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Abstract

This research effort examines the theory, application, and results for a Reputation-

based Internet Protocol Security (RIPSec) framework that provides security for an

ad-hoc network operating in a hostile environment. In RIPSec, protection from exter-

nal threats is provided in the form of encrypted communication links and encryption-

wrapped nodes while internal threats are mitigated by behavior grading that assigns

reputations to nodes based on their demonstrated participation in the routing pro-

cess. Network availability is provided by behavior grading and round-robin multipath

routing.

If a node behaves faithfully, it earns a positive reputation over time. If a node

misbehaves (for any number of reasons, not necessarily intentional), it earns a neg-

ative reputation. Each member of the MANET has its own unique and subjective

set of Reputation Indexes (RI) that enumerates the perceived reputation of the other

MANET nodes. Nodes that desire to send data will eliminate relay nodes they per-

ceive to have a negative reputation during the formulation of a route.

A 50-node MANET is simulated with streaming multimedia and varying levels

of misbehavior to determine the impact of the framework on network performance.

Results of this research were very favorable. Analysis of the simulation data shows

the number of routing errors sent in a MANET is reduced by an average of 52%

when using RIPSec. The network load is also reduced, decreasing the overall traffic

introduced into the MANET and permitting individual nodes to perform more work

without overtaxing their limited resources.

Finally, throughput is decreased due to larger packet sizes and longer round

trips for packets to traverse the MANET, but is still sufficient to pass traffic with

high bandwidth requirements (i.e., video and imagery) that is of interest in military

networks.
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REPUTATION-BASED INTERNET PROTOCOL

SECURITY: A MULTILAYER SECURITY FRAMEWORK

FOR MOBILE AD HOC NETWORKS

1. Introduction

1.1 Overview

Mobile Ad-hoc Networks (MANET) are self-configuring networks of mobile

routers connected by wireless links [31]. When one node desires to communicate

with another that is out of transmission range, intermediate nodes are used to relay

messages [13]. There are many security issues to be concerned with in this type of

communication scheme. The main considerations for MANET security are confiden-

tiality, integrity, availability, authorization, dependability, reliability, and account-

ability [89]. External threats include passive eavesdropping and active interference.

Internal threats consist of failed nodes, selfish nodes, and malicious nodes. Some

of the many attacks that malicious nodes can launch are Denial of Service (DoS)

attacks, attacks on network integrity, attacks on neighbor sensing protocols, misdi-

recting traffic, exploiting route maintenance, attacking sequence numbers, and attacks

on protocol specific optimizations. The use of firewalls and encryption algorithms can

help tremendously to protect nodes from external threats. Internal threats can be mit-

igated by a behavior grading scheme that assigns reputation values to each node and

refrains from using nodes that misbehave. To help ensure routes are available from

sender to receiver nodes, round-robin multipath routing algorithms provide necessary

network resources required to support high bandwidth applications.

1.2 Background

MANETs have received the attention of numerous agencies due to their self-

configuration and self-maintenance capabilities. Their many applications include mil-

1



itary battlefields, disaster relief efforts, conferences, classrooms, taxicabs, sports sta-

diums, boats, and small aircraft [78]. In [9], Unmanned Aerial Vehicles (UAVs) are

organized into MANETs to facilitate intra-team communications. Additionally, Fig-

ure 1.1 shows how teams of MANETs composed of several military components, to

include UAVs, may be organized and deployed.

Figure 1.1: A Large-scale Deployment of Autonomous Teams in a MANET [9]

Live surveillance video is increasingly in demand on the battlefield to achieve

information dominance [18]. Remotely Piloted Vehicles (RPVs) are currently being

formulated and fielded at a breathtaking pace, some of them no bigger than paper

planes [8]. State-of-the-art video compression and transmission technology will be

needed to achieve real-time transmission of the on-board sensors.
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Early MANET research efforts focused on functionality [86]. Security has now

become a priority since MANETs are being deployed in potentially hostile environ-

ments [87]. Traditional wired security solutions do not apply to MANETs due to

their “open” network architecture (nearby nodes will often be capable of sending and

receiving MANET protocol packets), shared wireless medium, resource constraints,

and dynamic network topology. For a MANET to be secure, required services include

authentication, confidentiality, integrity, availability, and non-repudiation. Any secu-

rity solution that provides these services must be implemented at each level of the

communications stack, commonly divided into three major sections: media, transport,

and applications [14].

A unique characteristic of MANET security is the lack of a clear line of defense.

Traditional fixed networks have dedicated infrastructure such as firewalls, routers,

and Intrusion Detection Systems (IDS) to provide protection from outside threats.

However, each MANET node functions as its own router and forwards packets to

other peer nodes. The wireless channel used by a MANET is open to both legiti-

mate users, eavesdroppers, and malicious attackers. No well-defined place exists in a

MANET where traffic can be monitored or access control deployed. Therefore, there

is no clear separation between the “inside” and “outside” network. Since there is no

clear threat to defend against, typical MANET routing protocols assume a trusted

and cooperative environment. This blind trust enables malicious nodes to disrupt net-

work operations by intentionally disobeying protocol specifications. Nodes may also

misbehave unintentionally due to hardware failure or restriction of resources, such as

limited battery power.

MANET protection techniques can be classified as proactive or reactive. Proac-

tive approaches use various cryptographic techniques to prevent an attacker from

launching attacks while reactive techniques attempt to detect security threats after

they occur and react appropriately. Any complete security solution for MANETs

should include prevention, detection, and reaction.
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1.3 Problem Statement

This research investigates how to integrate security policies of a MANET with

behavior grading and encryption algorithms in a fashion that will allow the MANET

to function securely in a hostile environment without degrading network performance.

The specific problem to be addressed is how to use behavior grading of nodes in a

multipath routing algorithm to control security mechanisms (e.g., encryption algo-

rithms) and provide a MANET capable of supporting high bandwidth applications

(e.g., video and imagery) that is protected from both internal and external threats.

1.4 Approach

The approach taken to solve this research problem is as follows:

• Design and define the proposed framework, Reputation-based Internet Protocol

Security (RIPSec)

• Validate the RIPSec framework through modeling and simulation

• Analyze RIPSec’s performance through simulation

• Assess and show the engineering advantages of using RIPSec over other well-

known MANET security frameworks

1.5 Research Contributions

Reputation-based Internet Protocol Security (RIPSec) is a framework created

through this research for integrating multipath routing with encryption algorithms

and security policies via node behavior grading in a MANET. It provides a system

in which high bandwidth applications can operate securely in a tactical, contested

environment. Previous research in this area focused on extending ad-hoc network

protocols to address either security or application concerns. There has been little

research performed that integrates multipath routing protocols with encryption and

behavior grading mechanisms due to the limited resources of MANET nodes, limited
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bandwidth of wireless channels, and generally hostile transmission characteristics of

wireless mediums [16]. This framework will demonstrate how to deploy a MANET

with: 1) encryption technologies to secure communications while uniquely identifying

each node, 2) a behavior grading mechanism to isolate nodes with poor reputations,

and 3) a round-robin multipath routing algorithm that provides necessary network

resources for high bandwidth applications.

1.6 Assumptions/Limitations

The use of encryption algorithms to secure communication between nodes is

mandatory. Nodes will utilize digital certificates for identification and as keys for the

encryption algorithms. Each node’s public key will be distributed using an external

means of communication (e.g., a Universal Serial Bus (USB) device) to all other

nodes before deployment of the MANET. A collaborative reputation mechanism will

be used to assign reputation indices to nodes [54]. A multipath algorithm will be

used to provide routes between sender and receiver nodes. The framework will be

simulated using the Optimized Network Engineering Tools (OPNET) discrete event

simulator, version 15.0. The following metrics will be analyzed in the MANET and

in the nodes.

• Load

• Throughput

• Total Route Errors Sent

Video conferencing with a medium workload was used to demonstrate the fea-

sibility of the framework [75]. Due to the size of the network (50 nodes), the mobility

of the nodes (random waypoint at 0 - 10 meters per second), and node misbehavior

(0 - 40%), it was not feasible to implement the framework in a test bed at this time.
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1.7 Dissertation Organization

This dissertation is organized as follows. Chapter 2 contains a review of semi-

nal and recent publications providing necessary information pertaining to the research

problem. Chapter 3 describes the development of the RIPSec framework. Chapter 4

describes the methodology for validating/verifying the RIPSec framework, and Chap-

ter 5 presents simulation results. Chapter 6 discusses the advantages of RIPSec over

other reputation-based methods of managing MANETs. Finally, Chapter 7 concludes

the dissertation and presents areas for further study.
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2. Literature Review

2.1 Chapter Overview

This chapter provides an overview of background knowledge and relevant ex-

isting literature for the proposed research problem. Section 2.2 provides an overview

of MANETs, examples of how they are used, and methods/issues associated with

monitoring/managing the network. Section 2.3 addresses various methods used to

manage security in a MANET, specifically, behavior grading, Internet Protocol Secu-

rity (IPSec), and Intrusion Detection Systems. Section 2.4 reviews several published

MANET security frameworks, and Section 2.5 explains selection of routes from sender

to receiver in a MANET. Section 2.6 discusses the role of trust in ad-hoc networks.

Section 2.7 summarizes the chapter.

2.2 MANETs

MANETs are mobile wireless communication systems that may be formed with-

out any pre-existing infrastructure. The following subsections provide further details.

2.2.1 Definition. A MANET is “an autonomous system of routers and asso-

ciated hosts/nodes connected by wireless links, the union of which forms an arbitrary

graph” [35].

MANET nodes are transitive and change the network’s topology dynamically

as they join and leave the network unpredictably. An example of a multihop MANET

is shown in Figure 2.1. The sender node uses a dynamic route through relay nodes to

send data to the receiver node. As nodes move, the route may change. There may be

several routes from sender to receiver, but often only one route is used in a MANET

between sender and receiver nodes.

Since a MANET does not require a traditional infrastructure, it can be de-

ployed quickly in a variety of applications. The military, disaster relief organizations,

expeditionary forces, and the media are all potential users of MANETs.
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Figure 2.1: Multihop MANET [61]

2.2.2 Environment Characteristics. MANETs require cooperation among

nodes to provide the various services necessary for the network to operate. Since

the links in a MANET are wireless, there are bandwidth limitations, and these links

experience a higher probability of data error than if operating on wired links. The

malfunctioning of one or more links along a certain route requires the retransmission

of all packets from the originating sender node, assuming a connection-based protocol

such as Transmission Control Protocol (TCP). This unnecessary amount of retrans-

mission results in significant overhead that can severely degrade the overall network

performance by increasing the average time delay of packet delivery [71]. This has the

net effect of decreasing the rate of information transfer. Software that handles traffic

on the nodes must be aware of the congestion possibilities and the high data error

rates that could occur. If the MANET topology is very dynamic, routing changes need

to propagate quickly to avoid extensive data loss. MANET nodes are often battery

powered, potentially limiting their functionality and processing capabilities within

the network. When battery power is too low, the wireless range may be reduced and

nodes may not be able to transmit/receive packets. Some applications of MANETs

are discussed next.

2.2.3 Applications. MANETs are typically used when there is little to

no communication infrastructure. They can also be used where the existing infras-

tructure is too expensive or inconvenient to use. Applications that use MANETs

vary between large-scale, mobile, highly dynamic networks and small, static networks
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constrained by power sources [78]. Additionally, MANETs have varied missions, im-

plementations, and operational requirements. A few examples are summarized in the

following subsections.

2.2.3.1 Military Battlefield. Information technology is increasingly

prevalent in the modern battlefield. MANETs allow the military to use mobile net-

work technology to maintain connectivity between soldiers, vehicles, and informa-

tion headquarters [62]. In [44], The Defense Advanced Research Projects Agency’s

(DARPA’s) Network Centric Radio System (NCRS) is a first-generation MANET

designed to enable ground and airborne-vehicle-based on-the-move and on-the-halt

network-centric connectivity. NCRS offers interoperability among various current,

future, coalition, and first responder communications radios via the network. One of

the most challenging aspects of a military MANET is the use of mixed node types.

As shown in Figure 2.2, these networks operate and interface between unattended

ground sensors, pedestrians, ground vehicles, low altitude aircraft, ships, high alti-

tude aircraft, and satellite platforms. Each has different characteristics in mobility,

available power, line-of-sight, and latency tolerance. They also have different net-

working requirements, placing challenges on the interfaces between them.

2.2.3.2 Commercial Sector. Emergency rescue operations for disas-

ter relief efforts such as fire, flood, and earthquakes are appropriate applications for

MANETs [79]. Often, these operations take place where non-existing or damaged

communications infrastructure exists and rapid deployment of a communications net-

work is needed. Information is relayed from one rescue unit to another via a hand

held device or node [78]. In [37], the Rescue Information System for Earthquake Dis-

asters (RISED) is designed to support a more efficient rescue and relief operation for

catastrophic earthquakes. The objective of RISED is to provide the most up-to-date

and accurate rescue-related information possible, such as disaster locations, possible

damages to both lives and constructions, available rescue and relief resources, and the

shortest way to the disaster spots. A two-tier architecture supports a command post
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Figure 2.2: DARPA’s First-Generation MANET Network Architecture [44]

with the first tier and local deployments with the second tier. If external network

connectivity is lost, local deployments can independently operate to help rescue and

relief operations. Figure 2.3 illustrates a MANET-based peer-to-peer network used

to support RISED.

2.2.3.3 Tactical UAVs. Tactical UAVs are aircraft with greater en-

durance and payload capacity than smaller “micro” UAVs [3]. These two features

often determine when a tactical UAV will be utilized. Tactical UAVs are lower in

cost than larger platforms like “Global Hawk” [5] and “Predator” [81]. Examples of

tactical UAVs include the “MQ-5B Hunter” and the “RQ-7B Shadow” [72]. Both

are designed to gather battlefield reconnaissance, surveillance, target acquisition, and

battle damage information in real time using a multi-mission optical payload, then

relaying it via video link to commanders and soldiers on the ground. Improvements

to the “Shadow” have allowed it to accommodate a communications relay package,

which allows the aircraft to act as a relay station and participate in tactical MANETs.

Though traditionally resource constrained, research is currently underway to incor-

porate tactical UAVs into the battlefield [70].
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Figure 2.3: Peer-to-Peer MANET Architecture [37]

2.2.4 Security Considerations. Security is very important in communication

networks, but perhaps more so in MANETs because they are so easily eavesdropped

and there are no infrastructure devices such as firewalls in place to protect the nodes.

MANET nodes depend on each other to provide security for the network. In addi-

tion to the functional challenges of operating a MANET, many security risks must

be addressed. To be secure, a network must provide confidentiality, authentication,

integrity, non-repudiation, and availability as well as physical security [92].

Confidentiality has been defined by the International Organization for Stan-

dardization (ISO) as “ensuring that information is accessible only to those authorized

to have access” and is one of the cornerstones of information security [38]. Confiden-

tiality is one of the design goals for many cryptosystems, made possible in practice

by the techniques of modern cryptography. MANETs can suffer from multiple points
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of attack as eavesdroppers may obtain the data transferred without being in the path

of traffic.

Authentication is the act of establishing or confirming that claims made by or

about something or someone are true. This might involve confirming the identity of

a person, the origins of an object, or assuring that a computer program is trusted.

A lack of authentication in a MANET can allow an adversary to masquerade as a

node, gain access to unauthorized information, and interfere with the operation of the

network [26].

Integrity comprises perceived consistency of actions, values, methods, measures,

and principles. Applied to MANETs, integrity ensures a transferred message is not

corrupted while in transit between the sender and receiver nodes [86].

Non-repudiation is the concept of ensuring that a party cannot refute taking

part in a transaction. Although this concept can be applied to any transmission of

data, the most common application is in the verification and trust of signatures. Non-

repudiation is important to a behavior grading mechanism in MANETs so appropriate

grading actions can be accurately assessed and to isolate attackers or compromised

nodes [85].

Availability is the degree to which a system, subsystem, or service is operable

and ready for use when it is needed. Simply put, availability is the proportion of time

a system or service is in a functioning condition. MANETs are vulnerable to DoS

attacks, such as electronic jamming, attacks on the routing protocols, and attacks on

key management systems, all of which can disrupt trust relationships and disconnect

the entire network [52].

Since MANET nodes are mobile, they are not likely to have physical protection

in hostile environments. If a MANET node provides a central service and that node

is compromised, the entire network may be deprived of that service. Every node in a

MANET is a potential victim of compromise. Therefore, the MANET must be able

to discern if a particular node has been compromised and effectively mitigate it.
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A thorough review of current security strategies indicates that researchers typ-

ically use three strategies to mitigate the effects of compromised nodes: trust and

behavior grading schemes, authentication and encryption, and intrusion detection

systems, all of which are described in the next section. As with most engineering

problems, there are tradeoffs between the resource constraints, performance, scalabil-

ity, and provision of security features. Furthermore, there is no single scheme that

provides a general solution for the different types of security threats in the mobile

computing environment [45]. Therefore, a hybrid approach that draws upon these

security mechanisms is warranted.

2.3 Managing Security in MANETs

Trust and reputation are separate but related concepts. Both are needed to

provide an environment that is robust and resistant to attack. In [1], trust and

reputation are differentiated, as follows:

Trust is active; it is a node’s belief in the trust qualities of a peer.
Trust is extended from a node to its peer. Reputation is passive; it is the
perception that peers form about a node. Reputations are individual in
the sense that peers can form different reputations about the same node,
based on the fact that they can have different experiences or observe
different behavior [1].

Grandison [29] says “Trust is the quantified belief by a truster with respect to

the competence, honesty, security, and dependability of a trustee within a specified

context.” Li [50] states that trust is a notation of human behavior. As illustrated in

Figure 2.4, a truster (or truster node) refers to the node that implements the trust

evaluation. Trustee (or trustee node) refers to the node that is evaluated. A third

party node is one that a truster expects who can provide an honest recommendation

on a specific trustee [50].

The following section describes how trust is earned and reputations are gained

through behavior grading systems in a MANET.
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Figure 2.4: Trust-based Recommendation Scenario [29]

2.3.1 Behavior Grading. A variety of environments and applications have

motivated research in behavior grading systems [56]. Peer-to-peer eCommerce appli-

cations such as eBay, Amazon, uBid, and Yahoo have performed research that indi-

cates reputation systems facilitate fraud avoidance and better buyer satisfaction [32].

Though behavior grading systems have numerous applications, this research focuses

on its benefit to MANET security.

