
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Dissertation in Informatik

Enhancing Data Flow Tracking for
Data Usage Control

Alexander Fromm

CORE Metadata, citation and similar papers at core.ac.uk

Provided by MediaTUM

https://core.ac.uk/display/328376391?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

FA K U LT Ä T F Ü R I N F O R M A T I K
D E R T E C H N I S C H E N U N I V E R S I T Ä T M Ü N C H E N

Enhancing Data Flow Tracking for

Data Usage Control

Alexander Fromm

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität

München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Florian Matthes

Prüfer der Dissertation:

1. Prof. Dr. Alexander Pretschner

2. Prof. Dr. Stefan Tai,

Technische Universität Berlin

Die Dissertation wurde am 16.12.2019 bei der Technischen Universität München

eingereicht und durch die Fakultät für Informatik am 30.03.2020 angenommen.

Acknowledgments

First and foremost, my grateful thanks goes to my supervisor Prof. Dr. Alexander Pretschner

for his guidance and inexhaustible endurance during this work. In particular, many thanks goes

to his sharpness and conciseness in all discussions that we had, and introducing me to the

research world with all its facets: scientific writing, conferences, reviewing, research projects

and presentations. Beyond that, I want to thank Prof. Dr. Alexander Pretscher for the possibility

to participate in the Software Campus intiative and his grateful and outstanding support during

that time. The Software Campus is one of my best experiences that I made during my Phd,

because it gave me the opportunity to develop myself and to meet a lot of interesting and

inspiring people from research and industry.

Furthermore, I want to gratefully thank Prof. Dr.-Ing. Stefan Tai for his kindness he showed

me during our conversations. His valuable feedback, as well as the profound discussions with

him, helped me to improve the present work in several inspiring directions and aspects.

I would like to thank to all my former colleagues at TU Munich for encouraging me when my

moral was down. In particular, I would like to thank Florian, Enrico, Prachi, Tobias, Matthias,

Dominik and Sebastian for the fruitful and cheering up conversations. Furthermore, many

thanks to my co-authors for the fruitful and never-ending discussions and their direct, as well

as indirect, contribution to this work.

Thanks to the German Federal Ministry for Economic Affairs and Energy (BMWi) and the

German Federal Ministry for Education and Research (BMBF) which supported this thesis.

Thanks to all the Bachelor and Master students who conducted their theses under my super-

vision and whose results directly and indirectly influenced the contribution of this work.

Finally, I want to thank my family, and my mother and my father in particular, for their uncon-

ditional support I received over these years and for constantly reminding me that there is also a

life outside of work. With your unwavering support this work would not have been possible.

v

Zusammenfassung

Access Control (AC) ist die erste Wahl von Dateneignern um ihre Daten vor unautorisierten

Zugriffen zu schützen, und so den Zugriff nur auf autorisierte Datenkonsumenten zu limitieren.

Sobald jedoch der initiale Zugriff einmal gewährt wurde sind Dateneigner darüber besorgt wie

deren Daten in Zukunft durch den Datenkonsumenten genutzt werden. Insbesondere mit dem

Aufkommen neuer Datenverarbeitungstechnologien, wie beispielsweise Cloud Computing,

werden diese Bedenken verstärkt.

Das Forschungsfeld um verteilte Datennutzungskontrolle (Data Usage Control (DUC)) er-

weitert konzeptionell das Konzept von AC und liefert Mittel, Techniken und Mechanismen um

Restriktionen hinsichtlich dessen wie Daten genutzt oder auch nicht genutzt werden dürfen

sobald der initiale Zugriff einmal gewährt wurde zu erzwingen. Datennutzungsrestriktionen kön-

nen temporale, propositionale, räumliche und kardinale Einschränkungen umfassen. Moderne

DUC Systeme bedienen sich Data Flow Tracking (DFT) Techniken um Datennutzungsrestrik-

tionen auf eine daten-zentrierte Art und Weise auf allen Kopien eines zu schützenden Datums

zu erzwingen.

Obwohl bereits eine Vielzahl an verschiedenen DFT Ansätzen in der Forschung existieren

sind deren Lösungen hinsichtlich Portabilität und Performanz limitiert. Ein Hauptgrund da-

für ist, dass all diese Lösungen es erfordern ihre Trackinglogik über die gesamte Anwendung,

einschließlich deren System- (z.B. Java Systemklassen für Java basierte Anwendungen) und

3rd-party Bibliotheken, zu injizieren und zu verteilen. Ein solches Vorgehen führt dazu das der

gesamte Code, welcher für die Ausführung der Applikation notwendig ist, miteinander verzahnt

wird. Zum Beispiel wird dadurch die Ausführung einer überwachten Java Anwendung auf einer

handelsüblichen Java Laufzeitumgebung ohne passend modifizierte Java Systemklassen nicht

möglich. Ein praktikabler Weg um diesen Vorbehalt zu mildern wäre es einen DFT Monitor

auf einer unteren Software Abstraktionsschicht zu platzieren, wie beispielsweise auf der Be-

triebssystemebene, und so alle auf ihr betriebenen Anwendungen zu überwachen. Dadurch

wäre eine Trackinglogik innerhalb der Anwendung nicht notwendig. Forschungsergebnisse

zeigen jedoch, dass ein solcher Ansatz zu Überapproximation führen kann, bei der der Fluss

von Daten konservativ zwischen allen Ausgaben und Eingaben einer Anwendung propagiert

wird. Im schlimmsten Fall kann es zu einem Systemzustand führen wo alles überall hin fließt.

Diese Bedenken und daraus resultierende Probleme werden in Kapitel 1 detaillierter diskutiert

und beschrieben.

Um die zuvor beschriebenen Bedenken zu adressieren, stellt diese Thesis einen neuartigen

hybriden Ansatz vor um den Fluss von Daten innerhalb einer Anwendung zu überwachen.

vii

Der vorliegende Ansatz kombiniert statische Informationsflussanalyse und dynamische Da-

tenflussüberwachung um selektiv nur diese Programmstellen zu überwachen, welche auch

tatsächlich relevant für den Fluss eines Datums sind. Auf diese Weise, und wie die vorliegenden

Evaluationsergebnisse zeigen, sind wir in der Lage dynamische DFT-Tracker aus der Literatur

Performanz mäßig zu übertreffen. Des Weiteren, stellt der vorliegende Ansatz die Portabilität

einer zu überwachenden Anwendung sicher, da Trackinglogik nur an den Programmstellen

injiziert wird wo es den Fluss eines Datums auch tatsächlich zu überwachen gilt. DUC Systeme

profitieren vom vorliegenden Ansatz vor allem dadurch, dass Überapproximation bei der Da-

tenflussüberwachung reduziert wird und somit ein präziseres Datenfluss Trackingergebnis für

die Durchsetzung von Datennutzungsrestriktionen vorliegt.

viii

Abstract

Access Control (AC) is one of the first choices for data owners to protect their data from

unauthorized access and to restrict and limit data disclosure only to a selected set of authorized

data consumers. However, once initial access has been granted data owners are concerned

about how their data may be used further on in future by the data consumers. In particular, with

the advent of new data processing technologies (e.g. Cloud Computing) this concern increases.

The research field of distributed Data Usage Control (DUC) extends the concept of AC and

provides means, techniques, and mechanisms to enforce restrictions on how data may or may not

be used once initial access has been granted. Such data usage restrictions encompass temporal,

propositional, spatial, and cardinal constraints. Modern DUC systems employ DFT techniques

to enforce data usage restrictions in a data-centric manner on all copies of a protected data

item.

Although a plethora of different DFT approaches already exist in research, those solutions fall

short in terms of portability and performance aspects. The main reason is, that those solutions

require to inject and to spread their tracking logic over the entire application, including 3rd-party

libraries and code from the surrounding run-time environment (e.g. Java system-classes for Java-

based applications). However, such an approach stick together the entire code which is required

to run the application. For instance, running a monitored Java application on an off-the-shelf

Java Run-time Environment would not be possible without properly modified Java system-

classes. A practical way to address and to mitigate those caveats is to place a data flow tracker at

a lower software abstraction layer, e.g. the operating system, and to monitor all applications

which run on top of that layer. This way, no tracking logic is required at higher abstraction layers.

However, as research results have shown such an approach can result in overapproximation,

where data flows are conservatively propagated between all inputs and outputs of an application.

In the worst case this might result in a system state where everything flows to everywhere. Note,

we discuss those concerns and problems more thoroughly in Chapter 1.

To address the previously described concerns, this thesis presents a novel hybrid approach to

track the flow of data inside applications. The present approach combines static information

flow analysis with dynamic data flow tracking to track selectively only those program locations

that are actually relevant for a flow of data. This way, and as the present evaluation results show,

we are able to outperform performance-wise related dynamic DFT-trackers from the literature.

Further, by design the present solution preserves the portability of the monitored applications,

ix

as tracking logic is only injected at those code regions where the flow of data needs actually

to be monitored. Beyond that, DUC systems benefit from the present approach as it reduces

overapproximation in data flow tracking, and thus, provides a precise data flow tracking result

to enforce data usage restrictions only on those data items that are actually affected.

x

Contents

1. Introduction 1

1.1. Motivation . 1

1.2. Running Example . 3

1.3. Gap Analysis and Problem Statement . 5

1.4. Assumptions . 9

1.5. Solution and Contribution . 10

1.6. Thesis outline . 11

1.7. Relevant Publications . 12

2. Foundations on Usage Control 13

2.1. Usage Control Elementaries . 13

2.2. Usage Control Policies and Mechanisms . 15

2.2.1. Specification Level Policy . 15

2.2.2. Implementation Level Policy . 17

2.2.3. Usage Control Mechanisms . 19

2.3. Generic Data Flow Model . 21

2.4. Usage Control Infrastructure . 24

2.5. Policies by Examples . 32

3. Hybrid Data Flow Tracking 33

3.1. State of the Art Information Flow Analysis . 34

3.2. Overview of the hybrid approach . 35

3.3. Static Information Flow Analysis . 38

3.4. Run-time Data Flow Tracking . 43

3.5. Data Flow Tracking Model for Java . 52

3.6. Evaluation . 61

3.6.1. Precision . 62

3.6.2. S H R I F T versus H D F T++ . 66

3.6.3. Performance . 78

xi

Contents

3.6.4. Threats to Validity . 82

3.7. Strengths and Limitations . 84

3.8. Summary and Conclusion . 88

4. Related work 91

4.1. Information Flow Tracking . 91

4.2. Usage Control . 97

5. Conclusion and Future Work 99

5.1. Conclusion . 99

5.2. Future Work . 100

A. Appendix 103

A.1. Analysis reports . 103

Index of Acronyms 119

xii

1. Introduction

1.1. Motivation

Within the last decade, data processing systems have undergone an impressive transformation:

from heavyweight, monolithic applications towards dynamic distributed software systems.

Additionally, the rise of mobile-, ubiquitous-, pervasive-, and cloud-computing augments data

processing systems to capture and process data more efficiently and in larger quantities than

ever before. For instance, WhatsApp [123], a popular mobile messaging service, processes several

terabytes on data every day from its more than one billion users. Frequently, the processed data

D is sensitive, and hence, needs to be protected from a data security perspective.

A prevalent approach for data protection is Access Control (AC) [18, 48, 104–106]. Conceptually,

AC systems restrict and limit data disclosure only to a selected set of authorized users, henceforth

termed data-consumer. Access restrictions are specified and imposed by a data-provider in

form of past or present conditions, henceforth termed provisions, that must be fulfilled by the

data consumer at the moment in time when an access request is made, e.g. t0 in Figure 1.1.

However, once initial access has been granted AC protection for the released and disclosed data

D is lost, and especially, data providers are concerned about how their data is used further on in

the future tn ≥ t0 by the data consumer.

The research field of distributed Data Usage Control (DUC) [89] tackles such types of concerns

and provides mechanisms to specify and to enforce data usage obligations on data [83, 90].

Obligations, henceforth also termed policies, concern the future usage of data at timestep tn ≥ t0

(cf. Figure 1.1) and encompass temporal, propositional, spatial, and cardinal restrictions on how

data may or may not be used once initial access have been granted at timestep t0. Adherence to

data usage control policies, like “Do not disseminate my data", must be continuously monitored

inside a data processing system before, during, and/or after the usage of data [83]. To do so,

installed reference monitors continuously observe and evaluate a system execution against

data usage control policies. Policy enforcement may happen either in a preventive or detective

mode [91]. Conceptually, the former one actively tries to prevent a policy violation by either

allow, modify, delay, or inhibit the current execution. Whereas, detective enforcement, simply

1

1. Introduction

Policies
(AC+UC) UsageAccess

UCI

Data Provider Data Consumer
Data D Policy P

+

Time d
t0-tj -ti tn

UC: ObligationsAC: Provisions

Figure 1.1.: DUC is an extension of AC and addresses the problem of how data may or may not

be used at time point tn once initial access has been granted at t0.

said, works by observing, detecting, and logging policy violations for an a posteriori analysis.

Data usage control policies are expressed either in a container- or data-centric fashion. Intu-

itively, the former one specifies policies in terms of a data item’s concrete technical representation.

A technical representation serves as a kind of storage container for a data item at one particu-

lar abstraction layer, and may be for instance a file at the file-system layer or a Java-object at

the Java-layer respectively. For example, to prevent a picture (stored in a file pic1.jpg) from

dissemination a container-centric policy specification would be “Do not disseminate pic1.jpg”

(Policy P1) [92]. Note, the container identifier, which is the file name in this case, is part of the

policy specification. As data mostly moves around in a data processing system and therefore

may take various representations and containers in particular, e.g. pic1.jpg may be copied

or edited and saved to pic2.jpg, it is necessary to write a modified version of Policy P1 that

addresses pic2.jpg as well. Otherwise, the content of pic1.jpg can be easily unlinked from

its policy by just copying the file.

However, as one assumes with such an approach the number of policies easily explodes, and

hence, makes the policy maintenance process quite cumbersome, e.g. policy updates due to

changing obligations. Because of that, the notion of representation-independent data usage

control was introduced [92], which distinguishes between abstract data (i.e. the content that

the user actually wants to protect) and its concrete representation. This concept allows the

specification of data-centric policies where data usage restrictions are tailored around the

abstract notion of a data item, and hence, are independent from a data’s concrete representation.

For instance, Policy P1 can be specified in a data-centric manner as “Do not disseminate my

picture”(Policy P2), and thus, talks about all possible representations of a data item. However, to

detect all possible representations and copies of a protected data item, DUC has been extended

2

1.2. Running Example

Database-USAOSNAlice BirthdayApp PaaS-A PersonalBlog Bob

receive()

return D
receive()

return E

storeInUs(E)

storeInUs(D')

queryOSN(D)

return D'

store(E)

store(D)

request(D) request(E)

Figure 1.2.: BirthdayApp and PersonalBlog are using the functions receive() and storeInUs

to receive and store data. Alice protects her transmitted data D by a policy that

requires to track the flow of D between those functions. As BirthdayApp and Person-

alBlog share the same Tomcat web-server instance inside PaaS-A, a flow of data is

also mistakenly reported for PersonalBlog.

and combined with concepts and mechanisms from the research field of DFT [39, 95] in order

to track the flow of data in a data processing system. That way, DUC systems are provided with

valuable information about where protected data items reside, and hence, are affected by a

DUC policy in a representation-independent manner.

This thesis investigates the DFT pillar of DUC systems. Based on a thorough and rigorous

analysis of current state of the art data flow tracking approaches and the illumination of their

drawbacks in the field of DUC, this work provides a new data flow tracking concept. Taking the

identified caveats into account, this thesis contributes with novel DFT approaches that make

improvements regarding precision, performance, and portability of current state of the art DFT

solutions.

1.2. Running Example

To illustrate and emphasize the core problems that this thesis builds upon, this section describes

a figurative sample use case scenario from the cloud domain (cf. Figure 1.3): BirthdayApp and

PersonalBlog, both Java-based web-services, are operated on a single Tomcat web-server instance

running inside PaaS-A. To serve their functionality both services rely on external data storage.

For the sake of simplicity, we assume in Figure 1.3 a database instance for that function. Although

the following scenario description is based on Java web-services, our proposed approach and

solution is generic and can also be applied for other kinds of programs, like Java standalone

applications.

