented 

regions based on match measure have similar match measure values at all pixel locations 

within a region. Therefore, the pixels in a region can be treated in the same way while the 

creation of image artifacts can be controlled. However, the current segmentation methods 

do not consider match measure when segmenting source images, which may create a 

region that has different match measures at different pixel locations within the region. 

Thus image artifacts can be created when two regions are combined with all the pixels in a 

region are governed by the same rule.

The proposed MR segmentation has been implemented using a technique similar to 

the method of a linked pyramid which was first described by Burt et al. [121]. It consists 

of a MR decomposition of an image with the bottom level containing the full-resolution 

image and each successive higher level being a filtered and subsampled version derived 

from the level below it. The various levels of the pyramid are ‘linked’ by means of 

so-called ‘child-parent’ relations (see Fig. 5.15) between the sample pixels; such 

child-parent links are established during an iterative processing procedure to be described 

as follows. First, an approximation pyramid is produced by 2D low-pass filtering and 

subsampling. Then, child-parent relations are established by linking each pixel in a child 

level to one of the pixels in the next higher parent level which has the closest gray value 

(or in some other pixel attribute). The attribute values of the parents are then updated using 

the arithmetic average values of their children. The process of linking and updating is 

repeated until convergence occurs or until the preset pyramid level. Finally, the pixels in 

the top level of the pyramid are labeled as roots. Every root and the pixels which are 

connected to it induce a tree in the pyramid. The leaves of each tree correspond to pixels 

which are defined a segmentation region in the full resolution image. Thus, the linked 

pyramid provides a framework for an iterative process of image segmentation. For 

example, in Fig. 5.15, pixel Z at level 3 is a root which represents in the level 0 (full 

resolution image) a segment composed of pixels a through h. There exist many variations 

on the scheme: in the way the initial pyramid is built, in the manner pixels are linked to
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each other, in determining when pixels should be declared as roots, in the size of the 

neighborhood in which children can look for a parent to link to, in the attribute that is 

being used (e.g., gray value, edge, local texture), etc.

Z
Level 3

Level 2

T pVP 1 1  •---------•---------4---------•-------- • • •--------- •---, „ A / /A A A / /A \ \
Level 0 -•— •— •— •— •— •— •— •— •— •— •— •— •— •— •— •“

a b e d  e f  g h

Figure 5.15 A diagram illustrating linked pyramid.

The details of the implementation of the MR segmentation of multilevel match 

measure images are provided as follows. Our method follows the classical “ 50% 

overlapping 4x4” structure. This means that each parent is derived from the pixels in the 

4x4 neighborhood immediately below it, and this neighborhood overlaps 50% of that of its 

4 neighbors. Thus, each pixel has 16 candidate children and each child up to 4 candidate 

parents. The bottom of the pyramid corresponds to level zero and, for simplicity, is 

assumed to be of size NxN  with N  being a power o f 2. The maximum height o f the 

pyramidal structure is considered to be K = log2N  - 1. In practice, the highest level of the 

pyramid is a preset value and generally less than K.

At each level k, the pixels are indexed by the vector v = (x, y), where x, y  = 0 ,.. .,  M27 

-  1. We use C(v) to represent the set of candidate children of pixel v at level k  > 0, which 

can be expressed as in:

C(v) = {(x',_y') | x' e {2n -  \,2n,2n +1,2n + 2}, y ' e {2m -  1,2m,2m + 1,2m + 2}}. 

Similarly, we use L(v) to represent the set of candidate parents of pixel v at level k < K:
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where int(-) represents the integer part of the enclosed value. The set of pixels to which the 

pixel v is connected at the bottom level is called receptive field.

Consider an input image of level j  match measure image mAB. The pyramid link based 

MR segmentation algorithm includes three steps.

1. Initialization

We associate each pixel v at level zero of the pyramid, i?°(v), with the match measure 

value m AH (v), and each pixel v at level k > 0 with the average value computed from 

the values of its candidate children as in:

P » 7 2
1 b  v'eJT(v)

The area of the receptive field of the pixel v at level k  is -S*(v).

2. Linking

(a) Pixel linking and root labeling.

For each child, a favorable parent is sought among the candidate parents in such a way 

that it is linked to its most ‘similar’ parent or it becomes a root if no parent is found. 

Here, ‘similarity’ is based on the difference in pixel value. This difference is computed 

between the child and each of its four candidate parents. A link is established with the 

parent that minimizes that distance. If more than one candidate parent minimizes it, we 

arbitrary pick one of them.

