283 research outputs found

    SafeWeb: A Middleware for Securing Ruby-Based Web Applications

    Get PDF
    Web applications in many domains such as healthcare and finance must process sensitive data, while complying with legal policies regarding the release of different classes of data to different parties. Currently, software bugs may lead to irreversible disclosure of confidential data in multi-tier web applications. An open challenge is how developers can guarantee these web applications only ever release sensitive data to authorised users without costly, recurring security audits. Our solution is to provide a trusted middleware that acts as a “safety net” to event-based enterprise web applications by preventing harmful data disclosure before it happens. We describe the design and implementation of SafeWeb, a Ruby-based middleware that associates data with security labels and transparently tracks their propagation at different granularities across a multi-tier web architecture with storage and complex event processing. For efficiency, maintainability and ease-of-use, SafeWeb exploits the dynamic features of the Ruby programming language to achieve label propagation and data flow enforcement. We evaluate SafeWeb by reporting our experience of implementing a web-based cancer treatment application and deploying it as part of the UK National Health Service (NHS)

    Information Flow Control in Spring Web Applications

    Get PDF
    Companies rely extensively on frameworks and APIs when developing their systems, as these mechanisms are quite advantageous. Two of the most conspicuous benefits are their ease of use and workload reduction, allowing for shorter and more responsive development cycles. However, most frameworks do not provide security properties such as data confidentiality as other tools do. A prime example is a Spring. It is the most heavily used Java web development framework, hosting a vast array of functionalities, ranging from data layer functionalities (c.f. hibernate and JPA), security providers, and metrics providers to provide statistical data on the application itself as well as a layer for REST communication. However, to achieve such advanced functionalities, Spring resorts to bytecode manipulation and generation during its startup period, hindering the use of other formal analysis tools that use similar processes in their execution. In a broader sense, we provide a comprehensive approach for the static analysis of spring-based web applications. We introduce hooks in the Spring pipeline, making feasible the formal analysis and manipulation of the complete, run-time-generated appli- cation bytecode through a well-defined interface. The hooks provide not only access to the entire web application’s bytecode but also allow for the replacement of the applica- tion’s component, enabling more complex analysis requiring the instrumentation of the application. To address data confidentiality-related issues in web applications developed with this framework, we propose integrating information flow control tools in the framework’s pipeline. Namely, we combine Spring with Snitch, a tool for hybrid information flow control in Java bytecode that will be used as a case-study.As empresas apoiam-se cada vez mais em frameworks e APIs quando desenvolvem os seus sistemas, pois estas ferramentas fornecem grandes vantagens. Duas das maiores vantages destes sistemas são a sua fácil utilização/integração nos sistemas bem como a quantidade de trabalho que reduzem ao desenvolvedor, permitindo assim períodos de desenvolvimento mais curtos e responsivos. Ainda assim, a mrioria das frameworks não têm como lidar com propriedades de segurança fundamentais como confidencialidade dos dados. Um dos exemplos mais conhecidos é o Spring. É a framework mais usada em Java para desenvolvimento web, oferecendo um vasto leque de funcionalidades, variando entre uma camada que lida com dados (eg: hibernate e JPA), uma camada gestora de segurança nas aplicações, uma camada estatística que permite analisar a performance do sistema e também uma camada para comunicação REST. Para alcançar estas funcionalidades, que não são triviais, o Spring recorre a mecanismos de manipulação de bytecode e geração de código durante o seu período de inicialização, perturbando o uso de ferramentas de análise formais que recorrem a processos semelhantes na sua execução. Em geral, nós fornecemos uma nova forma de lidar com análise formal em aplicações web Spring. Aqui introduzimos hooks no processo de inicialização do Spring, tornando possível que a análise formal e a manipulação de todo o bytecode gerado da aplicação a partir duma interface cuidadosamente definida. Os hooks fornecidos fornecem acesso ao bytecode da aplicação na sua totalidade bem como permitem a substituição do componente da aplicação, permitindo assim a análise complexa e formal por parte da ferramenta que pode requerer instrumentação da aplicação. Para lidar com problemas relacionados com confidencialidade dos dados em aplicações web desenvolvidas com a framework, propomos a integração de ferramentas de controlo do fluxo de informação na prórpia framework. Assim, juntamos Spring e Snitch, uma ferramenta que analisa bytecode para verificar a segurança do fluxo de informação híbrida

