689 research outputs found

    Security of Systems on Chip

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.In recent years, technology has started to evolve to become more power efficient, powerful in terms of processors and smaller in size. This evolution of electronics has led microprocessors and other components to be merged to form a circuit called System-on-Chip. If we are to make a vast and cursory comparison between SoC and microcontrollers, microprocessors, and CPUs; we would come to the conclusion of SoCs being a single chip, doing all the things the other components can do yet without needing any external parts. So SoCs are computers just by themselves. Furthermore, SoCs have more memory than microcontrollers in general. Being a computer just by themselves allows them also to become servers. Nowadays, an SoC may be regarded also as a Server-on-Chi

    Defenses Against Perception-Layer Attacks on IoT Smart Furniture for Impaired People

    Full text link
    [EN] Internet of Things (IoT) is becoming highly supportive in innovative technological solutions for assisting impaired people. Some of these IoT solutions are still in a prototyping phase ignoring possible attacks and the corresponding security defenses. This article proposes a learning-based approach for defending against perception-layer attacks performed on specific sensor types in smart furniture for impaired people. This approach is based on the analysis of time series by means of dynamic time warping algorithm for calculating similarity and a novel detector for identifying anomalies. This approach has been illustrated by defending against simulated perception-layer magnetic attacks on a smart cupboard with door magnetic sensors. The results show the performance of the proposed approach for properly identifying these attacks. In particular, these results advocate an accuracy about 95.5% per day.This work was supported in part by the research project Utilisation of IoT and Sensors in Smart Cities for Improving Quality of Life of Impaired People under Grant 52-2020, in part by the Ciudades Inteligentes Totalmente Integrales, Eficientes Y Sotenibles (CITIES) funded by the Programa Iberoamericano de Ciencia y Tecnologia para el Desarrollo (CYTED) under Grant 518RT0558, in part by the Diseno Colaborativo Para La Promocion Del Bienestar En Ciudades Inteligentes Inclusivas under Grant TIN2017-88327-R funded by the Spanish Council of Science, Innovation and Universities from the Spanish Government, and in part by the Ministerio de Economia y Competitividad in the Programa Estatal de Fomento de la Investigacion Cientifica y Tecnica de Excelencia, Subprograma Estatal de Generacion de Conocimiento under Grant TIN2017-84802-C2-1-P.Nasralla, MM.; García-Magariño, I.; Lloret, J. (2020). Defenses Against Perception-Layer Attacks on IoT Smart Furniture for Impaired People. IEEE Access. 8:119795-119805. https://doi.org/10.1109/ACCESS.2020.3004814S119795119805

    An eco-friendly hybrid urban computing network combining community-based wireless LAN access and wireless sensor networking

    Get PDF
    Computer-enhanced smart environments, distributed environmental monitoring, wireless communication, energy conservation and sustainable technologies, ubiquitous access to Internet-located data and services, user mobility and innovation as a tool for service differentiation are all significant contemporary research subjects and societal developments. This position paper presents the design of a hybrid municipal network infrastructure that, to a lesser or greater degree, incorporates aspects from each of these topics by integrating a community-based Wi-Fi access network with Wireless Sensor Network (WSN) functionality. The former component provides free wireless Internet connectivity by harvesting the Internet subscriptions of city inhabitants. To minimize session interruptions for mobile clients, this subsystem incorporates technology that achieves (near-)seamless handover between Wi-Fi access points. The WSN component on the other hand renders it feasible to sense physical properties and to realize the Internet of Things (IoT) paradigm. This in turn scaffolds the development of value-added end-user applications that are consumable through the community-powered access network. The WSN subsystem invests substantially in ecological considerations by means of a green distributed reasoning framework and sensor middleware that collaboratively aim to minimize the network's global energy consumption. Via the discussion of two illustrative applications that are currently being developed as part of a concrete smart city deployment, we offer a taste of the myriad of innovative digital services in an extensive spectrum of application domains that is unlocked by the proposed platform

    Integration of a cellular Internet-of-Things transceiver into 6G test network and evaluation of its performance