In this pyramid segmentation algorithm, the root labeling is conducted within the 

linking step. That is, when linking to a parent, if  the pixel value difference is above 

some threshold, the link is not established and the pixel is labeled as a root (i.e., it is 

not considered to be a child any more). One advantage of this method is its speed: a 

single operation will identify all roots. A disadvantage is that it is not clear beforehand
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how many roots (and, therefore, how many segments) will be found. Defining a good 

root labeling threshold is not straightforward. When the threshold is too high, few 

pixels become roots, whereas many pixels are labeled as root if the threshold is too low. 

Based on the segmentation experiments, we use a threshold T=  0.8A/? where Ap is the 

standard deviation of the match measure image.

(b) Updating of area S*(v) and pixel value pk(v).

The receptive field area and pixel value of each parent are recomputed using only the 

children that are linked to it:

where S°(v) = 1 for all v at level zero of the pyramid.

(c) Iteration of (a) and (b) until convergence.

3. Classification

The actual segmentation is obtained by classifying the tree structure of the created 

links. At each level k, all pixels that are connected to a common root are classified as a 

single region. In this way, at each level k, we obtain a segmented image Rk which 

contains all the regions at this level.

An example of the MR segmentation of the multi-level match measure images, shown 

in Fig. 5.4, is presented in Fig. 5.16. The images are classified into many regions and the 

grayscale is the same for all pixels within a region. It can be seen that not only the match 

measure information but also the object information is clearly represented by the 

segmented regions.

S*(v) =
v'eJST(v)
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Figure. 5.16 MR segmentation of multi-level match measure images.

DT-CWT: This module performs MR decomposition of source images using dual-tree 

complex wavelet transform, which is the same as the DT-CWT module discussed in 

Section 5.1.1.

Match measure II: This module computes the similarity between the corresponding 

regions on both sources. The computation is based on the MR segmentation of source 

images and the match measure results at pixel level obtained in module match measure I. 

In our fusion scheme, the match measure between corresponding regions at level j ,  m*BR, 

is defined as in:

where vector z = (x, y) is the pixel coordinates and is the area of region R at level j ,

corresponding regions defined in Eq. (5.4) is an averaged similarity at pixel level.

Activity measure: This module computes the activity measures of regions at all levels 

in both wavelet transformed source images. The computation is based on the activity 

measure at pixel-level and is defined in a similar way to Eq. (5.4):

where E Aj R and E BR are the activity measure of region R at level j  in both source images;

(5.4)

which is the number of pixels within the region. In fact, the similarity between

I X ( 4  £ ”» = (5.5)
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Ej ( z ) m d E j ( z )  are pixel level activity measures at level j  in both source images, which

are defined Eq. (5.2). Thus the activity measure of a region can be considered as the 

arithmetic average of activity measures of all pixels within the region.

Combination'. This module combines MR decomposition coefficients of both sources 

at region level to obtain the composite MR decomposition coefficients of the fused image.

at level j  and orientation k. Cj R and C hj R are weight factors for region R at level j  in

both sources. The Eq. 5.6 indicates that all pixels within a region will be assigned the same 

weight factor which is given in the decision map.

As for approximation coefficients, the combination is much simpler and identical to 

the combination methods discussed in pixel-level based fusion scheme. The 

approximation coefficients can be obtained directly from those of either source image, or 

by averaging those of both source images, or by choosing the larger coefficient at each 

pixel location between both sources. However, to use which method is determined by the 

properties of both source images and the visual quality of fused images produced by those 

methods.

Decision map: This module determines the values of the weight factors in Eq. (5.6) 

based on the match and activity measures of regions. The weight factor computation 

method used in this module is identical to what is proposed in the decision map module of 

our pixel based fusion scheme except that the pixel-level match and activity measures 

need to be replaced by region-level ones. So we rewrite those equations as in:

Similar to the coefficient combination at pixel level, the coefficient combination at region 

level is performed in a linear way as in:

f;  (z)= C  ■ A) (z)+ C '„  ■ B* (z), z e R (5.6)

where A* (z) and B* (z ) are detail coefficients at pixel location z in region R at level j  

and orientation k  while (z) is the composite coefficient at pixel location z in region R

if  m f  > 0.9
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Case 2:
C j  =

C B =

E* + E B

E j  

E f + E B

A B

■T + ( l - T ) - W A,
i f  0.7 < w;* < 0.9

where T =
w , -0 .7

0 .9 -0 .7
and

\WA = I i f  Ej > E j , otherwise 0 
IWB = 1 i f  E^ < E B , otherwise 0

Case 3:
|C /= 1  c ;  = 0, i f  m*B < 0.7 E* > E B
[Cf = 0  C / = 1, i f  < 0.7 E* < E B

Examples of the region level decision maps for the level 1 subsampled source images 

(Fig. 5.1) are shown in Fig. 5.17. The over all grayscale pattern is similar to the pixel-level 

decision maps shown in Fig. 5.6, and still more image information from IR image is 

merged in the fused image than the visual image. The difference from the pixel-level 

decision maps is that there are almost no individual spots on both region-level decision 

maps. Compared with the source images, it can be observed that the pixels in one region 

have similar grayscale values and are spatially related. In addition, each region can also 

represent a whole object, background or a part of either one.