    STATIC AND DYNAMIC ANALYSES FOR PROTECTING THE JAVA SOFTWARE EXECUTION ENVIRONMENT

    Get PDF
    In my thesis, I present three projects on which I have worked during my Ph.D. studies. All of them focus on software protection in the Java environment with static and dynamic techniques for control-flow and data-dependency analysis. More specifically, the first two works are dedicated to the problem of deserialization of untrusted data in Java. In the first, I present a defense system that was designed for protecting the Java Virtual Machine, along with the results that were obtained. In the second, I present a recent research project that aims at automatic generation of deserialization attacks, to help identifying them and increasing protection. The last discussed work concerns another branch of software protection: the authentication on short-distance channels (or the lack thereof) in Android APKs. In said work, I present a tool that was built for automatically identifying the presence of high-level authentication in Android apps. I thoroughly discuss experiments, limitations and future work for all three projects, concluding with general principles that bring these works together, and can be applied when facing related security issues in high-level software protection

    Verbesserrung der Datenflussüberwachung für Datennutzungskontrollsysteme

    Get PDF
    This thesis provides a new, hybrid approach in the field of Distributed Data Usage Control (DUC), to track the flow of data inside applications. A combination between static information flow analysis and dynamic data flow tracking enables to track selectively only those program locations that are actually relevant for a flow of data. This ensures the portability of a monitored application with low performance overhead. Beyond that, DUC systems benefit from the present approach as it reduces overapproximation in data flow tracking, and thus, provides a more precise result to enforce data usage restrictions.Diese Thesis liefert einen neuartigen hybriden Ansatz auf dem Gebiet von Distributed Data Usage Control (DUC), um den Datenfluss innerhalb einer Anwendung zu überwachen. Eine Kombination aus statischer Informationsflussanalyse und dynamischer Datenflussüberwachung ermöglicht die selektive, modulare Überwachung derjenigen Programmstellen, welche tatsächlich relevant für einen Datenfluss sind. Dadurch wird die Portabilität einer zu überwachenden Anwendung, bei geringem Performance Overhead, sichergestellt. DUC Systeme profitieren vom vorliegenden Ansatz vor allem dadurch, dass Überapproximation bei der Datenflussüberwachung reduziert wird, und somit ein präziseres Ergebnis für die Durchsetzung von Datennutzungsrestriktionen vorliegt

    Understanding and Identifying Vulnerabilities Related to Architectural Security Tactics

    Get PDF
    To engineer secure software systems, software architects elicit the system\u27s security requirements to adopt suitable architectural solutions. They often make use of architectural security tactics when designing the system\u27s security architecture. Security tactics are reusable solutions to detect, resist, recover from, and react to attacks. Since security tactics are the building blocks of a security architecture, flaws in the adoption of these tactics, their incorrect implementation, or their deterioration during software maintenance activities can lead to vulnerabilities, which we refer to as tactical vulnerabilities . Although security tactics and their correct adoption/implementation are crucial elements to achieve security, prior works have not investigated the architectural context of vulnerabilities. Therefore, this dissertation presents a research work whose major goals are: (i) to identify common types of tactical vulnerabilities, (ii) to investigate tactical vulnerabilities through in-depth empirical studies, and (iii) to develop a technique that detects tactical vulnerabilities caused by object deserialization. First, we introduce the Common Architectural Weakness Enumeration (CAWE), which is a catalog that enumerates 223 tactical vulnerability types. Second, we use this catalog to conduct an empirical study using vulnerability reports from large-scale open-source systems. Among our findings, we observe that Improper Input Validation was the most reoccurring vulnerability type. This tactical vulnerability type is caused by not properly implementing the Validate Inputs tactic. Although prior research focused on devising automated (or semi-automated) techniques for detecting multiple instances of improper input validation (e.g., SQL Injection and Cross-Site Scripting) one of them got neglected, which is the untrusted deserialization of objects. Unlike other input validation problems, object deserialization vulnerabilities exhibit a set of characteristics that are hard to handle for effective vulnerability detection. We currently lack a robust approach that can detect untrusted deserialization problems. Hence, this dissertation introduces DODO untrusteD ObjectDeserialization detectOr), a novel program analysis technique to detect deserialization vulnerabilities. DODO encompasses a sound static analysis of the program to extract potentially vulnerable paths, an exploit generation engine, and a dynamic analysis engine to verify the existence of untrusted object deserialization. Our experiments showed that DODO can successfully infer possible vulnerabilities that could arise at runtime during object deserialization