    Get PDF
    Abstract. This thesis focuses on the integration and deployment of an aftermarket cellular IoT transceiver on a 6G/5G test network for the purpose of evaluating the feasibility of such device for monitoring the network performance. The cellular technology employed was NB-IoT paired with a Raspberry Pi device as the microprocessor that collects network telemetry and uses MQTT protocol to provide constant data feed. The system was first tested in a public cellular network through a local service provider and was successfully connected to the network, establishing TCP/IP connections, and allowing internet connectivity. To monitor network information and gathering basic telemetry data, a network monitoring utility was developed. It collected data such as network identifiers, module registration status, band/channel, signal strength and GPS position. This data was then published to a MQTT broker. The Adafruit IO platform served as the MQTT broker, providing an interface to visualize the collected data. Furthermore, the system was configured for and deployed on a 6G/5G test network successfully. The device functionality that was developed and tested in the public network remained intact, enabling continuous monitoring and analysis of network data. Through this study, valuable insights into the integration and deployment of cellular IoT transceivers into cellular networks that employ the latest IoT technology were gained. The findings highlight the feasibility of utilizing such a system for network monitoring and demonstrate the potential for IoT applications in cellular networks

    Security Attacks and Countermeasures in Smart Homes

    Get PDF
    The Internet of Things (IoT) application is visible in all aspects of humans’ day-to-day affairs. The demand for IoT is growing at an unprecedented rate, from wearable wristwatches to autopilot cars. The smart home has also seen significant advancements to improve the quality of lifestyle. However, the security and privacy of IoT devices have become primary concerns as data is shared among intelligent devices and over the internet in a smart home network. There are several attacks - node capturing attack, sniffing attack, malware attack, boot phase attack, etc., which are conducted by adversaries to breach the security of smart homes. The security breach has a negative impact on the tenants\u27 privacy and prevents the availability of smart home services. This article presents smart homes\u27 most common security attacks and mitigation techniques

    Cyber Security in the Healthcare Industry

    Get PDF

    Towards Tactile Internet in Beyond 5G Era: Recent Advances, Current Issues and Future Directions

    Get PDF
    Tactile Internet (TI) is envisioned to create a paradigm shift from the content-oriented communications to steer/control-based communications by enabling real-time transmission of haptic information (i.e., touch, actuation, motion, vibration, surface texture) over Internet in addition to the conventional audiovisual and data traffics. This emerging TI technology, also considered as the next evolution phase of Internet of Things (IoT), is expected to create numerous opportunities for technology markets in a wide variety of applications ranging from teleoperation systems and Augmented/Virtual Reality (AR/VR) to automotive safety and eHealthcare towards addressing the complex problems of human society. However, the realization of TI over wireless media in the upcoming Fifth Generation (5G) and beyond networks creates various non-conventional communication challenges and stringent requirements in terms of ultra-low latency, ultra-high reliability, high data-rate connectivity, resource allocation, multiple access and quality-latency-rate tradeoff. To this end, this paper aims to provide a holistic view on wireless TI along with a thorough review of the existing state-of-the-art, to identify and analyze the involved technical issues, to highlight potential solutions and to propose future research directions. First, starting with the vision of TI and recent advances and a review of related survey/overview articles, we present a generalized framework for wireless TI in the Beyond 5G Era including a TI architecture, the main technical requirements, the key application areas and potential enabling technologies. Subsequently, we provide a comprehensive review of the existing TI works by broadly categorizing them into three main paradigms; namely, haptic communications, wireless AR/VR, and autonomous, intelligent and cooperative mobility systems. Next, potential enabling technologies across physical/Medium Access Control (MAC) and network layers are identified and discussed in detail. Also, security and privacy issues of TI applications are discussed along with some promising enablers. Finally, we present some open research challenges and recommend promising future research directions