(a) * ‘ (b)

Figure 5.17 Region-level decision maps for level 1 subsampled source images: (a) visible
image, and (b) IR image.

Inverse DT-CWT: This module performs inverse wavelet transform on the composite 

wavelet coefficients to reconstruct the fused image. Following this step, additional image 

processing steps may be needed to achieve color restoration or image enhancement, which 

have been discussed in Section 5.1.1.
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5.1.2 Results and Discussion

One example of the fused image, produced by the proposed region-based fusion algorithm, 

is presented in Fig. 5.18 accompanied by a fused image produced by the pixel-based 

fusion scheme discussed in Section 5.1. Both fused images are obtained with averaged 

approximation coefficients from both sources and they are almost identical. The halo 

effect the person is little less pronounced in the image produced by region based fusion. 

Fig.5.18(a) is also very similar to those yielded by other region based methods.

(a) (b)

Figure 5.18. Image fusion results produced by: (a) region based scheme and (b) pixel

based scheme.

Another image fusion example is shown in Fig. 5.19. The two source images are 

displayed in Fig. 5.12. The images in the top row are image segmentation results for level 

1 subsampled source images while the images in the middle row are decision maps for 

both source images. The images in bottom row are two fused images: one produced by 

region based algorithm and the other by pixel based algorithm. Although the source 

images have many complex patterns and are captured under complex lighting conditions, 

the quality of the fused image is still equivalent to pixel based algorithm with even less 

artifacts created

The evaluation of the performance of fusion algorithms is mainly subjective in many 

applications, and it is difficult to quantitatively assess a fused image because of the lack of 

the ‘ideal’ fused image. In the current literatures, quantitative evaluation of fusion 

algorithms is still an open problem. Despite of the difficulty, a few pixel-level objective 

methods have been proposed to measure the quality of the fused images. For instance,
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(d) (e)

Figure 5.19. Image fusion results produced by: (a) segmentation result on match measure 

image; (b) decision map of visible image; (c) decision map of thermal image; (d) fused 

image by region based scheme; and (d) fused image by pixel based scheme.

mean squared error based metrics are commonly used for the comparison between the 

fused image and the sources. One example of those metrics is the root mean square error 

(RMSE) computed as:
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RMSE -
1 M N

T̂ 7 E E (7« i m ’ n )Y
1 / 2

(5.7)

where / r  and / f  are the reference image (ideal fused image) and the computed fused image, 

respectively, and M  and N  are the dimensions of the images. Due to the ambiguous 

concept of ‘ideal’ fused image and the difficulty of obtaining it, we propose an image 

fusion evaluation method based on a variant of Eq. (5.7) which can be expressed as:

RMSE, =
1 M N . .

M U '* m =1 n=1

1/ 2

(5.8)

where i is the index of source images, and I ‘s is the ith source image. Obviously, Eq. (5.8)

measures the difference between the fused image and each source. Then we use the 

arithmetic average of all RMSEt:

1 sAVGjwse = — ̂  RMSEt, S  = number o f source images (5.9)
S i

as the quality measure of the fused image and a lower A V G rmse indicates a better fused 

image.

Information theory based metrics such as mutual information has also been proposed 

for fusion evaluation [132]. Given two images: the fused image If and the reference image 

Ir, their mutual information M I is defined as:

MI(I..h )•= 1 1 V ("• 9 1"*! TTTTtL (5’10)t t t t  hR{a)hF(b)

where Hr and hp are the normalized gray level histograms of Ir and If, respectively; hR F is 

the joint gray level histogram of Ir and If', and L is the number of bins in the histograms. 

Based on Eq. (5.10), Qu et al. [133] proposed a non-reference objective fusion 

performance metric by summation of all the mutual information between the fused image 

and each source image:

. (5.11)

Therefore, a larger MI all indicates that more image information have been transferred 

from source images to the fused image.

To evaluate the performance of our fusion algorithm, the fusion metrics proposed in 

Eq. (5.9) and the referred evaluation defined in Eq. (5.11) are applied to analyze the fused
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images shown in Figs. 5.7 and 5.18.

Table 5.1 Fusion evaluation between region-based and pixel-based algorithms.

