240 research outputs found

    Reputation-based security protocol for MANETs in highly mobile disconnection-prone environments

    Get PDF
    This paper is concerned with fully distributed reputation-based mechanisms that improve security in MANETS. We introduce a number of optimisations to the current reputation schemes used in MANETs such as selective deviation tests and adaptive expiration timer that aim to deal with congestion and quick reputation convergence. We propose to use two different centrality measures for evaluation of the individual trust claims and resolving the aggregated ones. We design and build our prototype over AODV and test it in NS-2 in the presence of variable active blackhole attacks in highly mobile and sparse networks. Our results show that we achieve increased throughput while delay and jitter decrease and converge to AODV

    IMPLEMENTATION OF MANET CONTROL PACKET DROP USING BAIT DETECTION APPROACH

    Get PDF
    The conception following this development is the communication between nodes with the purpose of nodes cooperating with a piece of other. The expansion of mean nodes can direct to severe security concern; such nodes may interrupt the routing process. In this environment to prevent or detect malicious nodes, an instigation of greenhole or collaborative blackhole attack must be a dispute. This issue attempt to declaration by designing a Dynamic Routing (DR)-based routing technique, which is referred to as the helpful Bait Detection System (BDS) which integrate the compensation of both proactive and reactive security architectures. Our BDS technique equipment and knock over tracing performance helps in achieving the fixed target. Finally, the simulation result are obtained, appearance of the happening of malicious-node attacks, the BDS outperforms the DSR network, and Adhoc On-Demand Distance Vector(AODV) Routing protocols in terms of mounting packet delivery ratio and routing overhead and throughput

    Reputation-Based Internet Protocol Security: A Multilayer Security Framework for Mobil Ad Hoc Networks

    Get PDF
    This research effort examines the theory, application, and results for a Reputation-based Internet Protocol Security (RIPSec) framework that provides security for an ad-hoc network operating in a hostile environment. In RIPSec, protection from external threats is provided in the form of encrypted communication links and encryption-wrapped nodes while internal threats are mitigated by behavior grading that assigns reputations to nodes based on their demonstrated participation in the routing process. Network availability is provided by behavior grading and round-robin multipath routing. If a node behaves faithfully, it earns a positive reputation over time. If a node misbehaves (for any number of reasons, not necessarily intentional), it earns a negative reputation. Each member of the MANET has its own unique and subjective set of Reputation Indexes (RI) that enumerates the perceived reputation of the other MANET nodes. Nodes that desire to send data will eliminate relay nodes they perceive to have a negative reputation during the formulation of a route. A 50-node MANET is simulated with streaming multimedia and varying levels of misbehavior to determine the impact of the framework on network performance. Results of this research were very favorable. Analysis of the simulation data shows the number of routing errors sent in a MANET is reduced by an average of 52% when using RIPSec. The network load is also reduced, decreasing the overall traffic introduced into the MANET and permitting individual nodes to perform more work without overtaxing their limited resources. Finally, throughput is decreased due to larger packet sizes and longer round trips for packets to traverse the MANET, but is still sufficient to pass traffic with high bandwidth requirements (i.e., video and imagery) that is of interest in military networks

    A Novel Cooperative Intrusion Detection System for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks (MANETs) have experienced rapid growth in their use for various military, medical, and commercial scenarios. This is due to their dynamic nature that enables the deployment of such networks, in any target environment, without the need for a pre-existing infrastructure. On the other hand, the unique characteristics of MANETs, such as the lack of central networking points, limited wireless range, and constrained resources, have made the quest for securing such networks a challenging task. A large number of studies have focused on intrusion detection systems (IDSs) as a solid line of defense against various attacks targeting the vulnerable nature of MANETs. Since cooperation between nodes is mandatory to detect complex attacks in real time, various solutions have been proposed to provide cooperative IDSs (CIDSs) in efforts to improve detection efficiency. However, all of these solutions suffer from high rates of false alarms, and they violate the constrained-bandwidth nature of MANETs. To overcome these two problems, this research presented a novel CIDS utilizing the concept of social communities and the Dempster-Shafer theory (DST) of evidence. The concept of social communities was intended to establish reliable cooperative detection reporting while consuming minimal bandwidth. On the other hand, DST targeted decreasing false accusations through honoring partial/lack of evidence obtained solely from reliable sources. Experimental evaluation of the proposed CIDS resulted in consistently high detection rates, low false alarms rates, and low bandwidth consumption. The results of this research demonstrated the viability of applying the social communities concept combined with DST in achieving high detection accuracy and minimized bandwidth consumption throughout the detection process

