36 research outputs found

    Architectures for the Future Networks and the Next Generation Internet: A Survey

    Get PDF
    Networking research funding agencies in the USA, Europe, Japan, and other countries are encouraging research on revolutionary networking architectures that may or may not be bound by the restrictions of the current TCP/IP based Internet. We present a comprehensive survey of such research projects and activities. The topics covered include various testbeds for experimentations for new architectures, new security mechanisms, content delivery mechanisms, management and control frameworks, service architectures, and routing mechanisms. Delay/Disruption tolerant networks, which allow communications even when complete end-to-end path is not available, are also discussed

    DoS Attack Impact Assessment on Software Defined Networks

    Get PDF
    © 2018, ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. Software Defined Networking (SDN) is an evolving network paradigm which promises greater interoperability, more innovation, flexible and effective solutions. Although SDN on the surface provides a simple framework for network programmability and monitoring, few has been said about security measures to make it resilient to hitherto security flaws in traditional network and the new threats the architecture is ushering in. One of the security weaknesses the architecture is ushering in due to separation of control and data plane is Denial of Service (DoS) attack. The main goal of this attack is to make network resources unavailable to legitimate users or introduce large delays. In this paper, the effect of DoS attack on SDN is presented using Mininet, OpenDaylight (ODL) controller and network performance testing tools such as iperf and ping. Internet Control Message Protocol (ICMP) flood attack is performed on a Transmission Control Protocol (TCP) server and a User Datagram Protocol (UDP) server which are both connected to OpenFlow switches. The simulation results reveal a drop in network throughput from 233 Mbps to 87.4 Mbps and the introduction of large jitter between 0.003 ms and 0.789 ms during DoS attack.Published versio

    A HyperNet Architecture

    Get PDF
    Network virtualization is becoming a fundamental building block of future Internet architectures. By adding networking resources into the “cloud”, it is possible for users to rent virtual routers from the underlying network infrastructure, connect them with virtual channels to form a virtual network, and tailor the virtual network (e.g., load application-specific networking protocols, libraries and software stacks on to the virtual routers) to carry out a specific task. In addition, network virtualization technology allows such special-purpose virtual networks to co-exist on the same set of network infrastructure without interfering with each other. Although the underlying network resources needed to support virtualized networks are rapidly becoming available, constructing a virtual network from the ground up and using the network is a challenging and labor-intensive task, one best left to experts. To tackle this problem, we introduce the concept of a HyperNet, a pre-built, pre-configured network package that a user can easily deploy or access a virtual network to carry out a specific task (e.g., multicast video conferencing). HyperNets package together the network topology configuration, software, and network services needed to create and deploy a custom virtual network. Users download HyperNets from HyperNet repositories and then “run” them on virtualized network infrastructure much like users download and run virtual appliances on a virtual machine. To support the HyperNet abstraction, we created a Network Hypervisor service that provides a set of APIs that can be called to create a virtual network with certain characteristics. To evaluate the HyperNet architecture, we implemented several example Hyper-Nets and ran them on our prototype implementation of the Network Hypervisor. Our experiments show that the Hypervisor API can be used to compose almost any special-purpose network – networks capable of carrying out functions that the current Internet does not provide. Moreover, the design of our HyperNet architecture is highly extensible, enabling developers to write high-level libraries (using the Network Hypervisor APIs) to achieve complicated tasks

    Study on the Performance of TCP over 10Gbps High Speed Networks

    Get PDF
    Internet traffic is expected to grow phenomenally over the next five to ten years. To cope with such large traffic volumes, high-speed networks are expected to scale to capacities of terabits-per-second and beyond. Increasing the role of optics for packet forwarding and transmission inside the high-speed networks seems to be the most promising way to accomplish this capacity scaling. Unfortunately, unlike electronic memory, it remains a formidable challenge to build even a few dozen packets of integrated all-optical buffers. On the other hand, many high-speed networks depend on the TCP/IP protocol for reliability which is typically implemented in software and is sensitive to buffer size. For example, TCP requires a buffer size of bandwidth delay product in switches/routers to maintain nearly 100\% link utilization. Otherwise, the performance will be much downgraded. But such large buffer will challenge hardware design and power consumption, and will generate queuing delay and jitter which again cause problems. Therefore, improve TCP performance over tiny buffered high-speed networks is a top priority. This dissertation studies the TCP performance in 10Gbps high-speed networks. First, a 10Gbps reconfigurable optical networking testbed is developed as a research environment. Second, a 10Gbps traffic sniffing tool is developed for measuring and analyzing TCP performance. New expressions for evaluating TCP loss synchronization are presented by carefully examining the congestion events of TCP. Based on observation, two basic reasons that cause performance problems are studied. We find that minimize TCP loss synchronization and reduce flow burstiness impact are critical keys to improve TCP performance in tiny buffered networks. Finally, we present a new TCP protocol called Multi-Channel TCP and a new congestion control algorithm called Desynchronized Multi-Channel TCP (DMCTCP). Our algorithm implementation takes advantage of a potential parallelism from the Multi-Path TCP in Linux. Over an emulated 10Gbps network ruled by routers with only a few dozen packets of buffers, our experimental results confirm that bottleneck link utilization can be much better improved by DMCTCP than by many other TCP variants. Our study is a new step towards the deployment of optical packet switching/routing networks