Fusion Algorithms AVGrmse MIall

Proposed Region-Based 9.5863 3.2409

Proposed Pixel-Based 9.7016 3.0274

Burt [92] 9.7877 2.8892

The results are presented in Table 5.1 with comparison to the classical algorithm 

(pixel-based maximum selection) by Burt in [92]. It can be observed that the region-based 

algorithm performs the best in terms of both evaluation criteria, which means that the 

region-based algorithm incorporates the most information from both source images.
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CHAPTER VI

APPLICATIONS OF VISIBILITY ENHANCEMENT TECHNIQUES

In this chapter, we discuss the prototype application systems which have been developed 

based on the techniques proposed in this dissertation. These application systems include: 

PC based software package for image and video enhancement; image enhancement tool in 

mobile device; software package for wavelet transform based MR image fusion; and a 

prototype driver visibility improvement (DVI) system that is based on multi-sensor image 

fusion.

6.1 Software for Image and Video Enhancement

6.1.1 PC Based Software Package

A commercial software package “IESuite” has been developed based on the proposed 

nonlinear enhancement algorithms discussed in Chapter III for enhancing still images, 

recorded video, or real-time video streams from digital video camera. This software 

package is implemented in C++ in Windows XP environment. OpenCV libraries are used 

to provide Intel processor optimized program routines for basic mathematical operations 

while Microsoft DirectX libraries are used for digital video input and output. 2D spatial 

convolution is realized in frequency domain with FFTW libraries.

IESuite supports various image file formats, including JPEG, BMP, PNG, TIFF, and 

PBM. The original image and the enhanced result are displayed in two windows with best 

fit size simultaneously. The enhanced image can also be displayed in its original size by 

clicking the 'view' button. ‘IESuite’ includes 6 enhancement algorithms. It can either 

process single images or batch process and save large number of still images automatically 

without human interaction. A screen capture of IESuite processing a still image is shown 

in Fig. 6.1(a).
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Figure 6.1 Screen captures of image enhancement software package IESuite: (a) still 
image enhancement; (b) video enhancement.

Real-time enhancement of a digital video stream has also been realized in IESuite 

using I-R model based algorithm on a desktop or notebook PC. A processing speed of 26 

frames per second has been achieved on a PC with a 3.2GHz Intel Pentium 4 processor 

and 1GB 400 MHz DDR SDRAM memory. Sony DCR-HC85 digital video camera is 

used to capture the video stream with a frame size of 360 x 240 pixels. The digital video 

stream is transferred from the video camera into the computer via the IEEE 1394 port. Fig. 

6.1(b) shows a screen capture of the interface of the video enhancement program. The 

video enhancement can be controlled with various playback commands including the 

‘snapshot’ command which allows capturing of any individual enhanced frame. The 

enhanced digital video stream can be split and recorded in multi-clips at anytime by the 

user according to his/her interest, and all the clips finally are automatically saved into one
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AVI video file with the selected encoder/compressor (e.g. Microsoft MPEG-4 video codec 

V2 is usually selected). In addition, the recording rate can be manually set. Besides the 

live video streams from the video camera, all the enhancement functions and controls are 

also applicable to enhancing the digital video streams from the video files stored in the 

computer.

The processing times needed for enhancing color images of different sizes are 

compared between the proposed AINDANE algorithm and MSRCR. The results are 

provided in Table 6.1. The computing platform is the same the one used for real time 

video enhancement. A commercial digital image processing software, PhotoFlair® 

version 2.0 (TruView Imaging Company), is used to implement MSRCR algorithm. 

Generally, the processing time of our algorithm is approximately 9% ~ 13% of that of 

MSRCR. One reason is because MSRCR processes all three spectral bands of color 

images while our algorithm only processes the intensity information, which is therefore 

suitable for fast processing.

Table 6.1 Comparison of processing time between AINDANE and MSRCR.

Image 

resolution (pixels)
AINDANE (seconds) MSRCR (seconds)

3 6 0 x 240 0.10 1.21

640 x 480 0.42 4.02

1024 x 768 1.01 8.00

200 0 x 1312 2.21 18.02

Finally, some image enhancement results produced by AINDANE implemented in 

IESuite are shown in Fig. 6.2 in which the original images are captured under various 

types of lighting and media conditions. The original image in the top row shows a very 

low illumination across the entire scene area while the original image in middle row 

exhibits a non-uniform illumination distribution over the entire scene. The original image 

in the bottom row is degraded by the turbulent light media. The visibility of all three 

images has been largely improved by the image enhancement.
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Figure 6.2 Image enhancement results of some sample images.