    Security analyses for detecting deserialisation vulnerabilities : a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Computer Science at Massey University, Palmerston North, New Zealand

    Get PDF
    An important task in software security is to identify potential vulnerabilities. Attackers exploit security vulnerabilities in systems to obtain confidential information, to breach system integrity, and to make systems unavailable to legitimate users. In recent years, particularly 2012, there has been a rise in reported Java vulnerabilities. One type of vulnerability involves (de)serialisation, a commonly used feature to store objects or data structures to an external format and restore them. In 2015, a deserialisation vulnerability was reported involving Apache Commons Collections, a popular Java library, which affected numerous Java applications. Another major deserialisation-related vulnerability that affected 55\% of Android devices was reported in 2015. Both of these vulnerabilities allowed arbitrary code execution on vulnerable systems by malicious users, a serious risk, and this came as a call for the Java community to issue patches to fix serialisation related vulnerabilities in both the Java Development Kit and libraries. Despite attention to coding guidelines and defensive strategies, deserialisation remains a risky feature and a potential weakness in object-oriented applications. In fact, deserialisation related vulnerabilities (both denial-of-service and remote code execution) continue to be reported for Java applications. Further, deserialisation is a case of parsing where external data is parsed from their external representation to a program's internal data structures and hence, potentially similar vulnerabilities can be present in parsers for file formats and serialisation languages. The problem is, given a software package, to detect either injection or denial-of-service vulnerabilities and propose strategies to prevent attacks that exploit them. The research reported in this thesis casts detecting deserialisation related vulnerabilities as a program analysis task. The goal is to automatically discover this class of vulnerabilities using program analysis techniques, and to experimentally evaluate the efficiency and effectiveness of the proposed methods on real-world software. We use multiple techniques to detect reachability to sensitive methods and taint analysis to detect if untrusted user-input can result in security violations. Challenges in using program analysis for detecting deserialisation vulnerabilities include addressing soundness issues in analysing dynamic features in Java (e.g., native code). Another hurdle is that available techniques mostly target the analysis of applications rather than library code. In this thesis, we develop techniques to address soundness issues related to analysing Java code that uses serialisation, and we adapt dynamic techniques such as fuzzing to address precision issues in the results of our analysis. We also use the results from our analysis to study libraries in other languages, and check if they are vulnerable to deserialisation-type attacks. We then provide a discussion on mitigation measures for engineers to protect their software against such vulnerabilities. In our experiments, we show that we can find unreported vulnerabilities in Java code; and how these vulnerabilities are also present in widely-used serialisers for popular languages such as JavaScript, PHP and Rust. In our study, we discovered previously unknown denial-of-service security bugs in applications/libraries that parse external data formats such as YAML, PDF and SVG

    Evaluation Methodologies in Software Protection Research

    Full text link
    Man-at-the-end (MATE) attackers have full control over the system on which the attacked software runs, and try to break the confidentiality or integrity of assets embedded in the software. Both companies and malware authors want to prevent such attacks. This has driven an arms race between attackers and defenders, resulting in a plethora of different protection and analysis methods. However, it remains difficult to measure the strength of protections because MATE attackers can reach their goals in many different ways and a universally accepted evaluation methodology does not exist. This survey systematically reviews the evaluation methodologies of papers on obfuscation, a major class of protections against MATE attacks. For 572 papers, we collected 113 aspects of their evaluation methodologies, ranging from sample set types and sizes, over sample treatment, to performed measurements. We provide detailed insights into how the academic state of the art evaluates both the protections and analyses thereon. In summary, there is a clear need for better evaluation methodologies. We identify nine challenges for software protection evaluations, which represent threats to the validity, reproducibility, and interpretation of research results in the context of MATE attacks