For an Online Social Network (OSN), like Facebook1, it is quite common to open its platform

1https://www.facebook.com

3

https://www.facebook.com

1. Introduction

OSN

PaaS-A (Java)

Tomcat

BirthdayApp PersonalBlog

Alice Bob

Data Data

Database-EU Database-USA

Figure 1.3.: PaaS provider PaaS-A provides a shared run-time environment for two cloud ser-

vices: BirthdayApp, an external third-party birthday calendar service for an OSN,

and PersonalBlog, a web application to manage and create a personal blog. Further,

each service uses external databases to store their generated data.

for third-party services. In Figure 1.3, Alice uses BirthdayApp to display her friend’s birthday

dates in a calendar. To do so, BirthdayApp needs to query the OSN network on behalf of Alice to

retrieve all her friends including their birthday dates (function F1). Furthermore, BirthdayApp

uses external databases to persistently store their accruing data, like friend-relationships or

birthday dates (function F2). As one may notice, those are located in the EU and the USA which

have different data protection regulations. Technically, PaaS-A provides an SDK-library with

the build-in functions queryOSN(user) to perform F1,storeInUs(data) to perform F2, and

receive() to receive data from a user’s request to its running services. As Figure 1.2 illustrates

BirthdayApp uses those build-in functions to implement its functionality.

Next to BirthdayApp the Tomcat web-server also runs PersonalBlog, a web-service to manage

and to create personal blog channels. PersonalBlog is used by Bob (Figure 1.3) to post articles

about his latest experiences in cloud programming on his public blog channel. In contrast to

Alice, Bob does not set a great value upon privacy and actually does not care that PersonalBlog

is using persistent database storage in the USA. Hence, there is no need to track the flow of data

between the build-in functions receive() and storeInUs(data) inside PersonalBlog.

Note, in theory cloud computing postulates to provide an unlimited amount of computa-

tional resources, in practice however, computational resources are still limited. Therefore cloud

providers have to share their computing platforms among their customers in order not to waste

computational resources. Because of that, BirthdayApp and PersonalBlog are operated by PaaS-A

on the same identical run-time execution platform, and thus, technically share the same Java

Runtime Environment (JRE) and Tomcat web-server instance.

As Alice is an extremely privacy-aware person, she would like to prevent BirthdayApp from

storing her data in the USA by enforcing the following DUC policies:

4

1.3. Gap Analysis and Problem Statement

Policy P1 “Do not disseminate my personal data”

Policy P2 “Store my data only on servers in the EU”

Policy P3 “Encrypt my data before transmitting them to servers in the USA”

Policy P4 “Delete my data within 30 days after receipt”

To enforce Policy P1– Policy P4 with a DFT based DUC system, it is necessary to track the flow

of data inside BirthdayApp, in particular, the data flow between the functions receive() and

storeInUs(data). However, as BirthdayApp runs on a shared JRE, current data flow trackers

are not able to properly track the flow of data inside BirthdayApp separately from PersonalBlog,

and therefore, would mistakenly also report a flow of data inside PersonalBlog. The following

Section 1.3 illuminates those concerns and caveats.

1.3. Gap Analysis and Problem Statement

To track the flow of data, research in the field of distributed Data Usage Control (DUC) proposes

a plethora of different Data Flow Tracking approaches and techniques which address differ-

ent abstraction layers, like Android [26], X11 [95], the Internet Protocol [53], MS-Office [108],

MS-Windows [124], or Thunderbird [69]. Conceptually, all those solutions have in common

to propagate a taint-label along the lines of executed program instructions. The value of a

taint-label is considered as an alias or identifier which represents the actual protected data item.

Depending on the abstraction layer, a DFT tracker may take into account layer-agnostic

semantics within its taint propagation mechanism and tracking result. For instance, T B U C E

[69], a data flow tracker for the T H U N D E R B I R D mail-client, is designed and implemented as

a T H U N D E R B I R D-extension, and thus, is able to take into account domain knowledge from

the inside of the mail-client, like the notion of an e-mail. This way, T B U C E is able, for instance,

to track that an e-mail was printed or that e-mail content flows from one e-mail to another or

across different T H U N D E R B I R D instances. On a figurative software abstraction layer stack,

as illustrated in Figure 1.5, T B U C E would reside at the top as it is particularly tailored and

designed for T H U N D E R B I R D. However, as one may notice, although T B U C E provides domain-

specific tracking results its field of application is limited to T H U N D E R B I R D due to its tailored

implementation. Tracking the flow of e-mails inside other mail-clients, like MS-Outlook, requires

another, dedicated implementation. This means in corollary, transferring this methodological

approach to our running example (cf. Section 1.2), we would need to implement a dedicated

monitor for BirthdayApp in order to enforce Policy P1. Enforcing Policy P1 inside another web-

5

1. Introduction

OS

P-A

F1 F3F2

APP

I1
O1

O2

(a) Overapproximation

O2

P-A

F1 F3F2

OS

APP

O1
I1

(b) Precise tracking from inputs to outputs

Figure 1.4.: As in Figure 1.4a no information is available about the data flow dependencies

between input- and output-channels (Ix , Ox), data flow tracker at the OS layer

would conservatively propagate the taint-label from file F1 to F2 and F3. However, in

Figure 1.4b data flow tracking monitors are placed at the application level, which

analyzes data flow dependencies between input- and output-channels, and hence,

precisely propagates the taint-label only from file F1 to F2.

service, like PersonalBlog, would again require a dedicated monitor specifically designed for

PersonalBlog.

In contrast, Wüchner et al. [124] provide a DFT tracker at the MS-Windows operating system

layer. Using system call interposition, their solution observes and inspects low-level system calls

from all processes running on top of the operating system, and thus, their solution resides at the

bottom in our software abstraction layer stack in Figure 1.5. On one hand, such an approach

makes it quite hard for a process (or application) to hide from being monitored. But on the other

hand, as this approach operates on a low abstraction layer (cf. Figure 1.5), higher-level semantics

and processes’ internals (like input-ouput dependencies) are not available, and hence, may lead

to imprecise tracking results. Figure 1.4 illustrates this caveat: as the monitor at the OS level

has no insights about how outputs O1 and O2 depend on the input I1, Wüchner et al. consider the

Application under Scrutiny (AuS) as a black-box and conservatively propagate the taint-label ()

to both outputs, although I1 only flows into O2, as Figure 1.4b reveals. This way, it is guaranteed

that no data flows get lost and missed. But on the downside, it overapproximates and mistakenly

propagates taint-labels to outputs that are not dependent or affected by any sensitive input,

and hence, reports data flows that do not even exist, e.g. the flow from I1 to O1 in Figure 1.4a.

Henceforth, we term this type of concern overapproximation. Due to this imprecision, the entire

system may get tainted after some time [124]. In the worst case, this approach would lead to

a scenario where a taint-label is spread over the entire AuS system, and hence, a policy like

Policy P1 would be falsely enforced on data items that are actually not even affected by Policy

6

1.3. Gap Analysis and Problem Statement

MS-Windows operating system

Thunderbird (x86) Tomcat (Java)

Web-ServiceTBUCE
Application

OS
File system

Hardware
Figure 1.5.: Sample software abstraction layer stack with four abstraction layers. The two layers at

the top are used by the application to perform its domain-specific function. Whereas

the two layers at the bottom provide the fundamental and rundimentary functions

to operate and run the applications.

P1. Moreover, as BirthdayApp and PersonalBlog are running on the same JRE in our running

example (cf. Section 1.2) and therefore in the same process, an OS-level monitor is not able to

differentiate data flows between those two web-services. Thus, enforcing Policy P1 would affect

both web-services.

Dynamic Taint Analysis (DTA) has been proposed as a technique to track the flow of data

inside applications, and thus, to detect dependencies between output- and input-channels.

Input-channels (henceforth termed sources) are those instructions in a program that transfer

data from the outside into an application, like reading data from the network socket. Whereas,

output-channels (henceforth termed sinks) are exactly the opposite and transfer data from the

inside to the outside, like writing data to a network-socket. Processing-Instructions reside on a

path of instructions that in sum transfer data from input- to output-channels (like arithmetic

operations). In contrast to the approaches from Lörscher [69] and Wüchner et al. [124], DTA op-

erates at the application’s code-layer, e.g. at the x86-binary- (like L I B DFT [54]) or Java-bytecode-

(like P H O S P H O R [10]) layer. DTA relies on full instrumentation of the entire application includ-

ing system- and third-party-libraries and works conceptually this way: initially, each program

variable gets a taint-label assigned. On each executed input-channel, the taint-label value of the

receiver variable inside the application, i.e. the variable which points to the data read from the

input-channel, is set to a unique identifier. At run-time, this taint-label value is propagated along

the lines of executed commands. Once an output-channel is reached, the taint-label values of

the output parameters reveal on which input-channels they depend.

However, to do so DTA requires to modify and to inject its tracking logic into the entire appli-

cation code. This includes, cf. Figure 1.6, the program, which contains the code that implements

the actual program logic, the Runtime Environment (RTE), which contains the required exe-

cution code, and possibly 3rd-party-libraries. Such modifications encompass not only adding

7

1. Introduction

program 3rd-party library

run-time environment

Figure 1.6.: Conceptually, an application is composed of code that either directly belongs to the

program, to a 3rd-party library, or to the RTE.

a taint-label for each variable, but also, for instance in case of P H O S P H O R (a popular DFT

tracker for Java-based applications), modifying the Java method- and class-signatures in order

to propagate taint-labels properly. Taint propagation happens not only at the program-code

level but also through 3rd-party-libraries and all Java system-classes which belongs to RTE.

As one may notice, such deep modifications are quite invasive and tightly bind program-, 3rd-

party-library-, and RTE-system-classes together. This thesis advocates that such an approach

affects the portability of the AuS and makes it quite difficult to port and run the adapted and

modified AuS inside other, off-the-shelf run-time execution environments. Derived from that,

this thesis addresses the research questions

RQ1: How can we improve the tracking precision, and thus, reduce overapproximation of the

tracking results compared to a pure black-box approach?

RQ2: How can we track efficiently and effectively data flows inside an AuS from its input- to

its output-channels, and simultaneously, preserve and maintain the portability of the AuS?

A common trait of existing DFT systems, like P H O S P H O R [10] or L I B DFT [54], is it, to treat an

AuS as if it owns an entire RTE where no other applications are executed and operated. However,

for particular domains where computational resources are valuable goods, and therefore are

shared among different applications, such a requirement might be too costly. For instance in our

running scenario in Section 1.2, BirthdayApp and PersonalBlog share the same identical Tomcat

web-server instance, and thus, the same JRE installation. A preliminary task to enforce Policy

P1 on Alice’s transmitted data to BirthdayApp, is the detection of all data flow dependencies

between PaaS-A’s build-in instructions receive() and storeInUs(data), which are used to

receive data from a user request and to store data in the USA respectively. To do so, a conventional

8

1.4. Assumptions

DFT tracker, like P H O S P H O R [10], has to add its tracking logic into the code of BirthdayApp, its

used 3rd-party-library-classes, into the Tomcat web-server, and into all Java system-classes, as

it relies on a full instrumentation of the entire application code including system- and third-

party-libraries. Moreover, tracking logic must also be added into PersonalBlog, as otherwise we

would need a separated, unmodified Tomcat web-server instance only for PersonalBlog.

One may notice, as PersonalBlog uses the same RTE, i.e. the same JRE (especially the same Java

system classes which are stored within the Java system-library rt.jar of each JRE installation)

and the same Tomcat web-server instance, and therefore the same identical methods to read and

store data, P H O S P H O R [10] (and other data flow tracking solutions [81, 96]) reports a flow of data

for PersonalBlog as well. The reason is that P H O S P H O R [10] introduces a taint-label value at the

end of an input-instruction. For instance, in case of method receive(), P H O S P H O R puts a

taint-label value at the end of receive()’s implementation. In reverse, it means that with every

execution the same taint mark is introduced independently from the calling AuS. Exactly this

point leads to the issue that a critical flow of data is also mistakenly reported for PersonalBlog,

although it is not of particular interest as there is no need for DUC policy enforcement according

to our running scenario. However, to enforce Policy P1 in a representation-independent manner,

i.e. on all copies in a shared RTE, the corresponding DUC system, and its DFT system in

particular, must be able to differentiate between those web-services and track the flow of data

separately. In more generic terms and under the assumption that multiple AuS are running on

the identical RTE, this thesis addresses the research question:

RQ3: How can we track the flow of data separately inside different AuS

that share the same RTE?

In sum, this work advocates that current DFT solutions for DUC systems are insufficient (cf.

Chapter 4), as they either (i) suffer from overapproximation (Caveat 1) [39, 53, 124], and therefore

provide imprecise tracking results, (ii) or they impose too much performance overhead (Caveat

2) [54], (iii) or they affect the portability of the AuS (Caveat 3)[10]. This thesis proposes a new

approach to track the flow of data, addressing the previous caveats.

1.4. Assumptions

The term “Runtime Environment” is widely used in different domains, and thus, may have

different notions. For instance, in our running example in Section 1.2, one may consider the

9

1. Introduction

platform PaaS-A as the run-time environment which may include, apart from the Tomcat web-

server, also all other components like load-balancer, containerization, virtualization etc. Another

notion would be to consider the Tomcat web-server as an RTE. So depending on where a line is

drawn, the term RTE may have different notions and may encompass different components.

RTEs have been build for different programming languages, like Java [45], Ruby [101], or PHP

[86]. Moreover, they have been applied to different domains and pervade plenty of different

disciplines. As one of the most popular RTE, the JRE has been adapted for Android (to run

mobile applications), or for the Amazon’s Elastic Beanstalk (AEB) [2] (to run cloud services).

However, in order to avoid ambiguity, this thesis considers the immediately enclosing unit

that interprets and executes AuS’s commands and instructions as an RTE. Further, we assume

that RTEs abstract away from lower technical details and provide, via a programming interface,

a uniform view on universal, commonly used basic functions to applications. Such functions,

for instance, may encompass reading/writing from/to files or network-sockets. Concretely, as

the present work has been prototyped in Java we consider the Java Runtime Environment, their

system-classes rt.jar in particular, as the RTE to execute the AuS. We do not consider a

Tomcat web-server as an RTE (cf. our running example in Section 1.2), because simply speaking

the Tomcat web-server is a collection of libraries to support the execution of Java web-services

inside a running JRE (e.g. they provide the implementation of Java Specification Requirements

(JSR) 109). Thus, we consider them as a kind of third-party-libraries in our software-stack (cf.

Figure 1.5). Moreover, we also do not consider an entire PaaS-platform as an RTE because an

entire PaaS-plaform encompasses much more components, like load-balancer, containerization,

virtualization, etc, and thus, are out of scope in this work.

Further, we assume a lazy-but-benign AuS which lacks mechanisms to track the flow of data

inside for subsequent enforcement of data usage restrictions. This means we do not assume a

malicious AuS that actively tries to circumvent the proposed solution.

1.5. Solution and Contribution

To address the research questions from Section 1.3, this thesis proposes a hybrid approach which

combines Static Information Flow Analysis (SIFA) and Dynamic Data Flow Tracking (DDFT)

techniques to improve the data flow tracking pillar in DUC systems, concerning precision and

performance of the data flow tracker, as well as the portability of the AuS.

SIFA analyzes the flow of data statically at the programming level (or at one of its intermediate

representation) without executing the AuS. In contrast, DDFT tracks the flow of data at AuS’s

run-time by injecting a kind of reference monitor into AuS; Section 3.1 provides a more thorough

10

1.6. Thesis outline

and deeper discussion on the distinction between those two approaches. Combining both

techniques, as we do, enable us to statically precompute data flow dependencies and to track

selectively only those program locations that are actually relevant for a flow of data inside the

AuS; any other locations are omitted. That way, our approach provides valuable information

about how data propagates through and where multiple data copies reside within an AuS (web-

services in our use case scenario, cf. Section 1.2). With our approach, we aim to support data

usage control policy enforcement more precisely in a representation independent manner.

To the best of the author’s knowledge, this thesis is the first work that investigates and provides

a hybrid data flow tracking solution for data usage control enforcement. As a proof of concept,

Java-based prototypes (viz. S H R I F T and H D F T++, cf. Chapter 3) have been implemented to

show the underlying concepts. In summary, this thesis contributes with:

1. a novel hybrid data flow tracker that preserves the portability of an AuS while reducing

overapproximation and performance overhead.

2. a hybrid data flow tracker to support DUC systems in their policy enforcement. This

approach is novel as the run-time tracking logic tracks data flows only at the application

level and does not rely on tracking logic within the RTE. That way, data flow tracking

results for each application are isolated from each other and do not intervene.

3. the first instantiation of a generic data flow model [39] for Java bytecode. Backed by this

model, usage control policies are specified and enforced in a representation-independent

manner on all copies of a protected data item (cf. Chapter 2).

1.6. Thesis outline

This thesis is structured as follows. Chapter 2 provides fundamental foundations in DUC. It

describes the DUC’s underlying system model, its policy specification language, and provides a

high-level logical view on the elementary components of a DUC infrastructure. Furthermore, it

provides a generic data flow model that is instantiated in Section 3.5 for Java bytecode. The core

contribution of that thesis, viz. hybrid data flow tracking approach, is described in Chapter 3.