According to [54], MANET nodes can be considered members of a community

that share a common resource, the network. Nodes exhibit desirable behavior when

contributing to the community by participating in the route selection process and

relaying packets between sender and receiver nodes, and undesirable behavior when

they do not contribute, whether maliciously or not. The manner in which a node

behaves causes it to acquire a reputation, which is a good mechanism to measure the

contribution of a particular node to the community. Reputation can be defined as

“...the amount of trust inspired by a particular member of a community in a specific

setting or domain of interest” [54]. If a particular node behaves in a manner that

is beneficial to the network, other nodes will place more trust in that node. The

more a node is trusted, the better its reputation. Conversely, if a node’s actions are
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disruptive or detrimental to the community, then other nodes will trust it less, and

its reputation will suffer accordingly.

A node’s reputation determines if other nodes in the community will communi-

cate with it. Nodes with a good reputation can use the community’s resources while

those with bad reputations are gradually excluded from the network [54]. With such

consequences at stake, a node’s reputation must be determined through careful and

thorough analysis that takes into account legitimate reasons why a node may not be

contributing to the community, as in the case of dwindling energy resources [54].

As stated in [2], any reputation management system must link a node’s identity

with its reputation. This is necessary to track the source of behavior feedback and

provide non-repudiation of behavior grading. Contrary to Oguchi in [61], this can

best be accomplished using a distributed Public Key Infrastructure (PKI) scheme to

identify each node [12] [19] [27]. An alternative to using PKI is to use symmetric keys,

otherwise known as pre-shared keys. However, the use of pre-shared keys introduces

key management problems. For the proposed framework, PKI is preferred because

every node is quickly identifiable by its certificate.

While evaluating a node’s reputation can help protect a MANET from insider

threats, it is not sufficient. External threats necessitate the use of more stringent

protection techniques. Traditionally, the Internet Engineering Task Force (IETF)

IPSec protocol suite does a very good job protecting wired networks [42]. As presented

in the next section, IPSec can also protect MANETs.

2.3.2 IPSec. IPSec is a suite of protocols for protecting IP datagrams [64].

The set of security services that IPSec can provide includes access
control, connectionless integrity, data origin authentication, rejection of
replayed packets (a form of partial sequence integrity), confidentiality
(encryption), and limited traffic flow confidentiality [42].

It uses two protocols, Authentication Header (AH) and Encapsulating Security Pay-

load (ESP) to provide traffic security. The AH protocol provides connectionless in-
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tegrity, data origin authentication, and an optional anti-replay service while the ESP

protocol may provide confidentiality (encryption) and limited traffic flow confidential-

ity in addition to the features provided by the AH protocol. The two protocols may

be used separately or in conjunction with each other. However, it is only necessary

to use the ESP protocol since it provides all the capabilities of the AH protocol and

more.

2.3.2.1 Architecture. The IPSec architecture defines the capabilities

the network nodes and gateways should provide. Depending on the security require-

ments of the users, IPSec can be implemented and deployed in the end nodes or the

gateways/routers or in both. In the node implementation, IPSec may be integrated

with the Operating System (OS). Additionally, since IPSec is a network layer protocol,

it may be implemented as part of the network layer. The gateway/router implemen-

tation provides the ability to secure packets over a portion of the network, such as

the public Internet connection between two geographically separated buildings of an

organization. Figure 2.5 demonstrates how the various components of IPSec interact

with each other. A user chooses either the ESP or AH protocol to protect the con-

nection. If ESP is chosen, the connection is encrypted and authenticated. If AH, the

connection is only authenticated.

Figure 2.5: IPSec Component Interaction [22]
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The IPSec Domain of Interpretation (DOI) serves to group related protocols

using the Internet Security Association and Key Management Protocol (ISAKMP) to

negotiate Security Associations (SA) [22]. However, before SAs can be established,

an IPSec connection mode must be determined.

2.3.2.2 Connection Modes. IPSec has two types of connection modes,

tunnel and transport. Tunnel mode is established between two gateways, a gateway

and a node, or between two nodes. It creates an encrypted tunnel between the end-

points, adding a new IP header to the original packet [4]. Transport mode is strictly

a node to node connection where all the data between the two nodes is encrypted.

As illustrated in Figure 2.6, the major difference between the two modes is that the

entire original IP packet is encrypted in tunnel mode whereas the IP packet header

is not encrypted in transport mode. Additionally, if the ESP protocol is used, each

packet contains trailer and authentication data.

Figure 2.6: Synopsis of IPSec Modes and Protocols [77]

2.3.2.3 Security Associations. An SA is the contract between two

communicating nodes. It determines the protocols used for securing packets, trans-

forms, encryption keys, and the duration for which the encryption keys are valid.
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A transform describes a security protocol (AH or ESP) with its corresponding al-

gorithms. For example, ESP with the Data Encryption Standard (DES) cipher

algorithm and Hash-based Message Authentication Code - Secure Hash Algorithm

(HMAC-SHA) for authentication. IPSec SAs are stored on each node in an SA

DataBase (SADB). SAs work in only one direction, either inbound or outbound.

Therefore, if two nodes, A and B, are communicating securely, then node A will have

an SA, SAout, for processing outbound packets and a second SA, SAin, for processing

inbound packets [22]. Additionally, node B will create two SAs for processing its pack-

ets. The SAout of node A and the SAin of node B will share the same cryptographic

parameters (keys). Similarly, the SAin of node A and the SAout of node B will share

the same cryptographic parameters. Because SAs are unidirectional, a separate table

must be maintained for SAs used for outbound and inbound processing. There is

an SA for each IPSec protocol. If two nodes A and B are communicating securely

using both AH and ESP, then each node builds a separate SA for each protocol. To

minimize the amount of memory required by each node to maintain SAs, only one

protocol (AH or ESP) is typically used. ESP provides the most capability and is

usually recommended [74].

Every node using IPSec maintains a Security Policy Database (SPD). The SPD

works in conjunction with the SADB in processing packets. The security policy defines

the security communications characteristics between two communicating nodes. It

defines what protocols to use in what modes, the transforms to use, and how the

IP packets are treated. Without a security policy, an SA cannot exist. Figure 2.7

illustrates how only nodes with the proper SAs can communicate with the other nodes

in the secured MANET.

If configured correctly, IPSec security associations create a formidable barrier

against unauthorized users. MANETs deployed without encryption mechanisms like

IPSec often depend on Intrusion Detection Systems to identify malicious behavior.

These systems are reviewed in the next section.
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Figure 2.7: Security-guaranteed Trusted Group [61]

2.3.3 Intrusion Detection Systems. According to [6], “An Intrusion Detec-

tion System (IDS) can be defined as the tools, methods, and resources to help identify,

assess, and report unauthorized or unapproved network activity. Intrusion detection is

typically one part of an overall protection system that is installed around a system or

device. It is not a stand-alone protection measure.” IDSes can be classified into three

categories: 1) Signature-based 2) Anomaly-based, and 3) Specification-based [40].

Signature-based IDSes compare pre-defined signatures of known attack scenar-

ios to incoming packet streams, alerting users of attacks [40]. Various approaches to

signature-based attacks include expert systems [53], pattern recognition [23], colored

Petri Nets [46], and state transition analysis [66]. Anomaly-based IDSes attempt

to detect patterns of activity that deviate from “normal” expected system behav-

ior [6]. Statistics [67], neural networks [20], immunology [25], data mining [49] [24],

and chi-square test utilization [17] are all approaches used in anomaly-based IDSes.

Specification-based IDSes are a hybrid of the signature and anomaly-based IDS [40].
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Specification-based IDSes alert users when a mismatch occurs between current be-

havior and the system specifications [43].

The problem with the IDS techniques in the previous paragraph is that they

are not able to derive generalized solutions to new problems. They only work when

observed behavior matches a pattern previously identified as “bad”, as in the case

of signature-based IDSes, or a known “good”, as in the case of anomaly detection

techniques. If the observed behavior cannot be classified as “bad” or “good”, the

IDS must then default to a predetermined response or produce a statistically-based

guess. The IDS has no ability to rationalize or deduce the proper action to take when

unknown activity is detected. Research has shown that these types of IDSes can be

undermined and rendered not only ineffective, but harmful as they can allow the user

to believe all is safe and well in the face of attacks [80]. IDSes are not a part of the

proposed framework in this research because the focus is to make routing decisions

based solely on factual information. Acknowledgments and errors generated by the

routing protocol will be used exclusively in this framework.

2.4 Route Selection

Proactive routing protocols generate routes and store them for later use. On-

demand routing protocols only generate routes when necessary. The latter is used

more often in MANETs because they require fewer resources. Two of the more pop-

ular on-demand routing protocols are Ad-hoc On-demand Distance Vector (AODV)

and Dynamic Source Routing (DSR) [7]. Unless modified, both of these protocols

use single routes between sender and receiver nodes. Multipath routing reduces de-

pendency on single nodes and routes, offering robustness in a secured MANET. The

following sections provide a description of these protocols.

2.4.1 Ad-hoc On-demand Distance Vector. In the AODV protocol [15],

Hello or similar messages are used to discover and monitor links to neighboring nodes.

Figure 2.8 shows the message exchanges of the AODV protocol [15]. Each active node
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periodically broadcasts a Hello message that all neighboring nodes receive. If a node

fails to receive several Hello messages from a particular neighboring node, a break in

the link is assumed.

Figure 2.8: AODV Protocol Messaging

When a sender node (node S in Figure 2.8) has data to send to a receiver (node

D), it broadcasts a Route Request (RREQ) for the receiver node. When an RREQ

is received by an intermediate node (node 1 ), a route back to the source is created.

If the intermediate node has not received this RREQ before, is not the receiver node,

and does not have a current route to the receiver node, it rebroadcasts the RREQ. If

a subsequent node is the receiver (node D) or has a current route to the receiver (such

as node 2 ), it generates a Route Reply (RREP). The RREP is unicast hop-by-hop

back to the source. As the RREP propagates, each intermediate node creates a route

to the receiver and updates its own routing table. When the sender node receives

the RREP, it records the route to the receiver node and begins sending data to it. If

the sender node receives multiple RREPs, the route with the shortest hop count is

selected.
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Each node maintains its own routing table. As data flows from the sender node

to the receiver node, each node in the route updates timers associated with the route

in its routing table. If a route in the table is not used for a specified amount of time,

it is assumed to be invalid and purged from the routing table [15].

Whenever a break in a route is detected, a Route Error (RERR) message is

sent to the sender node of the data stream. As the RERR message works its way

back to the sender node, each intermediate node in the route updates its routing

table to purge routes using the unreachable node. When the sender node of the data

stream receives the RERR message, it invalidates the route currently being used and

all others associated with unreachable nodes. The sender node then reinitiates route

discovery if there are no other routes to the receiver node [15].

2.4.2 Dynamic Source Routing. In the DSR protocol [39], the entire route

to the receiver node is supplied by the sender node and contained in the packet header.

Figure 2.9 illustrates the route discovery process where the sender node S is trying

to send a message to the receiver node D [39].

Figure 2.9: DSR Route Discovery

Sender node S begins the route discovery process by transmitting a RREQ.

This packet is received by all nodes currently within the wireless range of the sender

node S. Every RREQ message contains the identity of the sender, receiver, and a

unique route request ID. Additionally, each RREQ message contains the intermediate

nodes through which a particular copy of the RREQ message has been forwarded [39].
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When another node receives an RREQ and it is the receiver node, it returns a

RREP message to the sender node using either a cached route it has or by initiating

its own route discovery process. If it is not the receiver node, it propagates the RREQ

by transmitting it as a local broadcast packet with the same request ID.

As with AODV, each node maintains its own routing table. When a node is

the sender or forwards another node’s packets, it is responsible for confirming the

packet has been received by the next node along the route. The receiving node sends

confirmation of receipt back to the sending node. If the sending node does not receive

a confirmation receipt within a specified period, a broken link is assumed, and a

RERR is sent to the sender node; at this point another cached route is used, or a new

route discovery process is started.

2.4.3 Multipath Routing. Ad-hoc wireless routing protocols like AODV

and DSR are mainly designed to discover and use a single route between a sender and

receiver node. However, multiple paths between sender and receiver nodes can be used

to offset the dynamic and unpredictable configuration of ad-hoc networks. They can

also provide load balancing by spreading traffic along multiple routes, fault-tolerance

by providing route resilience, and higher aggregate bandwidth. In Figure 2.10, the

sender node has established three paths to the receiver node. If, for example, the

sender node sends the same packets along all three paths and at least one of the

paths does not fail, the receiver node will receive the packets.

Figure 2.10: Multipath Routing
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Several multipath routing protocols based on DSR have been proposed, such

as Split Multipath Routing (SMR) [48], and Multipath Source Routing (MSR) [83].

Each of these multipath routing protocols broadcast data over all paths simultane-

ously. This technique has all the advantages previously mentioned, but it also intro-

duces more packets into the MANET. The next section presents a technique that has

the advantages of a multipath protocol without introducing extra packets into the

network.

2.4.4 Round-Robin Routing. Vaidya and Lim in [82] argue that proper

selection of a set of paths found by the multipath routing protocol can have a great

impact on the usability of the found set of paths in terms of both delivery ratio and

delay, therefore reducing not only the frequency of costly route discovery but also

the overhead introduced into the network due to retry packets. Additionally, due to

the dynamic topology of the network and existence of misbehaving nodes which can

change their behavior over time, the best paths to take will vary. Therefore, any

solution for the improvement of the availability of end-to-end communication will not

be successful unless it can adapt to the state of the paths and track their behavior.

One problem addressed by multipath routing protocols is how to build multiple

paths in order to maximize throughput. The key issue for the success of multipath

streaming of video is to make packet loss over multiple paths as uncorrelated as

possible by ensuring any one node does not affect multiple paths. Therefore, one

metric for selecting multiple paths is to require them to be node-disjoint. Packet

loss due to link failure or path breakage caused by nodes’ movement are independent

among node-disjoint paths [82].

In [28], the round-robin scheduling algorithm specifies a path is selected with

the same probability among the multiple paths at the time a data packet is sent.

Therefore, assuming that at time t, n paths are known at a sender s toward the

receiver d. A path i is selected with probability pi:
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pi =
1

n
,

n
∑

i=1

pi = 1, i ∈ [1, 2 ... n] (2.1)

The weighted round-robin algorithm represents a special case of the round-robin

algorithm. For each path i, a weight wi, is assigned and accordingly a path is selected

with probability pi:

pi = wi,

n
∑

i=1

wi = 1, i ∈ [1, 2 ... n] (2.2)

Using multiple paths in ad-hoc networks to achieve higher bandwidth is not

as straightforward as in wired networks. Because ad-hoc networks communicate over

a wireless medium, radio interference may be a factor when a node communicating

along one path interferes with a node communicating along another path, limiting the

achievable throughput [55]. Still, simulations have shown that broadcast multipath

routing creates more overhead but provides better performance in congestion and

capacity than unipath routing, provided the route length is within a certain upper

bound which is derivable [65]. Additionally, the proper selection of routes using a

round-robin multipath protocol can increase further the network throughput [28].

2.5 MANET Security Frameworks

The following sections briefly describe some of the most well-published frame-

works for securing MANETs. These frameworks use either behavior grading, encryp-

tion/authentication, or IDSes to secure the network.

2.5.1 MObile Certification Authority. The framework MObile Certification

Authority (MOCA) [90] employs threshold cryptography (distributing information

among a cluster of cooperating computers) to distribute the Certificate Authority

(CA) functionality over specially selected nodes based on the security and the physical

characteristics of nodes. The selected nodes that collectively provide PKI functionality

are called MOCAs.
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MOCA is a key distribution framework and does not incorporate behavior grad-

ing or multipath routing. The encryption scheme employed is designed to protect data

and authenticate users, but not to protect the nodes themselves.

2.5.2 Maximum Degree Algorithm. Maximum Degree Algorithm (MDA)

is a fully self-organized public-key management system that allows users to generate

their public/private key pairs, to issue certificates, and to perform authentication

regardless of the network partitions and without any centralized services [12]. This

approach also does not require any trusted authority, even in the system initialization

phase.

MDA is also a key distribution framework and does not incorporate behavior

grading or multipath routing. Like MOCA, the encryption scheme is designed to

protect data and authenticate users only.

2.5.3 Self-Organized Network-Layer Security. Self-Organized Network-

Layer Security (SCAN) is a unified network layer prevention scheme that uses AODV

routing [88]. It takes a self-organized approach by exploiting a full localized design

without assuming any a priori trust or secret association between nodes. Each node

has a token in order to participate in the network operations and its local neighbors

collaboratively monitor it to detect any misbehavior in routing or packet forwarding

services. Upon expiration of the token, each node renews its token via its multiple

neighbors. The period of the validity of a node’s token is dependent on how long it

has behaved well in the network. A well-behaving node accumulates its credit and

renews its token less frequently over time.

SCAN protects the network by detecting and reacting to malicious nodes. It

does not employ encryption to protect the data or the nodes. It also does not address

node selfishness and security threats in the network’s physical and link layers. It does

not use multipath routing.
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2.5.4 Techniques for Intrusion Resistant Ad-hoc Routing Algorithms. Tech-

niques for Intrusion Resistant Ad-hoc Routing Algorithms (TIARA) is a reactive

scheme designed to detect and eliminate DoS attacks [68]. This framework relies on

extending the capabilities of existing ad-hoc routing algorithms to handle intruders

without modifying the existing routing algorithms.

TIARA protects the network through a distributed, self-configuring, wireless

firewall mechanism that confines the impact of a packet flooding attack to the imme-

diate neighborhood of the intruder node. It does not use encryption to protect the

data or the nodes. It also does not use multipath routing.

2.5.5 Secure Efficient Ad-hoc Distance Vector. Secure Efficient Ad-hoc

Distance Vector (SEAD) uses efficient one-way hash functions to encrypt data and

does not use symmetric cryptographic operations in the protocol in order to support

the nodes of limited processing capabilities [33]. The authors believe nodes in an

ad-hoc network are unable to verify asymmetric signatures quick enough for routing

protocols to decide on the routing path.

SEAD does not employ behavior grading mechanisms. Therefore, it is subject

to numerous attacks common in MANETs. It does not use multipath routing.

2.5.6 On-demand Secure Routing Protocol. The On-demand Secure Routing

Protocol (OSRP) defines a reliability metric based on past records and uses it to

select a secure path in the MANET [63]. The reliability metric is represented by a

list of link weights where high weights correspond to low reliability. Each node in the

network maintains its own list, referred to as a weight list, and dynamically updates

it when faults are detected. Faulty links are identified using a secure adaptive probing

technique that is embedded in the normal packet stream.

OSRP is designed to protect the MANET from byzantine failures by detecting

a malicious link after log n faults have occurred, where n is the length of the path. It
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uses both encryption and behavior grading, but is not effective against many behavior

based attacks nor against DoS attacks. It does not use multipath routing.