6.1.2 Embedded Enhancement Application on Pocket PC

A software package for still image enhancement has also been implemented on a pocket 

PC. Fig. 6.3 shows two pictures of a HP iPAQ H5555 pocket PC displaying an image 

before and after enhancement. The pocket PC running in Windows CE environment is 

equipped with a 400MHz Intel XScale processor and 128 Mbytes memory. The 

processing time of a 320x240 24-bit color image is about 8-10 seconds. The Windows
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bitmap and JPEG file format are supported. The images can be either captured by the 

built-in/add-on camera or imported from another source, e.g., an email or a PC that 

connects to the pocket PC. Due to the limited computing ability of the processor, the 

image size that is larger than a predefined threshold is scaled down to a preset size prior to 

the enhancement and restored to the original size after enhancement. The coding and 

compiling of the algorithm programs as well as the pocket PC simulation are realized with 

the eMbedded Visual C++ 4.0

Figure 6.3 Image enhancement application on pocket PC with an add-on digital image 
camera: original image shown on the screen (left) and enhanced image shown on the

screen (right).

6.1.3 Image Enhancement for the Improvement o f  Face Detection 

The enhancement of the visual quality of digital images is usually applied to improve the 

performance of computer vision algorithms. Inspired by this relation, the proposed image 

enhancement technique is tested as an image preprocessor for face detection. Fig. 6.4 

illustrates the effectiveness of the enhancement technique by applying Viola & Jones’s 

face detection algorithm [123] on those images before and after enhancement. We chose 

the 8 sample images from FRGC databases [108] which are captured under complex 

lighting conditions.
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(d)
Figure 6.4 Face detection improved by image enhancement: (a) and (c): Face detection on 

FRGC sample images captured under complex lighting conditions; (b) and (d): Face 
detection on the same set of images after enhancement by AINDANE.

After applying face detection without enhancement, there are 6 failures in face detection 

(out of 8) of this image set. However after enhancement on those original images, it is 

possible to detect all the faces in the enhanced image set. In order to provide a statistical 

report of the face detection improved by image enhancement, we choose 2156 ‘difficult’ 

face images (e.g., dark face with a bright background or a low luminance across the entire 

image in which human faces are hard to detect.) to be processed by the proposed I-R 

model enhancement algorithm. Then face detection is performed on the original and the 

enhanced face images to evaluate the effect of the image enhancement
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Table 6.2 Face detection results of 2156 ‘difficult’ FRGC face images before and after 
image enhancement by AINDANE, HE, Retinex and MSRCR

Image enhancement 
Methods

True positive False positive

No image enhancement 1284 302
HE 1677 189

Retinex 1756 153
MSRCR 1787 162

AINDANE 2049 52

technique. In addition, histogram equalization (HE), the original Retinex, and MSRCR are 

also applied to process those 2156 images for face detection. The face detection results of 

those experiments are provided in Table 6.2 and the corresponding ROC curves are shown 

in Fig. 6.5. Both the proposed enhancement algorithm and the referred techniques can 

make improvement to the face detection rate because they all can increase
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Figure 6.5 Overall ROC results for face detection of the 2156 FRGC face images with 
various preprocessing: no pre-processing (original), enhanced by HE, enhanced by 

Retinex, enhanced by MSRCR, and enhanced by AINDANE.

the visual quality of those face images to some extent. However, it is also found that the 

proposed algorithm performs considerably better than the other methods. This is because
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the proposed algorithm is able to adaptively process the images with well- balanced 

luminance enhancement and contrast enhancement to properly bring out all important 

image features which then result in improved performance of the face detection algorithm 

that is essentially image feature based method.

The detection rate is defined as the ratio between the number of successful detections 

and the number of faces. The false positive rate is the ratio between the number of false 

positive detections and the number of scanned windows. The ROC curves presented in Fig. 

6.5 exhibit the relationship of detection rate versus false positive rate. The variation of the 

detection rate and false positive rate is caused by the change of certain threshold that 

determines whether a scan window is a human face or not. As the threshold decreases, 

both the false positive rate and detection rate will increase monotonously.

Since the tested face detection algorithm is able to conduct real time face detection at 

a high speed (about 50 frames per second for a frame size of 320 x 240), a prototype 

software has been developed to combine real time image enhancement and real time face 

detection together for improved face detection performance. The preliminary result is 

encouraging, and it is promising for real applications after some further improvement is 

made.

6.2 Image Fusion Based Visibility Improvement for Images and Videos

Two prototype application systems have been developed based on the proposed image 

fusion algorithms, which include an image fusion software package for image and video 

fusion as well as a prototype DVI system that combines video images from a CCD camera 

and a long wavelength infrared (LWIR) camera to provide the driver with a better view of 

the road condition at night.