Furthermore, this chapter provides our evaluation results regarding tracking precision and

run-time performance overhead, and discusses the strengths and limitations of our approach.

Chapter 4 provides related work from the field of Information Flow Tracking (IFT) and DUC.

Finally, Chapter 5 concludes this thesis and describes potential future works and directions

regarding the field of IFT.

11

1. Introduction

1.7. Relevant Publications

To address the research questions RQ1 - RQ3, the research results presented in this thesis are

built upon various research publications which had been published during the conduction of

this dissertation in [51], [71], and[28]. This section gives an overview of those publications and,

wherever it is appropriate, those research publications will be referred to in this thesis.

First and foremost, our motivation’s running sample in Section 1.2 was mainly driven by the

published work in [51]. In that paper we present a compliance monitoring solution in the field

of online social networks (OSN) which prevents third-party applications to use OSN-user data

in a non-compliant way.

Research results on combining static and dynamic data flow techniques, forming the founda-

tion of this thesis, have been published in [71], a joint work between Lovat et al. and the author

of this dissertation. The work in [71] presents S H R I F T and addresses in the first place the over-

approximation problem (RQ1). Further, this paper also provides the S H R I F T implementation

for Java applications and shows its evaluation results in terms of performance and precision.

The present dissertation contributes to S H R I F T [71] with regard to the overall approach of

combining static and dynamic data flow techniques, its Java prototype implementation to track

the flow of data at the application software layer, as well as, with its performance and precision

evaluation results. We want to explicitly mention that this dissertation does not contribute to

the second part of S H R I F T [71] which combines multiple data flow tracking monitors from

different software abstraction layers in order to track the flow of data in a system-wide manner

between and across different system processes and software abstraction layers.

We have published H D F T++, an extension of S H R I F T, in [28]. H D F T++ tracks in addition

to sources and sinks also intermediate instructions residing on a data flow dependency path

between sinks and sources. This way, H D F T++ is able to detect if a statically detected data

flow dependency actually happens at run-time or not. At that point, we would like to refer to

Chapter 3 where H D F T++ is described and also compared to S H R I F T.

12

2. Foundations on Usage Control

Usage Control (UC) is an extension of Access Control (AC) [63, 64] and concerns not only who is

authorized to access which data, but also how data may or may not be used in future once initial

access has been granted [39, 42, 83, 90, 92, 94]. To do so, a data provider (an entity who discloses

and gives data away) imposes data usage restrictions, formally specified in data usage control

policies P with the Obligation Specification Language (OSL) (cf. Section 2.2), on their data D.

Once access has been granted to a data consumer (entity who request and receive data), dataD is

transferred together withP in a sticky manner to the data consumer (cf. Figure 1.1). This, however,

only applies if a proper usage control infrastructure UCI (cf. Section 2.4) is installed and capable

to enforce P on the data consumer’s side. An important distinction needs to be mentioned: AC

takes decisions based on provisions, i.e. authorization constraints that refer to past conditions

upon whose fulfillment access gets granted. On the contrary, Usage Control (UC) obligations

specify constraints that refer to the future usage of data. The following sections describe the

fundamental UC concepts upon which this thesis builds upon.

2.1. Usage Control Elementaries

This section describes the fundamental concepts upon which usage control policies are built.

Conceptually, DUC policies are expressed as propositional, temporal, and cardinal constraints

over system runs. A system run is modeled as a set of timed Traces T : N→ P(E), that maps

abstract time points t ∈N to a set of events E . Each t ∈N represents the continuous timeframe

between (t −1, t], in which an event may happen. An event consists of a name NE and a set of

parameters J , which in turn are defined by a name NP and a value VP . For any event e ∈ E , e .n

denotes the event’s name and e .p its set of parameters (including parameter names and values).

J ⊆NP × VP

E ⊆NE × CE ×P(J)

We assume that every event contains two special, reserved parameters by default, viz. obj ∈NP

and isActual ∈ NP . The former one denotes the target primary object of an event, such as a

13

2. Foundations on Usage Control

file or network request data. Whereas, the latter one is boolean-typed and denotes if an event

is actual, i.e. isActual = true, and has already happened or if it is desired, i.e. isActual = false,

and attempted to happen; syntactically A(·) and D(·) captures this distinction. Moreover, this

distinction is necessary to differentiate between events that trigger usage control mechanisms,

and hence needs to be approved by usage control policies, and events that are already approved

or even do not need approval, and therefore are actually allowed to be executed. In that syntax

an example event declaration is

eτ = (send,{(obj, movie), (isActual, true), (destIp, 131.154.160.1), (destPort, 8080)})
(Equation 2.1)

Event eτ specifies that data movie has been sent over the network to the destination IP

131.154.160.1 and destination port 8080. As one may notice, this is an actual event asA(eτ) = true

and therefore this event has already happened.

Further, we categorize events into specific event-classes CE which we divide into data-usage

and container-usage . Intuitively, data-usage events encompass and address every represen-

tation of a data item, and therefore all containers where a protected data item resides. Con-

trary, container-usage events address a single container. Furthermore, we define a function

getClass : E→ EventClass that determines the event-class for an event e ∈ E .

Beyond that, DUC provides the concept of event refinement which enables universal quantifi-

cation over the unmentioned parameters. To capture that, refinesEv⊆ E×E defines a refinement

relation on events. An event e1 ∈ E refines an event e2 ∈ E , if e1 and e2 have identical names and

if all parameters (names and their values) of e2 are a subset of e1

∀e1, e2 ∈ E : e1 refinesEv e2 ⇐⇒ e1.n = e2.n ∧ e1.p ⊇ e2.p

Event refinement is a helpful concept during policy specification as it allows to quantify over

all unmentioned parameters. For instance, Equation 2.2 shows an event specification (derived

from Equation 2.1) that covers all possible ports, thus eτ refinesEv e ′τ.

e ′τ = (send, (obj, movie), (isTry, true), (destIp, 131.154.160.1)) (Equation 2.2)

However, at system’s run-time all actually executed events are “maximally refined”, i.e. all

parameters are determined and have a value; maxRefEv captures that case:

maxRefEv= {e ∈ E | @e ′ ∈ E : e ′ 6= e ∧ e ′ refinesEv e }

In consideration of the example in Equation 2.1, to declare the same event for any arbitrary

port, one would need to replicate this declaration for all possible ports, ranging from 0 to 65535.

14

2.2. Usage Control Policies and Mechanisms

However, as this would be a cumbersome task variable events VE are introduced that enables

the specification of variables Var : NV → DV in an event declaration. Mapping function Var

maps a variable name NV to a domain of possible variable values DV =P(NE ∪VP)

VE ⊆ (NE ∪NV) × CE × P(NP × (VP ∪NV))

In that context, function InstE : VE→ P(E) instantiates a variable event e ∈ VE by replacing

all variable names nv ∈NV with a concrete value vv from its domain dv ∈DV ; let e [nv 7→ vv]

denote such a replacement (note, more than one variable nv may be specified).

∀e ∈ VE , nv1
, . . . , nvk

∈NV , dv1
, . . . , dvk

∈DV :

VarIn(e) = {nv1
7→ dv1

, . . . , nvk
7→ dvk

}

⇒ InstE (e) = {e [nv1
7→ vv1

, . . . , nvk
7→ vvk

] | ∧k
i=1vvi

∈ dvi
}

Equipped with the concept of variable events, Equation 2.3 shows the the extended event

declaration from Equation 2.1 with Var = {v1 7→ {0, . . . , 65535}}

e ′′τ = (send,{(obj, movie), (isTry, true), (destIp, 131.154.160.1), (destPort, v1)}) (Equation 2.3)

2.2. Usage Control Policies and Mechanisms

The semantic of UC policies are defined over timed traces (cf. Section 2.1). Data usage restric-

tions and requirements are expressed as UC policies at two levels: specification-level and the

implementation-level. Specification-level policies express what the constraints are, whereas

implementation-level policies specify how those constraints should be enforced. In a nutshell,

the latter one serves as a configuration for a usage control mechanism.

2.2.1. Specification Level Policy

A Specification Level Policy (SLP) specifies constraints upon the future usage of data. Formally,

it is based on the Obligation Specification Language (OSL), a first-order-temporal language to

express propositional (Ψ+), temporal (Γ+), cardinal (Ω+), and spatial constraints on the usage

of data. A UC policy UcPolicy ::= P(VE)×P(Φ+) consists of a set of event declarations VE (as

described in Section 2.1) and a set of obligation formulas Φ+. Equation 2.4 shows the supported

15

2. Foundations on Usage Control

operators of Φ+ in Extended Backus-Naur Form (EBNF).

Θ+ ::= VE |N | String | . . .

Φ+ ::= (Φ+) | Ψ+ | Γ+ |Ω+ |A(VE) |D(VE) | forall NV i n DV : Φ+

Ψ+ ::= true | false | not(Φ+) | Φ+ and Φ+ | Φ+ or Φ+ | Φ+ implies Φ+ | eval(Θ+)

Γ+ ::= Φ+ until Φ+ | always(Φ+) | Φ+ after N | Φ+ within N | Φ+ during N

Ω+ ::= repmax(N,Ψ+) | replim(N,N,N,Ψ+) | repuntil(N,Ψ+,Φ+) (Equation 2.4)

A(·) and D(·) specify if the passed event declaration VE is an actual or desired event. The

forall [·] :ϕ operator specifies that formula ϕ ∈ Φ+ has to hold for all variables NV , substituted

by their values VV . The eval(Θ+) is used to specify conditions that are not covered by Ψ+, Γ+,

and Ω+, and hence, for instance enables the specification of physical time- and location-based

constraints:

∀n1 ∈ TIME : A((print,{(obj, secret.doc), (time, n1)}))

→
�

¬eval(8≤ n1 ≤ 18)→ e (log,{(obj, secret.doc), (time, n1)})
�

As eval(Θ+) takes as parameter any possible expression, its semantic is left unspecified and re-

ferred to as [[eval(θ)]]eval forθ ∈Θ+. Operators in Ψ+ have standard semantics from propositional

logic. The until operator has the weak-until semantic from Linear Temporal Logic (LTL) because

liveness-properties are not considered to be relevant in the context of data usage protection

[43]. ϕ1 until ϕ2 is true if ϕ1 ∈ Φ+ is true until ϕ2 ∈ Φ+ eventually becomes true, or ϕ1 ∈ Φ+ is

always true. always(ϕ) specifies that ϕ ∈ Φ+ must be true at each moment in time in the future;

this operator can be also expressed by ϕ until false. ϕ after n is true if ϕ ∈ Φ+ becomes true

after n ∈N timesteps. ϕ within n is true if ϕ ∈ Φ+ was at least once true within the last n ∈N
timesteps. Whereas, ϕ during n specifies that ϕ ∈ Φ+ has to be true at each timestep during the

last n ∈N timesteps. repmax(n ,ϕ) specifies that ϕ ∈ Ψ+ must happen at most n ∈N times in

future. replim(n , low, up,ϕ) is true ifϕ ∈ Ψ+ is true between low ∈N and up ∈N times within the

next n ∈N timesteps. repuntil(n ,ϕ1,ϕ2) is true ifϕ1 ∈ Ψ+ is true at most n ∈N times untilϕ2 ∈ Φ+

eventually becomes true. As one may note, SLP are expressed in future-time. The rationale for

that is: at the moment in time data usage obligations are specified, their actual intention is, to

impose constraints on the future usage of data. Given Ψ+, the semantic of events is defined by

|=e⊆ S ×Ψ+, whereas S ⊆maxRefEv × {desired, actual} specifies all maximal refined actual and

16

2.2. Usage Control Policies and Mechanisms

desired events at system’s run-time:

∀e ′ ∈maxRefEv, e ∈ VE

(e ′, actual) |=e A(e) ⇔ ∃e ′′ ∈ E : e ′ refinesEv e ′′ ∧ e ′′ ∈ InstE (e) ∧

(e ′, desired) |=e D(e) ⇔ ∃e ′′ ∈ E : e ′ refinesEv e ′′ ∧ e ′′ ∈ InstE (e)

For a trace t ∈ T , timestep i ∈N, and a formula ϕ ∈ Φ+, the relation (t , i) |= f ϕ denotes that

trace t satisfiesϕ at time i . The formal semantic ofΦ+ is defined by the relation |= f ⊆ (T ×N)× Φ+:

∀t ∈ T ; i ∈N;ϕ ∈ Φ+ • (t , i) |= f ϕ ⇔ ϕ 6= false ∧
�

∃e ∈ VE • (ϕ =A(e)∨ϕ =D(e)) ∧ ∃e ′ ∈ t (i) : e ′ |=e ϕ

∨ ∃ϕ1,ϕ2 ∈ Φ+ • ϕ =ϕ1 implies ϕ2 ∧
�

¬((t , i) |= f ϕ1) ∨ (t , i) |= f ϕ2

�

∨ ∃θ ∈Θ+ • ϕ = eval(θ) ∧ [[ϕ]]eval = true

∨ ∃nv ∈NV ; dv ∈DV ; ϕ1 ∈ Φ+ • ϕ = (forall nv ∈ dv :ϕ1) ∧ ∀vv ∈ dv : (t , i) |= f ϕ1[nv 7→ vv])

∨ ∃ϕ1, ϕ2 ∈ Φ+ • ϕ =ϕ1 until ϕ2 ∧
�

∀n ∈N : i ≤ n ⇒ (t , n) |= f ϕ1

∨ (∃u ∈N : i < u ∧ (t , u) |= f ϕ2 ∧ ∀n ∈N : i ≤ n < u⇒ (t , n) |= f ϕ1)
�

∨ ∃n ∈N; ϕ1 ∈ Φ+ • ϕ =ϕ1 after n ∧ (t , i +n) |= f ϕ1

∨ ∃n ∈N1; l , r ∈N; ϕ1 ∈ Ψ+ • ϕ = replim(n , l , r,ϕ1) ∧ l ≤ #{ j ∈N1| j ≤ n ∧ (t , i + j) |= f ϕ1} ≤ r

∨ ∃n ∈N; ϕ1 ∈ Ψ+; ϕ2 ∈ Φ+ • ϕ = repuntil(n ,ϕ1,ϕ2)

∧
�

(∃u ∈N1 : (t , i +u) |= f ϕ2 ∧ (∀v ∈N1 : v < u ⇒¬((t , i + v) |= f ϕ2))

∧ (#{ j ∈N1| j < n ∧ t (i + j) |=e ϕ1})≤ n)

∨ (#{ j ∈N1|t (i + j) |=e ϕ1})≤ n
�

∨ ∃n ∈N; ϕ1 ∈ Ψ+ • ϕ = repmax(n ,ϕ1) ∧ (t , i) |= f repuntil(n ,ϕ1, false))

∨ ∃n ∈N; ϕ1 ∈ Ψ+ • ϕ =ϕ1 within n ∧ (t , i) |= f replim(n , 1, n ,ϕ1)

∨ ∃n ∈N; ϕ1 ∈ Ψ+ • ϕ =ϕ1 during n ∧ (t , i) |= f replim(n , n , n ,ϕ1)
�

2.2.2. Implementation Level Policy

In contrast to SLPs, which describe a particular data usage requirement (i.e. what has to be

enforced), an Implementation Level Policy (ILP) PI specifies how data usage obligations must be

enforced within a target system. To do so, ILPs are structured as Event-Condition-Action (ECA)

rules [1, 61, 70]. An ECA rule has the following semantic: On Event If Condition Do Action. This

means, when a trigger-Event E emerges and the trigger-Condition C evaluates to true then

execute Action A. Thereby, E specifies the desired event D(E) that triggers PI ’s verification; C

17

2. Foundations on Usage Control

specifies a condition inϕ ∈ Φ−, the past version of OSL (cf. Equation 2.5); and finally, A specifies

the action (inhibition, modification, execution [90]) that has to be taken, if C verifies to true at

the moment in time E occurs. Note, in the following PI .e denotes accessing the trigger event

e of an ILP policy; PI .ϕ denotes accessing the condition part ϕ of an ILP policy; and finally,

PI .a denotes accessing the action part a ∈ A of an ILP policy.

As suggested, ILP uses a past dialect of OSL for describing conditions. The reason is, that at

run-time data usage decisions have to be taken on system traces, i.e. on events that have already

happened. Equation 2.5 shows the past version of OSL. In a nutshell, all operators from Φ+

are translated into their corresponding past versions. Kumari et al. [60, 61] provide a structural

approach and methodology to translate SLP into ILP policies, i.e. to translate Φ+ into Φ−.

Θ− ::= VE |N | String | . . .