2.5.7 Alliance of Remote Instructional Authoring and Distributed Networks for

Europe. Alliance of Remote Instructional Authoring and Distributed Networks for

Europe (ARIADNE) prevents attackers from tampering with uncompromised routes

consisting of uncompromised nodes [34]. It is based on the DSR protocol and relies on

symmetric cryptography only. It operates in three stages. The first stage presents a

mechanism that enables the target to verify the authenticity of the route request. The

second stage presents a key management protocol that relies on synchronized clocks,

digital signatures, and standard message authentication code for authenticating data

in route requests and route replies. The third stage presents an efficient per-hop

hashing technique to verify that no node is missing from the node list in the route

request.

ARIADNE uses encryption to authenticate nodes and protect data, but it is

not used to protect nodes from direct attacks. DoS attacks are not addressed. It uses

a behavior grading mechanism similar to RIPSec’s, taking advantage of DSR’s error

messages. It does not use multipath routing.

2.5.8 Security Aware Ad-hoc Routing. The Security Aware ad-hoc Routing

protocol (SAR) is based on on-demand protocols, such as AODV and DSR [91].

In SAR, a security metric is added into the route request packet and a different

route discovery procedure is used. Relay nodes receive a route request packet with a

particular security metric or trust level. At the relay node, if the security metric or

trust level is satisfied, the node will process the route request packet and propagate

it to its neighbors using controlled flooding. Otherwise, the route request is dropped.

If an end-to-end path with the required security attributes can be found, the receiver

will generate a route reply packet with the specific security metric. If the receiver

node fails to find a route with the required security metric or trust level, it sends a
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notification to the sender and allows the sender to adjust the security level in order

to find a route.

SAR uses encryption to protect data but does not protect individual nodes from

attack. Behavior grading is not used to protect the MANET against common attacks.

2.5.9 Collaborative Reputation Mechanism. The Collaborative Reputation

Mechanism to Enforce Node Cooperation (CORE) is a framework based on reputation

to enforce cooperation among MANET nodes to prevent selfish behavior [54]. Each

network node keeps track of other nodes’ collaboration using their reputation. The

reputation is calculated based on various types of information on each node’s rate of

collaboration. Since there is no incentive for a node to maliciously spread negative

information about other nodes, simple denial of service attacks using the collaboration

technique itself are prevented. Three types of reputation are used: subjective, indirect,

and functional.

CORE does not use encryption for the protection of data or nodes. It does use

behavior grading based on nodes’ ability to participate in the routing process and the

ability to relay packets, but it is susceptible to many well-known MANET attacks.

2.5.10 Cooperation Of Nodes: Fairness In Dynamic Ad-hoc Networks. The

Cooperation Of Nodes: Fairness In Dynamic Ad-hoc Networks (CONFIDANT) pro-

tocol attempts to make node misbehavior unattractive by detecting and isolating

offending nodes [11]. Trust relationships and routing decisions are based on experi-

enced, observed, or reported routing and forwarding behavior of other nodes. It is

built on the DSR protocol.

CONFIDANT uses encryption only to authenticate messages. It does not pro-

tect the data or individual nodes. It uses behavior grading to ensure nodes partici-

pate in the routing process and forward packets. However, it is vulnerable to many

MANET attacks. It does not use multipath routing.
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2.5.11 Watchdog and Pathrater. Watchdog and Pathrater are designed to

work with the DSR protocol [84], both operating at the node level of a MANET. The

Watchdog detects misbehaving nodes while the Pathrater chooses the most secure

route to take when sending packets. The Watchdog measures a neighboring node’s

frequency of dropping or misrouting packets, or its frequency of invalid routing in-

formation advertisements. Watchdog maintains a buffer of recently sent packets and

compares each overheard packet with the packets in the buffer to see if there is a

match. If there is a match, the node removes the packet from the buffer. If a packet

has remained in the buffer too long, the Watchdog increments a failure tally for the

neighboring node. If the tally exceeds a certain threshold, it sends a message to the

sender node notifying it of the misbehaving node. The weaknesses of Watchdog are

that it might not detect a misbehaving node because of ambiguous collisions, receiver

collisions, limited transmission power, false behavior, collusion, and partial dropping.

A node might be accused of being malicious for the same reasons. Pathrater keeps

track of the trustworthiness rating of every known node. It calculates path metrics

by averaging the node ratings in the path to each known node. If there are multiple

paths to the same receiver, then the path with the highest metric is chosen.

Watchdog and Pathrater do not use encryption to protect data or nodes. They

do use behavior grading by monitoring downstream nodes, but are vulnerable to

numerous MANET behavior attacks. They do not use multipath routing.

2.6 Trust Management in Ad-hoc Networks

Section 2.5 presented limited security solutions. This section introduces some

broader frameworks that address trust management and key distribution in frame-

works protected by encryption and behavior grading.

Hadjichristofi presents a representative Key Management System (KMS) in [31].

The KMS manages user identity certificates and establishes rules for issuing, reissuing,

and revoking certificates. In a decentralized environment like a MANET, the goal

is to provide the KMS with access control decisions based on the trustworthiness
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of the perspective peer node. Likewise, Adams [1] presents a representative Trust

Management System (TMS) architecture in Figure 2.11 that implements a central,

data processing layer of the overall system security architecture. The KMS and IDS

are depicted at the top and bottom of the diagram, respectively. Arrows show how

the modules exchange information from these two entities. The center of the diagram

shows how a node processes, evaluates, and stores the behavior information using the

trust store and the reputation scaling module. The risk assessment module continually

adjusts trust thresholds based on current network conditions. When the KMS requests

a trust decision, the prospective node’s reputation is compared to the current trust

threshold. Once the evaluation is complete, the TMS forwards an access control

decision to the KMS.

The TMS provides the KMS with a layer of abstraction of the overall trustwor-

thiness of nodes, based on the activity of the nodes in the network. The TMS resides

on each node and helps to determine whether to trust or distrust its peers based on

its individual trust thresholds. The TMS reports its trust decisions to the KMS for

its consideration. The input to the TMS is an IDS or a monitoring scheme. MANET

IDSes can detect many types of attack, but are too easily tricked, fooled, and bypassed

to be reliable security devices, though they can be of some benefit [58]. Therefore, a

monitoring system based on behavior (such as CORE [54]) is more appropriate.

To quantify trust, the TMS generates a Reputation Index (RI) on each and

every node. When one of the MANET nodes reports an observation of another node,

the reporting node’s RI is used as a factor in creating a Feedback Item (FI). The

following formula demonstrates how an FI may be calculated. FI = RIx × obsx where

RIx is the reporting node x ’s reputation and obsx is a periodic observation by node

x [1]. The calculation method aggregates FIs in an exponential weighted moving

average. FIs are used to generate the overall RI. In Adams’ framework, RIs have a

value between -1 and 1, where -1 means the node is not trusted at all, and +1 means

the node is completely trusted. An RI value of zero means the node’s reputation

is neutral. As stated previously, the RI is used as input to the KMS to determine
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Figure 2.11: Trust Management System Architecture [1]

whether or not certificates should be renewed or revoked. The following excerpts

summarize Adams’ trust model [1].

• Trust is context dependent

• Trust has positive and negative degrees of trustworthiness

• Trust is expressed in continuous values

• Trust is based on experiences and observations between individuals

• Trust information is exchanged between nodes

• Trust is subjective. Nodes calculate different reputation values for the same
observed node

• Trust is dynamic and is modified, in a positive or negative direction, based on
new observations and reports
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2.7 Tying It All Together

A MANET is a collection of mobile routers that move dynamically in unpre-

dictable directions. The links connecting the nodes are wireless and thus are not

as dependable as wired links. The links are also susceptible to capacity constraints.

A MANET environment is characterized by numerous security threats because the

wireless links are vulnerable and the nodes have little physical protection. To coun-

teract these threats, a MANET must provide authentication, confidentiality, non-

repudiation, and increase the network services availability. Cryptography can provide

these services by utilizing different cryptographic functions in a variety of combina-

tions. IPSec is selected for this research because it is implemented at the network

level and provides many advantages to protecting both data and nodes.

The setup of trust among nodes is achieved through mutual authentication

techniques (PKI certificates). Two nodes authenticate with one another by presenting

a valid PKI certificate that is negotiated with out-of-band methods to prevent attacks

on the key distribution mechanism.

A critical component of the security framework is the monitoring of node be-

havior. Reputation Indexes (RIs) assigned to nodes based on observed and reported

behavior determine whether or not a node is allowed to participate in a route between

sender and receiver nodes.

Round-robin multipath routing increases network availability by using only

routes that have a high probability of reaching the receiver node, enabling mission-

critical multimedia applications to operate in the MANET.

Existing MANET security frameworks were presented to demonstrate the var-

ious methodologies’ strengths and weaknesses. Additionally, key and trust manage-

ment systems were presented as examples of partially integrated security solutions for

MANETs. None of these solutions address all security requirements, which is why

this research is needed.
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This research presents a hybrid security solution for MANETs operating in a

hostile environment entitled Reputation-based Internet Protocol Security (RIPSec)

that addresses the shortcomings of other MANET security frameworks. As is often

the case, the protocols used by a MANET are designed to provide functionality and

not necessarily security. RIPSec extends Adams’ [1] use of reputation indexes and

feedback items into a framework that integrates functionality and security in MANETs

by providing confidentiality and integrity through an implementation of IPSec in

transport mode, availability through round-robin multipath routing/behavior grading,

trust through a reputation management system, and authentication/non repudiation

through PKI certificates. Chapter 3 presents the system design and the proposed

approach to solve the research problem.

34



3. RIPSec Design

3.1 Chapter Overview

As stated in Chapter 1, the goals of this research are to provide a MANET

that will function with multiple levels of security in a hostile environment without

degrading network performance. Required security services include authentication,

confidentiality, integrity, availability, and non-repudiation and will be incorporated

into RIPSec in the following manner:

• Authentication will be provided by PKI certificates

• Confidentiality will be provided by PKI certificates and IPSec transport mode

• Integrity will be provided by PKI certificates and IPSec transport mode

• Availability will be provided by behavior grading and round-robin multipath

routing

• Non-repudiation will be provided by PKI certificates and IPSec transport mode

This chapter presents the design and development for Reputation-based IPSec

(RIPSec), a framework developed through this research for integrating network load

balancing with Internet Protocol Security (IPSec) and behavior grading in a Mobile

Ad-Hoc Network (MANET) environment using a modified version of the Dynamic

Source Routing (DSR) protocol. As discussed in Chapter 2, a hybrid approach is

required.

This chapter begins with the motivation for RIPSec in Section 3.2. Section

3.3.1 defines the roles of MANET nodes in this framework. Section 3.3.2 formalizes

the relationships between nodes and paths. Section 3.3.3 explains how nodes interact

securely with PKI certificates and IPSec. Section 3.3.4 describes RIPSec’s behavior

grading mechanism while Section 3.3.5 details the routing process. A summary of the

chapter is presented in Section 3.4.
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3.2 Design

RIPSec is designed to operate in a closed MANET, meaning only authorized

nodes can join and leave the network. All nodes in the MANET are known and trusted

initially. Figure 3.1 shows the major components of a RIPSec-enabled MANET and

is described below.

Figure 3.1: RIPSec MANET Components

3.2.1 Node Roles. Nodes may perform multiple roles simultaneously. In

this framework, the following roles are defined:

• Sender Node - A node originating data to be sent to a receiver node

• Receiver Node - Also known as a sink, this node is the receiver and final desti-

nation of data from a sender node

• Relay Node - Also known as a router, this node serves as a conduit between

a sender and receiver node pair that cannot communicate directly with each

other

3.2.2 Node Formalization. RIPSec nodes form paths between sender and

receiver nodes using relay nodes. The following is a formalization of the node/path

relationships.

• N = a set of MANET nodes {N1,N2, ...,NM}

• M = the number of nodes in the MANET
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• S = a sender node

• D = a receiver node

• R = a set of relay nodes {R1,R2, ...,Rk} where there are k + 1 hops between S

and D

• P = a path consisting of {S,R1,R2, ...,Rk,D} where the elements of P are all

distinct members of set N

In Figure 3.1, a path P exists from sender node S to receiver node D, where S = N1

and D = N16. There are k = 6 relay nodes (7 hops total) between node S and node

D. Relay node R1 = N3, node R2 = N5, ..., node R6 = N14. The complete path is

annotated as P = {N1,N3,N5,N8,N9,N12,N14,N16}.

Because there are normally multiple communication paths at one time in a MANET,

the notation can be generalized as follows:

• Pm = {Sm,R1m
,R2m

, ...,Rkm ,Dm}

• Pn = {Sn,R1n
,R2n

, ...,Rkn ,Dn}

where m and n are path numbers and m 6= n. Additionally, km and kn are the number

of relay nodes in the mth and nth paths, respectively.

A node Nj can be part of one or more paths. For example, in Figure 3.2,

N9 = R41
= R22

. Likewise, a node might not be part of any path (e.g., N4, N7).

Figure 3.2: Multiple Paths in a RIPSec MANET

The two paths shown in Figure 3.2 are defined as P1 = {N1,N3,N5,N8,N9,N12,N14,N16}
and P2 = {N13,N11,N9,N10}. One node, N9, is part of both paths: R22

= R41
= N9.
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3.2.3 Confidentiality and Integrity. Before RIPSec nodes are deployed, PKI

certificates are distributed out-of-band to all nodes Nj so that each node has its own

public/private certificate pair and the public certificate for each node participating in

the closed MANET. The only known attacks against IPSec are against the Internet

Key Exchange (IKE) protocol [73]. Distributing the certificates securely through

means other than IKE eliminates this particular attack. The PKI certificates are

used to sign and encrypt data and to establish IPSec Security Associations (SAs).

SAs must be established for communication to occur between nodes Nl and Nm.

Every node pair has two pairs of SAs detailing the bidirectional connections between

them. One pair is for authentication, and the second pair is for encrypting data.

Each pair of SAs consists of an inbound rule and an outbound rule for a given node.

Both rules must exist for nodes to communicate with each other. A formalization of

RIPSec SAs is provided next, in conjunction with Figure 3.3.

• Let Nl and Nm be two nodes forming an SA relationship

• SAlm is a set of SAs, SAlm = {SAlmai
, SAlmao

, SAlmei
, SAlmeo

} associated with nodes

Nl and Nm where a is the SA for authentication, e is the SA for encryption, i

is the inbound rule from node Nm to node Nl and o is the outbound rule from

node Nl to node Nm. This set of SAs exists only on node Nl. A complementary

set of SAs, SAml
, must exist on node Nm before communication can take place.

• SAml
is a set of SAs, SAml

= {SAmlai
, SAmlao

, SAmlei
, SAmleo

} associated with

nodes Nm and Nl where a is the SA for authentication, e is the SA for encryption,

i is the inbound rule from node Nl to node Nm and o is the outbound rule from

node Nm to node Nl. This set of SAs exists only on node Nm.

Packets are sent to the next hop in the route via IPSec encrypted links to

protect the data from disclosure. IPSec helps protect the nodes themselves from

external threats by refusing any connections that do not match the node’s security

policy. In RIPSec, IPSec is deployed in transport mode. This mode behaves like a

firewall and is very effective at preventing unauthorized access to a member node.
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Figure 3.3: Security Associations Between Nodes

However, before data can be sent to a receiver node, it must be safeguarded

from disclosure, illustrated in Figure 3.4.

When the sender node S1 is prepared to send data, it will first encrypt the data

with the receiver node D1’s public certificate, protecting the data from disclosure. A

digital signature is created by computing a digest of the encrypted data with Secure

Hash Algorithm 1 (SHA-1). In [51], a comparison between SHA-1 and Message Digest

5 (MD5) indicates SHA-1 is much more effective against brute force attacks than is

MD5. SHA-1’s digest is 32 bits longer than the MD5 digest. Using a brute force

technique, the difficulty of producing any message having a given message digest is on

the order of 2128 operations for MD5 and 2160 operations for SHA-1. The difficulty of

producing two messages with the same message digest is on the order of 264 operations

for MD5 and 280 for SHA-1. Therefore, SHA-1 is considerably stronger against brute
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Figure 3.4: Transmitting Data

force attacks than is MD5. MD5 is vulnerable to cryptanalytic attacks discovered

since its design [76]. SHA-1 appears not to be vulnerable to such attacks. Both

algorithms perform well on 32 bit architectures because they rely heavily on addition

modulo 232. SHA-1 involves more steps (80 versus 64) and must process a 160-bit

buffer compared to MD5’s 128-bit buffer. Therefore, SHA-1 should execute more

slowly than MD5 on the same hardware. Although slower to compute, SHA-1 is the

digest choice for RIPSec because it is much more secure.

The digest is encrypted with the sender node S1’s private certificate and both

the encrypted message and encrypted digest are sent to the receiver node, D1. The

receiver node D1 computes a digest of the received message using the sender node S1’s

public certificate. The receiver node D1 also decrypts the encrypted digest using the

sender node S1’s public certificate and compares the two digests. If they are equal,
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the message is verified to be from the sender node S1 and is then decrypted using the

receiver node D1 private certificate. The data can now be read and is assured to be

authentic and correct.

A relay node is acting as a router and should have no concern what the data is

and will not be able to read it. Its only job is to forward the data to the next hop in

the route. In RIPSec, a relay node can verify the sender of data but cannot read it

because it does not have the correct certificate for decryption. Only the receiver node

has the appropriate certificate that will decrypt the data. The use of PKI certificates

protects the data from any compromised nodes that are still participating in the

transfer of data.

3.2.4 Reputation and Behavior Grading. Sender and relay nodes monitor

downstream nodes to confirm if packets are received and acknowledged. Upstream

nodes (sender or relay) will increment the RI in their RI table for downstream relay

nodes that acknowledge receipt of packets. Receiver nodes are not graded because

they cannot be excluded from the sender route as there would be no alternative

receiver node. Conversely, the RI entries are decremented when upstream nodes do

not receive an acknowledgment from a downstream node within 0.5 seconds (default

setting for DSR). If a sender node does not receive an acknowledgment at all, the

route is considered broken and deleted from the route cache.

The limits of the calculated RI are machine dependent and were ±2, 147, 483, 647

in the OPNET simulations on a 64-bit computer. Typical RI values ranged between

±500. The formula for calculating a node’s RI is given as

RIij new = RIij old + FIijk where FIijk = ±1 (3.1)

where RIij = Reputation Index, FIijk = Feedback Item, i = the node forming the

opinion, j = the node the opinion is being formed on and k = the node providing

feedback on node j.

41



The RIs are then used in the next route discovery process to determine if a

node can be part of a route from sender to receiver. Additionally, when a node’s

RI becomes negative, the perceiving node searches through its route cache and all

routes using that node are deleted. This process is implemented in RIPSec and in the

simulations.