    Fuzzy Logic Based DSR Trust Estimation Routing Protocol for MANET Using Evolutionary Algorithms

    Get PDF
    In MANET attaining consistent routing is a main problem due to several reasons such as lack of static infrastructure, exposed transmission medium, energetic network topology and restricted battery power. These features also create the scheme of direction-finding protocols in MANETs become even more interesting. In this work, a Trust centered routing protocol is suggested, since trust plays a vital role in computing path in mobile ad hoc networks (MANETs). Estimating and computing trust encourages cooperation in mobile ad hoc networks (MANETs). Various present grade systems suddenly estimate the trust by considering any one of the parameters such as energy of node, number of hops and mobility. Estimating trust is an Energetic multi objective optimization problem (EMOPs) typically including many contradictory goals such as lifetime of node, lifetime of link and buffer occupancy proportion which change over time. To solve this multi objective problem, a hybrid Harmony Search Combined with Genetic algorithm and Cuckoo search is used along with reactive method Dynamic Source routing protocol to provide the mobile hosts to find out and sustain routes between the origin node (SN) to the target node (TN). In this work, the performance of the direction-finding practice is assessed using throughput, end to end delay, and load on the network and route detection period

    Design and Development of Network Reliability based Secure Multicast Routing Protocol for MANET

    Get PDF
    In Mobile Ad hoc network (MANET), link quality and stability of links as well as nodes play a major role. In ad hoc network, links are often changing which could affect the node mobility and integrity of data packets. In this research work, Network Reliability based Secure Multicast Routing Protocol (NRSMRP) is proposed to achieve network reliability by means of creation of reliable multicast tree. This multicast tree is constructed based on link quality and reliability trust metric. In first phase, node categorization and reliability metric calculation are implemented with the help of link quality. In second phase, reliable multicast tree is formed based on parent node and child node. Parent node must have god capacity and signal strength to communicate with child node. In last phase, authentication based multicast routes are established based on the calculation of direct reputation of mobile nodes. From the results, proposed protocol achieves better performance than existing schemes

    Multipoint Relay Selection based on Stability of Spatial Relation in Mobile Ad hoc Networks

    Get PDF
    Increasing stability is one of the main objectives in designing routing protocols for Mobile Ad-Hoc Network (MANETS). Various research schemes have been addressed to this challenge and to support it. In fact, some papers have considered modifications to MPRs selection mechanism in OLSR. In this paper, the author proposes a new mechanism to elect stable and sustainable nodes relay between all nodes in MANETs. In this mechanism, a mobility function is used as the main selection criterion based on the calculation of the spatial relation of a node relative to its neighbor. This mechanism is applied in OLSR protocol to choose stable and supportable MPRs nodes. This mechanism significantly finds more stable MPRs and it promises QoS metrics such as lost packets and delay. Simulation results reveals a significant performance gains and it motivates further examinations to develop the mechanism in order to improve the routing protocol requirements. Performances are evaluated based on Random Waypoint model and network simulator ns3

    Survey: Trust-based Approaches to Solve Routing Issues in MANET

    Get PDF
    A mobile ad hoc network is a wireless network. The ability to work without any central controlling authority without any requirement of established infrastructure makes it need of the present scenario. This dynamicity comes with a downside of security. Since the nodes may act maliciously and pose threat to the working condition of the MANET. Trust approaches are well suited in these situations. Here we discuss TRUST; the meaning, characteristics and different schemes
    • ā€¦
    corecore