Φ− ::= (Φ−) | Ψ− | Γ− |Ω− |A(VE) |D(VE) | forall NV i n DV : Φ−

Ψ− ::= true | false | not(Ψ−) | Ψ− and Ψ− | Ψ− or Ψ− | Ψ− implies Ψ− | eval(Θ−)

Γ− ::= Φ− since Φ− |� Φ− | Φ− before N | Φ− within N | Φ− during N

Ω− ::= repmax(N,Ψ−) | replim(N,N,N,Ψ−) | repsince(N,Ψ−,Φ−) (Equation 2.5)

Almost all operators in Φ− have a similar semantic as in Φ+, except for some exceptions.

ϕ1 since ϕ2 specifies that ϕ1 ∈ Φ− has to be true ever since ϕ2 ∈ Φ− happened. � ϕ specifies

that ϕ ∈ Φ− is true in all timesteps before, including the current one. ϕ before n is true if ϕ ∈ Φ−

was true exactly in the n th ∈N timestep ago. within and during have similar semantics as their

corresponding future version, and specify that an event ϕ ∈ Φ− has to be true at least once in

the past n ∈ N timesteps, or in each past timesteps respectively. repmax(ϕ, n) specifies that

ϕ ∈ Ψ− was true not more than n ∈N times in the past. repsince(n ,ϕ1,ϕ2) specifies that ϕ1 ∈ Ψ−

must happen at most n ∈N times ever sinceϕ2 ∈ Φ− happened. replim(n , l , m ,ϕ1) specifies that

ϕ1 ∈ Φ− was true between l ∈N and m ∈N times within the last n ∈N timesteps. The formal

semantics of Φ− is defined by |= f − (T ×N)×Φ−:

18

2.2. Usage Control Policies and Mechanisms

∀t ∈ T ; i ∈N; ϕ ∈ Φ− : (t , i) |= f − ϕ ⇔ (ϕ 6= false) ∧
�

∃e ∈ VE : (ϕ =A(e) ∨ ϕ =D(e)) ∧ ∃e ′ ∈ t (i) : e ′ |=e ϕ

∨ ∃ϕ1 ∈ Ψ− • ϕ = not(ϕ1) ∧ ¬((t , i) |= f − ϕ1)

∨ ∃ϕ1, ϕ2 ∈ Ψ− • ϕ =ϕ1 or ϕ2 ∧ ((t , i) |= f − ϕ1 ∨ (t , i) |= f − ϕ2)

∨ ∃ϕ1, ϕ2 ∈ Ψ− • ϕ =ϕ1 and ϕ2 ∧ (t , i) |= f − not(not(ϕ1) or not(ϕ2))

∨ ∃ϕ1,ϕ2 ∈ Ψ− • ϕ =ϕ1 implies ϕ2 ∧
�

¬((t , i) |= f − ϕ1 ∨ (t , i) |= f − ϕ2)
�

∨ ∃θ ∈Θ− • ϕ = eval(θ) ∧ [[ϕ]]eval = true

∨ ∃nv ∈NV ; dv ∈DV ; ϕ1 ∈ Φ− • ϕ = (forall nv ∈ dv :ϕ1) ∧ ∀vv ∈ dv : (t , i) |= f − ϕ1[nv 7→ vv])

∨ ∃ϕ1, ϕ2 ∈ Φ− • ϕ =ϕ1 since ϕ2 ∧
�

(∀n ∈N : n ≤ i ⇒ (t , n) |= f − ϕ1)

∨ (∃u ∈N : u ≤ i ∧ (t , u) |= f − ϕ2 ∧ ∀v ∈N : u < v ≤ i ⇒ (t , v) |= f − ϕ1)
�

∨ ∃n ∈N, ϕ1 ∈ Φ− • ϕ =ϕ1 before n ∧ n ≤ i ∧ (t , i −n) |= f − ϕ1

∨ ∃n , l , r ∈N, ϕ1 ∈ Ψ− • ϕ = replim(n , l , r,ϕ1)

∧ l ≤ (#{ j ∈N | j ≤min(n, i) ∧ t (i − j) |= f − ϕ1})≤ r

∨ ∃n ∈N, ϕ1 ∈ Ψ−, ϕ2 ∈ Φ−, e ∈ E • ϕ = repsince(n ,ϕ1,ϕ2)

∧
�

(∃u ∈N1 : u ≤ i ∧ (t , i −u) |= f − ϕ2 ∧ (∀v ∈N : v < u⇒¬((t , i − v) |= f − ϕ2))

∧ (#{ j ∈N | j ≤ u ∧ t (i − j) |= f − ϕ1} ≤ n))

∨ (#{ j ∈N | j ≤ i ∧ t (i − j) |= f − ϕ1} ≤ n)
�

∨ ∃n ∈N, ϕ1 ∈ Ψ− • ϕ = repmax(n ,ϕ1) ∧ (t , i) |= f − repuntil(n ,ϕ1, false)

∨ ∃n ∈N, ϕ1 ∈ Ψ− • ϕ =ϕ1 within n ∧ (t , i) |= f − replim(n , 1, n ,ϕ1)

∨ ∃n ∈N, ϕ1 ∈ Ψ− • ϕ =ϕ1 during n ∧ (t , i) |= f − replim(n , n , n ,ϕ1)
�

2.2.3. Usage Control Mechanisms

Usage Control mechanisms are installed at the data consumer’s side and are means by which

data providers control the usage of their data. Mechanisms are configured by a list of ILPs, that

specify when a mechanism is applicable, i.e. what are the trigger events ve ∈ VE and conditions

ϕ ∈ Φ− that must match, and what are the compensating actions that need to be taken once a

mechanism applies. Mechanisms may compensate the trigger event ve by

Inhibition minh ⊆ VE×Φ−: execution of ve is prohibited and not converted into an actual event,

i.e. ¬A(ve).

19

2. Foundations on Usage Control

Execution mexc ⊆ VE ×Φ−×P(VE): ve is executed if no other ILP prohibits it. Furthermore, a

set of n events may be executed ∧n
i=1D(vei) in addition. Note, those additional events are

desired as their execution may be subject to other ILPs.

Modification mmod ⊆ VE×Φ−×P(VE): ve is executed in a modified form, e.g. some of the event’s

parameter values are changed. In reverse this means, the execution of ve is prohibited and

a modified version of ve’ is executed. Therefore, a modifier is modeled as a composition

of inhibitors and executors.

Let fire⊆ VE ×Φ− specify the situation when an ILP policy PI is supposed to fire

fire(ve,PI .ϕ) ⇔
�

D(ve) ∧ (A(ve)→PI .ϕ)
�

(Equation 2.6)

Then the semantics of mexc, mmod, minh are defined as

mexc(ve,ϕ, Exc)⇔∀VarIn(ve) : fire(ve,ϕ)→∧xi∈ExcD(xi)

mmod(ve,ϕ, Mod)⇔∀VarIn(ve) : fire(ve,ϕ)→ (¬A(ve)∧mexc(ve,ϕ, Mod))

minh(ve,ϕ)⇔∀VarIn(ve) : fire(ve,ϕ)→¬A(ve)

For a set of n1 executing, n2 modifying, and n3 inhibiting ILPs in a computing system, their

union computes to

M ↔
n1
∧

i=1

mexc(veexc
i ,ϕexc

i , Exci)∧
n2
∧

i=1

mmod(vemod
i ,ϕmod

i , Modi)∧
n3
∧

i=1

minh(veinh
i ,ϕinh

i)

Once, the desired event D(e) is allowed to be executed it is converted into an actual event A(e),
as long as, its execution does not trigger any modifying or inhibiting ILPs. An ILP PI triggers if e

refines PI ’s trigger event PI .e and its condition PI .ϕ evaluates to true. In summary, a maximally

refined desired event either transforms into an actual event, or a modifying or inhibiting ILP

gets triggered by e , and hence, would prevent e ’s execution:

Mdefault↔
∧

e∈maxRefEv

D(e)→
�

A(e)∨
∨

(ve,ϕ) :M →minh(ve,ϕ)

∨ M →mmod (ve,ϕ, Mod)

∃VarIn(ve) : e refinesEv ve ∧ϕ
�

Finally, Mcomplete defines the semantics of all combined ILPs in a system:

Mcomplete↔M ∧Mdefault (Equation 2.7)

It may be the case that the combination of different ILPs leads to inconsistent data usage

specifications. For instance, a modifying mmoda
ILP transforms an event a into b and another

20

2.3. Generic Data Flow Model

ILP mmodb
transforms an event b into a . This thesis does not address the problem of circular

dependencies, and formal inconsistencies in particular, between ILPs, and therefore refer to the

work in [94], where model checking techniques are used to compare and to identify discrepancies

among ILP policies.

Put it simply, once an ILP is activated, it serves as a configuration for a mechanism installed

at the data consumers’ side. This thesis assumes that once a policy is violated it remains violated

forever and the violation is reported at each moment in time. However, depending on the context

another strategy would be more applicable. For instance, to report the violation the first time

and to deactivate the ILP afterwards, and hence, to reset the mechanism respectively. Because a

general rule does not exist that determines which strategy is the best, a policy themselves must

specify what must happen once a violation occurs. Technically, mechanisms can be implemented

using run-time monitoring and verification techniques [40, 41] or Complex Event Processing

(CEP) technologies [15, 55].

2.3. Generic Data Flow Model

As described in Section 2.2.2, data usage control policies and data obligations are mostly specified

and expressed in terms of events. However, policy issuers intend to impose data usage obligations

on their actual data rather than on single events. Moreover, as data might evolve at system’s

run-time from one copy to another, policy issuers desire the protection of all copies (henceforth

also termed representations) of their data, and not only the first initial data item. For instance, a

picture F at the filesystem might be modified or converted from one format FA into another

FB . These are different representations of the same content, and hence, a policy like “Do not

disseminate my picture” (P2) must affect FA and FB . It is noteworthy, that the same content may

also exist on different abstraction layers. Related to the previous example, picture F downloaded

from the Internet may exist at least in form of an HTML DOM-object, a file within the browser

cache, and as network packets at the network layer.

As a consequence, enforcement of data obligations requires knowledge of the different repre-

sentations. To do so, the usage control model is extended with data flow tracking features that

enable to track different representations, and hence, to track how data evolves and disseminates

in a system [39]. Separating data from its concrete representations enables the expression and

enforcement of data usage requirements in terms of data, like P2, rather than layer-specific

representations, like P1. The enforcement mechanism would then need to take into account

every representation of a protected data item. This section describes a generic data flow model

that enables to model and to describe how data flows among different representations within a

21

2. Foundations on Usage Control

system. Chapter 3 instantiates this model for H D F T++, and hence, forms the foundation of the

proposed hybrid data flow tracking approach.

The generic data flow model [39, 95] is a state transition system and provides formal and

operational concepts to model data flows in a system. A state σ captures which data is stored in

which representation, whereas a state transition models how data flows from one representation

to another. Formally, the data flow tracking model is described by the tuple

(D,C,E ,I,F ,σ,σi ,R)

Set D represents all to be protected data items in a system. Whereas, set C denotes all possible

representations (henceforth also termed containers) in a system where potentially data may be

stored, e.g. variables or files. All relevant system events, e.g. method invocations or system calls,

that potentially cause a flow of data, and hence change the system state, are denoted by set E ;

notably, at system’s run-time only actual events cause data flows. Principals I ⊆ C are all active

entities in a system, e.g. a process or a thread that can initiate events. F is the set of all naming

identifiers that are used to identify containers in a system, e.g. process- or object-id. Finally, all

possible system states are specified by

σ := s × l × f

A state is compound by three mappings:

• A storage function s : (C→ 2D) that maps a container to a set of data items

• An alias function l : (C→ 2C) that models an alias relation between different containers.

An alias relation captures the fact that some containers get implicitly updated whenever

other containers do. If c2 ∈ l (c1) for c1, c2 ∈ C, then any data written to c1 is immediately

propagated to c2.

• A naming function f : (I ×F→ C) that maps uniquely a tuple of principle I and naming

identifier F to a container C

σi ∈σ denotes a system’s initial state. The set of all possible state transitions in a system is

defined by relation R⊂σ×E→σ. For a given moment in time n ∈N, states : (Trace×N)→σ
computes the dissemination of data after executing trace t ∈ T until timestep n −1.

states(t , n)

σi if n = 0

R(states(t , n −1), t (n −1)) if n > 0

Additional notations for modelling state transitions are defined. Let x ∈ {s , l , f } denote the

access of a mapping function in state σ ∈ σ. For any mapping σ.x : J → K and a variable

22

2.3. Generic Data Flow Model

ν ∈ V ⊆ J , define σ.x ′ = σ.x [ν ← expr]ν∈V with σ.x ′ : J → K such that σ.x ′(y) = expr if

y ∈V andσ.x ′(y) =σ.x (y) otherwise. Multiple state changes for disjoint sets
⋂

i≤n∈NVi = ; are

defined by a function composition ◦; the replacement is done atomically and simultaneously.

σ.x [ν1← exprν1
; . . . ; xn ← exprνn

]ν1∈V1,...,νn∈Vn
=

σ.x [νn ← exprνn
]νn∈Vn

◦ . . . ◦σ.x [ν1← exprν1
]ν1∈V1

The main driver to combine data usage control concepts with data flow tracking is, to specify

data usage control policies in a data-centric manner, i.e. policy issuers specify data obligations

in terms of data rather than layer-specific containers/representations. To complement that

approach, the concept of event refinement from Section 2.1 needs to be redefined and adapted

in the presence of states. The rationale is, that at run-time system events e ⊆maxRefEv refer

to concrete containers, while usage control policies might be specified in terms of data or

containers. Because of that, the decision-taking process must also take into account the system’s

current stateσ ∈σ, as a state provides information about which data is stored within a container.

Let getClass be defined as in Section 2.1, then the system must satisfy the conditions:

∀e ∈ E : getClass(e) = dataUsage⇔∃par ∈D : (obj 7→ par) ∈ e .p

∀e ∈ E : getClass(e) = containerUsage⇔∃par ∈ C : (obj 7→ par) ∈ e .p

In this respect, an event e1 refines an event e2 in the presence of states,

• if both has the same class getClass(e1) == getClass(e2) and e1 refinesEvΣ e2, or

• if both has the same name, and getClass(e1) == containerUsage, and there exist a data

item d stored in a container c such that (obj 7→ d) ∈ e1.p and (obj 7→ c) ∈ e2.p , and all

parameters in e1 have the same value as in e2 except for parameter obj

Formally refinesEvΣ ⊆ (E ×Σ)×E is defined

∀e1, e2 ∈ E ,∀σ ∈Σ : (e1,σ) refinesEvΣ e2 ⇔

(getClass(e1) == getClass(e2) ∧ e1 refinesEv e2)

∨
�

getClass(e1) == containerUsage ∧ getClass(e2) == dataUsage

∧ e1.n == e2.n ∧ ∃d ∈D, c ∈ C : d ∈σ.s (c)

∧ (obj 7→ c) ∈ e1.p ∧ (obj 7→ d) ∈ e2.p ∧ (e2.p \ {obj 7→ d })⊆ (e1.p \ {obj 7→ c })
�

To specify data obligations in the presence of states, the OSL language Φ+ is extended with

state-based operatorsΠ+, that enables to specify conditions on the system’s data flow stateσ.

Π ::= isNotIn(D,P(C)) | isMaxIn(D,N,P(C)) | isCombinedWith(D,D,P(C))

Φ+ ::= Φ+ |Π

23

2. Foundations on Usage Control

Operator isNotIn(d,C) is true if d ∈D is not in any of the specified containersC⊆ C, isMaxIn(d, n,C)

is true if data d ∈D is contained in at most n ∈N containers inC⊆ C, isCombinedWith(d1, d2,C)

evaluates to true if there exists at least one container in C ⊆ C that contains both d1, d2 ∈ D.

Formally, the semantics ofΠ are specified by |=S⊆ (Trace×N)×Π

∀t ∈ Trace; n ∈N;ϕ ∈Π;σ ∈σ : (t , n) |=S ϕ⇔σ= states(t , n) ∧
�

∃d ∈D,Cs ⊆ C • ϕ = isNotIn(d,Cs) ∧ ∀c ′ ∈ C : d ∈σ.s (c ′)⇒ c ′ /∈ Cs

∨ ∃d1, d2 ∈D, C⊆ C • ϕ = isCombinedWith(d1, d2,C) ∧ ∃c ′ ∈C : d1 ∈σ.s (c ′) ∧ d2 ∈σ.s (c ′)

∨ ∃d ∈D, m ∈N,C⊆ C • ϕ = isMaxIn(d, m,C) ∧ | #{c ∈C | d ∈σ.s (c)} |≤m
�

Dually, Φ− ::= Φ− |Π extends the past version of OSL Φ− with the state-based operatorsΠ.