RIPSec’s behavior grading mechanism does not prevent a node from hoarding

packets. A misbehaving node displaying malicious behavior could acknowledge receipt

of packets but not forward them to the next hop. This action could only result in

a minor disruption of service, given the data cannot be read except by the intended

receiver node. The malicious node is responsible for generating a route error if it

cannot deliver the packet to the next downstream node, but since it is intentionally

hoarding packets, it will not generate an error and the upstream node will keep

sending it packets. In this scenario, the receiver node will continue to receive packets

delivered through other routes utilized by the sender node, assuming other routes

exist, preventing a complete disruption of service. If necessary, higher layers of the

protocol stack, such as TCP, could repeat the data transmission.

Once a sender node sends data to a relay node, it waits for an acknowledgment

that the data was received (0.5 seconds, customizable in the DSR parameters). If

it receives an acknowledgment, it increments its perception of the cooperating relay

node’s RI. If the sending node does not receive an acknowledgment from the relay

node, it retransmits another acknowledgment request. After the acknowledgment

request has been retransmitted the maximum number of times (2 in this framework,

customizable in the DSR parameters), and no response is received (ACK or error),

the sender node treats the link as broken and reports a route error to each node that

has sent a packet routed over that path since the last acknowledgment was received.

Error conditions may be caused by misbehaving or non-misbehaving nodes. The node

originating the route error and all nodes receiving the route error update their RI table

by decrementing the offending relay nodes’ RI by 1 to reflect the error condition.
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When sending or forwarding a packet using a source route, each node trans-

mitting the packet is responsible for confirming that data can flow over the link from

that node to the next hop. For example, in Figure 3.5 node S1 sends data through

nodes R11
, R21

, R31
, R41

, R51
, and R61

respectively to the receiver node D1. Node S1

is responsible for the link from node S1 to node R11
. Node R11

is responsible for the

link from node R11
to node R21

, and so on. An acknowledgment provides confirmation

that a link is capable of carrying data, and in wireless networks, acknowledgments are

often provided as an existing standard part of the MAC protocol in use, such as IEEE

802.11, or by a “passive acknowledgment” in which, for example, node R11
confirms

receipt at node R21
by overhearing node R21

transmit the packet when forwarding

it on to node R31
. In addition to the built-in acknowledgment mechanism, the node

transmitting the packet explicitly requests that a DSR-specific software acknowledg-

ment be returned by the next node along the route. If an acknowledgment is received

by the transmitting node, that constitutes a positive feedback item and increases the

reputation index of the acknowledging node by 1. However, after the acknowledg-

ment request has been retransmitted the implementation specific maximum number

of times and no acknowledgment has been received, then the sender treats the link

to this next-hop destination as currently “broken”. Per DSR protocol rules, the link

will be removed from the sending node’s route cache and a “route error” transmitted

to each node that has sent a packet routed over that link since an acknowledgment

was last received. For example, in the situation above, if node R21
does not receive an

acknowledgment from node R31
after some number of requests, it will return a route

error to node S1 (negative feedback item), as well as any other node that may have

used the link from node R21
to node R31

since node R21
last received an acknowledg-

ment from node R31
. Since node R21

detected the error, it has first-hand knowledge

that node R31
caused an error (negative feedback item) and thus decrements node

R31
’s reputation index from its point of view. Node S1 has second-hand knowledge

that node R31
caused an error and decrements node R31

’s reputation index by one

from its point of view.
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Figure 3.5: RIPSec Feedback Items

Every node calculates and maintains its own perception of every member node’s

RI in an RI index table. Any node that has a negative RI will be considered untrusted

and will not be included when generating a route to a receiver. Conversely, a node

with a non-negative RI is trusted and will be considered in the routing process. Even

though a sender node will not use a node with a negative reputation when determining

a route to a receiver, a node with a negative reputation may remain part of a route

for a different sender node because it may still have a good reputation perceived

by that particular sender node. This is illustrated in Figure 3.6 where path P1 =
{

S1,R11
,R21

,R31
,R41

,R51
,D1

}

and path P2 = {S2,R12
,D2}

Figure 3.6: Negative Reputation Node Participation

A route from sender node S1 to receiver node D1 can have several candidate

paths (P1 and P1′), and based on its internal RI table, S1 decides not to use certain

paths because a node does not have a good RI. However, that same node (i.e., N9)

could still be seen favorably by other sender nodes (i.e., S2). In Figure 3.6, path P1′

is rejected by node S1 because node N9 has a negative RI.
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Even though node S1 will not use node N9 when forming its own route to a

receiver, it still communicates with it as a relay node and perhaps as part of another

source node’s route to a receiver node D. This mechanism allows a node with a negative

reputation, as is the case with node N9 from the perspective of node S1, to regain a

positive reputation by relaying packets from node S1. Every acknowledged packet by

node N9 to S1 (which is also N1) earns positive feedback that influences node N1’s

perception of node N9’s reputation, annotated as RI19
. If a node never communicates

with another node it perceives to have a negative reputation, there is no way for the

ostracized node to regain a positive reputation.

3.2.4.1 Feedback Nodes. One strategy for determining the appropriate

time to decrement a node’s RI is to wait until more than one node provides negative

feedback on a particular node. Allowing some number of nodes, more than one,

to corroborate a particular node’s error condition gives the offending node a certain

amount of leeway before taking action against it. However, optimization of throughput

is a primary goal of this framework and the deciding factor when determining how

many nodes should provide negative feedback before decrementing the RI.

The number of nodes providing feedback on a particular node ranges from 0 (the

node is not part of any paths) to M − 1, with M total nodes in the MANET. Table

3.1 illustrates the impact on route errors sent, load, and throughput when varying

the number of nodes providing negative feedback before decrementing a node’s RI.

A mildly stressed MANET, defined as 50 nodes with 25 of the nodes misbehaving

50% of the time, was used to determine the optimum number of feedback nodes.

Misbehavior was simulated by destroying the designated percentage, in this instance

50%, of the packets received by a misbehaving node. According to simulation results,

only one feedback node is required to provide the highest throughput. If more than

one feedback node is used before decrementing a node’s reputation, the model is too

slow to respond to the error-prone node. The other two metrics, Avg Route Errors

and Avg Load with one feedback node, are either worse or at least comparable to the
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results obtained with more than one feedback node and thus are acceptable. Tables

B.3, B.4, B.5, B.6, B.7, B.8 in Appendix B contain the actual data used to determine

the appropiate number of feedback nodes.

Table 3.1: Feedback Nodes Metrics

Fdbk Nodes Avg Route Errors Avg Load Avg Throughput

1 414.7601 14,103,611.6579 4,079,123.0517
2 393.1740 13,677,721.7726 2,670,669.5588
3 404.5274 13,620,072.2690 2,577,642.5801
4 407.6352 13,280,350.0801 3,313,072.0754
5 467.4740 13,555,381.1868 2,800,073.9260
6 493.0750 13,542,138.7350 3,265,766.3106

3.2.5 Routing. When a sender node needs to send data to a receiver node, it

must first acquire a route to the receiver node. In the RIPSec route discovery process,

nodes with a negative reputation are eliminated from participating in the route.

RIPSec uses a modified version of the DSR protocol for routing. The sender

node broadcasts to all neighbor nodes that a route is needed to the receiver node.

RIPSec will limit the broadcast only to nodes that do not have a negative RI. The

restriction is implemented by removing all nodes with a negative RI from the array

of neighbor nodes maintained by DSR. If any of the remaining neighbor nodes have

a route to the receiver node advertised, the node(s) will reply back to the sender

node with the route. If they do not have a route, they forward the route request to

their neighbor nodes until eventually the receiver node is reached and replys with a

route from the sender to the receiver. In cases where there is no route from sender

to receiver, the sender node continues to broadcast a route request until a route is

available or until the process times out. It is also possible that multiple routes will

be discovered. Typically, the sender node will use only the first route it discovers,

which in most cases will also be the shortest route. However, RIPSec makes use of

all discovered routes in a round-robin fashion to distribute the network load in the

MANET.
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In RIPSec, the following sequence determines the routes used to send data from

sender node S1 to receiver node D1.

• Sender node S1 requests a route to receiver node D1

• All possible routes are discovered by the DSR protocol and stored in sender

node S1’s route cache

• The routes containing negative reputation nodes are removed from sender node

S1’s route cache

• The remaining routes are used in round-robin fashion to send the data to re-

ceiver node D1

This provides the best opportunity for data to get from sender to receiver by avoiding

problematic nodes/paths.

All discovered routes are cached at each node by default. To utilize multiple

routes, the first packet to be sent utilizes the first route in the cache, which is normally

the only route used by DSR. In RIPSec, the second packet to be sent utilizes the second

route in the cache, and the third packet the third route. This pattern continues until

all routes in the cache are used. The next packet to be sent then rotates back to the

first route in the cache and the process repeats itself until all packets have been sent.

The route cache is continuously updated by the DSR route discovery process.

It is entirely possible that the set of routes in the cache changes between the start and

completion of data transmission, especially given the mobile nature of a MANET’s

nodes. This has no adverse effect on RIPSec, as the routes used are pulled from the

route cache in a round-robin fashion.

3.3 Summary

This chapter presented the design for RIPSec, a framework developed through

this research for integrating network load balancing with Internet Protocol Security

(IPSec) and behavior grading in a Mobile Ad-Hoc Network (MANET) environment.
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The motivation for RIPSec was provided along with the design and development of

the framework.

Chapter 4 presents the simulation methodology for assessing the performance

of RIPSec.
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4. Simulation Methodology

4.1 Chapter Overview

This chapter presents the methodology for assessing the performance of RIPSec.

The following section details the simulation environment and architecture models.

Section 4.3 describes the simulation equipment used. Sections 4.4 and 4.5 describe

the model’s performance metrics and validation respectively. The chapter concludes

with a summary in Section 4.6.

4.2 Simulation Environment and Architecture Models

The previous chapter described RIPSec and its design for operation. It was

not feasible to implement an empirical experiment of RIPSec with actual resources.

Instead, RIPSec was implemented with simulation using OPNET simulation software.

4.2.1 Simulation Environment. The OPNET simulator was chosen over

Network Simulator 2 (NS2) and GloMoSim due to the availability of both local and

vendor support. The visualization capabilities of OPNET were also an advantage over

the other simulators. The following sections describe the simulation parameters.

4.2.1.1 System Under Test. The system under test is RIPSec and

its three core components: IPSec encrypted links between nodes, behavior grading

of nodes, and round-robin multipath routing to distribute the network load of video

conferencing applications.

4.2.1.2 System Services and Outcomes. The system services and

outcomes for the core components of RIPSec are as follows:

• IPSec encryption - Security Associations between nodes, simulated by increasing

all packet sizes 36 bytes to account for the overhead induced size increase of

IPSec wrapped packets [4].
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• Behavior grading - Feedback generated by observation of downstream node

behavior and Reputation Indexes calculated from the feedback.

• Load distribution - Multiple routes, all used by the DSR protocol, to distribute

the network load of video conferencing applications and reduce the dependence

on any one node in the closed MANET.

4.2.1.3 System Parameters. The system parameters in Table 4.1 were

used in the RIPSec simulation environment. These parameters were either stated

explicitly in [10], selection based on similarity to the proposed framework, or were

inferred based on the research of published data in [47].

Table 4.1: OPNET Simulation Parameters

Parameter Value

MAC Protocol 802.11b
Max Throughput 11 Mbps
Movement Model Default Random Waypoint

Ad-Hoc Routing Protocol DSR
Nodes in Simulation 50

Sender Nodes 1 (Node 9)
Receiver Nodes 1 (Node 1)

Transmission Range 250 meters
Transmit Power 0.0002 watts
Simulation Area 670 meters x 670 meters
Simulation Time 2700 seconds

Node Speed Uniform 0 - 10 meters/second
Mobility Pause Time Constant 100 seconds
Mobility Start Time Constant 10 seconds
Mobility Stop Time End of Simulation

Mobility Max x and y 500 meters
Packet Size w/o RIPSec 64 bytes
Packet Size w RIPSec 96 bytes

Number of simulations per scenario 4 (see C.O.V)
Simulation Seeds 25, 132, 145, 150

Video Conferencing High Resolution Video
128 x 240 pixels

9 bits/pixel
15 frames/second
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4.2.2 Coefficient of Variation. The Coefficient of Variation (C.O.V.) [36] is

the ratio of the sample standard deviation to the sample mean.

C.O.V. =
s

x
(4.1)

A C.O.V. of less than 10% is generally used as the stopping criteria for simulations.

The C.O.V. for errors sent, load, and throughput was calculated during each run of the

simulations and results collected for analysis in Appendix C indicated four repetitions

were sufficient to achieve non-overlapping interval bounds for the scenarios at 90%

confidence.

4.2.2.1 Factors. The factors selected for use in this study are shown

in Table 4.2. Treatment levels were chosen based on guidance from [69]. The factor

levels are varied to observe the effect on performance of the RIPSec enabled closed

MANET. These factors were chosen to determine the results of a mildly, moderately,

and heavily stressed MANET. Moderately stressed is defined as 50% of the nodes

(25 of 50) operating at 50% misbehavior. Mildly stressed is defined as 10 of 50

nodes operating at 10% misbehavior, and heavily stressed is defined as 40 of 50 nodes

operating at 50% misbehavior. The MANET was functional at the highest treatment

level (40 nodes/50 % misbehavior). A misbehavior level of 75% was attempted during

preliminary simulations, but the MANET could not sustain operations with 40 of the

50 nodes misbehaving 75% of the time. Therefore, after consulting with faculty, 40

nodes operating at 50% misbehavior was determined to be sufficient treatment to

heavily stress the network.

Table 4.2: RIPSec Factors and Levels

Factor Level

Num of Misbehaving Nodes 10, 25, 40
Percentage of Misbehavior 10, 50

RIPSec Enabled On, Off
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4.2.3 Experimental Design. The experimental design is a balanced, full

factorial model with replications. This design allows studying the effect of each fac-

tor level, as well as the effects of any interactions between factors on the response

variable. Each factor combination is replicated four times, based on C.O.V. results,

with different seeds. The replication allows the computation of error for statistical

analysis. Table 4.3 provides all the factor level combinations. The total number of

runs needed for this experiment is 48 and computed as follows:

3 Levels1 Factor × 2 Levels2 Factors × 4 Replications = N (4.2)

31 × 22 × 4 = 48 (4.3)

Table 4.3: RIPSec Factor Level Combinations

Num Misbehaving Nodes Percent Misbehavior RIPSec

10 10 off
10 10 on
10 50 off
10 50 on
25 10 off
25 10 on
25 50 off
25 50 on
40 10 off
40 10 on
40 50 off
40 50 on

4.2.4 Confidence Interval. The confidence level for this research is 90%,

chosen due to the variance in means of simulation runs. When the simulated MANET

was mildly or moderately stressed, the simulation means were very similar. However,

when the MANET was heavily stressed, simulation means were more varied.
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When an experiment has a 90% confidence level with an interval of plus or

minus 10%, there is a 90% probability that the actual mean value of the experiment

lies within a range 10% above and 10% below the experimental mean [36]. The

confidence interval is given by

(

x − z1−(α

2
)

(

s√
n

)

, x + z1−(α

2
)

(

s√
n

))

(4.4)

where x is the sample mean, z1−(α

2
) is the 1−(α

2
) quantile of a unit normal variate (1.645

for 90% confidence if more than 30 samples are used), s is the standard deviation, and

n is the number of samples. If the means of two experiments fall within the confidence

intervals of each other, then the two items being compared are statistically identical.

If the confidence interval does not contain the mean, then the items being compared

may be statistically different at this confidence level and a t-test would need to be

performed to confirm the difference.

4.2.5 Analysis of Variance. In this research, three factors are used: number

of misbehaving nodes, percentage of misbehavior, and RIPSec on/off. This is called a

factorial design and requires experimental runs be made at all possible combinations

of the factor levels. An Analysis of Variance (ANOVA) gives a statistical test to

determine whether the means of more than two groups are all equal, generalizing the

2-sample t-test to more than two groups.

ANOVA decompositions for factorial designs contain a sum of squares term

for every possible main effect and interaction. For example, a factorial design based

on factors A, B, and C gives rise to three main effects terms (A, B, and C), three

2-factor interactions (AB, AC, and BC), and one 3-factor interaction (ABC). The

sum of squares for an interaction term is denoted by putting the interaction term

in parentheses after the SS notation. Thus, SS(AB) denotes the sum of squares

associated with the AB interaction, SS(ABC) is the sum of squares for the ABC

interaction, and so on. The ANOVA decomposition for a 3-factor model is given by
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SST = SS(A) + SS(B) + SS(C) + SS(AB) + SS(AC) + SS(BC) + SS(ABC) + SS(E)

(4.5)

where SST (the total sum of squares) measures the total variation in the response

data and SSE (the error sum of squares) is the variation from all sources other than

the factors included in the experiment [21].

4.3 Simulation Equipment

The equipment used to execute the simulations is a Dell Precision T7400 Work-

station with the following system capabilities:

• Processor - Intel(R) Xeon(R) X5482 @ 3.20GHZ (2 processors)

• Memory (RAM) - 24.0 GB

• Operating System - 64-bit Windows 7

• Simulator - OPNET Modeler 15.0

4.4 Metrics for Performance Evaluation and Analysis

The following system metrics were chosen to evaluate the impact on MANET

performance when RIPSec is implemented.

4.4.1 Total Route Errors Sent. This metric is a global statistic covering the

entire scenario. It represents the total number of route error packets sent by all nodes

in the network. This is a “Lower is Better” metric.

4.4.2 Load. This metric is a global statistic covering the entire scenario

(50 nodes). It represents the total data traffic (in bits/second) received by the entire

scenario from the higher layers of the Medium Access Control (MAC) that is accepted

and queued for transmission. This statistic does not include any higher layer data
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traffic that was rejected without queuing due to a full queue or large size of the data

packet. Any data traffic that is relayed by a node from its sender to its receiver within

the scenario is counted twice for this statistic (once at the sender node and once at

the relay node). Such data packets are double-loads for the scenario because both the

sender node and the relay node have to contend for their transmissions via the shared

medium. If RIPSec is effective, error-prone nodes are avoided and less data traffic

has to be retransmitted, thus decreasing the load on the network. This is a “Lower

is Better” metric.

4.4.3 Throughput. This metric is a global statistic covering the entire

scenario. It represents the total number of bits (in bits/second) forwarded from the

wireless LAN layers to higher layers in all wireless nodes of the network. This is a

“Higher is Better” metric.

4.5 Simulation Model Validation

In order to validate that the OPNET simulator being used was performing ap-

propriately, simulations were configured and conducted according to previous research

in this area [60]. The results were compared to the data provided in that research.