6.2.1 Image Fusion Software Package

A prototype image fusion software package, named ‘Image Fusion’, has been 

implemented on a PC platform using C++ programming. The software, based on our 

pixel-level image fusion algorithm, is able to fuse either still image pairs or video frame 

pairs (the realization of real time video fusion is still in progress). A screen capture of the
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software interface is presented in Fig. 6.6 where the two input images are displayed in the 

top row while the fused image is shown in the bottom row. The input images can be either 

RGB color images or monochromatic images. The package can be applied to conduct 

image fusion of multi-sensor, multi-focus, multi-exposure, and multi-illuminance images.

V ;
^  P; f  V>

Figure 6.6 Interface of the software package for image fusion.

Two image fusion results produced by the software package are presented in Fig. 6.7 

where the source images are shown in the top and middle rows and the fused image is 

provided in the bottom row. The left side images demonstrate the fusion of multi-sensor 

images. Red circles are marked in the left side images to point out the two persons who are 

missing in the visible image while appearing in the thermal image. The right side images 

are showing the fusion of multi-focus images. In the bottom image, all image features 

become clear and sharp while the farther objects look blurred in the top image and the near 

objects look unclear in the middle image.

6.2.2 Driver Visibility Improvement System Based on Image Fusion 

Driver visibility improvement (DVI) system is an effective measure for improving road 

transportation safety. Driver’s visibility can be severely weakened due to poor lighting 

conditions (e.g., night driving and bad weather) as well as impaired human vision caused

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter VI 113

Figure 6.7 Left column is the fusion o f multi-sensor images: CCD (visible) image (top); 
LWIR (thermal) image (middle); fused image (bottom). Right column is the fusion of 
multi-focus images: short focal length image (top); long focal length image (middle);

fused image (bottom).

by aging or illness. A DVI system augments the driver’s ability to see objects in the 

vehicle path by using on-board imaging sensors and digital image processing unit to create 

road images that are displayed to the driver on a head-up display (HUD) or a LCD screen. 

The studies of road traffic safety [125-127] indicate that a significant portion of the road 

accidents are caused by low visibility of the road condition due to poor lighting at night
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and aging-induced impaired vision. Therefore, researchers have been trying to develop 

appropriate vision enhancement systems which can be incorporated in vehicles for driver 

use [128-131]. Commercial products are available for certain vehicles. Current DVI 

systems acquire night vision capability by using infrared cameras operating at either long 

wavelength infrared (LWIR) range (8-12 pm) or short wavelength infrared (SWIR) range 

(0.8-1.2 pm). In addition, a combination of SWIR and CMOS cameras for DVI system has 

been reported. LWIR camera detects LWIR radiation which is mainly dependent on 

objects’ temperature while SWIR camera is sensitive to both visible and near infrared light 

so it produces appearances of objects similar to those captured by cameras operating in 

visible range. Compared to SWIR cameras, LWIR cameras have the advantage of a longer 

range of sensing objects and better contrast. Although IR cameras are able to capture 

images without illumination, the images contain no chromatic information and thus look 

like monochrome (or grayscale) images.

L W I R  C a m e r aC C D  C a m e r a

I m a g e
E n h a n c e m e n t

I m a g e  F u s i o n

I m a g e  A l i g n m e n t

H e a d - u p  D i s p l a y  
o r  L C D  S c r e e n

Figure 6.8 Structure of the proposed DVI system.

The prototype DVI system proposed in this dissertation is based on the image 

enhancement and image fusion of video sequences captured by CCD and LWIR cameras. 

The proposed system applies nonlinear neighborhood dependent image enhancement to 

improve the visibility of images captured by CCD camera, and then uses wavelet
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transform based multiresolution image fusion method proposed in this dissertation to 

combine the enhanced visible images and thermal images which are aligned before fusion. 

Fused images can provide more road scene information than what a human driver can 

perceive. The structure of the proposed DVI system is illustrated in Fig. 6.8.

In order to properly combine the visible and thermal images, image alignment is 

realized in two steps to achieve high-precision alignment of the input image pairs. The 

first step is camera alignment which conducts the alignment between the CCD and thermal 

cameras. Mechanical alignment between the two cameras is first performed, but it is not 

enough for this objective. Further camera-to-camera alignment is performed with both 

CCD and thermal video cameras by synchronizing, focusing and imaging on the same 

object at various distances to the lenses of the cameras. Images captured in these 

experiments are analyzed so that the orientation of both cameras can be further adjusted 

and aligned to obtain optimal overlapping of the fields of view (FOV) of both cameras. 

More importantly, the second step, image registration, is conducted manually to obtain 

image transformation and cropping schemes which are used for image alignment. The 

details of the image registration step are presented in the following paragraph.

