18,551 research outputs found

    Mobile Ad-Hoc Networks

    Get PDF
    Being infrastructure-less and without central administration control, wireless ad-hoc networking is playing a more and more important role in extending the coverage of traditional wireless infrastructure (cellular networks, wireless LAN, etc). This book includes state-of the-art techniques and solutions for wireless ad-hoc networks. It focuses on the following topics in ad-hoc networks: vehicular ad-hoc networks, security and caching, TCP in ad-hoc networks and emerging applications. It is targeted to provide network engineers and researchers with design guidelines for large scale wireless ad hoc networks

    Security Issues in Vehicular Ad Hoc Networks

    Get PDF

    Location based services in wireless ad hoc networks

    Get PDF
    In this dissertation, we investigate location based services in wireless ad hoc networks from four different aspects - i) location privacy in wireless sensor networks (privacy), ii) end-to-end secure communication in randomly deployed wireless sensor networks (security), iii) quality versus latency trade-off in content retrieval under ad hoc node mobility (performance) and iv) location clustering based Sybil attack detection in vehicular ad hoc networks (trust). The first contribution of this dissertation is in addressing location privacy in wireless sensor networks. We propose a non-cooperative sensor localization algorithm showing how an external entity can stealthily invade into the location privacy of sensors in a network. We then design a location privacy preserving tracking algorithm for defending against such adversarial localization attacks. Next we investigate secure end-to-end communication in randomly deployed wireless sensor networks. Here, due to lack of control on sensors\u27 locations post deployment, pre-fixing pairwise keys between sensors is not feasible especially under larger scale random deployments. Towards this premise, we propose differentiated key pre-distribution for secure end-to-end secure communication, and show how it improves existing routing algorithms. Our next contribution is in addressing quality versus latency trade-off in content retrieval under ad hoc node mobility. We propose a two-tiered architecture for efficient content retrieval in such environment. Finally we investigate Sybil attack detection in vehicular ad hoc networks. A Sybil attacker can create and use multiple counterfeit identities risking trust of a vehicular ad hoc network, and then easily escape the location of the attack avoiding detection. We propose a location based clustering of nodes leveraging vehicle platoon dispersion for detection of Sybil attacks in vehicular ad hoc networks --Abstract, page iii

    Vehicular Ad-Hoc Networks (VANETS) Security: Review and Challenges

    Get PDF
    Vehicular Ad-Hoc Network (VANET) has become a popular research area as it has tremendous capacity to improve vehicle and road safety, traffic management and convenience as well as comfort to both drivers and passengers. Vehicular Ad-hoc Networks (VANETs) are trying to find solution to avoid accidents and control traffic. It (VANET) is a piece of critical infrastructure that boosts traffic management efficiency and road safety. At present research efforts have placed a strong significance on novel VANET architectures and design implementations. A lot of VANET research works have focused on specific areas including broadcasting, navigation, Quality of Service (QoS), and security. This survey paper sheds some light on VANETs’ vulnerabilities and attacks. It surveys and examines some recent security problems and limitations of solutions. We observed that security is the key parameter for success of any VANET applications. There are still many critical challenges that should be taken into account such as privacy preservation, productivity, and usability. Therefore, the door for future research and efforts is open for more contributions in the field of Vehicular Ad-Hoc Networks VANET

    A Survey: Intrusion Detection System for Vehicular Ad-Hoc Networks (VANETs)

    Get PDF
    In recent years, the security issues on Vehicular ad hoc networks (VANETs) have become one of the primary concerns. Vehicular Ad Hoc Network has attracted both research and industrial community due to its benefits in facilitating human life and enhancing the security and comfort. However, various issues have been faced in such networks such as information security, routing reliability, dynamic high mobility of vehicles that influence the stability of communication. Furthermore, VANETs are vulnerable against attacks so this can directly lead to the corruption of networks and then possibly provoke big losses of time, money, and even lives. This paper presents a survey of VANETs attacks and solutions in carefully considering other similar works as well as updating new attacks and categorizing them into different classes. Keywords: Intrusion Detection System DOI: 10.7176/ISDE/11-4-02 Publication date:August 31st 202

    Providing Location Security in Vehicular Ad Hoc Networks

    Get PDF
    Location is fundamental information in Vehicular Ad-hoc Networks (VANETs). Almost all VANET applications rely on location information. Therefore it is of importance to ensure location information integrity, meaning that location information is original (from the generator), correct (not bogus or fabricated) and unmodified (value not changed). We present validation mechanisms to provide location integrity for VANETs. In the initial mechanism, we assume that all vehicles are equipped with a radar, a GPS receiver, and a transceiver. Since radar has a limited radar range and transceiver has a limited transmission range, we build network cells as a security unit as well as a communication unit. To ensure the intra-cell position information integrity, we propose an active validation mechanism (called active location integrity) that actively validates and enhances position security by enlisting the help of on-board radar to detect neighboring vehicles and to confirm their announced coordinates. Since radar is not currently installed in many vehicles, we weak the assumption by removing radar from the vehicle\u27s equipments and propose the second mechanism (called passive location integrity) that maintains the mobility history records of vehicles, called the Map History. Based on a vehicle\u27s Map History, we can predict a region where the vehicle will be present. The predicted region can be used to validate the announced position. In reality, vehicles are deployed with different combinations of equipment and some old vehicles may not have these devices. We address a validation mechanism (called general location integrity) which filtered and refined the location measurements obtained by the above active and passive location integrity methods. The three mechanisms above provide intra-cell position information integrity. Since applications often involve position information of remote vehicles or entities which are beyond a cell (ranging to miles), we provide inter-cell position integrity as well. Vehicles request that neighbors or opposite-side vehicles check the announced position information of remote vehicles. Both the request and response messages will be propagated among cells. Because of the high mobility of vehicles, the routing path is fragile. To improve location availability, we propose a stable routing scheme which will select and maintain stable routing paths. Both selection and maintenance of routing paths are based on a proposed probability analysis of VANET links. In addition, plaintext location information, especially aggregated location information, is vulnerable to attack as an attacker could easily modify the location information and harm the location integrity. We propose both encryption/decryption and access control mechanisms to provide location information confidentiality. The aggregated position message is encrypted by a key which is a geographic location which specifies a decryption region. Vehicles have to be physically present in the specified decryption region to decrypt or access the aggregated position information. As we can ensure the position information confidentiality, integrity, and availability, we achieve position information security based on the security requirements outlined in the CIA model (confidentiality, integrity, and availability)

    An intrusion detection scheme for driverless vehicles based gyroscope sensor profiling

    Get PDF
    Vehicular ad-hoc networks of self-driving vehicles are potentially exposed to both internal and external attacks. The privacy and security of these networks is paramount for effective protection of communication systems from possible attacks. We propose an intelligent intrusion detection system in this paper that is based on Integrated Circuit Metrics (ICMetrics), which has significant defensive capability against unexpected attacks. The proposed security system shows good performance in identifying and blocking malicious vehicles in vehicular ad-hoc networks of driverless vehicles and semi driverless vehicles
    • …
    corecore