Although using the AODV protocol, this validation reference was used because its

configuration was very similar to RIPSec’s and enough data was provided in the pub-

lication to make a comparison of the frameworks possible. The DSR model used as

a reference for the simulation parameters did not serve as an acceptable validation

source because the model could not be accurately reproduced to the extent a valid

comparison was possible. Though not an ideal situation, the OPNET simulator was

configured with AODV parameters and tested as explained in the next section.

4.5.1 Model Validation Implementation. The basic implementation of the

AODV model used for validation includes the parameter settings defined in Table

4.4. The performance metrics are the routing overhead, defined as the amount of

routing traffic sent in bits/second in the entire network and the delay, representing

55



the end-to-end delay of all the packets received by the wireless LAN MACs of all

WLAN nodes in the network and forwarded to the higher layer.

Table 4.4: Validation Workload Parameter Settings [60]

Workload Parameter Setting

Simulation Time 3600 seconds
Ad Hoc Protocol AODV
Node Distribution Random

Nodes in Simulation 20
Sender Node Fixed FTP Server Node

Receiver Nodes 20 Mobile Nodes
Application Load Heavy FTP

Node Speed Constant 10 meters per sec
Node Pause Time 300 sec
Simulation Area 1000 meters x 1000 meters

Transmission Range 250 meters
Mobility Model Default Random Waypoint
FTP Clients WLAN Mobile Nodes
Data Rate 11 Mbps

Transmission Power 0.005 watts

4.5.2 Model Validation Results. As can be seen in Figure 4.1, most of the

data points from the referenced research implementing AODV were within the 95%

confidence interval of the data points derived from the OPNET simulator used for this

research. The data points from previous research shown in this figure are approximate

because only the resulting graph was provided in the publication. However, the two

sets of data points are nearly statistically equivalent. The actual data used to produce

this figure is listed in Appendix B, Table B.1. The x-axis represents the length of the

simulation, which was 3600 seconds. Each unit of measurement is approximately 82

seconds. The y-axis represents the packets sent per unit of time in bits/second.

Figure 4.2 shows the End-to-End delay in seconds of packets traversing the

MANET. The referenced data falls within the 95% confidence interval of the data

derived from the OPNET simulator used for this research, thus making it statistically

equivalent. The data used to produce this figure is listed in Appendix B, Table B.2.
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Figure 4.1: Routing Overhead in AODV

The x-axis represents the length of the simulation, which was 3600 seconds. Each

unit of measurement is approximately 80 seconds. The y-axis represents the average

delay per unit of time in seconds.

Figure 4.2: End-to-End Delay in AODV

The comparison of the OPNET simulator results to previously published re-

search in MANETs confirms the model used is valid.

4.6 Summary

This chapter described the design methodology of the proposed RIPSec frame-

work. It detailed the simulation environment, architecture models, and simulation

equipment used. It also described the model’s validation results. Chapter 5 presents

an analysis of the performance results.
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5. Simulation Results

5.1 Chapter Overview

This chapter presents the simulation results for RIPSec. The following section

presents the results of RIPSec’s impact on a MANET’s load, throughput, and errors

sent. Section 5.3 evaluates the diagnostics for residuals. Sections 5.4 presents an

analysis of the simulation data. Section 5.5 provides a prediction expression that can

be used to calculate the load, throughput, and errors sent given any value for the

factors RIPSec on-off, number of misbehaving nodes, and percentage of misbehavior.

The chapter concludes with a summary in Section 5.6.

5.2 RIPSec Performance

This section presents the simulation performance results. Table 5.1 enumerates

the 12 groups of simulations used in this study. Groups A, C, E, G, I, and K are not

RIPSec enabled while groups B, D, F, H, J, and L are RIPSec enabled.

Table 5.1: Simulation Groups

Group # Nodes # Misbehaving % Misbehaving Ripsec

A 50 10 10 Off
B 50 10 10 On
C 50 10 50 Off
D 50 10 50 On
E 50 25 10 Off
F 50 25 10 On
G 50 25 50 Off
H 50 25 50 On
I 50 40 10 Off
J 50 40 10 On
K 50 40 50 Off
L 50 40 50 On

Analysis of the results confirms RIPSec reduces the number of route errors

sent in the MANET by an average of 53% (Figure 5.1, Table 5.2) while reducing

the network load by an average of 18% (Figure 5.2, Table 5.3). Further analysis
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demonstrates network throughput (Figure 5.3, Table 5.4) is reduced by an average of

34%, but is still sufficient to operate video conferencing applications. Groups A, C,

E, G, I, and K are not RIPSec enabled while groups B, D, F, H, J, and L are RIPSec

enabled.

Figure 5.1: Analysis of Errors Sent By Group

Table 5.2: Percentage Change in Errors Sent By Group

Group w/o Ripsec Group with Ripsec % Change
Total Errors Total Errors

A (611.11) B (282.16) -54%
C (654.90) D (346.42) -47%
E (651.95) F (238.82) -63%
G (708.69) H (313.92) -56%
I (659.90) J (253.37) -62%
K (707.41) L (437.56) -38%

Average -53%

Reduction of route errors sent can be attributed to RIPSec avoiding the use

of nodes that are error prone. Reduction in network load can be attributed to the

distribution of the load over several routes that are more likely to pass data from
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Figure 5.2: Analysis of Load By Group

Table 5.3: Percentage Change in Load By Group

Group w/o Ripsec Group with Ripsec % Change
bits/sec bits/sec

A (12827168) B (11908714) -7%
C (13004017) D (12145771) -6%
E (14691356) F (10173975) -31%
G (14732423) H (10279502) -30%
I (14539108) J (10217452) -30%
K (14681401) L (14032452) -4%

Average -18%

Table 5.4: Percentage Change in Throughput By Group

Group w/o Ripsec Group with Ripsec % Change
bits/sec bits/sec

A (4627654) B (3537375) -23%
C (4715165) D (3235475) -31%
E (4866663) F (2981248) -39%
G (4944898) H (3005740) -39%
I (4833506) J (3068413) -36%
K (4882259) L (3212544) -34%

Average -34%
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Figure 5.3: Analysis of Throughput By Group

sender to receiver nodes. Finally, reduction in network throughput can be attributed

to the increase in packet size of a RIPSec enabled network and the extra round-trip

time a packet takes to traverse the longer routes in the MANET. Throughput is

defined as:

throughput =
packet size

time
(5.1)

When RIPSec is enabled, the packet sizes increase from 64 to 96 bytes due to

IPSec encapsulating the original packet and adding new header information. Addi-

tionally, the time for packets to traverse the MANET increases, dependent on the

length of the multiple routes used by RIPSec. A simple example illustrates how this

can happen. Without RIPSec, a packet size of 64 bytes and an average traversal time

of 0.22 seconds (estimated from analysis) yields a calculated throughput of:

throughput =
64 bytes

0.22 seconds

throughput = 291 bytes/second

(5.2)
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Then, with RIPSec enabled, a packet size of 96 bytes and an estimated average

traversal time of 0.30 seconds (estimated from analysis) yields a calculated throughput

of:

throughput =
96 bytes

0.35 seconds

throughput = 274 bytes/second

(5.3)

This section provided an overview of RIPSec’s performance. The next section

presents diagnostics for the residuals to determine if a linear regression model is

appropriate.

5.3 Diagnostics for Residuals

When a regression model is selected for an application, it is important to ex-

amine the appropriateness of the model before further analysis is undertaken. In this

section, the residuals are examined through diagnostics for the dependent variable.

Residuals are defined as the difference between the observed and fitted values [57].

Residuals are assumed to be independent normal random variables, with mean 0 and

constant variance σ2. If the model is appropriate for the data at hand, the observed

residuals should reflect these properties.

5.3.1 Residuals by Predicted Plot. The “Residual by Predicted Plot” graph

displays the residual values by the predicted values of Y. This plot visually indicates if

the residuals have a constant variance around the mean. Outliers are easily identified

and may indicate a problem with the data. If the points in the graph trace out a

U shaped pattern or an inverted U, there are nonlinear effects that have not been

incorporated into the model.

5.3.1.1 Errors Sent Residual by Predicted Plot. Analysis of the errors

sent residual in Figure 5.4 indicates the residual values are scattered around the mean.
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The spread of the residuals appears to be constant over the range of predicted values

and there are no outliers. Additionally, there is no U or inverted U shape to indicate

nonlinearity. There are apparently two groups of data, explained by the binary nature

of RIPSec (RIPSec is on or off).

Figure 5.4: Errors Sent Residual by Predicted Plot

5.3.1.2 Load Residual by Predicted Plot. Analysis of the load residual

in Figure 5.5 indicates the residual values are scattered around the mean. There is

a definite pattern to the distribution of the residuals, but it is not U or inverted U

shaped to indicate nonlinearity. Once again, there are two distinct groups of residuals,

caused by enabling RIPSec. There are no outliers.

5.3.1.3 Throughput Residual by Predicted Plot. Figure 5.6 indicates

the throughput residual values are scattered around the mean. There is again a

definite pattern to the distribution of residuals, but it is not U or inverted U shaped

to indicate nonlinearity. The binary nature of RIPSec creates the two groups of

residuals.
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Figure 5.5: Load Residual by Predicted Plot

Figure 5.6: Throughput Residual by Predicted Plot

5.3.2 Diagnostics for Residuals Summary. The residuals of the data col-

lected during simulation runs indicate the data is linear. Tests for normality are

performed on the residuals with RIPSec disabled and enabled because the residuals
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are separated into two groups for each metric (errors sent, load, and throughput).

Tests for normality with RIPSec enabled and disabled indicate normally distributed

residuals with the exception of load and is summarized in Table 5.5. In the table, a

high W (Wilk) value is desirable.

Table 5.5: Goodness-of-Fit Test (Shapiro-Wilk W Test)

Distribution RIPSec W Value Prob < W

Errors Sent Disabled 0.9071 0.0306
Errors Sent Enabled 0.9209 0.0613

Load Disabled 0.4275 < 0.0001
Load Enabled 0.6389 < 0.0001

Throughput Disabled 0.9321 0.1088
Throughput Enabled 0.9651 0.5496

The null hypothesis of the normal distribution test is that the data indeed comes

from a normal distribution. Small p values (Prob ¡ W) indicate that the hypothesis

of normality of the residuals should be rejected. If the residuals are not normal, as

is the case with the load residuals, the estimates of the regression coefficients are

still unbiased and have small variances, but the factors used in RIPSec are not good

predictors of the network load and the hypothesis that the load is normally distributed

must be rejected.

This section presented diagnostics to verify that the model used was linear and

the residuals were normally distributed. The next section presents an analysis of the

model results.

5.4 Data Analysis

This section utilizes the Actual by Predicted Plot, the Variance Inflation Factors

(VIF), and the Analysis of Variance (ANOVA) to present the results of RIPSec.

5.4.1 Actual by Predicted Plot. The points on a leverage plot for simple

regression are actual data coordinates, and the horizontal line for the constrained

model is the sample mean of the response as shown in Figure 5.7.
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Figure 5.7: Example Actual by Predicted Plot

When the leverage plot is for one of multiple effects, as is the case here, the

points are no longer actual data values. The horizontal line then represents a partially

constrained model instead of a model fully constrained to one mean value. However,

the intuitive interpretation of the plot is the same whether for simple or multiple

regression. The idea is to judge if the line of fit on the effect’s leverage plot carries

the points significantly better than does the horizontal line [30].

Leverage plots are shown with confidence curves. These indicate whether the

test is significant at the 5% level by showing a confidence region for the line of fit. If

the confidence region between the curves contains the horizontal line, then the effect

is not significant. If the curves cross the line, the effect is significant.

For continuous (versus discrete) responses, the Actual by Predicted plot shows

how well it is fit. Each leaf is predicted with its mean, so the x-coordinates are these

means. The actual values form a scatter of points around each leaf mean. A diagonal
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line represents the set of point where predicted and actual values are the same. For

a perfect fit, all the points would be on this diagonal [30].

The Actual by Predicted Plot function calculates three values of importance,

the p-value, RSquare (RSq), and the Root Mean Square Error (RMSE) values.

• F-ratio is the model mean square divided by the error mean square. The un-

derlying hypothesis of the fit is that all the regression parameters (except the

intercept) are zero. If this hypothesis is true, then both the mean square for

error and the mean square for model estimate the error variance, and their

ratio has an F-distribution. If a parameter is a significant model effect, the

F-ratio is usually higher than expected by chance alone. Probability > F is

the observed significance probability (p-value) of obtaining a greater F-value

by chance alone if the specified model fits no better than the overall response

mean. P-values of 0.05 or less are often considered evidence of a regression

effect and are statistically significant.

• RSq measures the proportion of the variation around the mean explained by

the linear model. The remaining variation is not explained by the model and

attributed to random error. RSq is 1 if the model fits perfectly. An RSq of 0

indicates the fit is not better than the simple mean model.

• RMSE estimates the standard deviation of the random error. It is the square

root of the mean square for error in the Analysis of Variance Tables.

The following sections will utilize the RSq values to determine how much of the

variation around the mean is explained by the model. The three factors used

in this model are: Number of Misbehaving Nodes, Percentage of Misbehavior,

and RIPSec.

5.4.1.1 Actual by Predicted Plot for Errors Sent. In Figure 5.8, the

Actual by Predicted Plot for errors sent indicates a very high proportion of the vari-

ation around the mean is explained by the model. Of the total variation, 89% is
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explained by the selected factors. Therefore, this model is a very good predictor of

the errors sent in a MANET.

Figure 5.8: Actual by Predicted Plot for Errors Sent

Table 5.6 details the levels of significance of each regression factor to the model.

Of the three factors, RIPSec had the most impact by far with a P-value of < 0.0001.

Table 5.6: Individual Factors’ P-values for Errors Sent

Factor P-value

RIPSec < 0.0001
Num Misbehaving 0.1368
% of Misbehavior 0.0009

5.4.1.2 Actual by Predicted Plot for Load. In Figure 5.9, the Actual

by Predicted Plot for Load indicates a very low proportion of the variation around the

mean is explained by the model. Of the total variation, only 32% is explained by the

selected factors. Though better than a simple mean model, the RIPSec framework

and factors varied are not a good predictor of the network load in a MANET.
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Figure 5.9: Actual by Predicted Plot for Load

Table 5.7 details the levels of significance of each regression factor to the model.

Of the three factors, RIPSec had the most impact with a P-value of 0.0029.

Table 5.7: Individual Factors’ P-values for Load

Factor P-value

RIPSec 0.0029
Num Misbehaving 0.3829
% of Misbehavior 0.3693

5.4.1.3 Actual by Predicted Plot for Throughput. In Figure 5.10, the

Actual by Predicted Plot for Throughput indicates a high proportion of the variation

around the mean is explained by the model. Of the total variation, 82% is explained

by the selected factors indicating the RIPSec model was a very good predictor of

throughput for a MANET.

Table 5.8 details the levels of significance of each regression factor to the model.

Of the three factors, RIPSec had by far the most impact with a P-value of < 0.0001.
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Figure 5.10: Actual by Predicted Plot for Throughput

Table 5.8: Individual Factors’ P-values for Throughput

Factor P-value

RIPSec < 0.0001
Num Misbehaving 0.8476
% of Misbehavior 0.9147

5.4.2 Variance Inflation Factors (VIF). The VIFs are useful in determining

which variables may be correlated or collinear. For the ith independent variable, the

VIF is defined as

1

1 − R2
i

(5.4)

where R2
i is the coefficient of determination for the regression of the ith independent

variable on all other independent variables. High VIFs indicate a collinearity prob-

lem. VIFs of 1 indicate no collinearity. As can be seen in Figure 5.11, there are no

collinearity problems with the RIPSec model.
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Figure 5.11: Variance Inflation Factors

5.4.3 Analysis of Variance (ANOVA). ANOVA for a linear regression par-

titions the total variation of a sample into components. These components are used

to compute an F-ratio that evaluates the effectiveness of the model. If the probability

associated with the F-ratio is small, then the model is considered a better statistical

fit for the data than the response mean alone. The ANOVA table displays the follow-

ing quantities: Source lists the three sources of variation, Model, Error, and C. Total.

Degrees of Freedom (DF) records the associated degrees of freedom for each source

of variation. Sum of Squares records an associated sum of squares (SS for short) for

each source of variation. Mean Square is a sum of squares divided by its associated

degrees of freedom.

F Ratio is the model mean square divided by the error mean square. The

underlying hypothesis of the fit is that all the regression parameters (except the

intercept) are zero. If this hypothesis is true, then both the mean square for error

and the mean square for model estimate the error variance, and their ratio has an F-

distribution. If a parameter is a significant model effect, the F-ratio is usually higher

than expected by chance alone.

Prob > F is the observed significance probability (p-value) of obtaining a greater

F-value by chance alone if the specified model fits no better than the overall response

mean. Observed significance probabilities of 0.05 or less are often considered evidence

of a regression effect.
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5.4.3.1 Analysis of Variance for Errors Sent. In Figure 5.12, the

Analysis of Variance for errors sent has a high F Ratio of 90.78 and a very low Prob

> F of <0.0001, indicating errors sent is a significant model effect.

Figure 5.12: ANOVA for Errors Sent

5.4.3.2 Analysis of Variance for Load. In Figure 5.13, the Analysis

of Variance for Load has a very low F Ratio of 3.8527 and a marginal Prob > F of

0.0156, indicating load is not a significant model effect. In fact, load provides only a

slightly better possibility of obtaining a greater F-value than by chance alone.

Figure 5.13: ANOVA for Load

5.4.3.3 Analysis of Variance for Throughput. In Figure 5.14, the

Analysis of Variance for Throughput has a respectable F Ratio of 56.7059 and a very

low Prob > F of <0.0001, indicating throughput is a significant model effect.

5.4.4 Data Analysis Summary. This section provided an analysis of the

data collected through RIPSec simulations. The analysis indicates RIPSec has a

significant effect on the number of errors sent and on the throughput in a MANET,
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Figure 5.14: ANOVA for Throughput

but it does not have a significant effect on the network load. These are desirable results

and demonstrate the RIPSec framework is a viable solution for providing security of

nodes through encryption, behavior grading through the reputation indexes, and load

balancing through multipath routing while still providing sufficient throughput to

support Video Conferencing applications operating at a medium load level. The next

section presents the regression model that can be used to predict the system metrics

of errors sent, load, and throughput given arbitrary values for the selected factors of

RIPSec on or off (0,1), number of misbehaving nodes, and percentage of misbehavior.

5.5 Prediction Expression

One application of a multiple regression model is the ability to make a valid

projection concerning an outcome for a particular individual prediction. The goal is

to use the prediction equation to predict outcomes for factors not in the sample used

in the analysis. The prediction equation is created by gathering relevant data from a

large, representative sample from the population. The actual sample size is debatable,

but the larger the sample, the better the prediction expression. Only variables that

contribute significantly to the variance accounted for by the regression equation are

included.