    Contribution to the Federation of the asynchronous SmartSantander service layer within the European Fed4FIRE context

    Get PDF
    This thesis is a contribution to the federation of asynchronous SmartSantander service layer within the European Fed4FIRE context. The thesis was developed in a Smart City background, and its main aims were both to gain knowledge of how Smart Cities, Testbeds and Federations of Testbeds are structured by working on a real deployed system, i.e. SmartSantander framework and Fed4FIRE federation, and to contribute with some of the components required for the integratio

    THE EMERGENCE OF DOMINANT DESIGN(S) IN LARGE SCALE CYBERINFRASTRUCTURE SYSTEMS

    Get PDF
    Cyber-infrastructure systems are integrated large-scale IT systems designed with the goal of transforming scientific practice by enabling multi-disciplinary, cross-institutional collaboration. Their large scale and socio-technical complexity make design decisions for their underlying architecture practically irreversible. Drawing on three alternative theories of IT adoption (path dependence, project management, technology framing) and on a qualitative study of archival and interview data I examine how design and development influence the adoption trajectory of four competing cyber-infrastructure systems comprising the Global Environment for Network Innovations (www.geni.net) over a period of ten years (2001-2011). Findings indicate that a) early design decisions, particularly those related to similar pre-existing systems set a path of adoption in motion leading to the early dominance of one system, b) coordination of milestones led to increased adoption for the high-performing teams, and c) the framing of technology presentations and demos as a social influence strategy was less effective in “breaking” the dominant system’s adoption path in the long term but enabled most of the development teams to challenge that dominance and increase the adoption of their systems in the short term. While studies in path dependence and dominant design assume that adoption and dominance occurs through users’ actions after development is completed, this study’s findings show that developers and managers of competing systems can also influence adoption and even “break” the dominant system’s adoption path while it’s still under development. Understanding how cyber-infrastructure systems are developed is key to promoting their adoption and use. This research has import for understanding the ramifications of early-stage design decisions, as well as the impact of project coordination and technology presentation strategies such as framing for the adoption of such systems

    Creating a Worldwide Network For the Global Environment for Network Innovations (GENI) and Related Experimental Environments

    Get PDF
    Many important societal activities are global in scope, and as these activities continually expand world-wide, they are increasingly based on a foundation of advanced communication services and underlying innovative network architecture, technology, and core infrastructure. To continue progress in these areas, research activities cannot be limited to campus labs and small local testbeds or even to national testbeds. Researchers must be able to explore concepts at scale—to conduct experiments on world-wide testbeds that approximate the attributes of the real world. Today, it is possible to take advantage of several macro information technology trends, especially virtualization and capabilities for programming technology resources at a highly granulated level, to design, implement and operate network research environments at a global scale. GENI is developing such an environment, as are research communities in a number of other countries. Recently, these communities have not only been investigating techniques for federating these research environments across multiple domains, but they have also been demonstration prototypes of such federations. This chapter provides an overview of key topics and experimental activities related to GENI international networking and to related projects throughout the world

    NETWORK SERVICE DELIVERY AND THROUGHPUT OPTIMIZATION VIA SOFTWARE DEFINED NETWORKING

    Get PDF
    In today\u27s world, transmitting data across large bandwidth-delay product (BDP) networks requires special configuration on end users\u27 machines in order to be done efficiently. This added level of complexity creates extra cost and is usually overlooked by users unknowledgeable to the issues. This is one example problem which can be ameliorated with the emerging software defined networking (SDN) paradigm. In an SDN, packet forwarding is controlled via software controllers. In an OpenFlow SDN, a controller can control the forwarding, rewriting, and dropping of packets based on their header attributes. The ability to handle packets in customizable ways in software has significant implications for both users and operators of the network. Via SDN, network providers can easily provide services to enhance users\u27 experience of the network. Steroid OpenFlow Service (SOS) is presented as a solution to seamless enhancement of TCP data transfer throughput over large BDP networks without any modification to the software and configurations on users\u27 machines. SOS utilizes OpenFlow to redirect application specific traffic to application specific service agents. SOS uses service agents on both ends of the connection to seamlessly terminate a user\u27s TCP connection, launch a set of parallel TCP connections, and leverage multiple paths when available to maximize throughput
    corecore