    Analysis and simulation of emergent architectures for internet of things

    Get PDF
    The Internet of Things (IoT) promises a plethora of new services and applications supported by a wide range of devices that includes sensors and actuators. To reach its potential IoT must break down the silos that limit applications' interoperability and hinder their manageability. These silos' result from existing deployment techniques where each vendor set up its own infrastructure, duplicating the hardware and increasing the costs. Fog Computing can serve as the underlying platform to support IoT applications thus avoiding the silos'. Each application becomes a system formed by IoT devices (i.e. sensors, actuators), an edge infrastructure (i.e. Fog Computing) and the Cloud. In order to improve several aspects of human lives, different systems can interact to correlate data obtaining functionalities not achievable by any of the systems in isolation. Then, we can analyze the IoT as a whole system rather than a conjunction of isolated systems. Doing so leads to the building of Ultra-Large Scale Systems (ULSS), an extension of the concept of Systems of Systems (SoS), in several verticals including Autonomous Vehicles, Smart Cities, and Smart Grids. The scope of ULSS is large in the number of things and complex in the variety of applications, volume of data, and diversity of communication patterns. To handle this scale and complexity in this thesis we propose Hierarchical Emergent Behaviors (HEB), a paradigm that builds on the concepts of emergent behavior and hierarchical organization. Rather than explicitly program all possible situations in the vast space of ULSS scenarios, HEB relies on emergent behaviors induced by local rules that define the interactions of the "things" between themselves and also with their environment. We discuss the modifications to classical IoT architectures required by HEB, as well as the new challenges. Once these challenges such as scalability and manageability are addressed, we can illustrate HEB's usefulness dealing with an IoT-based ULSS through a case study based on Autonomous Vehicles (AVs). To this end we design and analyze well-though simulations that demonstrate its tremendous potential since small modifications to the basic set of rules induce different and interesting behaviors. Then we design a set of primitives to perform basic maneuver such as exiting a platoon formation and maneuvering in anticipation of obstacles beyond the range of on-board sensors. These simulations also evaluate the impact of a HEB deployment assisted by Fog nodes to enlarge the informational scope of vehicles. To conclude we develop a design methodology to build, evaluate, and run HEB-based solutions for AVs. We provide architectural foundations for the second level and its implications in major areas such as communications. These foundations are then validated through simulations that incorporate new rules, obtaining valuable experimental observations. The proposed architecture has a tremendous potential to solve the scalability issue found in ULSS, enabling IoT deployments to reach its true potential.El Internet de las Cosas (IoT) promete una plétora de nuevos servicios y aplicaciones habilitadas por una amplia gama de dispositivos que incluye sensores y actuadores. Para alcanzar su potencial, IoT debe superar los silos que limitan la interoperabilidad de las aplicaciones y dificultan su administración. Estos silos son el resultado de las técnicas de implementación existentes en las que cada proveedor instala su propia infraestructura y duplica el hardware, incrementando los costes. Fog Computing puede servir como la plataforma subyacente que soporte aplicaciones del IoT evitando así los silos. Cada aplicación se convierte en un sistema formado por dispositivos IoT (por ejemplo sensores y actuadores), una infraestructura (como Fog Computing) y la nube. Con el fin de mejorar varios aspectos de la vida humana, diferentes sistemas pueden interactuar para correlacionar datos obteniendo funcionalidades que no pueden lograrse por ninguno de los sistemas de forma aislada. Entonces, podemos analizar el IoT como un único sistema en lugar de una conjunción de sistemas aislados. Esta perspectiva conduce a la construcción de Ultra-Large Scale Systems (ULSS), una extensión del concepto de Systems of Systems (SoS), en varios verticales, incluidos los vehículos autónomos, Smart Cities y Smart Grids. El alcance de ULSS es vasto debido a la cantidad de dispositivos y complejo en la variedad de aplicaciones, volumen de datos y diversidad de patrones de comunicación. Para manejar esta escala y complejidad, en esta tesis proponemos Hierarchical Emergent Behaviors (HEB), un paradigma que se basa en los conceptos de comportamientos emergente y organización jerárquica. En lugar de programar explícitamente todas las situaciones posibles en el vasto espacio de escenarios presentes en los ULSS, HEB se basa en comportamientos emergentes inducidos por reglas locales que definen las interacciones de las "cosas" entre ellas y también con su entorno. Discutimos las modificaciones a las arquitecturas clásicas de IoT requeridas por HEB, así como los nuevos desafíos. Una vez que se abordan estos desafíos, como la escalabilidad y la capacidad de administración, podemos ilustrar la utilidad de HEB cuando se ocupa de un ULSS basado en IoT a través de un caso de estudio basado en Vehículos Autónomos (AV). Con este fin, diseñamos y analizamos simulaciones que demuestran su enorme potencial, ya que pequeñas modificaciones en el conjunto básico de reglas inducen comportamientos diferentes e interesantes. Luego, diseñamos un conjunto de primitivas para realizar una maniobra básica, como salir de un pelotón y maniobrar en anticipación de obstáculos más allá del alcance de los sensores de a bordo. Estas simulaciones también evalúan el impacto de una implementación de HEB asistida por nodos de Fog Computing para ampliar el alcance sensorial de los vehículos. Para concluir, desarrollamos una metodología de diseño para construir, evaluar y ejecutar soluciones basadas en HEB para AV. Brindamos fundamentos arquitectónicos para el segundo nivel de HEB y sus implicaciones en áreas importantes como las comunicaciones. Estas bases se validan a través de simulaciones que incorporan nuevas reglas, obteniendo valiosas observaciones experimentales. La arquitectura propuesta tiene un enorme potencial para resolver el problema de escalabilidad que presentan los ULSS, permitiendo que las implementaciones de IoT alcancen su verdadero potencial
    corecore