• For the metric errors sent, the prediction expression is (572.6203)− (353.6197×
RIPSec(0, 1)) + (1.3638×NumMisbehaving) + (1.9649×% ofMisbehavior).
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• For the metric load, the prediction expression is (1.2767)−(2619×RIPSec(0, 1))+

(29872.8612 × NumMisbehaving) + (18824.1401 × % ofMisbehavior).

• For the metric throughput, (4826318.8856) − 1638224.9737 × RIPSec(0, 1)) −
(991.2331×NumMisbehaving)+(338.4206×% ofMisbehavior) is the predic-

tion expression.

5.6 Summary

This chapter presented an analysis of the results from this research. An overview

of RIPSec’s impact on the model was presented followed by the diagnostics for resid-

uals. An analysis of the data showed RIPSec had significant effects on the number

of errors sent and on throughput while minimal effects on load. Finally, the predic-

tion expressions for each metric were presented. The next chapter summarizes this

research.
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6. RIPSec Analysis

6.1 Chapter Overview

Chapter 5 presented performance results for RIPSec, showing its multiple se-

curity layers provides a secure and functional MANET. This chapter presents further

discussion of the protocol. Section 6.2 describes the engineering advantages of using

RIPSec, and Section 6.3 describes the effectiveness of RIPSec against various MANET

attacks. The chapter concludes with a summary in Section 6.4.

6.2 Engineering Advantages of RIPSec

RIPSec is designed to be a complete multilevel security framework that is re-

sistant to numerous MANET attacks. Its unique design affords many engineering

advantages, to include:

• A framework that is extremely resistant to numerous types of network-based

attack, from both external and internal threats, due to the particular imple-

mentation of IPSec used (PKI device certificates and transport ESP mode).

Transport mode is rarely used when IPSec is deployed because most implemen-

tations are only concerned with encryption of data. In those instances, IPSec

tunnel mode is used. However, transport mode is very effective at protecting

individual nodes from unauthorized access. PKI device certificates deployed in

transport ESP mode ensure integrity of data, confidentiality, authenticity, and

anti-replay protection.

• A framework that is extremely resistant to node misbehavior (intentional or

not) due to the behavior grading/reputation mechanism employed.

• A framework that is not susceptible to common IPSec attacks based on PKI key

distribution weaknesses because the PKI device certificates are distributed out-

of-band. The only known attacks against IPSec are against the key distribution

mechanism.
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• A framework that minimizes dependence on single nodes/routes by using mul-

tiple routes to a receiver node without increasing the number of packets intro-

duced into the network.

6.3 Effectiveness of RIPSec Against MANET Attacks

This section describes the most common attacks against MANETs [84] and

provides an analysis of how successful they might be against RIPSec.

6.3.1 Eavesdropping. Eavesdropping is the intercepting and reading of mes-

sages and conversations by unintended receivers. Nodes in a MANET share a wireless

medium. The majority of wireless communications use the Radio Frequency (RF)

spectrum where broadcast signals can be easily intercepted with receivers tuned to

the proper frequency [41] [59]. Therefore, messages transmitted can be eavesdropped,

and fake messages can be injected into the network.

Eavesdropping attacks are stopped in RIPSec because data is encrypted with

PKI certificates and only the receiver node can interpret the data correctly.

6.3.2 Routing Table Overflow. A malicious node may advertise routes that

do not exist in an attempt to overflow the routing table of a victim node. The

attacker tries to create enough routes to prevent new routes from being created.

Proactive routing algorithms are more vulnerable to table overflow attacks because

proactive routing algorithms attempt to discover complete routing information to all

nodes before it is actually needed.

RIPSec is not vulnerable to this attack because it is a reactive routing algorithm

and only requests new routes when it needs them. Additionally, only routes containing

nodes with neutral or higher RIs are maintained by sender nodes, thus reducing the

total number of routes maintained in the route cache and reducing the likelihood of

an overflow condition.
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6.3.3 Routing Cache Poisoning. Attackers may take advantage of the

promiscuous mode of routing table updating, where a node overhearing any packet

may add the routing information contained in that packet header to its own route

cache, even if that node is not on the path. If a malicious node wants to poison routes

to another node, the malicious node could broadcast spoofed packets with a source

route to the receiver node from itself. All neighboring nodes that overhear the packet

may add the invalid spoofed route to their route caches.

RIPSec would be less vulnerable to this attack because it would not update

its route cache unless a new route was requested, or a route needed to be eliminated

from the cache because one of the nodes in the route obtained a negative RI. When

requesting a new route, a malicious node could answer with an invalid route, but the

route would be eliminated when the missing nodes earned negative reputations for

failing to acknowledge and relay packets. Additionally, RIPSec is less dependent on

any one route due to the round-robin multipath routing of packets. Note that all of

the reviewed security frameworks are vulnerable to this attack.

6.3.4 Routing Maintenance. Attacks may target the route maintenance

phase of a protocol such as DSR and AODV by broadcasting false control messages,

such as link-broken error messages, which starts in motion the process of deleting

supposedly broken routes and the discovery of new routes.

RIPSec is vulnerable to this attack because it depends on route error messages

to adjust nodes’ RI. If the error notification mechanism of the DSR protocol is com-

promised, RIPSec-generated RIs will be invalid. This particular attack is difficult

for a reputation-based system to defend against and is recommended as future work.

Note that all of the reviewed security frameworks are vulnerable to this attack.

6.3.5 Data Forwarding. Malicious nodes may participate cooperatively in

the routing protocol discovery and maintenance phases, but in the data forwarding
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phase they do not forward data packets consistently. They may simply drop packets

quietly, modify data content, replay, or flood data packets.

RIPSec is very effective at combating this attack. A node sending data to a

relay node listens to ensure the relay node forwards the data to next node in the route.

If the sending node detects the data was not forwarded, it generates a route error and

the RI of the offending relay node is adjusted accordingly. Once the offending node’s

RI becomes negative, it is avoided in the route selection process.

6.3.6 Wormhole. An attacker may accept packets, but then tunnel them

to another location. Wormhole attacks are severe threats to MANET routing proto-

cols. This attack could prevent the discovery of any routes other than through the

wormhole.

This attack cannot be successful against RIPSec because nodes can only com-

municate with the other nodes in the MANET which have PKI certificates and secu-

rity associations. Without a security association, communication simply cannot take

place. Even if data is sent to another node in the MANET, the data is not discernible

by any other node other than the receiver.

6.3.7 Sinkhole. This sinkhole attack has two phases. The attacker adver-

tises itself as having a valid route to a receiver, even though the node only intends to

intercept packets. Then, the attacker consumes the intercepted packets without any

forwarding, or at best, selectively forwarding the packets. An attacker may also con-

sume packets from some source while correctly forwarding packets from other sources,

thus limiting the suspicion in the MANET.

RIPSec is effective at stopping this attack because packets that are not relayed

cause the RI of the attacker to be decremented. It is not beneficial for an attacker

to gather packets for data analysis because the data cannot be discerned by anyone

other than the intended node.
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6.3.8 Byzantine. A compromised relay node, or a set of compromised

relay nodes, may carry out attacks such as creating routing loops, forwarding packets

through non-optimal paths, or selectively dropping packets. These actions result in

the disruption or degradation of routing services.

RIPSec combats these attacks by using more than one route to a receiver node.

If enough nodes in the MANET participated in this type of attack, performance would

be impacted significantly. The behavior grading scheme would detect the dropping of

packets and adjust RIs accordingly.

6.3.9 Selfish Nodes. In this attack, nodes drop relay packets with the

intention of greedily using the wireless medium for sending their own source packets.

Another motivation for this attack may be to save battery power, but the end result

is the same. Selfish nodes are not conducive to the overall MANET.

RIPSec is effective at detecting and isolating selfish nodes through its behavior

grading mechanism. If nodes do not forward packets, their RI is decremented and

when it becomes negative, the selfish node is avoided in future route requests. If the

selfishness is for legitimate reasons (e.g., conserving battery power), the action taken

is the best approach as the selfish node may still be able to function in the MANET

without becoming unusable.

6.3.10 External Denial of Service. A node external to the trusted MANET

may attempt to flood a particular node with packets and requests for service in an

attempt to occupy all the victim node’s resources and thus prevent the victim from

participating in the MANET.

This attack is stopped in RIPSec by the implementation of IPSec. A node

external to the MANET does not have a security association with any node in the

MANET, and without a security association, no communication can take place. No

processing resources of the victim will be used as packets are denied at the network

level.
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6.3.11 Internal Denial of Service. One of the trusted nodes in the MANET

may attempt to tie up the resources of another node by flooding it with requests for

service. RIPSec will detect any node that is so constrained and will avoid it when

the RI becomes negative. Internal nodes have the capability of communicating freely

with other internal nodes, so the actual denial of service is difficult to avoid. However,

the adverse effect is minimized with RIPSec.

6.3.12 Spoofing. This attack is also known as an impersonation attack.

A malicious node may hide its IP address and use that of another node to launch

attacks. This attack is designed to isolate a valid node from the network and use its

credentials in the network as an attack platform.

This attack is defeated in RIPSec because of the IPSec implementation. Security

associations are established with nodes based on their PKI certificates in conjunction

with their network addresses. Without a valid certificate, a security association cannot

be established and communication cannot take place.

6.3.13 Sybil. A Sybil attack occurs when the reputation system is compro-

mised by an attacker forging and creating large numbers of identities and then using

them to gain a disproportionately large influence.

This attack is stopped in RIPSec because an identity cannot be spoofed due to

the implementation of PKI certificates. Every node is unquestionably identifiable.

6.3.14 Badmouthing. A malicious node may generate numerous routing

error messages in an attempt to harm the reputation of another node. This is an

attack on the reputation system.

RIPSec does not stop this attack in its current configuration. Incorrect genera-

tion of error messages will subvert RIPSec’s behavior grading mechanism. A solution

to this attack is left for future research. Note that all of the reviewed security frame-

works are vulnerable to this attack.
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6.3.15 Flattering. A malicious node may attempt to increase the reputation

of another node by falsely generating positive feedback items. This is an attack on

the reputation system.

RIPSec stops this attack in the way a node’s reputation is increased. Positive

feedback items are generated when a relay node acknowledges receipt of a packet and

then forwards the packet downstream. Unsolicited positive feedback as to a node’s

reputation is not accepted and is not a part of this framework. Positive feedback only

comes in the form of acknowledgments and the passive detection of nodes forwarding

data.

6.4 Comparison of RIPSec to Existing Frameworks

The existing frameworks described in Chapter 2 are compared to RIPSec to

demonstrate this framework’s effectiveness at securing a MANET. The results are

summarized in Figure 6.1 and Figure 6.2.

Of the four features incorporated into RIPSec (encryption, IPSec transport

mode, behavior grading, and multipath routing), three other frameworks incorpo-

rated two of the features (encryption and behavior grading), and the remaining eight

frameworks only incorporated one security feature. The multiple security levels of

RIPSec make it very robust against attacks.

Of the 15 MANET attacks reviewed, RIPSec is effective at mitigating 12. The

other frameworks could only mitigate at best five attacks. This demonstrates RIPSec’s

effectiveness at combating a broad range of threats.

6.5 Chapter Summary

This chapter provides an analysis of RIPSec’s effectiveness. The engineering

advantages are presented along with RIPSec’s ability to mitigate attacks compared

with similar published MANET security frameworks. The next chapter provides a

conclusion to this dissertation.
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Figure 6.1: RIPSec Comparison to Existing Frameworks Part 1
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Figure 6.2: RIPSec Comparison to Existing Frameworks Part 2
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7. Conclusion

7.1 Summary of Research

The goal of this research is to investigate how to integrate security policies of

a MANET with behavior grading and encryption algorithms in a fashion that would

allow the MANET to function securely in a hostile environment without degrading

network performance.

7.2 Research Contributions

The technical contribution of this research is a framework, called Reputation-

based IPSec (RIPSec), for securing a MANET operating in a hostile environment. It

uses IPSec in transport mode to protect nodes from external threats. It uses behavior

grading of nodes to calculate Reputation Indexes, which are used to select nodes

used in the route discovery process. The Dynamic Source Routing (DSR) protocol is

modified to utilize all discovered routes instead of the shortest route to balance the

network load across multiple paths.

Results of this research were very promising. Analysis of the results confirmed

RIPSec reduced the number of route errors sent in the MANET by an average of

53%, while reducing the network load by an average of 18%. Further analysis demon-

strated network throughput was reduced by an average of 34%, but was still sufficient

to operate video conferencing applications demonstrated by the completion of the sim-

ulations. During preliminary simulations, the video conferencing applications failed

when throughput was insufficient to maintain communications between sender and

receiver nodes.

The engineering advantages of RIPSec are:

• A framework that is extremely resistant to numerous types of network-based

attack, from both external and internal threats, due to the particular imple-

mentation of IPSec used (PKI device certificates and transport ESP mode).
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Transport mode is rarely used when IPSec is deployed because most implemen-

tations are only concerned with encryption of data. In those instances, IPSec

tunnel mode is used. However, transport mode is very effective at protecting

individual nodes from unauthorized access. PKI device certificates deployed in

transport ESP mode ensure integrity of data, confidentiality, authenticity, and

anti-replay protection.

• A framework that is extremely resistant to node misbehavior (intentional or

not) due to the behavior grading/reputation mechanism employed.

• A framework that is not susceptible to common IPSec attacks based on PKI key

distribution weaknesses because the PKI device certificates are distributed out-

of-band. The only known attacks against IPSec are against the key distribution

mechanism.

• A framework that minimizes dependence on single nodes/routes by using mul-

tiple routes to a receiver node without increasing the number of packets intro-

duced into the network.

RIPSec incorporates four security features (encryption, IPSec transport mode,

behavior grading, and multipath routing) into its framework while maintaining net-

work performance sufficient to operate high bandwidth applications. Three other

frameworks incorporate two of the features (encryption and behavior grading), and

the remaining eight frameworks studied only incorporate one security feature.

The multiple security levels of RIPSec make it very robust against attacks. Of

the 15 MANET attacks reviewed, RIPSec is effective at mitigating 12 of them. The

other frameworks could only mitigate at best five of the attacks. This demonstrates

RIPSec’s effectiveness at combating a broad range of threats.
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7.3 Recommendations for Future Research

The first area of future research should be to eliminate the few areas where

RIPSec is vulnerable to attack, illustrated in Table 7.1. RIPSec should be hardened

against route cache poisoning, route maintenance attacks, and bad mouthing attacks.

Table 7.1: RIPSec Areas of Improvement

Attack Mitigated

Eavesdropping Yes
Routing Table Overflow Yes
Routing Cache Poisoning Partial

Routing Maintenance No
Data Forwarding Yes

Wormhole Yes
Sinkhole Yes

Byzantine Yes
Selfish Nodes Yes
External DoS Yes
Internal DoS Yes

Spoofing Yes
Sybil Yes

Bad Mouthing No
Flattering Yes

Areas of Improvement 3

This research was conducted via simulation. One possible area of future research

would be to implement this framework in a test bed of mobile network devices. The

use of laptops in vehicles would certainly have the processing power and battery life

to support the RIPSec framework. A good application in such an ad-hoc network

would be the use of a video camera to surveil a person of interest, sending a live video

feed to a command center. Multiple vehicles could be used to minimize the likelihood

of detection.

Another area of future research is the use of RIPSec to secure ad-hoc networks

of mobile sensors deployed in a hostile environment. These sensors are normally small
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and resource constrained. The analysis of the impact RIPSec has on a small computer

platform would be beneficial to determine the range of applicability of this framework.

A final area of future research would be the deployment of RIPSec into a large

ad-hoc network to determine the scalability of the framework. It is anticipated the

larger the network, the better RIPSec would perform, given more choices for nodes

and routes would be available to a sender node. The management of neighbor nodes

and their certificates would be the constraining factor and would be limited primarily

by the operating memory of the nodes.

7.4 Concluding Thoughts

This particular research was pursued because the author believes there is a need

for incorporating encryption technology, especially IPSec, into operational mobile

networks. This research has demonstrated that it can be done and, if implemented

correctly, can provide a much more secure operating environment than is currently

being used.
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Appendix A.

The following sections contain the source code modifications made in the OPNET

Modeler simulator v15.0 to implement the RIPSec framework. Only the modules

that were modified are included in this appendix. Actual source code changes may

be obtained by contacting the author at the Air Force Institute of Technology.

A.1 IP Dispatch Function Block

A.1.1 IP Dispatch Do Init.

A.1.2 IP Dispatch Init Phase 2.

A.2 DSR Rte Function Block

A.2.1 DSR Rte Sv Init.

A.2.2 DSR Rte Stats Reg.

A.2.3 DSR Rte Received Pkt Handle.

A.2.4 DSR Rte Received Route Error Process.

A.2.5 DSR Rte Received Acknowledgement Option Process.

A.2.6 DSR Rte Route Error Send.

A.2.7 DSR Rte Jittered Pkt Send.

A.2.8 DSR Rte Route Cache Update.

A.3 DSR Route Cache

A.3.1 Declarations.

A.3.2 DSR Route Cache Entry Add.

88



A.3.3 DSR Route Cache Entry Access.

A.3.4 DSR Route Cache Path Get.

A.4 IP Rte Support Header

A.4.1 Declarations.

A.5 DSR Ptypes Header

A.5.1 Declarations.
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Appendix B.

The following tables contain the simulation data.