2.4. Usage Control Infrastructure

As illustrated in Figure 1.1, a dedicated Usage Control Infrastructure (UCI) is required on the

data consumer’s side and must perform the following tasks to enforce usage control policies:

• Manage and deploy ILP usage control policies

• Monitor events within the system that are relevant for data-usage and verify if their execu-

tion does not violate any deployed ILP usage control policies

• Enforce usage control decisions, once they have been made, by inhibiting, modifying, or

delaying system events

• Monitor events that lead to a flow of data, and hence, might change the system’s data flow

stateσ ∈Σ

• Record and maintain a system’s data flow stateσ ∈Σ at each moment in time n ∈N

To address these requirements, the foundations on usage control, as described in Section 2.1 -

Section 2.3, are operationalized in a layer-agnostic generic architecture (cf. Figure 2.1): Policy

Enforcement Point (PEP), Policy Decision Point (PDP), Policy Information Point (PIP), and

Policy Management Point (PMP). As one may recognize, this architecture design follows the

separation of concerns principle [65] and is leaned on the established XACML [79] and COPS

[22, 57] reference architecture. However, this thesis underlying UCI infrastructure components

have slightly different semantics and assigned functions than those reference architectures. In a

nutshell, the UCI exhibits three components that build and form the carthorse of this thesis

24

2.4. Usage Control Infrastructure

4. σPMP

PEP

PDP PIP0. deployPolicy(ϕ)

Figure 2.1.: Usage Control Infrastructure

underlying infrastructure: PEP, PDP, PIP. The PEP is in charge to extract and to notify context

information in the form of system events e ∈ E to the PDP (cf. step 1 in Figure 2.1). Based on the

signaled system events, the PDP decides if their executions do not violate deployed policies and

replies its decision back to the corresponding PEP for enforcement (cf. step 4 in Figure 2.1). In

case data usage events are signaled, the PDP also queries the PIP (cf. step 2 and 3 in Figure 2.1)

to take into account the current data flow state σ ∈ Σ of the system. Note, this architecture

provides a logical view on its components and their interplay, and by design is able to support

different abstraction layers, including the Java abstraction layer. Their technical implementation,

however, may differ (e.g. using simple taint analysis to implement the PIP).

The Policy Enforcement Point implements the right-hand side of Equation 2.7. In the liter-

ature PEPs have been implemented for different abstraction layers such as Android [26, 97],

Java [29, 30], JavaScript [85], ChromiumOS [122], MS Office [108] and Windows [124], Mozilla

Thunderbird [69] and Firefox [62], MySQL [68], OpenBSD [39], OpenNebula [66], and X11[95]. All

those implementations have in common, that they are tailored for one specific abstraction layer

to monitor and intercept layer-specific system events properly. For instance, a Java-agnostic

PEP [29]may intercept and interpret Java method calls as events, whereas PEPs at the operating

system layer [39, 124] interpret system calls as events. However, because the PEPs are unaware

of any deployed policies and do not have semantics about monitored events, the PEP must

signal each intercepted event to the PDP to get its execution approved. Depending on the PDP’s

taken decision the PEP allows, denies, or modifies the execution of the currently intercepted

event. Note, each generated and signaled event e ∈ E is maximally refined, i.e. e ∈maxRefEv.

Beyond that, the PEP also intercepts and signals all data flow relevant events to the PIP to notify

and to keep track of how data flows.

The Policy Decision Point implements the function in Equation 2.6 and continuously evalu-

ates if the execution of a particular signaled system event could potentially violate a deployed

25

2. Foundations on Usage Control

policy. To do so, the PDP is configured with a set of ILP policies and works from a high-level

perspective as follows:

1. First, an intercepted event e ∈ maxRefEv is matched against deployed policies PI . An

event e matches a policy event PI .e if e refinesEv PI .e holds.

2. Second, the PDP evaluates the policy’s condition partPI .ϕ. In case the condition includes

state-based operators π ∈Π, the PDP also queries the PIP to get additional information

about the current data flow state of the system.

3. Finally, if the condition part of a policy evaluates to true, the specified action is applied.

Moreover, for temporal constraints where it is not trivial and probably also not practical to

determine the exact moment in time, the PDP supports the concept of a timestep interval.

A timestep interval may have different sizes and allows to cluster a set of events that occur

within a certain timeslot (e.g. 2 seconds or 1 hour). This concept is quite helpful to estimate

approximately when a refining event actually happened. For instance, PI (cf. Equation 2.8)

specifies that a manager must be notified (PI .a) in case a clerk process a service request (PI .e)

not within the prescribed time of 10 days (PI .ϕ).

PI =

PI .e= (processReq,{(obj, d), (role, clerk), (type, service)})

PI .ϕ = not((reqService,{(obj, d)})within 10) and

repsince(1, (reqService,{(obj, d)}), false)

PI .a= (notify,{(obj, d), (role, manager)})

(Equation 2.8)

Whenever PI ’s evaluation is triggered by PI .e, it is quite unlikely that exactly at the same

point in time the condition event e1 refinesEv (reqService,{(obj, d)}) happened exactly 10 days

(864000 seconds) before. It is more likely, that an event e1 happened approximately 10 days ±
12 hours ago. Related to Equation 2.8, this means, that once PI gets triggered, a PDP instance

would evaluate the condition part for a timeframe between 9.5 days ± 12 hours.

Once, a policyPI gets deployed on the PDP, the PDP instantiates a new evaluation mechanism

MI and configures its ECA parts according to the information provided by PI , i.e. MI .e =

PI .e, MI .ϕ =MI .ϕ, and MI .a = PI .a. While ILPs specify how obligations must be fulfilled,

mechanisms MI are concrete instances that are able to verify if such obligations actually hold

at run-time. As a policy condition PI .ϕ might exhibit complex and nested structures, the PDP

represents the condition part MI .ϕ as an expression tree. Figure 2.2 shows the expression

tree for condition PI .ϕ from Equation 2.8. Thereby, an expression tree’s leave nodes represent

either events E , state-based operators Π, or boolean constants true and false. Whereas, its

26

2.4. Usage Control Infrastructure

AND

NOT

WITHIN
n=10

REPSINCE
n=1

(reqService,{(obj,d)}) false

(reqService,{(obj,d)})

Figure 2.2.: Sample expression tree that shows the condition part PI .ϕ from Equation 2.8.

internal nodes represent all the other operators, including temporal, propositional, and cardinal

operators. Moreover, all nodes of an expression tree are stateful and store how often their state

changes during the current (and in case of temporal operators, in previous) timesteps.

Figure 2.3 illustrates the interplay between the UCI components. Once a policy gets instan-

tiated and deployed on the PDP (cf. steps 1-3), the PEP continuously monitors and signals

intercepted events e ∈ E to the PDP (cf. steps 4 and 5). To evaluate a received event e on an

up-to-date data flow state, the PDP first redirects e to the PIP, which updates its data flow

state according to e ’s semantic (cf. step 6 and 7). If e is of type dataUsage, i.e. getClass(e) =

dataUsage, the PDP updates the internal state of all leaf nodes of an expression tree. For leave

nodes of type state-based operator, the PDP delegates the update process to the PIP. Boolean

typed leave nodes true and false are invariant and do not need an update. The internal state of

event-typed leave nodes e ∈ E counts the number of refining events that happened within the

current timestep, i.e. (e ′,σ) refinesEvΣ e =true. The update process for leave nodes happens for

all instantiated mechanism, independent of their trigger event. That way, the state of all leave

nodes of all expression trees are consistent with the happened event.

Once all leave nodes of all expression trees are updated, a policy is triggered for two rea-

sons: either a signaled event occurs or a timestep has elapsed and a policy mechanism gets

triggered. In both cases the entire condition MI .ϕ needs to be evaluated, starting from the

root node (which represents the outermost operator of a MI .ϕ condition) to its leave nodes.

Let assess(MI .ϕ,EoT,n) denote this recursive evaluation process for a timestep n ∈ N
and a root condition MI .ϕ. EoT = true holds in case the evaluation process gets triggered by

an elapsed timeframe. Formally, assess(MI .ϕ,EoT,n) is reflected by (t , n) |= f − MI .ϕ and

(t , n) |=S MI .ϕ with t ∈ T , but technically, however, this evaluation process might be more or

less complex depending on the internal node’s operator type. Mechanism’s actions MI .a are

applied in case the evaluation process results in assess(MI .ϕ,EoT,n)=true. Table 2.1 pro-

vides a technical view in pseudo-code on how assess(MI .ϕ,EoT,n) works for the different

27

2. Foundations on Usage Control

User PMP PEP PDP PIP

3. deployPolicy(ϕ')

1. deployPolicy(ϕ) 2. ϕ'=instantiatePolicy(ϕ)

4. monitorEvent(e)

5. signal(e)
6. signal(e)

7. updateState(σ,e)

8. getState()

σ

9- eval(ϕ',e,σ)

loop [e � S]

[allow|modify|deny|execute]

Figure 2.3.: Usage Control Infrastructure

operators in Φ−.

The Policy Information Point keeps track of how data flows within a data processing system.

To do so, it implements the generic data flow model (cf. Section 2.3) and provides the possibility

to instantiate the state transition function R for a concrete system. Based on the intercepted

system events, the PIP updates its internal data flow stateσ ∈Σ according to the system events

semantic. Thus, the PIP knows at each moment in time which data d ∈D is stored in which

container c ∈ C in a system. Chapter 3 provides a detailed view on the implementation and

instantiation of that model for the present work.

The Policy Management Point is responsible for the management of usage control policies.

This includes deployment and revocation of policies, as well as, editing and translating policies

between different formats [59].

28

2.4. Usage Control Infrastructure

Table 2.1.: Technical evaluation of operators PI .ϕ ∈ Φ− by the PDP [52]

PI .ϕ ∈ Φ− Description

not(ϕ) Returns the negated result of the recursive

evaluation of ϕ ∈ Ψ− at a timestep n ∈N.return !assess(ϕ,EoT,n)

ϕ1 and ϕ2 Evaluates ϕ1 ∈ Ψ− and ϕ2 ∈ Ψ− recursively

for timestep n ∈N, and returns the AND

conjunction of both.

return assess(ϕ1,EoT,n) &&
assess(ϕ2,EoT,n)

ϕ1 or ϕ2 Evaluates ϕ1 ∈ Ψ− and ϕ2 ∈ Ψ− recursively

for timestep n ∈N, and returns the OR

conjunction of both.

return assess(ϕ1,EoT,n) ||
assess(ϕ2,EoT,n)

ϕ1 implies ϕ2 Evaluates ϕ1 ∈ Ψ− and ϕ2 ∈ Ψ− separatetly

and returns true if either ϕ1 is false or ϕ2 is

true.

return not(ϕ1)

|| assess(ϕ2,EoT,n)

� ϕ Returns true if ϕ ∈ Φ− was true at each

moment in time in the past. To do so, state

variable always stores the evaluation result

of ϕ for the current timestep n.

if (!s.always)
return false

s.always &= assess(ϕ,EoT,n)
return s.always

replim(n , l , m ,ϕ) An internal buffer s.prev of size n stores if

ϕ ∈ Ψ− was true at timestep s.next, which

is initialized with zero. An internal state

counter s.counter stores if ϕ was true at

timestep next. Finally, true is returned if ϕ

happened between l ∈N and m ∈N times

within the last n ∈N timesteps.

boolean statePhi =
assess(ϕ,EoT,n)
if (s.prev[s.next]){

s.counter -= 1
}
if (statePhi){

s.counter += 1
}
s.prev[s.next] = statePhi
result = s.counter >= l
result &= s.counter <= m
return result

29

2. Foundations on Usage Control

ϕ1 since ϕ2 Variable s.statePhi1 and s.statePhi2

temporarily store the evaluation result of

ϕ1 and ϕ2 respectively.

s.alwaysPhi1SincePhi2 and

s.alwaysPhi1 are internal boolean

[s]tate variables of since-node and store if

ϕ1 has been true since ever ϕ2 happened,

or ϕ1 was true since ever. Those state

variables are initialized to

s.alwaysPhi1=true and

s.alwaysPhi1SincePhi2=false.

boolean statePhi1 =
assess(ϕ1,EoT,n)
boolean statePhi2 =
assess(ϕ2,EoT,n)

s.alwaysPhi1 &= statePhi1
if (s.alwaysPhi1)

return true
if (s.statePhi2)

s.alwaysPhi1SincePhi2 =
true

else
s.alwaysPhi1SincePhi2 &=
statePhi1

return s.alwaysPhi1SincePhi2

ϕ during n Returns true if ϕ ∈ Φ− happened in all the

last n ∈N timesteps. To do so, s.counter

is set initially to n. If ϕ is true, every

evaluation cyclus decrements s.counter

by one for the respective timestep. The

total evaluation results in true if

s.counter reaches zero.

boolean statePhi =
assess(ϕ,EoT,n)
if (statePhi){

s.counter -= 1
}
else{

s.counter = n
}
return (s.counter ==0)

ϕ within n Returns true if ϕ ∈ Φ− happened at least

once within the last n ∈N timesteps. To do

so, an internal state counter s.count is

set to n, once ϕ verifies to true. With every

evaluation cycle s.count is reduced by

one. True is returned in case s.count is

bigger zero.

boolean statePhi =
assess(ϕ,EoT,n)
if(statePhi){

s.counter = n
} else {

s.counter -= 1
}
return (s.counter > 0)

30

2.4. Usage Control Infrastructure

ϕ before n State variable s.prev is a boolean array of

size i, and stores the evaluation results of

ϕ for the last i timesteps. All entries in

prev are initialized with false. In case

the end of timeframe is reached, i.e.

EoT = true, the evaluation result for the

last n timestep is updated.

boolean result = s.prev[n %
i]
if (EoT)

s.prev[n % i] =
assess(ϕ,EoT,n)

return result

repmax(ϕ, n) On each successful evaluation of ϕ an

internal state counter s.counter is

incremented by one. True is returned, as

long as the upper limit n is not reached.

boolean statePhi =
assess(ϕ,EoT,n)
if (statePhi)

s.counter += 1;
return (s.counter < n)

repsince(n ,ϕ1,ϕ2) An internal state variable s.counter

stores the number of times ϕ1 ∈ Ψ− was

true, either since ever or since ϕ2

happened. Once, s.counter exceeds the

upper limit n, false is returned. State

variables are initialized as follows:

s.alwaysPhi1 = true,

s.alwaysPhi1SincePhi2 = false,

and s.counter = 0.

boolean statePhi1 =
assess(ϕ1,EoT,n)
boolean statePhi2 =
assess(ϕ2,EoT,n)
if (!(s.counter < n))

return false
s.alwaysPhi1 &= statePhi1
if (s.alwaysPhi1){

s.counter += 1
return (s.counter < n)

}
if (s.statePhi2){

s.alwaysPhi1SincePhi2 =
true
s.counter = 0

}
else{

s.alwaysPhi1SincePhi2 &=
statePhi1
if(s.alwaysPhi1SincePhi2)

s.counter += 1
}
return (s.counter < n)

31

2. Foundations on Usage Control

2.5. Policies by Examples

Based on the previously described foundations in DUC, Table 2.2 illustrates the formal represen-

tation of our example policies Policy P1– Policy P4, from our running scenario (cf. Section 1.2), as

ECA rules. To enforce Policy P1 we assume, for the sake of simplicity, that dissemination of data

happens only through network communications. Because of that, Policy P1 inhibits a send event

if the network container Cnet contains protected data from the file “secret.txt”. Under the assump-

tion of the variable mapping function Var = {r 7→ {EU , US, RUS, CHN , JPN , . . .}}, Policy P2 speci-

fies to inhibit any attempts to store data on non-EU servers, i.e. condition not(eval(r == “EU ′′))

is satisfied, whereas Policy P3 permits the storage of encrypted data on US servers, i.e. condition

eval(r == “USA′′) holds; note, Policy P3 uses a helper function enc to encrypt data. In both

policies, the event parameter receiver specifies the destination server on which data is stored.

In contrast to the previous policies, Policy P4 is evaluated on every trigger event < any > inside

the target system and specifies to delete data after 30 days of reception.

Table 2.2.: Policy P1- Policy P4 from our running scenario in Section 1.2 as formal ECA-rules.

Policy P1 “Do not disseminate my data from secret.txt"

PI .e (send,;)
PI .ϕ not(isNotIn(data,Cnet))

PI .a inhibit

Policy P2 “Store my data only on servers in the EU"

PI .e (store,{(obj, data), (receiver, r)})
PI .ϕ not(eval(r == “EU ′′))

PI .a inhibit

Policy P3 “Encrypt my data before transmitting it to servers in the USA"

PI .e (store,{(obj, data), (receiver, r)})
PI .ϕ eval(r == “USA′′)

PI .a (store,{(obj, enc(data)), (receiver, r)})

Policy P4 “Delete my data within 30 days after receipt”

PI .e < any >

PI .ϕ (receiving,{(obj, data)}) before 30 and replim(30, 0, 0, (receiving,{(obj, data)}))
PI .a (delete,{(obj, data)})

32

3. Hybrid Data Flow Tracking

This chapter describes a hybrid data flow tracking approach to sup-

port distributed Data Usage Control policy enforcement. Contents

of this chapter have been published in [28, 71].