    Two-factor Authentication in Smartphones: Implementations and Attacks

    Get PDF
    Two-factor authentication is the method of combining two so called authentication factors in order to enhance the security of user authentication. An authentication factor is defined as ”Something the user knows, has or is”. Something the user knows is often the traditional username and password, something the user has is something that the user is in physical possession of and something the user is is a physical trait of the user, such as biometrics. Two-factor authentication greatly enhances security attributes compared to traditional password-only methods. With the advent of the smartphone, new convenient authentication methods have been developed in order to take advantage of the versatility such devices provide. However, older two-factor authentication methods such as sending codes via SMS are still widely popular and in the case of the smartphone opens up new attack vectors for criminals to exploit by creating malware that is able to gain control over SMS functionality. This thesis explores, discusses and compares three distinct two-factor authentication methods used in smartphones today in the sense of security and usability. These are mTAN (mobile Transaction Authentication Number), TOTP (Time-based One Time Password Algorithm) and PKI (Public Key Infrastructure). Both practial and theoretical attacks against these methods are reviewed with a focus on malicious software and advantages and disadvantages of each method are presented. An in-depth analysis of an Android smartphone SMS-stealing trojan is done in order to gain a deeper understanding of how smartphone malware operates

    Security and trust in cloud computing and IoT through applying obfuscation, diversification, and trusted computing technologies