B.1 AODV Routing Overhead Data for Model Verification

Table B.1: AODV Routing Overhead Data for Model Verification

Run 1 Run 2 Run 3 Run 4 Mean St Dev Conf Int Low CI Up CI Rsrch Horztl

Sd 25 Sd 128 Sd 132 Sd 150 Axis

74.77 81.44 106.96 106.81 92.50 16.84 16.50 75.99 109.00 90.00 1.00

200.80 145.98 325.78 187.68 215.06 77.43 75.88 139.18 290.93 200.00 1.00

241.78 246.76 474.31 328.44 322.82 108.53 106.36 216.47 429.18 400.00 2.00

221.63 224.32 432.59 291.95 292.62 98.82 96.84 195.78 389.47 425.00 2.00

254.70 205.63 370.79 262.76 273.47 69.62 68.23 205.24 341.70 300.00 3.00

322.73 290.87 324.44 296.16 308.55 17.51 17.16 291.39 325.71 285.00 3.00

623.11 316.63 358.42 349.85 412.00 141.89 139.05 272.96 551.05 275.00 4.00

627.94 330.43 456.09 387.83 450.57 128.92 126.34 324.23 576.91 350.00 4.00

667.66 309.78 474.83 360.13 453.10 158.84 155.66 297.43 608.76 490.00 5.00

694.67 291.56 435.26 336.12 439.40 180.47 176.85 262.55 616.25 487.00 5.00

666.53 275.36 502.02 315.11 439.75 180.61 177.00 262.75 616.75 485.00 6.00

633.20 260.87 511.17 296.58 425.45 177.21 173.66 251.80 599.11 480.00 6.00

603.05 247.82 521.24 280.10 413.05 175.86 172.34 240.71 585.39 475.00 7.00

575.64 236.02 488.67 265.36 391.42 166.77 163.43 227.99 554.85 450.00 8.00

564.10 225.29 459.92 252.09 375.35 163.80 160.52 214.83 535.87 455.00 9.00

581.52 245.22 471.75 240.08 384.64 169.99 166.58 218.06 551.23 490.00 10.00

584.32 283.07 481.78 229.17 394.59 166.73 163.39 231.19 557.98 500.00 11.00

587.73 355.06 490.80 219.21 413.20 160.72 157.50 255.69 570.70 750.00 12.00

565.96 383.32 497.95 210.07 414.32 155.63 152.52 261.81 566.84 745.00 13.00

550.35 369.12 503.96 201.67 406.27 156.57 153.44 252.84 559.71 747.00 14.00

573.33 355.94 540.10 218.97 422.09 165.76 162.44 259.64 584.53 700.00 15.00

575.59 405.18 544.30 235.82 440.22 155.09 151.99 288.23 592.21 600.00 16.00

619.04 434.04 522.52 277.75 463.34 144.97 142.07 321.27 605.41 575.00 17.00

620.06 462.77 502.43 307.19 473.11 129.22 126.63 346.48 599.74 550.00 18.00

621.01 469.00 493.33 336.83 480.04 116.45 114.12 365.93 594.16 550.00 19.00

659.92 454.79 513.84 369.03 499.40 122.42 119.97 379.42 619.37 600.00 20.00

732.01 441.41 518.59 399.22 522.81 147.97 145.01 377.80 667.81 600.00 21.00

763.31 428.80 524.44 443.45 540.00 154.70 151.60 388.40 691.60 600.00 22.00

760.29 416.89 507.53 449.57 533.57 155.72 152.61 380.96 686.18 598.00 23.00

740.28 422.94 491.67 436.72 522.90 147.93 144.97 377.94 667.87 575.00 24.00

721.30 428.96 476.77 424.59 512.90 140.93 138.10 374.80 651.01 550.00 25.00

703.27 451.37 462.75 413.12 507.63 132.14 129.50 378.13 637.12 525.00 25.00

686.11 440.09 449.52 402.25 494.49 129.37 126.78 367.71 621.27 515.00 26.00

699.28 429.36 437.04 391.93 489.40 141.30 138.47 350.93 627.87 513.00 26.00

699.91 419.13 425.23 412.04 489.08 140.66 137.84 351.24 626.92 510.00 27.00

699.29 409.39 414.04 421.53 486.06 142.24 139.40 346.66 625.46 600.00 27.00

683.75 429.70 403.42 427.51 486.10 132.31 129.66 356.44 615.76 700.00 28.00

683.52 434.86 393.33 417.57 482.32 135.21 132.50 349.82 614.82 725.00 28.00

687.85 439.11 416.30 408.08 487.84 133.99 131.30 356.53 619.14 750.00 29.00

717.39 429.77 458.03 399.01 501.05 146.23 143.30 357.75 644.35 745.00 29.00

736.56 420.81 503.77 390.34 512.87 156.64 153.51 359.37 666.38 700.00 30.00

721.83 412.23 521.45 395.44 512.74 150.17 147.17 365.57 659.91 695.00 30.00

707.68 403.98 509.87 413.02 508.64 141.08 138.26 370.38 646.90 690.00 31.00

694.07 396.06 498.78 441.45 507.59 131.23 128.60 378.99 636.19 685.00 31.00
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B.2 AODV End-to-End Delay Data for Model Verification

Table B.2: AODV End-to-End Delay Data for Model Verification

Run 1 Run 2 Run 3 Run 4 Mean St Dev Conf Int Low CI Up CI Rsrch

Sd 25 Sd 128 Sd 132 Sd 150 20 Nds

0.000421 0.000415 0.000422 0.000433 0.000423 0.000008 0.000007 0.000416 0.000430 0.000420

0.000421 0.000415 0.000422 0.000433 0.000423 0.000008 0.000007 0.000416 0.000430 0.000420

0.000421 0.000415 0.000422 0.000433 0.000423 0.000007 0.000007 0.000416 0.000430 0.000420

0.000421 0.000418 0.000423 0.000435 0.000424 0.000007 0.000007 0.000417 0.000431 0.000420

0.000421 0.000416 0.000426 0.000433 0.000424 0.000007 0.000007 0.000417 0.000431 0.000420

0.000421 0.000426 0.000423 0.000433 0.000426 0.000005 0.000005 0.000421 0.000431 0.000420

0.000421 0.000425 0.000423 0.000434 0.000426 0.000006 0.000006 0.000420 0.000431 0.000420

0.000421 0.000424 0.000421 0.000434 0.000425 0.000006 0.000006 0.000419 0.000431 0.000420

0.000421 0.000424 0.00042 0.000432 0.000424 0.000005 0.000005 0.000419 0.000430 0.000420

0.000424 0.000424 0.00042 0.000431 0.000425 0.000005 0.000005 0.000420 0.000429 0.000420

0.000425 0.000424 0.00042 0.000431 0.000425 0.000005 0.000004 0.000420 0.000429 0.000420

0.000425 0.000424 0.00042 0.000431 0.000425 0.000005 0.000004 0.000420 0.000429 0.000420

0.000425 0.000424 0.00042 0.000431 0.000425 0.000005 0.000004 0.000420 0.000429 0.000420

0.000424 0.000424 0.00042 0.000431 0.000425 0.000005 0.000004 0.000420 0.000429 0.000420

0.000426 0.000423 0.00042 0.000431 0.000425 0.000005 0.000005 0.000420 0.000430 0.000420

0.000428 0.000424 0.00042 0.000431 0.000426 0.000005 0.000005 0.000421 0.000431 0.000420

0.000425 0.000419 0.000421 0.000431 0.000424 0.000005 0.000005 0.000419 0.000429 0.000420

0.000425 0.000419 0.000422 0.000434 0.000425 0.000006 0.000006 0.000419 0.000431 0.000420

0.000425 0.000419 0.000421 0.000433 0.000424 0.000006 0.000006 0.000418 0.000430 0.000420

0.000424 0.000419 0.000421 0.000436 0.000425 0.000008 0.000007 0.000418 0.000433 0.000420

0.00043 0.00042 0.000421 0.000436 0.000427 0.000008 0.000007 0.000420 0.000435 0.000420

0.000428 0.000425 0.00042 0.000438 0.000428 0.000008 0.000007 0.000420 0.000435 0.000420

0.000428 0.000424 0.00042 0.000438 0.000427 0.000008 0.000008 0.000420 0.000435 0.000420

0.000428 0.000422 0.000422 0.000438 0.000428 0.000007 0.000007 0.000420 0.000435 0.000420

0.000427 0.000422 0.000424 0.000438 0.000428 0.000007 0.000007 0.000421 0.000435 0.000420

0.000427 0.000422 0.000424 0.000438 0.000428 0.000007 0.000007 0.000421 0.000435 0.000420

0.000427 0.000422 0.00042 0.000438 0.000427 0.000008 0.000008 0.000419 0.000435 0.000420

0.000427 0.000422 0.00042 0.000438 0.000427 0.000008 0.000008 0.000419 0.000435 0.000420

0.000427 0.000422 0.00042 0.000438 0.000427 0.000008 0.000008 0.000419 0.000435 0.000420

0.000427 0.000422 0.00042 0.000438 0.000427 0.000008 0.000008 0.000419 0.000435 0.000420

0.000427 0.000422 0.00042 0.000438 0.000427 0.000008 0.000008 0.000419 0.000435 0.000420

0.000427 0.000422 0.00042 0.000439 0.000427 0.000008 0.000008 0.000419 0.000436 0.000420

0.000427 0.000422 0.00042 0.000437 0.000427 0.000008 0.000007 0.000419 0.000434 0.000420

0.000427 0.000422 0.00042 0.000437 0.000426 0.000007 0.000007 0.000419 0.000434 0.000420

0.000427 0.000421 0.00042 0.000437 0.000426 0.000008 0.000008 0.000419 0.000434 0.000420

0.000427 0.000421 0.00042 0.000437 0.000426 0.000008 0.000008 0.000419 0.000434 0.000420

0.000425 0.000421 0.00042 0.000436 0.000426 0.000007 0.000007 0.000419 0.000433 0.000420

0.000425 0.000421 0.00042 0.000435 0.000426 0.000007 0.000007 0.000419 0.000432 0.000420

0.000424 0.000422 0.00042 0.000435 0.000425 0.000007 0.000007 0.000419 0.000432 0.000420

0.000424 0.000421 0.00042 0.000435 0.000425 0.000007 0.000007 0.000418 0.000432 0.000420

0.000423 0.000422 0.00042 0.000435 0.000425 0.000007 0.000007 0.000419 0.000432 0.000420

0.000423 0.000422 0.00042 0.000435 0.000425 0.000007 0.000007 0.000418 0.000432 0.000420

0.000423 0.000422 0.00042 0.000435 0.000425 0.000007 0.000007 0.000418 0.000432 0.000420

0.000423 0.000422 0.00042 0.000435 0.000425 0.000007 0.000007 0.000418 0.000432 0.000420
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B.3 1 Feedback Node Determination Data

Table B.3: 1 Feedback Node Determination Data
1 Node Rte Errors Load Throughput

1,026.00 407.18 14,039,101.36 4,160,498.75

1,053.00 406.43 14,039,007.38 4,191,310.93

1,080.00 408.85 14,040,683.68 4,154,922.35

1,107.00 407.67 14,032,248.49 4,112,905.11

1,134.00 407.72 14,033,340.28 4,106,857.87

1,161.00 407.68 14,034,537.27 4,077,854.90

1,188.00 409.18 14,039,265.45 4,061,493.62

1,215.00 410.09 14,043,582.25 4,041,508.35

1,242.00 409.36 14,046,652.37 4,025,698.52

1,269.00 409.63 14,051,550.96 4,031,726.12

1,296.00 410.14 14,052,585.82 4,045,482.93

1,323.00 409.96 14,061,492.88 4,063,179.14

1,350.00 406.39 14,065,305.89 4,098,668.78

1,377.00 401.69 14,060,206.43 4,134,066.42

1,404.00 396.28 14,043,507.21 4,179,255.77

1,431.00 392.22 14,038,809.74 4,218,635.39

1,458.00 396.00 14,055,078.64 4,221,272.20

1,485.00 394.80 14,068,858.56 4,245,317.54

1,512.00 394.19 14,070,348.93 4,254,493.75

1,539.00 395.33 14,072,666.09 4,217,974.23

1,566.00 402.22 14,093,438.23 4,189,199.59

1,593.00 404.13 14,090,859.85 4,151,944.36

1,620.00 406.20 14,100,143.64 4,122,423.14

1,647.00 408.34 14,102,742.16 4,093,958.50

1,674.00 408.33 14,110,949.96 4,105,445.04

1,701.00 408.13 14,115,988.24 4,123,198.80

1,728.00 406.45 14,114,193.19 4,138,973.94

1,755.00 404.33 14,112,814.46 4,159,341.40

1,782.00 401.99 14,111,693.48 4,185,688.15

1,809.00 401.78 14,108,929.34 4,178,652.71

1,836.00 402.86 14,111,499.95 4,175,560.98

1,863.00 404.27 14,118,423.50 4,174,904.91

1,890.00 405.46 14,120,327.14 4,149,313.25

1,917.00 410.81 14,137,504.31 4,132,230.35

1,944.00 414.08 14,145,215.40 4,110,779.06

1,971.00 414.80 14,146,448.34 4,080,127.23

1,998.00 420.43 14,166,064.34 4,064,495.64

2,025.00 430.93 14,198,166.18 4,064,212.94

2,052.00 432.08 14,197,254.93 4,059,751.13

2,079.00 431.46 14,192,569.75 4,069,507.40

2,106.00 436.01 14,206,631.40 4,053,096.66

2,133.00 434.35 14,200,575.02 4,029,663.72

2,160.00 432.94 14,194,091.34 4,003,018.42

2,187.00 430.98 14,187,423.42 3,974,987.81

2,214.00 433.16 14,193,377.03 3,958,206.66

2,241.00 433.65 14,197,733.05 3,940,961.16

2,268.00 433.82 14,198,890.16 3,931,597.93

2,295.00 433.52 14,196,843.89 3,918,702.55

2,322.00 434.20 14,199,765.96 3,904,046.47

2,349.00 432.33 14,192,127.87 3,886,868.88

2,376.00 432.30 14,196,897.58 3,872,766.63

2,403.00 432.28 14,194,287.16 3,849,363.21

2,430.00 430.95 14,190,752.49 3,825,585.01

2,457.00 432.28 14,192,651.13 3,809,312.97

2,484.00 436.55 14,207,541.45 3,801,849.51

2,511.00 437.76 14,212,729.09 3,806,244.64

2,538.00 434.16 14,204,124.92 3,835,185.98

2,565.00 434.48 14,202,373.85 3,826,977.85

2,592.00 431.68 14,199,275.12 3,832,204.13

2,619.00 430.34 14,201,775.37 3,846,815.11

2,646.00 429.56 14,199,558.32 3,837,042.20

2,673.00 430.14 14,198,773.21 3,827,005.33
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B.4 2 Feedback Node Determination Data

Table B.4: 2 Feedback Nodes Determination Data
2 Nodes Rte Errors Load Throughput

1,026.00 376.59 13,567,119.68 2,393,728.09

1,053.00 376.50 13,592,020.39 2,467,927.20

1,080.00 375.76 13,606,490.91 2,531,434.26

1,107.00 379.36 13,628,046.93 2,586,120.95

1,134.00 383.21 13,646,365.88 2,626,244.02

1,161.00 384.55 13,660,809.62 2,635,542.03

1,188.00 388.78 13,679,866.26 2,638,062.78

1,215.00 389.41 13,693,396.82 2,672,385.91

1,242.00 386.34 13,689,562.02 2,743,385.75

1,269.00 388.23 13,699,446.30 2,768,128.05

1,296.00 387.69 13,709,782.18 2,819,577.11

1,323.00 388.48 13,720,483.25 2,863,426.11

1,350.00 384.84 13,726,281.60 2,929,614.32

1,377.00 386.62 13,740,162.10 2,954,656.00

1,404.00 387.70 13,745,020.53 2,939,939.80

1,431.00 393.80 13,775,505.16 2,941,807.80

1,458.00 395.71 13,787,341.47 2,934,059.85

1,485.00 395.95 13,790,425.42 2,926,514.75

1,512.00 395.40 13,796,100.97 2,945,083.90

1,539.00 394.07 13,798,492.40 2,956,023.42

1,566.00 395.10 13,803,061.88 2,941,220.18

1,593.00 395.05 13,805,877.59 2,929,923.99

1,620.00 394.59 13,806,730.65 2,918,442.65

1,647.00 394.87 13,816,663.13 2,925,149.34

1,674.00 396.79 13,822,955.89 2,924,261.08

1,701.00 398.33 13,830,598.43 2,939,284.15

1,728.00 394.51 13,825,305.98 2,990,841.38

1,755.00 393.02 13,828,801.60 3,021,398.88

1,782.00 390.91 13,831,686.26 3,061,530.46

1,809.00 393.85 13,841,416.89 3,084,569.36

1,836.00 394.54 13,844,388.57 3,108,012.95

1,863.00 395.50 13,852,525.95 3,112,366.17

1,890.00 402.89 13,877,269.57 3,114,858.90

1,917.00 404.64 13,886,041.09 3,106,713.51

1,944.00 408.67 13,902,414.90 3,102,630.11

1,971.00 410.55 13,910,621.10 3,094,295.35

1,998.00 413.15 13,921,590.93 3,086,365.63

2,025.00 412.89 13,924,390.91 3,079,802.93

2,052.00 416.04 13,940,633.89 3,082,540.30

2,079.00 418.53 13,953,390.86 3,098,086.67

2,106.00 417.32 13,959,597.91 3,129,304.69

2,133.00 417.36 13,967,518.56 3,152,700.28

2,160.00 416.57 13,972,739.15 3,180,754.79

2,187.00 416.83 13,976,169.26 3,176,712.96

2,214.00 417.73 13,981,100.71 3,184,647.60

2,241.00 418.43 13,984,933.98 3,174,872.85

2,268.00 420.41 13,990,925.86 3,168,413.98

2,295.00 418.16 13,983,096.05 3,149,356.56

2,322.00 417.97 13,950,963.55 3,131,979.96

2,349.00 416.25 13,933,666.87 3,112,743.70

2,376.00 419.29 13,915,954.06 3,102,487.80

2,403.00 422.47 13,924,522.89 3,095,450.15

2,430.00 422.44 13,923,428.42 3,084,906.25

2,457.00 421.24 13,923,689.57 3,100,539.47

2,484.00 421.00 13,924,252.29 3,093,415.19

2,511.00 420.53 13,928,749.89 3,093,416.13

2,538.00 420.06 13,929,571.67 3,091,395.18

2,565.00 419.21 13,931,134.75 3,116,494.38

2,592.00 420.97 13,937,490.95 3,124,168.65

2,619.00 421.86 13,940,837.10 3,114,542.67

2,646.00 422.77 13,944,645.64 3,118,201.33

2,673.00 422.30 13,943,061.99 3,111,000.58

93



B.5 3 Feedback Node Determination Data

Table B.5: 3 Feedback Nodes Determination Data
3 Nodes Rte Errors Load Throughput