As Section 2.3 describes, DFT trackers are an integral component of modern DUC systems to

specify and to enforce data usage restrictions in a representation independent manner. Although

the research field of DFT has been and is being researched, existing solutions fall short in terms of

Caveat 1, Caveat 2, and Caveat 3 (cf. Section 1.3). In particular, in a domain where computational

resources are shared between different applications, as it is the case within our running scenario

(cf. Section 1.2), Caveat 3 might affect AuS’s portability too much and tightly binds the data flow

tracking mechanism with the web-service’s run-time environment [10, 81, 96].

To counteract those limitations, this chapter provides and describes a hybrid approach in

two different flavors, namely S H R I F T and its extended version H D F T++, which both leverage

statically precomputed information flow analysis results to track the flow of data through appli-

cations at run-time. In particular, S H R I F T and H D F T++ aim to enhance the portability of AuS

and to increase the tracking precision compared to a pure black-box approach (cf. Section 3.1).

As a proof-of-concept, S H R I F T and H D F T++ are implemented in Java and evaluated on a set of

different applications.

This chapter is structured as follows: Section 3.1 recaps state-of-the-art data flow tracking

approaches and techniques and unveils the main caveats and drawbacks of those approaches.

Section 3.2 provides a high-level overview of the methodology that underpins S H R I F T and

H D F T++. Section 3.3 describes the static analysis part of the proposed hybrid approach, and in

Section 3.4 the integration and deployment of S H R I F T and H D F T++ is provided. Section 3.5

provides the formal data flow model which H D F T++ builds upon, to track not only data flow

dependencies but also their taken execution paths; in a nutshell, this model is an instantiation

of the generic data flow model from Section 2.3 and can be considered as a configuration for

33

3. Hybrid Data Flow Tracking

the PIP component inside our UC architecture (cf. Section 2.4). Evaluation results and the

strengths and limitations of both hybrid approaches are discussed in Section 3.6 and Section 3.7

respectively.

3.1. State of the Art Information Flow Analysis

Research literature proposes two fundamentally different approaches to analyze the flow of

data: Static Information Flow Analysis (SIFA) and Dynamic Data Flow Tracking (DDFT) [102].

SIFA analyzes the AuS at the program level (or at one of its intermediate representation).

They are popular as they detect data flow (henceforth termed explicit flows) and control flow

(henceforth termed implicit flows) dependencies without executing the AuS, and aim to detect

all possible information flows [20, 120]. In particular, for implicit flows they also provide certainty

about information flows for non-executed branches. A given program is certified as secure, if its

(critical) sources do not interfere with its critical sinks, i.e. if no information flows between them.

Such a static certification can be used, for example, to reduce the need for run-time checks [21].

Various static approaches (apart from Program Dependence Graph (PDG) [98]) are proposed

in the literature, which are usually based on type checking [76, 88, 120] or dataflow analysis

[3, 4, 9, 20]. To this day, SIFA based approaches are instantiated for different programming

languages (like F R A M A -C for C code [27, 56], or J O A N A for Java-bytecode [49]) and for different

domains (like Andromeda for Java-based web-services [114, 115], or F L O W D R O I D for A N D R O I D

applications [8]). Although SIFA based tools are quite powerful and widely used, for instance

within an app store vetting process to assess if an application adheres to predefined properties,

they suffer from scalability issues: even for small and mid-size applications, static analysis

demands huge computational resources. In addition, due to implicit dependencies and missing

run-time values, SIFA reports information flows which are hard to assess if they may get “really

problematic” at run-time. Moreover, handling dynamic aspects in applications, like dynamic

callbacks or reflective code, are confined to the AuS. Further, declassification, i.e. relaxing the

non-interference property of data flow dependencies, needs to be performed at programming

language level without the support of higher-level semantic or run-time values.

In contrast, DDFT-approaches implement a kind of reference monitor and analyze the flow

of data at run-time for a specific abstraction layer (e.g. the operating system layer [39, 124] or

the application layer [10, 54, 69]). Taking into account applications’ run-time information, and

possibly higher-level semantics, DDFT approaches are popular to be very precise, specifically in

the presence of callbacks and reflection. To this day, DDFT based approaches are implemented,

for different programming languages (e.g. P H O S P H O R [10] for Java-bytecode, or Trishul [77, 116]

34

3.2. Overview of the hybrid approach

for the Java VM, or L I B DFT [54] for x86-binaries) and different domains (like TA I N T D R O I D

[23] for A N D R O I D, or Maalej [72] for iOS). A prevalent technique used and implemented by

those tools is taint analysis, which attaches meta-information in form of a taint-label to each

program variable. By default, the value of a taint label is empty. New taint values are introduced

once data flows into an application via a critical source. For instance, a file read-operation

would set the taint value of the receiving variable to a specific value. At run-time, those taint

values are propagated with every executed instruction according to their semantic. To this end,

DDFT-approaches need to monitor each command on the execution path, and therefore, on the

downside incur a non-negligible performance overhead; that is where Caveat 2 originates from,

cf. Section 1.3. Moreover, taint-labels are not only propagated at the application level but also

through the whole RTE. To this end, for instance, the approach in T R I S H U L [77, 116] requires

to modify the JRE, whereas P H O S P H O R [10] requires modifications of all Java system classes

and its used 3rd-party libraries. Moreover, TA I N T D R O I D relies on tracking logic inside the

operating system itself, and therefore, requires a modified version of A N D R O I D, which needs

to be installed on the device beforehand; especially, the latter one is a tedious and cumbersome

task. However, this thesis advocates that such approaches make it quite difficult to port and

run the adapted and modified AuS inside other, off-the-shelf run-time execution environments

(that is where Caveat 3 originates from). Moreover, for particular use case domains, like within

our running scenario from Section 1.2, where run-time environments usually run multiple

SaaS services at the same time, e.g. multiple Java web services are served by a single Tomcat

[112]web-server instance, such deep modifications may also lead to intersections of data flows

between different SaaS services running simultaneously on the same run-time environment.

3.2. Overview of the hybrid approach

This section provides a high-level overview of our hybrid approach which builds the foundation

for S H R I F T (cf. Figure 3.2a), and its extension H D F T++ (cf. Figure 3.2b). The basic idea is to

use statically pre-computed information flow analysis results to employ a minimal run-time

monitor that monitors the actual executed data flows inside the AuS. Whereas S H R I F T tracks

the flow of data from inputs Ix to outputs Ox based on a statically pre-computed mapping,

H D F T++ extends this approach and also tracks the executed program locations Cx that are

taken on the dependency path from Ix to Ox . The advantage of H D F T++ is a potential increase

of the data flow tracking precision at run-time, as it reports only those data flows which are

actually executed; we provide a tangible example in section 3.4 and compare S H R I F T and

H D F T++ in section 3.6.2 to illustrate this advantage. Although the Java programming language

35

3. Hybrid Data Flow Tracking

Config

1. Static IF-Analysis 2. Instrumenter

UC
3.

Run-time

 Sources
 Sinks

AuS

Instrumented AuS

PEP (IRM)

Code

Code

Analysis-

report

Figure 3.1.: First, our approaches statically analyze the AuS for possible sources, sinks, and sink-

source-dependencies. The result is stored into an analysis-report. Second, based on

the result, we instrument the code of AuS and inject a minimal run-time monitor

(IRM). At run-time, the IRM signals the actually executed sources and sinks to the

UC- PIP. In addition, H D F T++’s IRM also signals the executed instructions on a

sink-source-dependency path. This way, the PIP keeps track of how data flows and

disseminates inside the AuS.

is used to illustrate the idea, the overall approach is generic and can be instantiated for other

run-time environments as well, like PHP or Ruby. The S H R I F T and H D F T++ approach is built

upon three parts.

Static Information Flow Analysis (cf. Section 3.3): This step statically analyzes the AuS to

detect all input (source) and output (sink) channels within the application (cf. Figure 3.1). Input

channels are those instructions that transfer data from the outside to the inside, like e.g. reading

data from a file or a Http-request, whereas output channels are exactly the opposite, like e.g.

writing data into a file or a Http-response. Beyond that, this phase also computes dependencies

between the set of sources and sinks, as well as the instructions that reside on those dependencies.

A dependency exists if data, originating from a source, flow either explicitly or implicitly into a

sink [37]. As S H R I F T and H D F T++ are prototypically instantiated for Java, an invocation of a

Java standard library method, that reads or writes data from and to the file- and network-I/O, is

considered as a source or a sink. Finally, all identified sources, sinks, as well as dependencies

between them are reported in an analysis-report at the end of this step.

Run-time Data Flow Tracking (cf. Section 3.4): Based on the analysis-report, S H R I F T and

H D F T++ inject additional instructions into the AuS (cf. Figure 3.2). The S H R I F T approach

instruments only those commands which correspond to a source- or a sink-instruction, and

propagates data flows based on the reported data flow dependencies. At run-time, S H R I F T

36

3.2. Overview of the hybrid approach

signals for each executed sink the list of sources it depends on to the PIP. Based on the internal

PIP-state and the list of sources, the PIP propagates only those sources to the sink which have

been executed and therefore have already a mapping inside the PIP-state. For instance in

Figure 3.2a, once sink O2 is going to be executed S H R I F T signals that it depends on the sources

I2 and I3. However, at that moment in time only source I2 was executed before, and thus, the

PIP propagates only the data item from I2 into O2. The PIP ignores source I3 as no mapping

exists for it.

H D F T++ instruments, in addition to sources and sinks, also all instructions Cx that reside on

a sink-source dependency. This way, H D F T++ is able to propagate the flow of data along the

taken execution path, and thus, to distinguish if a reported data flow actually happens or not at

run-time. To make this advantage more tangible, assume that the instruction C5 in Figure 3.2b

is an if-condition, as illustrated for instance in the code example in Listing 3.4. Depending on

the input data, which is read by the input()-method in this code snippet, the instruction in

Listing 3.4 line 4 is executed (which corresponds to C9 in Figure 3.2) or not (which corresponds

to C6 in Figure 3.2). H D F T++ is able to distinguish which path is taken, and thus compared to

S H R I F T, only reports a flow of data if the instruction in Listing 3.4 line 4 is executed, otherwise

no flow is reported by H D F T++.

Anyway, at run-time S H R I F T and H D F T++ serve as an IRM and extract information about

the running application. For instance, for sources and sinks which read and write data from

and to files, S H R I F T and H D F T++ extract the filename and file-descriptor of the respective

file and signal that information to the UC infrastructure. Based on that, the PIP updates its

internal state and creates a mapping between the filename and the container. Note, the filename

serves as a naming identifier in our data flow model, cf. section 3.5. Extracted information is

signaled in form of events to a UC infrastructure, which is conceptually designed as described

in Section 2.4. Events are classified in desired events D(e)whose execution admissibility needs

to be approved by the PDP, and actual event A(e), which are directly sent to the PIP to keep

track of data flows. The latter one instantiates and implements the data flow tracking model

(cf. Section 3.5), and thus, based on the signaled events A(e) keeps track of how data flows and

disseminates inside an application. That way, the PIP knows at each moment in time which

data originates from which input-channel, is stored at which program location, and flows into

which output-channel inside the AuS.

Data Flow Tracking Model (cf. Section 3.5): Depending on a sink-source-dependency, data

might flow from a source to a sink across different program locations at run-time. To track those

locations and the dissemination of data inside an application, the generic data flow tracking

model from Section 2.3 is instantiated for the Java domain, taking into account the different

37

3. Hybrid Data Flow Tracking

PEP

So
ur
ce
s Sinks

Application

I1 O1

I3

I2
O2A(e)

PDPPMP PIP

D(e)

(a) S H R I F T

PEP

C1

Application

C2 C3

C6
C5 C7

C9

I1 O1

I3

I2
O2So

ur
ce
s Sinks

PDPPMP PIP

A(e) D(e)

A(e)
C4

C8

(b) H D F T++

Figure 3.2.: H D F T++ in Figure 3.2b is an extension of S H R I F T and tracks not only the execution

of one particular dependency {Ix , Ox }-tuple, but also all executed instructions Cx

residing on a sink-source dependency. This way, H D F T++ is able to distinguish

if a statically reported data flow dependency actually happens or not at run-time

(Section 3.4 elaborates in detail on that aspect).

operations and their semantics that might occur on a dependency path. In a nutshell, the

instantiated data flow model implements a state transition system and captures the flow of

data at each moment in time as a specific state of the AuS. A state represents which sources

flow to which sinks inside the AuS at run-time. State transitions are triggered by the actually

executed instructions on a sink-source-dependency. This thesis argues, that representing the

flow of data as a sequence of state transitions, and each state as a snapshot of flowed data,

makes the enforcement of data usage restrictions in a representation independent manner

more convenient, than on a sequence or list of all execution traces that an application has taken.

Note, this model is used by H D F T++ to handle cases as illustrated in Listing 3.4 (cf. Section 3.5).

3.3. Static Information Flow Analysis

To identify program locations that might correspond to a data flow dependency, this phase

statically analyzes the AuS’s Java-bytecode and detect all locations that might correspond to a

source, a sink, or an instruction on a dependency path. To do so, this phase uses J O A N A [49], a

state-of-the-art static information flow analysis tool for Java. First, J O A N A transforms the AuS’s

bytecode into a Static-Single-Assignment (SSA) [16] form which is a language-independent

representation of the AuS. SSA demands that each variable in a program must be defined before

it is used and that a variable is assigned exactly once. If a variable is assigned more than once,

each assignment generates a new variable at the SSA level.

38

3.3. Static Information Flow Analysis

Second, based on the SSA representation, J O A N A builds the System Dependence Graph (SDG)

of the application which is a special graph representation of the AuS. An SDG is a direct graph

G = (V , E), whose vertices V represent program instructions and statements in SSA form,

whereas its edges E represent control- and data-dependencies between its vertices [37]. SDGs

incorporate inter- and intra-procedural dependencies, i.e. dependencies that are not only within

a single procedure but also cross procedure’s boundaries. A control-dependency exists between

vertices x and y if the evaluation of y influences the execution of x ; whereas, a data-dependency

exists if y may use a value that is computed at x .

Third, using a program’s SDG and a high-level description of sources and sinks, J O A N A applies

slicing techniques to compute if a set of vertices (identified as sources) might affect – either

directly or transitively via control- and data-dependencies – the execution or value of another

set of vertices (identified as sinks); Listing 3.2 illustrates a sample source-/sink-specification.

To do so, Joana uses context-sensitive slicing [99], a special form of graph reachability analysis:

given a node n of the SDG, identified as a sink, Joana computes the backward-slice for n , which

is the set B of all those nodes from where n is reachable through a path in the SDG and that

respect the calling context. For sequential programs, it has been shown that a node which is not

contained in the backward slice m /∈ B can not influence the execution of n [44, 121], and hence,

SDG-based slicing on sequential programs guarantees in a certain sense non-interference [33,

34], which stipulates that low outputs are independent from high/sensitive inputs. However, for

concurrent programs this approach was extended by Giffhorn [31, 32] to take additional kinds

of information flows into account, like e.g. probabilistic channels [103].

The result of the slicing-process is a subset-graph G ′ ⊂G of the original SDG G that represents

dependencies between sinks and sources. Henceforth, we term with chop a single dependency

path from a source to a sink inside G ′. A chop includes not only the vertices for source- and

sink-instructions, but also all vertices that correspond to instructions that lead to a flow of data

from a source to sink. Henceforth, we term all vertices residing on a single data flow dependency

as chopCMD and the union of all chopCMDs over all chops as Points of Interest (PoI). Figure 3.3

illustrates an example chop for an explicit data flow dependency path: sink in line 12 has an

information flow dependency on line 1; nodes 4 and 6 are the corresponding chopCMD on that

dependency. Put simply, a chop is considered as the intersection between a source’s Forward-

Slice, i.e. all instructions that are either explicitly or indirectly affected by and reachable from

a source, and a sink’s Backward-Slice, i.e. all instructions that affect and influence a sink [37].

Beyond that, J O A N A also supports different points-to analysis-techniques [5, 111] (like 0-1-

CFA[36], k -CFA [109], object-sensitiveness [74]), to take into account not only the static data

type but also possible dynamic data types of a variable.