Video frames captured by the CCD camera of Sony DCR-HC85 have a frame size of 

720x480 while video frames captured by the LWIR camera of Thermal-Eye 250D 

(8-12pm) have a frame size of 640x480. The CCD camera has a larger FOV than the IR 

camera, thus the visible images must be transformed and cropped to align with thermal 

images. In the manual image registration experiment, 4 control point pairs are manually 

selected in each pair of visible and thermal image, and a ‘projective’ image transformation 

is assumed. In the ‘projective’ transformation of an image, besides translation, rotation and 

scaling, the scene appears tilted, which means that straight lines remain straight, but 

parallel lines converge toward vanishing points that might or might not fall within the 

image. In the manual image registration experiments, the control point pairs are selected 

from certain pixel locations which are uniformly-distributed across the image and are 

generally the comer pixels of the salient features or objects in the images. The image 

registration results indicate that the obtained ‘projective’ transformation parameters are 

able to provide reliable and consistent image alignment with high precision.

The objective of adopting image fusion in the system is to integrate scene information
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obtained from both cameras. With insufficient illumination, important road scene 

information may be severely degraded or even lost in the images captured by the CCD 

camera. Moreover, the information may still appear corrupted or lost even after image 

enhancement. However, the thermal images captured by LWIR camera may contain the 

information which is lost in the visible images. On the other hand, visible images look 

more natural to human viewers for they may contain objects’ color information and 

generally have more details and higher contrast than thermal images. Therefore, the fusion 

of both types of images is able to provide the driver with a more complete knowledge of 

the road condition.

The DT-CWT based pixel-level MR image fusion method proposed in this 

dissertation is used to implement the fusion of CCD and thermal images. Compared to 

region based image fusion technique, which makes a multiresolution segmentation based 

on all source images and uses this segmentation to guide the fusion process, pixel based 

image fusion is able to provide more complete scene information on fused images while 

region based method may create loss of image features. In addition, pixel based method is 

also more robust and easier to implement than region based method.

Figure 6.9 Nonlinear image enhancement of visible image. Left: original image; right:
enhanced image

Some experimental results of the proposed DVI system are presented in the following 

part of this subsection. Fig. 6.9 illustrates the effectiveness of the nonlinear

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter VI     117

I I

t

(e)

Figure 6.10 Results of image enhancement, image alignment and image fusion: (a) 
original visible image; (b) enhanced visible image; (c) original thermal image; (d) 

‘projective’ transformed visible image aligned with thermal image; (e) fused image with
color restoration.

image enhancement algorithm for improving visibility of the road scene image recorded 

by CCD camera. The original images exhibit dominant dark regions created by low 

illumination and limited dynamic range effect. However, the enhanced image exhibits a
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much more visible and clear view which is similar to what human viewers perceive. The 

enhanced images also illustrate the effectiveness of the contrast enhancement process for 

producing sharp images with compressed dynamic range.

The image alignment and image fusion results are presented in Fig. 6.10. Since the 

visible image has a larger FOV than that of thermal image, the visible image is 

transformed and cropped to align with thermal image. The red dots in the visible image 

represent the control points which can be chosen for image registration. The 

corresponding control points in the thermal image are marked as green dots. The result 

shows good image alignment between Figure 6.9(c) and 6.9(d). It can be observed that the 

fused image covers all important scene information from both visible and thermal images 

and looks similar to natural images with color information obtained from the visible image. 

Moreover, the fused image does not exhibit any severe image distortion or artifacts, and 

the noise level is modest.

The results from the prototype system are encouraging. However, the algorithms are 

implemented on a PC platform, which is not suitable for the real world application. The 

hardware design and implementation of the proposed enhancement and fusion algorithms 

are currently in progress in our research lab. The entire DVI system when completed 

would help the drivers to clearly see the objects on the road in order to have enough time 

to respond to these obstacles. The preliminary results demonstrate the capability of the 

proposed system which is promising for applications in reality.
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the major contributions of the image enhancement techniques 

developed in this dissertation and possible future work is suggested for further 

improvement of the proposed algorithms or development of new ones.

7.1 Conclusions

In this dissertation we have investigated three types of image enhancement techniques for 

visibility improvement of digital images. The first type of enhancement technique is based 

on the spatial domain image processing methods. The second type is wavelet transform 

based techniques. The last type uses image fusion based techniques for visibility 

improvement.