1,026.00 376.59 13,567,119.68 2,393,728.09

1,053.00 376.50 13,592,020.39 2,467,927.20

1,080.00 375.76 13,606,490.91 2,531,434.26

1,107.00 379.36 13,628,046.93 2,586,120.95

1,134.00 383.21 13,646,365.88 2,626,244.02

1,161.00 384.55 13,660,809.62 2,635,542.03

1,188.00 388.78 13,679,866.26 2,638,062.78

1,215.00 389.41 13,693,396.82 2,672,385.91

1,242.00 386.34 13,689,562.02 2,743,385.75

1,269.00 388.23 13,699,446.30 2,768,128.05

1,296.00 387.69 13,709,782.18 2,819,577.11

1,323.00 388.48 13,720,483.25 2,863,426.11

1,350.00 384.84 13,726,281.60 2,929,614.32

1,377.00 386.62 13,740,162.10 2,954,656.00

1,404.00 387.70 13,745,020.53 2,939,939.80

1,431.00 393.80 13,775,505.16 2,941,807.80

1,458.00 395.71 13,787,341.47 2,934,059.85

1,485.00 395.95 13,790,425.42 2,926,514.75

1,512.00 395.40 13,796,100.97 2,945,083.90

1,539.00 394.07 13,798,492.40 2,956,023.42

1,566.00 395.10 13,803,061.88 2,941,220.18

1,593.00 395.05 13,805,877.59 2,929,923.99

1,620.00 394.59 13,806,730.65 2,918,442.65

1,647.00 394.87 13,816,663.13 2,925,149.34

1,674.00 396.79 13,822,955.89 2,924,261.08

1,701.00 398.33 13,830,598.43 2,939,284.15

1,728.00 394.51 13,825,305.98 2,990,841.38

1,755.00 393.02 13,828,801.60 3,021,398.88

1,782.00 390.91 13,831,686.26 3,061,530.46

1,809.00 393.85 13,841,416.89 3,084,569.36

1,836.00 394.54 13,844,388.57 3,108,012.95

1,863.00 395.50 13,852,525.95 3,112,366.17

1,890.00 402.89 13,877,269.57 3,114,858.90

1,917.00 404.64 13,886,041.09 3,106,713.51

1,944.00 408.67 13,902,414.90 3,102,630.11

1,971.00 410.55 13,910,621.10 3,094,295.35

1,998.00 413.15 13,921,590.93 3,086,365.63

2,025.00 412.89 13,924,390.91 3,079,802.93

2,052.00 416.04 13,940,633.89 3,082,540.30

2,079.00 418.53 13,953,390.86 3,098,086.67

2,106.00 417.32 13,959,597.91 3,129,304.69

2,133.00 417.36 13,967,518.56 3,152,700.28

2,160.00 416.57 13,972,739.15 3,180,754.79

2,187.00 416.83 13,976,169.26 3,176,712.96

2,214.00 417.73 13,981,100.71 3,184,647.60

2,241.00 418.43 13,984,933.98 3,174,872.85

2,268.00 420.41 13,990,925.86 3,168,413.98

2,295.00 418.16 13,983,096.05 3,149,356.56

2,322.00 417.97 13,950,963.55 3,131,979.96

2,349.00 416.25 13,933,666.87 3,112,743.70

2,376.00 419.29 13,915,954.06 3,102,487.80

2,403.00 422.47 13,924,522.89 3,095,450.15

2,430.00 422.44 13,923,428.42 3,084,906.25

2,457.00 421.24 13,923,689.57 3,100,539.47

2,484.00 421.00 13,924,252.29 3,093,415.19

2,511.00 420.53 13,928,749.89 3,093,416.13

2,538.00 420.06 13,929,571.67 3,091,395.18

2,565.00 419.21 13,931,134.75 3,116,494.38

2,592.00 420.97 13,937,490.95 3,124,168.65

2,619.00 421.86 13,940,837.10 3,114,542.67

2,646.00 422.77 13,944,645.64 3,118,201.33

2,673.00 422.30 13,943,061.99 3,111,000.58
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B.6 4 Feedback Node Determination Data

Table B.6: 4 Feedback Nodes Determination Data
4 Nodes Rte Errors Load Throughput

1,026.00 377.08 13,241,289.60 3,274,775.92

1,053.00 374.80 13,255,385.99 3,302,498.67

1,080.00 373.02 13,266,363.75 3,351,285.62

1,107.00 374.12 13,289,904.25 3,390,029.15

1,134.00 376.07 13,313,602.81 3,420,716.82

1,161.00 381.68 13,348,481.37 3,443,208.78

1,188.00 381.80 13,373,878.89 3,489,482.98

1,215.00 380.37 13,382,574.09 3,539,418.64

1,242.00 380.55 13,401,510.18 3,564,044.51

1,269.00 382.63 13,420,764.07 3,554,664.47

1,296.00 387.43 13,443,352.82 3,533,635.58

1,323.00 387.20 13,458,592.45 3,542,734.89

1,350.00 386.71 13,470,465.09 3,581,495.54

1,377.00 388.21 13,479,955.65 3,596,705.66

1,404.00 389.32 13,498,789.17 3,617,100.84

1,431.00 391.33 13,513,544.23 3,607,236.96

1,458.00 392.42 13,530,198.80 3,609,962.73

1,485.00 392.86 13,544,757.78 3,633,289.69

1,512.00 393.61 13,558,902.44 3,647,429.22

1,539.00 395.26 13,572,734.55 3,638,009.75

1,566.00 396.31 13,586,314.53 3,633,845.64

1,593.00 397.53 13,604,033.32 3,651,168.53

1,620.00 397.02 13,613,852.81 3,673,338.29

1,647.00 396.79 13,623,420.12 3,711,542.48

1,674.00 396.98 13,632,440.63 3,731,753.43

1,701.00 390.92 13,623,389.30 3,777,202.67

1,728.00 386.75 13,617,341.76 3,808,388.94

1,755.00 384.33 13,629,976.12 3,829,390.96

1,782.00 386.88 13,647,322.59 3,832,373.60

1,809.00 387.78 13,659,861.75 3,849,075.28

1,836.00 388.57 13,670,314.01 3,860,452.84

1,863.00 389.54 13,680,947.20 3,868,786.51

1,890.00 387.04 13,685,166.86 3,900,002.17

1,917.00 384.92 13,688,128.46 3,925,275.14

1,944.00 386.62 13,698,749.34 3,916,146.75

1,971.00 386.22 13,706,452.08 3,919,270.07

1,998.00 386.53 13,712,447.65 3,923,612.00

2,025.00 389.84 13,727,393.70 3,924,502.10

2,052.00 389.40 13,733,362.19 3,936,203.16

2,079.00 388.71 13,735,501.40 3,958,709.39

2,106.00 387.13 13,732,743.41 3,986,870.76

2,133.00 388.15 13,740,944.53 3,975,433.13

2,160.00 391.31 13,753,634.58 3,957,098.16

2,187.00 396.70 13,774,031.58 3,942,952.86

2,214.00 402.63 13,798,496.97 3,933,427.22

2,241.00 405.77 13,812,148.39 3,916,897.02

2,268.00 408.71 13,824,832.52 3,901,760.38

2,295.00 414.01 13,845,538.22 3,894,360.88

2,322.00 416.05 13,857,031.89 3,881,683.17

2,349.00 417.53 13,864,017.67 3,871,924.39

2,376.00 418.08 13,866,910.19 3,857,995.37

2,403.00 419.76 13,878,123.25 3,853,392.08

2,430.00 420.10 13,883,534.64 3,839,825.80

2,457.00 420.33 13,887,379.29 3,828,323.71

2,484.00 424.61 13,907,012.61 3,829,809.75

2,511.00 426.00 13,913,096.41 3,821,735.58

2,538.00 426.89 13,916,707.81 3,813,772.73

2,565.00 428.05 13,919,854.27 3,802,442.17

2,592.00 427.76 13,925,380.97 3,818,124.62

2,619.00 425.98 13,928,306.02 3,834,528.81

2,646.00 424.03 13,933,996.14 3,855,626.76

2,673.00 425.21 13,943,077.32 3,865,518.32
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B.7 5 Feedback Node Determination Data

Table B.7: 5 Feedback Nodes Determination Data
5 Nodes Rte Errors Load Throughput

1,026.00 423.87 13,367,020.67 2,455,289.47

1,053.00 425.23 13,394,745.78 2,471,883.94

1,080.00 425.07 13,416,231.92 2,479,920.07

1,107.00 425.50 13,437,250.57 2,508,185.06

1,134.00 423.09 13,455,484.72 2,568,376.61

1,161.00 420.86 13,475,877.63 2,631,256.43

1,188.00 415.80 13,484,653.83 2,703,912.24

1,215.00 421.11 13,516,208.72 2,729,402.49

1,242.00 424.53 13,538,297.19 2,726,624.23

1,269.00 426.21 13,557,478.99 2,718,272.15

1,296.00 428.71 13,579,928.84 2,734,289.71

1,323.00 426.68 13,585,313.66 2,733,916.11

1,350.00 425.45 13,596,501.50 2,732,222.26

1,377.00 428.50 13,616,034.19 2,728,985.09

1,404.00 430.00 13,632,459.32 2,723,426.33

1,431.00 430.50 13,642,030.49 2,729,529.28

1,458.00 431.29 13,654,315.57 2,737,563.30

1,485.00 431.25 13,672,720.91 2,776,353.93

1,512.00 432.56 13,691,749.63 2,801,469.57

1,539.00 432.05 13,707,141.72 2,837,728.80

1,566.00 432.10 13,718,059.51 2,878,215.85

1,593.00 431.43 13,728,178.19 2,903,986.21

1,620.00 429.03 13,737,644.43 2,952,850.34

1,647.00 428.55 13,745,885.02 2,973,714.10

1,674.00 430.41 13,756,848.01 2,984,812.44

1,701.00 429.00 13,767,625.20 3,022,096.37

1,728.00 429.09 13,779,910.09 3,035,979.12

1,755.00 427.64 13,776,373.39 3,018,415.87

1,782.00 426.91 13,779,090.95 3,006,329.31

1,809.00 431.99 13,804,813.93 3,006,694.38

1,836.00 436.28 13,823,542.54 3,004,380.51

1,863.00 439.20 13,838,862.48 3,001,000.55

1,890.00 439.76 13,846,957.69 3,008,214.44

1,917.00 436.22 13,843,128.18 3,056,121.45

1,944.00 436.38 13,851,097.88 3,073,160.12

1,971.00 432.41 13,859,841.87 3,116,878.27

1,998.00 430.96 13,863,589.61 3,125,630.06

2,025.00 431.08 13,865,128.78 3,112,459.91

2,052.00 432.84 13,874,661.16 3,107,461.42

2,079.00 432.65 13,879,041.05 3,099,021.28

2,106.00 432.73 13,883,691.97 3,092,244.69

2,133.00 433.75 13,890,239.76 3,106,422.37

2,160.00 433.14 13,892,655.70 3,130,886.77

2,187.00 432.24 13,896,647.18 3,148,230.78

2,214.00 431.29 13,903,359.49 3,174,243.47

2,241.00 431.26 13,910,540.33 3,192,000.79

2,268.00 429.36 13,906,596.02 3,223,483.84

2,295.00 427.12 13,903,968.04 3,255,476.12

2,322.00 424.55 13,902,928.57 3,287,029.81

2,349.00 424.25 13,905,419.30 3,300,742.07

2,376.00 424.22 13,906,923.92 3,301,005.84

2,403.00 423.72 13,909,071.55 3,296,880.17

2,430.00 424.51 13,913,935.33 3,292,647.70

2,457.00 427.07 13,922,666.09 3,287,126.52

2,484.00 427.57 13,925,285.35 3,292,221.08

2,511.00 427.02 13,930,768.77 3,311,804.17

2,538.00 425.35 13,931,384.66 3,338,634.37

2,565.00 423.94 13,933,482.68 3,360,147.63

2,592.00 424.10 13,939,686.37 3,371,775.29

2,619.00 422.20 13,946,195.53 3,389,368.74

2,646.00 421.57 13,950,871.33 3,406,028.02

2,673.00 421.96 13,954,567.57 3,413,766.19
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Table B.8: 6 Feedback Nodes Determination Data
6 Nodes Rte Errors Load Throughput

1,026.00 489.85 13,564,145.50 3,154,758.17

1,053.00 490.10 13,580,092.41 3,150,506.55

1,080.00 492.02 13,598,186.55 3,147,056.71

1,107.00 493.24 13,620,438.18 3,138,300.33

1,134.00 494.00 13,639,126.79 3,119,162.82

1,161.00 488.73 13,638,976.00 3,157,529.32

1,188.00 486.02 13,647,506.57 3,188,016.38

1,215.00 485.13 13,658,357.26 3,203,630.43

1,242.00 483.04 13,663,990.64 3,239,972.72

1,269.00 476.85 13,661,289.75 3,305,802.12

1,296.00 471.33 13,658,492.40 3,352,023.95

1,323.00 477.96 13,689,924.15 3,338,552.23

1,350.00 486.27 13,726,036.71 3,338,927.92

1,377.00 487.52 13,739,138.07 3,336,097.25

1,404.00 485.21 13,738,441.73 3,361,906.54

1,431.00 483.28 13,740,598.19 3,399,921.08

1,458.00 476.96 13,735,975.74 3,458,487.04

1,485.00 475.86 13,748,940.17 3,477,644.78

1,512.00 475.68 13,758,910.96 3,495,865.53

1,539.00 477.95 13,773,607.36 3,488,355.15

1,566.00 477.49 13,783,077.81 3,479,868.26

1,593.00 476.58 13,789,152.85 3,475,779.50

1,620.00 477.56 13,800,993.01 3,481,918.04

1,647.00 476.52 13,806,316.25 3,477,185.64

1,674.00 476.52 13,813,706.01 3,478,979.57

1,701.00 474.11 13,816,338.67 3,503,241.70

1,728.00 474.28 13,819,713.44 3,485,359.64

1,755.00 473.26 13,824,677.94 3,466,090.06

1,782.00 473.15 13,834,500.09 3,452,327.02

1,809.00 477.35 13,855,711.39 3,445,362.91

1,836.00 476.33 13,861,277.89 3,438,265.85

1,863.00 476.50 13,870,199.62 3,452,101.30

1,890.00 476.85 13,881,087.72 3,468,738.84

1,917.00 476.58 13,891,257.61 3,490,618.85

1,944.00 477.67 13,900,433.68 3,503,717.65

1,971.00 473.15 13,891,563.95 3,535,566.37

1,998.00 472.77 13,894,722.86 3,538,448.78

2,025.00 473.72 13,906,224.94 3,546,788.66

2,052.00 473.00 13,912,987.64 3,557,471.60

2,079.00 472.73 13,920,890.82 3,567,716.16

2,106.00 472.58 13,926,589.88 3,579,305.77

2,133.00 471.00 13,926,899.75 3,576,504.92

2,160.00 471.93 13,933,017.18 3,573,724.44

2,187.00 473.02 13,939,348.51 3,564,823.34

2,214.00 472.82 13,943,283.79 3,554,921.71

2,241.00 472.58 13,943,772.30 3,545,070.05

2,268.00 472.99 13,948,503.70 3,530,922.25

2,295.00 474.21 13,953,632.04 3,514,351.45

2,322.00 472.53 13,949,728.53 3,495,519.93

2,349.00 474.08 13,958,066.49 3,482,328.12

2,376.00 473.26 13,957,417.61 3,466,201.77

2,403.00 472.38 13,957,077.48 3,455,270.69

2,430.00 472.47 13,959,278.87 3,438,899.65

2,457.00 470.55 13,949,642.73 3,418,610.38

2,484.00 468.68 13,943,001.04 3,399,673.93

2,511.00 470.39 13,949,479.19 3,389,113.39

2,538.00 470.05 13,953,101.36 3,383,971.04

2,565.00 470.25 13,956,747.77 3,383,276.25

2,592.00 468.57 13,954,975.60 3,403,157.61

2,619.00 465.60 13,950,698.20 3,432,797.13

2,646.00 464.07 13,951,077.17 3,444,202.30

2,673.00 461.11 13,948,081.59 3,473,228.42
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Appendix C.

The following tables contain the C.O.V. results of each simulation run.

C.1 Baseline 50 Nodes - 0 Misbehaving

Table C.1: Baseline 50 Nodes - 0 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 2.6014 2.9335 3.9505
2 -0.8076 -1.4165 3.5982
3 -0.0312 0.6659 -6.7657
4 -1.9947 -2.5362 -2.3092

C.2 Baseline 50 Nodes - 25 Misbehaving

Table C.2: Baseline 50 Nodes - 25 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 -0.3196 -0.2436 -1.2804
2 -0.7252 -1.1087 2.5226
3 -0.8063 -0.9896 -8.1109
4 1.7516 2.1805 4.8477

C.3 Baseline 50 Nodes - 5 Misbehaving

Table C.3: Baseline 50 Nodes - 5 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 -0.5123 -1.4171 5.5880
2 1.8942 2.7289 -4.5483
3 -1.2838 -1.1586 -5.5261
4 -0.2245 -0.4070 2.5115
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C.4 RIPSec 50 Nodes - 0 Misbehaving

Table C.4: RIPSec 50 Nodes - 0 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 -0.2383 1.1754 -10.3107
2 2.9627 2.6936 9.9661
3 0.3117 0.2349 1.8219
4 -3.5044 -4.7690 -7.3929

C.5 RIPSec 50 Nodes - 25 Misbehaving

Table C.5: RIPSec 50 Nodes - 25 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 3.0488 3.7423 0.2775
2 -2.5418 -3.2102 -0.4594
3 3.0145 4.1257 1.3553
4 -4.5128 -6.4458 -1.2565

C.6 RIPSec 50 Nodes - 5 Misbehaving

Table C.6: RIPSec 50 Nodes - 5 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 -1.1096 -1.3872 -1.2443
2 1.1203 1.0901 3.6531
3 0.7422 1.7151 -10.0261
4 -0.8365 -1.6114 4.8362
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C.7 Baseline 25 Nodes - 0 Misbehaving

Table C.7: Baseline 25 Nodes - 0 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 1.6601 1.0736 8.7410
2 -5.5787 -3.9631 -43.6998
3 2.7114 2.9981 -0.2371
4 0.3467 -0.6833 9.1311

C.8 Baseline 25 Nodes - 12 Misbehaving

Table C.8: Baseline 25 Nodes - 12 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 -1.8964 -2.5563 3.8348
2 1.3918 1.5126 -0.2683
3 1.1316 1.3308 -2.7586
4 -0.7920 -0.5252 -1.3701

C.9 Baseline 25 Nodes - 2 Misbehaving

Table C.9: Baseline 25 Nodes - 2 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 1.1024 3.4608 5.8311
2 -8.1303 -7.8070 -34.0059
3 2.2324 0.5181 7.9094
4 3.1595 2.2520 2.8140
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C.10 RIPSec 25 Nodes - 0 Misbehaving

Table C.10: RIPSec 25 Nodes - 0 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 -0.1213 -0.3861 0.7972
2 1.0028 1.0499 3.6152
3 0.9629 1.2850 1.5863
4 -1.9722 -2.1105 -7.4544

C.11 RIPSec 25 Nodes - 12 Misbehaving

Table C.11: RIPSec 25 Nodes - 12 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 -26.7139 -34.5721 -41.4710
2 -6.0982 -5.6842 -18.9739
3 20.1544 21.4738 23.5611
4 -21.6734 -26.8248 -22.4710

C.12 RIPSec 25 Nodes - 2 Misbehaving

Table C.12: RIPSec 25 Nodes - 2 Misbehaving

Run # Load C.O.V. Throughput C.O.V. Errors C.O.V.
1 -1.1152 -1.9159 3.6066
2 3.0335 3.3618 6.1007
3 0.2503 0.6508 -11.1847
4 -2.5561 -2.6013 -2.1378
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