39

3. Hybrid Data Flow Tracking

1 a = source ();

2 while (n > 0){

3 x = v();

4 d = a;

5 if (x > 0)

6 c = d + 25;

7 else

8 c = 25;

9 n--;

10 }

11 y = a;

12 sink(c);

Start

1 211 12

4 3 5

6 8

9

Figure 3.3.: Example code and its chop between a source (dashed circle) and a sink (doubly

circled). Dashed arrows symbolize data flow dependencies; solid arrows symbolize

control dependencies; bold circles are chopCMD vertices.

The results of the static analysis are written by J O A N A into an analysis-report. For each

identified sink, J O A N A provides detailed information about the sources and chopCMDs it

depends on, and where their corresponding instructions are located within the bytecode. This

includes (cf. example in Listing 3.1): the parent method (ParMethod), the bytecode-offset

(offset) where a PoI is located; the Java signature of invoked sinks or sources (signature);

and the executed operation in SSA-representation for chopCMD instruction (Label). Based on

the analysis-report, additional instructions are injected into the application to extract context

information about each PoI and to track the flow of data from sources to sinks across chopCMD

instructions.

Remarks on the source and sink specification (cf. Listing 3.2): J O A N A uniquely identifies a

source or a sink (in Java bytecode notation) by a triple, composed of the fully qualified class

name, the method name, and the parameter that is either passed to or returned from the method

invocation. As parameter names are not available in Java bytecode, the position of a parameter

inside the method signature is used instead. For instance, “param: 1” in Listing 3.2 specifies the

first parameter of the method write as a sink and the first parameter of the method read as a

source. Whereas the reserved term ret specifies the return value of getParameter as a source.

It is important to note that usually the list of sources and sinks is provided to the analysis by a

security expert, who has specific domain knowledge (e.g. does the application use only JNI to call

40

3.3. Static Information Flow Analysis

Listing 3.1: Example static analysis-report generated by J O A N A. Multiple sources (cf. line 1) and

sinks (cf. line 1) are listed, as well as, dependencies between them (cf. line 1).

1 <sources>
2 <source>
3 <id>Source1</id>
4 <location>JZip.zipIt(Ljava/lang/String;Ljava/lang/String;)V:191</location>
5 <signature>java.io.FileInputStream.read([B)I</signature>
6 <param index="1"/>
7 </source>
8 <source>
9 <id>Source2</id>

10 ...
11 </source>
12 </sources>
13 <sinks>
14 <sink>
15 <id>Sink1</id>
16 <location>JZip.zipIt(Ljava/lang/String;Ljava/lang/String;)V:185</location>
17 <signature>java.util.zip.ZipOutputStream.write([BII)V</signature>
18 <param index="1"/>
19 </sink>
20 <sink>
21 <id>Sink2</id>
22 ...
23 </sink>
24 </sinks>
25 <flows>
26 <sink id="Sink1">
27 <source id="Source1"/>
28 <chop>
29 <chopNode bci="39" lab="v11.start()" om="jzip.JZip.main([Ljava/lang/String;)V"/>
30 <chopNode bci="41" lab="v13.load(v9)" om= "jzip.JZip.loadConfig(Ljava/lang/String;)V"/>
31 ...
32 </chop>
33 </sink>
34 </flows>

41

3. Hybrid Data Flow Tracking

its own native libraries) about critical dependencies between sources and sinks inside the AuS.

To a certain extent, the list of sources and sinks has to be chosen manually, e.g. by reading the API

documentation and then deciding which methods and parameters are relevant. For example, one

may considerFileOutputStream.write()orHttpServletRequest.getParameter() to-

gether with appropriate parameters as sinks.

Listing 3.2: Example sink- source-specification that is used by J O A N A to determine which

method invocations might correspond to a sink or a source

1 Source:
2 class: Ljava/servlet/http/HttpServletRequest
3 method: getParameter(Ljava/lang/String ;) Ljava/lang/String;
4 param: ret
5 includeSubclasses: true
6 indirectCalls: true
7 Source:
8 class: Ljava/io/InputStream
9 method: read([B)I

10 param: 1
11 includeSubclasses: true
12 indirectCalls: true
13 ...
14 Sink:
15 class: Ljava/io/Writer
16 method: write(Ljava/lang/String ;)V
17 param: 1
18 includeSubclasses: false
19 indirectCalls: false
20 ...

By default, J O A N A detects sources and sinks within the AuS by simply matching the full

method signature (including their class-membership) within the SDG against the source- and

sink-specification. However, in the presence of inheritance and polymorphism, such a strategy

would miss some sources and sinks, especially those that are overwritten within their child-

classes. For instance, consider line 17 in Listing 3.3 that reads data from a file into a buffer

via a FileInputStream and the source specification of InputStream in Listing 3.2: although

FileInputStream inherits from InputStream, and therefore has the same semantic for the

read-method as its parent-class, J O A N A by default does not detect the invocation in line 17 as

a source because this method invocation belongs to another class. A possible approach to solve

that obstacle would be to list every method manually and explicitly that could potentially be

a source or a sink. However, listing all possible sources and sinks in all their variations along

the class hierarchy might be a tedious and error-prone task because some methods may be

missed, especially when multiple child-classes overwrite methods which are actually specified

42

3.4. Run-time Data Flow Tracking

as sources or sinks within their parent-classes. To make the source- and sink-detection process

more convenient we chose the following approach: we list only the most general source- and sink-

declarations, e.g. java.io.InputStream, java.io.OutputStream, java.io.Reader and

java.io.Writer for Java I/O classes. After that, these specifications are extended automatically

by Joana using the following rule: “If s is a source/sink and s ′ overrides s , because s ′ is a child-

method, then also s ′ is a source/sink”. J O A N A implements this rule by inspecting and analyzing

the hierarchy class of the given program; this rule is activated with includeSubclasses =

true in Listing 3.2 for each source or sink.

Another issue that we have faced is the case when applications do not invoke a source or a

sink directly from the application-code, but indirectly, e.g. via a nested library call. For example,

listing 3.3 contains a call to the method Properties.load() in line 5 which takes an input

stream as a parameter and uses it to fill a properties table. This method is not included by the

previous rule because Properties.load() itself is not a source. For that reason, the source-

and sink-specification is again extended automatically by the following rule: “If s is a source/sink,

s ′ may call s and p ′ is a parameter of s ′, then s ′ is also considered as source/sink”. J O A N A

implements this rule by using a call graph of the application, which is also built and used during

SDG construction, so it can be reused here. This feature is activated with indirectCalls =

true in Listing 3.2 for each source or sink.

3.4. Run-time Data Flow Tracking

Consider the code snippet in Listing 3.3 that is used in our test-suite application JZip to zip

files (Section 3.6): based on the sink-source-specification (cf. Listing 3.2) static information

flow analysis detects the flow from the read-method in line 17, where the to-be-zipped files are

read, to the write-method in line 18, where those files are written into the archive. Listing 3.1

shows the corresponding analysis report: line 2 – line 7 specify that the first parameter (line 6)

of the read method-invocation (line 5) at bytecode offset 191 (line 4) in method zipIt (line 4)

is identified as Source1 (line 3). The same holds for Sink1 (line 14 – line 19) but in this case

the first method parameter (line 18) is identified as a sink. The analysis-report also provides

information about the dependency between Sink1 and Source1 (line 26 – line 33); if a sink

would depend on multiple sources, i.e a 1-to-n dependency, then a sink-tag (line 26 – line 33)

would wrap multiple sources.

Based on the analysis-report, this phase injects a piece of code for each reported PoI into the

AuS. At run-time, this code serves as a minimal IRM and extracts and signals information about

each executed PoI to the PIP and PDP (cf. Figure 2.1). Such information could be, for instance,

43

3. Hybrid Data Flow Tracking

the filename from where data is read. To do that, this thesis proposes two different approaches:

S H R I F T and H D F T++. Although both approaches share the same static analysis phase (cf.

Section 3.3) the injected tracking and propagation logic behave differently at run-time. S H R I F T

uses the pre-computed static dependency mapping (e.g. cf. line 26 - line 33 in Listing 3.1) to

propagate the flow of data between sources and sinks, whereas H D F T++ also takes into account

all chopCMDs residing on a sink-source dependency. Beyond that, both approaches verify on

every executed source or sink instruction if the execution trace of the AuS adheres to deployed

DUC policies. Thus, both IRM approaches take the role of the PEP in our UCI infrastructure (cf.

Figure 2.1); from henceforth, we use the terms IRM and PEP interchangeably. The outcome of

this phase is an instrumented version of the original AuS augmented with a PEP that interacts

with the DUC’s PDP and PIP on each executed PoI. We use the tool ObjectWeb ASM [80], a

bytecode manipulation and engineering framework for Java bytecode, to instrument and to

inject the PEP into the AuS. The remaining section describes both approaches in detail and

illuminates and emphasizes the differences between them.

Listing 3.3: Example Java code fragment for zipping files inside an application

1 void zipIt(String file , String srcFolder) {
2 byte[] buffer = new byte [1024];
3 Properties prop = new Properties ();
4 InputStream is = this.getClass (). getResourceAsStream("jzip.properties");
5 prop.load(in);
6

7 is.read(buffer);
8

9 FileOutputStream fos = new FileOutputStream(file);
10 ZipOutputStream zos = new ZipOutputStream(fos);
11 List <String > fileList = this.generateFileList(srcFolder);
12 for (String file : fileList) {
13 ZipEntry ze = new ZipEntry(file);
14 zos.putNextEntry(ze);
15 FileInputStream in = new FileInputStream(file);
16 int len;
17 while ((len = in.read(buffer)) > 0)
18 zos.write(buffer , 0, len);
19 in.close ();
20 }
21 }

S H R I F T instruments only source- and sink-instructions inside the AuS that have a data flow

dependency between each other (cf. Figure 3.2a). For instance, according to the analysis-report

in Listing 3.1 S H R I F T instruments Sink1 and Source1 inside the AuS and leaves out Source2,

as it does not have any data flow dependencies to any sinks. Furthermore, as one may notice, all

information provided by the analysis-report are inherently static by nature, i.e. they are elicited

44

3.4. Run-time Data Flow Tracking

from the AuS’s bytecode by inspection without executing the AuS. For instance, Source1 is

specified as a Java FileInputStream.read invocation which is located at offset 191 inside

the method JZip.zipIt. However, the analysis-report does not provide dynamic run-time

information, like the filename that was read at Source1 or which data was written into Sink1.

Such information are extremely valuable as they provide further details about a source or a sink,

and reveal in particular, if data emanated from a source is already tainted, i.e. is linked to and

affected by a DUC policy or not. To catch such information, our PEP injects for each source-

and sink-instruction an extractor, which filters and extracts additional information about the

respective sources and sinks at run-time. As those extractors are quite specific for one particular

type of source or sink, and may also differ from one type to the other, the set of extractors are

extendable and configurable inside the PEP to extract also information which have not been

considered before, like e.g. extracting REST-Urls from a REST-interface. This thesis underlying

prototype implementation contains extractors for

1. file-I/O: extracts the file-descriptor (fd ∈F) and the file-name (fn ∈F) on each file-system

read or write operation

2. network-I/O: extracts the IP-(ip ∈F) and port-information (port ∈F) from incoming and

outgoing network accesses

3. database-I/O: extracts the database-(dbName ∈F), table-(tabName ∈F), and table-field-

name (tabFieldName ∈F), on each database read or write access

For instance, as Source1 in Listing 3.1 reads data from a file our injected file-I/O extractor

extracts (if available) the filename fnI ∈F and file-descriptor fdI ∈F from where the data was

read; for the sake of illustration only the filename is used in the following. The extracted filename

fnI is signaled along with the source identifier (cf. id-tag inside the enclosing source-tag in

Listing 3.1) as an actual eventA(e) to the DUC’s PIP. Based on this information, the PIP updates

its internal data flow storage functionσ′.s [σ. f (Source1)←σ.s(σ. f (fnI))∪σ.s(σ. f (Source1))]

and thus keeps track of which data was read by the AuS.

Processing and handling of sinks works similar (note, sinks are only signaled if at least one of

its depending sources are executed): as Sink1 writes zipped data into a file our injected file-I/O

extractor extracts and signals the filename fnO ∈ F along with the sink identifier (cf. id-tag

inside the enclosing sink-tag in Listing 3.1) to the PIP. Based on the sink identifier and the

precomputed analysis-report, the PIP determines all sources a sink depends on and updates its

internal data flow storage function accordingly, i.e. in this sample the storage mapping forSink1

is updated as followsσ′.s [σ. f (Sink1)←σ.s (σ. f (Sink1))∪σ.s (σ. f (Source1))]. Furthermore,

45

3. Hybrid Data Flow Tracking

the PIP also maintains an alias relation between the sink identifier and the filename fnO, as on

every sink execution the entire data a sink points to (according to the current PIP’s state) may

flow into the output-file fnO, i.e.σ′.l [σ. f (Sink1)←σ. f (Sink1)∪σ. f (fnO)]. This way, the PIP

traces that the output data, which is written into the file fnO at Sink1, may potentially contain

derived data from file fnI . Thus, the PIP knows at each moment in time which data flowed from

which source into which sink through an application.

Listing 3.4: Example of an explicit flow depen-

dency.

1 byte[] in=input (); // source
2 byte[] out;
3 if (condition) {
4 out=in;
5 } else {
6 out = new byte [10];
7 }
8 output(out); //sink

However, as one may notice S H R I F T de-

tects the flow of data based on a statically pre-

computed mapping. It does not differentiate if

a particular data flow path is still critical when

a sink is reached. Regardless of the instruc-

tions on a data flow dependency, S H R I F T al-

ways reports that a flow of data happened. For

instance, consider the code in Listing 3.4: the

actual crucial instruction that leads to a flow

of data is wrapped in an if-branch in line 4,

whose execution actually depends on the con-

crete value of the variablecondition. However, for SIFA tools it is almost impossible to compute

statically the concrete value for variable condition, especially when its computation also de-

pends on user input. Therefore, SIFA tools conservatively overapproximate such cases and

report the flow of data from line 1 to line 8 in Listing 3.4.

H D F T++ extends S H R I F T (cf. Figure 3.2b) and also monitors all chopCMDs (cf. Section 3.3),

i.e. all those instructions that reside on a sink-source dependency path. In detail, H D F T++

monitors all executed PoI, i.e. the source-, sink-, and chopCMD-instructions, and extracts and

signals information about each of them to the PIP at run-time. To do that, H D F T++ also uses

the same set of extractors for source- and sink-instructions as S H R I F T and extracts additional

information about each executed source and sink, like e.g. the filename of a source. Further,

H D F T++ leverages the chopNode-tag from the analysis-report and injects its tracking logic in

such a way, that all statically raised information about chopCMDs are signaled to the PIP at

run-time. For instance, from the chopNode-tag in Listing 3.1 line 30 H D F T++ derives that at

the bytecode offset 41 (cf. bci-attribute) the method load is called on an object identified by

v13 at J O A N A’s SSA representation layer (cf. lab-attribute in Listing 3.1 line 30). Moreover, a

parameter, identified with v9, is passed to that method call. At run-time, H D F T++ signals that

information to the PIP together with the following extracted from the involved operands in a

chopCMD:

46

3.4. Run-time Data Flow Tracking

1. Java Caller-ObjectId, -Class, -Method

2. Java Callee-ObjectId, -Class, -Method

3. Java Parameter-ObjectId and -Names

4. Memory-Addresses of involved Java objects

5. Process-, Thread-Id

Based on that information, H D F T++’s PIP continuously updates its internal data flow state

on every executed chopCMD. However, depending on actual run-time values only a subset of

all chopCMDs on a dependency path may be executed and thus may lead to different tracking

results. For instance, the value of variable condition in Listing 3.4 controls if data either flows

from the variable in to out or not. This example illustrates, that depending on the actually

executed chopCMDs and run-time values, data may flow differently inside the AuS (involving

different program variables) for the same statically reported data flow dependency, and thus, may

result in different PIP’s data flow states. In case the variable in is assigned to out in Listing 3.4

line 4, the PIP would end up in a state where both variables point to the same data item, otherwise

not. As H D F T++ monitors the execution of each chopCMD on a dependency path, H D F T++ is

able to cope with situations where run-time values influence the actual tracking result, and thus,

is able to differentiate if a flow of data really happens or not at run-time. To reflect and to model

how data flows across chopCMDs inside an AuS, H D F T++ instantiates in Section 3.5 the formal

data flow model from Section 2.3 for Java bytecode. Simply speaking, this instantiation serves as

a configuration for the DUC’s PIP component. Notified by the PEP about the executed PoI,

the PIP updates continuously its current state of flowed data, and hence, keeps track of how

data propagates through the AuS from sources, along chops, to the sinks. Thus, the PIP knows

at each moment in time which data originates from which source and is flowed into which sink

inside the AuS.