    Get PDF
    Cloud computing and Internet of Things (IoT) are very widely spread and commonly used technologies nowadays. The advanced services offered by cloud computing have made it a highly demanded technology. Enterprises and businesses are more and more relying on the cloud to deliver services to their customers. The prevalent use of cloud means that more data is stored outside the organization’s premises, which raises concerns about the security and privacy of the stored and processed data. This highlights the significance of effective security practices to secure the cloud infrastructure. The number of IoT devices is growing rapidly and the technology is being employed in a wide range of sectors including smart healthcare, industry automation, and smart environments. These devices collect and exchange a great deal of information, some of which may contain critical and personal data of the users of the device. Hence, it is highly significant to protect the collected and shared data over the network; notwithstanding, the studies signify that attacks on these devices are increasing, while a high percentage of IoT devices lack proper security measures to protect the devices, the data, and the privacy of the users. In this dissertation, we study the security of cloud computing and IoT and propose software-based security approaches supported by the hardware-based technologies to provide robust measures for enhancing the security of these environments. To achieve this goal, we use obfuscation and diversification as the potential software security techniques. Code obfuscation protects the software from malicious reverse engineering and diversification mitigates the risk of large-scale exploits. We study trusted computing and Trusted Execution Environments (TEE) as the hardware-based security solutions. Trusted Platform Module (TPM) provides security and trust through a hardware root of trust, and assures the integrity of a platform. We also study Intel SGX which is a TEE solution that guarantees the integrity and confidentiality of the code and data loaded onto its protected container, enclave. More precisely, through obfuscation and diversification of the operating systems and APIs of the IoT devices, we secure them at the application level, and by obfuscation and diversification of the communication protocols, we protect the communication of data between them at the network level. For securing the cloud computing, we employ obfuscation and diversification techniques for securing the cloud computing software at the client-side. For an enhanced level of security, we employ hardware-based security solutions, TPM and SGX. These solutions, in addition to security, ensure layered trust in various layers from hardware to the application. As the result of this PhD research, this dissertation addresses a number of security risks targeting IoT and cloud computing through the delivered publications and presents a brief outlook on the future research directions.Pilvilaskenta ja esineiden internet ovat nykyään hyvin tavallisia ja laajasti sovellettuja tekniikkoja. Pilvilaskennan pitkälle kehittyneet palvelut ovat tehneet siitä hyvin kysytyn teknologian. Yritykset enenevässä määrin nojaavat pilviteknologiaan toteuttaessaan palveluita asiakkailleen. Vallitsevassa pilviteknologian soveltamistilanteessa yritykset ulkoistavat tietojensa käsittelyä yrityksen ulkopuolelle, minkä voidaan nähdä nostavan esiin huolia taltioitavan ja käsiteltävän tiedon turvallisuudesta ja yksityisyydestä. Tämä korostaa tehokkaiden turvallisuusratkaisujen merkitystä osana pilvi-infrastruktuurin turvaamista. Esineiden internet -laitteiden lukumäärä on nopeasti kasvanut. Teknologiana sitä sovelletaan laajasti monilla sektoreilla, kuten älykkäässä terveydenhuollossa, teollisuusautomaatiossa ja älytiloissa. Sellaiset laitteet keräävät ja välittävät suuria määriä informaatiota, joka voi sisältää laitteiden käyttäjien kannalta kriittistä ja yksityistä tietoa. Tästä syystä johtuen on erittäin merkityksellistä suojata verkon yli kerättävää ja jaettavaa tietoa. Monet tutkimukset osoittavat esineiden internet -laitteisiin kohdistuvien tietoturvahyökkäysten määrän olevan nousussa, ja samaan aikaan suuri osuus näistä laitteista ei omaa kunnollisia teknisiä ominaisuuksia itse laitteiden tai niiden käyttäjien yksityisen tiedon suojaamiseksi. Tässä väitöskirjassa tutkitaan pilvilaskennan sekä esineiden internetin tietoturvaa ja esitetään ohjelmistopohjaisia tietoturvalähestymistapoja turvautumalla osittain laitteistopohjaisiin teknologioihin. Esitetyt lähestymistavat tarjoavat vankkoja keinoja tietoturvallisuuden kohentamiseksi näissä konteksteissa. Tämän saavuttamiseksi työssä sovelletaan obfuskaatiota ja diversifiointia potentiaalisiana ohjelmistopohjaisina tietoturvatekniikkoina. Suoritettavan koodin obfuskointi suojaa pahantahtoiselta ohjelmiston takaisinmallinnukselta ja diversifiointi torjuu tietoturva-aukkojen laaja-alaisen hyödyntämisen riskiä. Väitöskirjatyössä tutkitaan luotettua laskentaa ja luotettavan laskennan suoritusalustoja laitteistopohjaisina tietoturvaratkaisuina. TPM (Trusted Platform Module) tarjoaa turvallisuutta ja luottamuksellisuutta rakentuen laitteistopohjaiseen luottamukseen. Pyrkimyksenä on taata suoritusalustan eheys. Työssä tutkitaan myös Intel SGX:ää yhtenä luotettavan suorituksen suoritusalustana, joka takaa suoritettavan koodin ja datan eheyden sekä luottamuksellisuuden pohjautuen suojatun säiliön, saarekkeen, tekniseen toteutukseen. Tarkemmin ilmaistuna työssä turvataan käyttöjärjestelmä- ja sovellusrajapintatasojen obfuskaation ja diversifioinnin kautta esineiden internet -laitteiden ohjelmistokerrosta. Soveltamalla samoja tekniikoita protokollakerrokseen, työssä suojataan laitteiden välistä tiedonvaihtoa verkkotasolla. Pilvilaskennan turvaamiseksi työssä sovelletaan obfuskaatio ja diversifiointitekniikoita asiakaspuolen ohjelmistoratkaisuihin. Vankemman tietoturvallisuuden saavuttamiseksi työssä hyödynnetään laitteistopohjaisia TPM- ja SGX-ratkaisuja. Tietoturvallisuuden lisäksi nämä ratkaisut tarjoavat monikerroksisen luottamuksen rakentuen laitteistotasolta ohjelmistokerrokseen asti. Tämän väitöskirjatutkimustyön tuloksena, osajulkaisuiden kautta, vastataan moniin esineiden internet -laitteisiin ja pilvilaskentaan kohdistuviin tietoturvauhkiin. Työssä esitetään myös näkemyksiä jatkotutkimusaiheista
    corecore