In spatial domain techniques, I-R model based algorithm and AINDANE were 

presented. Both algorithms employ image dependent nonlinear intensity transfer function 

for adaptive and effective dynamic range compression. The proposed neighborhood 

dependent local contrast enhancement technique is successfully used in a single-scale or 

multi-scale manner to enhance image features of various scales. The linear color 

restoration process is able to produce reliable results with good color consistency for color 

image enhancement. In our experiments, both algorithms yield high quality enhanced 

images while AINDANE performs better than the I-R model based algorithm because of 

its multi-scale processing. However, since the high frequency components (reflectance) 

are not included in the dynamic range compression, only a single-scale contrast 

enhancement is used in the I-R based algorithm which is still able to produce good 

enhancement results as well as fast computation speed. Our algorithms compare favorably 

with other typical spatial domain techniques in terms of algorithm capability, flexibility, 

robustness, noise level, and balance between luminance and contrast enhancement.

Wavelet transform based image denoising and contrast enhancement algorithms are 

developed based on the modification of the wavelet coefficients. In image denoising, a 

bivariate pdf model is introduced to explore the interlevel dependency among the wavelet
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coefficients. In addition, an approximate solution to the MAP estimation problem is 

proposed to avoid complex iterative computations to find a numerical solution. The image 

denoising algorithm implemented with DTCWT produces high quality denoised images 

equivalent to the results of the best algorithms in literature which however are much more 

complex than our proposed method. New wavelet transform based contrast enhancement 

technique was developed based on the systematic studies of the correlation between the 

image quality change and wavelet coefficient change. Appropriate nonlinear and linear 

transfer functions were designed for the modification of wavelet coefficients. Furthermore, 

dynamic range compression of the approximation images is proposed to provide 

luminance enhancement to the wavelet based enhancement technique. The performance of 

the proposed technique is similar to that of the curvelet transform based method which is 

claimed to be the most suitable method for contrast enhancement conducted in 

transformed domain. However, curvelet transform is much slower than wavelet transform.

Both pixel-based and region-based image fusion schemes were studied for the 

purpose of image visibility improvement. New wavelet transform based MR fusion 

schemes were proposed using some new techniques developed in this dissertation: (1) 

match measure obtained in spatial domain instead of in transform domain is applied to 

guide the fusion process; (2) three cases are considered when combining corresponding 

pixels or regions for fusing as much information as possible; (3) MR segmentation was 

conducted on match measure images obtained in the spatial domain. The purpose of 

developing those new techniques was to accurately evaluate the similarity between the 

corresponding pixels and regions, which is essential for determining the weight factor of 

each pixel or region in the linear combination process to yield the fused image. Compared 

to other fusion schemes, the proposed fusion techniques have higher processing speed and 

produce equivalent or slightly improved fusion results.

Prototype application systems were also successfully developed using the visibility 

improvement algorithms proposed in the dissertation. These application systems include: 

a Windows software package based on spatial domain algorithms for still image and real 

time video enhancement; a Windows software package for still image enhancement on a 

mobile device, like a pocket PC or PDA; a Windows software package of wavelet 

transform based pixel-level image fusion for fusion of still image pairs or video file pairs;
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a PC based conceptual DVI system for night or bad weather driving using image fusion of 

visible and thermal images. Those prototype systems exhibit encouraging results and are 

promising for real world applications.

7.2 Future Work

For the purpose of improving the currently proposed algorithms as well as developing new 

image enhancement algorithms, some meaningful work or suggestions are introduced for 

future investigation.

(1) The core issues of enhancing images captured in high dynamic range scenes are 

dynamic range compression of scene illuminance and enhancement of scene reflectance. 

From another point of view, they are problems of the dynamic range compression of low 

frequency components and the enhancement of high frequency components. Therefore, it 

is desirable to develop an algorithm which can make an optimal balance between those 

two problems and provide high and robust adaptivity for automatic enhancement or 

provide a highly flexible control over the enhancement process so that the user can tune 

the enhancement process to obtain optimized results to his/her interest.

(2) Both interlevel and intralevel dependency among wavelet coefficients need to be 

considered simultaneously in the coefficient thresholding to better prevent the formation 

of image artifacts induced by improper coefficient thresholding. In other words, 

neighborhood dependent coefficient thresholding needs to be developed. For example, the 

bivariate pdf used in our proposed denoising algorithm is an appropriate model to describe 

the interband dependency of wavelet coefficients. However, it is not neighborhood 

dependent. The neighborhood dependency could be added to the shrinkage function by 

estimating the noise content at each pixel location with the information obtained in the 

neighborhood. In addition, we also suggest introducing the interlevel and intralevel 

dependency into the wavelet transform based image enhancement algorithms for better 

quality enhanced images.

(3) To improve the performance of the proposed region-based image fusion algorithm, we 

suggest that more advanced MR segmentation techniques need to be incorporated and
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tested in our algorithm, such as the segmentation techniques based on texture analysis, 

gradient, watershed method and statistical method.
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