Fundamentally H D F T++ does not propagate a taint-label along the lines of executed bytecode

commands, as it happens in a pure dynamic approach, but instead, it updates the PIP’s internal

data flow state on every executed chopCMD. This way, H D F T++ does not need to inject complex,

performance-affecting tracking logic at each chopCMD, as the complete taint propagation logic

(cf. Section 3.5) happens inside the PIP. Depending on the actual taken data flow path at run-

time, PIP’s data flow state may result in different storage-, alias-, and naming-mappings, which

either comply with a data usage control policy or not. This means, that once a sink is reached the

PIP state (i.e. the current storage-, alias-, and naming-mapping, cf. Section 3.5) reveals which

data flow path was taken and if one of the sink’s parameter may contain data that is affected and

47

3. Hybrid Data Flow Tracking

protected by a data usage control policy. For instance, Policy P1 is violated if the storage function

s (srcnet) returns for a sink network container srcnet = f ((ip×port)) a data item d ∈D that is

covered by Policy P1, i.e. d ∈ s (f ((ip×port))). As we do not know beforehand which of those

chopCMDs are the actual crucial and relevant ones, H D F T++ has to monitor all chopCMDs on

a data flow dependency from a source to a sink.

Listing 3.5: Example application which reads data from a file and transmits it to a remote server.

1 public class SampleReadSend {
2 public static void main(String [] args) {
3 new SampleReadSend (). sample ();
4 }
5 public void sample () {
6 int rand = new Random (). nextInt (10);
7 String [][] ips = {{"172.16.33.1","8080","EU"},
8 {"110.22.55.1","9090","US"}};
9 String [] dest = rand%2 == 0 ? ips [0] : ips [1];

10 String fileContent = "";
11 try {
12 fileContent = this.readFile("secret.txt");//Read secret file
13 if(rand > 5){
14 fileContent = this.readFile("public.txt");//Read public file
15 }
16 Socket destSocket = new Socket(dest[0], Integer.parseInt(dest [1]));
17 System.out.println("Sending data to "+dest [1]+" "+rand);
18 PrintWriter pw = new PrintWriter(destSocket.getOutputStream (),true);
19 pw.write(fileContent);
20 pw.close ();
21 destSocket.close ();
22 } catch (IOException e) { e.printStackTrace (); }
23 }
24 private String readFile(String fileName) throws IOException{
25 String _return = "", line = "";
26 FileReader fr = new FileReader(fileName);
27 BufferedReader bf = new BufferedReader(fr);
28 while ((line = bf.readLine ()) != null)
29 _return += line;
30 return _return;
31 }
32 }

At run-time, however, depending on the taken control flow path only a subset of those mon-

itored chopCMDs are actually executed, and thus, may produce a slightly different data flow

state inside the PIP once the sink at the end of a dependency is reached.

48

3.4. Run-time Data Flow Tracking

Listing 3.6: Static analysis-report excerpt for the example code in Listing 3.5.

1 <source >
2 <id>Source0 </id>
3 <location >SampleReadSend.readFile(Ljava/lang/String ;)...
4 ... Ljava/lang/String;:51</location >
5 <signature >java.io.BufferedReader.readLine () Ljava/lang/String;</signature >
6 <return/>
7 </source >
8 ...
9 <sink>

10 <id>Sink0</id>
11 <location >SampleReadSend.sample () V:195</location >
12 <signature >java.io.PrintWriter.write(Ljava/lang/String ;)V</signature >
13 <param index="1"/>
14 </sink>
15 ...
16 <flows>
17 <sink id="Sink0">
18 <source id="Source0"/>
19 <chop>
20 <chopNode bci="-8" lab="PHI v20 = #(), v19"
21 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
22 <chopNode bci="6" lab="v5 = new java.io.FileReader"
23 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
24 <chopNode bci="35" lab="v14 = valueOf(v20)"
25 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
26 <chopNode bci="42" lab="v17 = v12.append(v10)"
27 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
28 <chopNode bci="45" lab="v19 = v17.toString ()"
29 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
30 <chopNode bci="51" lab="v10 = v7.readLine ()"
31 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
32 <chopNode bci="60" lab="return v20"
33 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
34 <chopNode bci="107" lab="v36 = this.readFile (#(public.txt))"
35 om="SampleReadSend.sample ()V"/>
36 <chopNode bci="120" lab="v40 = this.readFile (#(secret.txt))"
37 om="SampleReadSend.sample ()V"/>
38 <chopNode bci="176" lab="v63 = new java.io.PrintWriter"
39 om="SampleReadSend.sample ()V"/>
40 <chopNode bci="195" lab="v63.write(v41)"
41 om="SampleReadSend.sample ()V"/>
42 </chop>
43 </sink>
44 </flows >

The following illustrates H D F T++’s behavior along the Java code example in Listing 3.5. Note,

here we use a simplified example to illustrate the core idea behind H D F T++. But conceptually,

this piece of code reflects how web-applications, e.g. our BirthdayApp from Section 1.2 may

49

3. Hybrid Data Flow Tracking

transmit data to a remote server. Typically, a web-application would read input data from an

HttpRequest instead from a file and transmit it to a remote service via a socket connection.

Listing 3.5 reads data in line 12 from a secret file into the variable fileContent and transmits

it to a remote server in line 19. Depending on the randomly generated value rand (cf. Listing 3.5

line 6) the content of variable fileContent may be overwritten by some public data from the

file public.txt in Listing 3.5 line 14. Further, we assume that the content of secret.txt is

protected by Policy P1. For the sake of simplicity, we suppose that Policy P1 is technically enforced

by prohibiting network access if the payload contains data from secret.txt. Thus, depending

on the actual run-time value of the variable rand the sink in Listing 3.5 line 19 may be executed,

because variable fileContent contains data from the file public.txt or its execution is

prohibited because variable fileContent contains data from the file secret.txt.

Listing 3.6 shows the analysis-report for our code sample in Listing 3.5 (note, Listing 3.6

is an excerpt from the full analysis-report in Listing A.1). As expected, the data flow depen-

dency between the source BufferedReader.readline (cf. Listing 3.5 line 28) and the sink

PrintWriter.write (cf. Listing 3.5 line 19) is reported, including all related chopCMDs. When

Policy P1 is deployed in the PDP, an initial state mapping is created inside the PIP between

the filename secret.txt and the data identifier D1 ∈D (cf. Listing 3.7 line 1); for the sake of

simplicity, we use D1 as a data identifier in this example. Once the source in Listing 3.5 line 28 is

executed, H D F T++ extracts and signals to the PIP from which file the content was read. Based

on this information, the PIP determines the corresponding data identifier and propagates it

along the lines of executed chopCMDs towards the sink; for the file secret.txt, the PIP deter-

mines D1 from its state as the data identifier. H D F T++ also deduces from the analysis-report (cf.

Listing 3.6 line 30) that the source’s return value is assigned to a variable that is identified by

v10 at J O A N A’s SSA representation. Because of that, the PIP updates its state with Listing 3.7

line 4. Moreover, H D F T++ derives from the chop node label ’v17 = v12.append(v10)’ in

Listing 3.6 line 26 that v10’s data identifier also may potentially flow into v17 and v12. H D F T++

tracks that at run-time with line 6 and line 5 in Listing 3.7. All the other, remaining chopCMDs

on a dependency path are processed the same way, i.e. the PIP updates its current state accord-

ingly to the executed chopCMD at run-time. As a chopCMD may be any possible Java bytecode

command, and thus, may update the PIP state differently depending on its semantic, Section 3.5

instantiates the formal data flow model from Section 2.3 for the Java bytecode level.

Once the sink in Listing 3.5 line 19 is reached, H D F T++ determines if the PrintWriter object

pw is writing variable fileContent into a network-socket outputstream or not. In case of a

network-socket outputstream, H D F T++ also extracts the destination IP and port to which data

is sent. However, at that point in time the PIP state in Listing 3.7 reveals to the PDP that the sink

50

3.4. Run-time Data Flow Tracking

parameter, which is identified by v41 at J O A N A’s SSA representation (cf. Listing 3.6 line 40),

contains data from the file secret.txt. Therefore, as executing the sink would violate Policy

P1 the PDP rejects the execution of the sink in Listing 3.5 line 19.

Listing 3.7: PIP state only reading secret.txt.

1 secret.txt ---> D1
2 Proc4222|Source0 ---> D1
3 3775970392| readFile(Ljava/lang/String ;) Ljava/lang/String ;|ret ---> D1
4 3775970392| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v10 ---> D1
5 3775970392| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v12 ---> D1
6 3775970392| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v17 ---> D1
7 3775970392| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v19 ---> D1
8 3775970392| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v20 ---> D1
9 3775970392| sample ()V|v36 ---> D1

10 3775970392| sample ()V|v40 ---> D1
11 3775970392| sample ()V|v41 ---> D1
12 3783646496| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v20 ---> D1
13 3783817496| append(Ljava/lang/String ;)Ljava/lang/StringBuilder ;|p1 ---> D1

Listing 3.8: PIP state reading secret.txt and subsequently public.txt.

1 NET :172.16.33.1:8080 ---> D2
2 public.txt ---> D2
3 secret.txt ---> D1
4 Proc3068|Source0 ---> D2
5 Proc3068|Thread1|Sink0 ---> D2
6 3775970248| readFile(Ljava/lang/String ;) Ljava/lang/String ;|ret ---> D2
7 3775970248| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v10 ---> D2
8 3775970248| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v12 ---> D2
9 3775970248| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v17 ---> D2

10 3775970248| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v19 ---> D2
11 3775970248| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v20 ---> D2
12 3775970248| sample ()V|v36 ---> D2
13 3775970248| sample ()V|v40 ---> D2
14 3775970248| sample ()V|v41 ---> D2
15 3783646520| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v20 ---> D2
16 3783860112| readFile(Ljava/lang/String ;) Ljava/lang/String ;|v20 ---> D2
17 3783817520| append(Ljava/lang/String ;)Ljava/lang/StringBuilder ;|p1 ---> D2

Listing 3.8 shows the PIP state when variable rand in Listing 3.5 is larger than 5. In that

case, the value of variable fileContent is overwritten with the content from public.txt

(identified with D2 ∈D inside the PIP state) in Listing 3.5 line 14. This means, that in this case

executing the sink is no longer prohibited by Policy P1. Thus, the PIP updates its state with line 1

in Listing 3.8 once the sink is executed; we use the extracted target IP and port information

inside the naming identifier to track to which remote machine data was transmitted. In contrast,

Listing 3.7 has no “NET:[ip]:[port]” mapping entry in its state as the sink execution was

51

3. Hybrid Data Flow Tracking

prohibited by Policy P1. Note, we show in Listing 3.7 and Listing 3.8 all PIP state entries which

have been generated during our runs. Although only some of them are relevant to decide if

Policy P1 is violated or not, all other entries are needed to follow the dependency chain from

a source to a sink. As the PIP state may grow quite fast after several runs a proper extension

mechanism, which sanitizes the PIP state from unneeded mappings, could be implemented in

future work.

3.5. Data Flow Tracking Model for Java

In contrast to S H R I F T, which tracks the flow of data from sources to sinks based on a statically

pre-computed mapping, H D F T++ leverages chopCMDs in order to follow the actually taken

data flow path through an application. We argue, that depending on run-time values and the

executed instructions only a subset of the reported data flow dependencies between sources and

sinks are actually triggered. This section instantiates the generic data flow model (cf. Section 2.3)

for the Java programming language, to reflect the actual propagation semantic and logic for a

single executed chopCMD. Moreover, this instantiation implements a state transition system

where each state captures which data is stored at which program location inside the application.

State transitions are triggered at run-time by the executed Java bytecode-instruction at each

chopCMD. H D F T++ leverages not only the Java bytecode semantic, but also SSA-information

provided by J O A N A (cf. e.g. Label in Listing 3.1) about each sink, source, or chopCMD. Put

it simply, this instantiation is used as a configuration for the PIP to reflect the propagation

semantic at the chopCMD level.

In contrast to a pure dynamic run-time tracker that has to monitor any single bytecode

instruction (like P H O S P H O R [10]), H D F T++ monitors point-wise only those commands that

are actually relevant for a flow of data. Furthermore, H D F T++ does not propagate a taint-label

via shadow variables inside the AuS, but instead it updates the internal PIP’s mapping on every

executed chopCMD according to the state transition update rules, which are described in the

following. This way, the PIP state reveals at each moment in time which data has flowed from

which sources to which sinks, and thus, provides valuable information to enforce data usage

policies. For instance, consider a temporal data usage restriction like Delete my data after 5 days.

As personal data might move from one to the other container within 5 days, it is necessary to

track and record its dissemination inside the AuS. Otherwise, policy enforcement would miss

some of the protected personal data.

Containers, C. Java variables are used to read and write data in memory regions (like Java

Stack or Java Heap). Apart from the variable’s data type, Java distinguishes between primitive-

52

3.5. Data Flow Tracking Model for Java

(like numeric or boolean types) and reference-typed (like class or interface types) variables. They

differ in their assignment behavior: primitive-typed variables are assigned by copying the value

of the variable. As opposed to this, reference-typed variables are assigned by copying the memory

address of the stored data. Therefore, after a reference-typed assignment both variables point to

the same data item, so that, data modifications are immediately propagated to both variables.

H D F T++ defines set C = CP ∪CR as the union between primitive- (CP) and reference-typed (CR)

containers.

Principals, I. Each command in a Java application is executed by a Java-Thread and might

lead to a flow of data. Therefore, set I is instantiated as all threads inside a Java program. A

thread always runs within a process, thus a Java-Thread is identified by the tuple I = ProcessID×
ThreadID. In this context set D defines all data items that can be processed by I.

Naming identifiers, F . A Java variable is identified by its name inside a scope. A scope is a

code region where a variable is visible and accessible. Depending on the variable’s lifetime,

H D F T++ distinguishes between class-, instance-, and method-level scopes. Class-level scopes

are labeled with the fully qualified name (FQN) of the class (ClassFQN), whereas instance-level

scope-labels take also into account the memory address Address of an object. Method-level

scope-labels extends the previous one and identify local variables that only life during the

execution of method MethodName. We distinguish between identifiers for objects FI , arrays

FA, array elements FAE , static fields FSF , instance fields FIF , local variables in static FSV and

instance FIV methods, as well as, return values of static FSR and instance FIR methods. Hence,

set F =FI ∪FA ∪FAE ∪FSF ∪FIF ∪FSV ∪FIV ∪FSR ∪FIR.

FI ⊆ (ClassFQN ×Address)

FA ⊆ (ClassFQN ×Address)

FAE ⊆ (FA×N)
FSF ⊆ (ClassFQN ×FieldName)

FIF ⊆ (FI ×FieldName)

FSV ⊆ (ClassFQN ×MethodName×VarName)

FIV ⊆ (FI ×MethodName×VarName)

FSR ⊆ (ClassFQN ×MethodName)

FIR ⊆ (FI ×MethodName)

Events, E . Depending on the kind of chopCMD instruction, H D F T++ distinguishes between

different groups of operations that lead to a flow of data: assignments, arithmetic operations,

and method invocations. H D F T++’s event definition does not only rely on the semantic of pure

Java bytecode (like iload bytecode instruction) but also takes into account SSA-information

provided by J O A N A’s intermediate program representation (cf. for instance Label in Listing 3.1).

53

3. Hybrid Data Flow Tracking

Therefore, any pure Java bytecode instruction that leads to a data flow can be classified into

one of those groups. Note, arithmetic operations and method invocations result only in a flow

of data if their computed result values are used in another, subsequent instruction. Moreover,

we intentionally exclude Java exceptions in our model because they may negatively affect the

precision of our tracking results. This has to do with the fact that every operation, in particular

I/O operations, may cause an exception in Java, and thus, may result in unprecise tracking

results where everything flows to everything. However, S H R I F T and H D F T++ can be extended

in future work to track also those kinds of flows, but at the charge of less precise tracking result.

We define a helper function isOpaque(c) to determine if a specific Java-class c ∈ ClassFQN ,

or their instantiation c ∈ FI respectively, shall be equipped with our H D F T++ tracker (i.e.

isOpaque(c) == false) or not (i.e. isOpaque(c) == true). Henceforth, we term c an opaque-class

if it is not equipped with H D F T++. Furthermore, function isOpaque(c) builds the foundation to

implement, realize, and increase portability within the H D F T++ approach, as it allows us to

keep the tracking logic only at the program level, and e.g. independent from tracking code inside

Java system classes (c.f. Figure 1.6). For instance, for the Java system class c = java.lang.Object,

isOpaque(c) returns true. The remaining of this section provides the formal description of all

events that were identified to lead to a flow of data. Note, we do not provide an event definition

for each single Java bytecode command, but instead, an event definition which covers and

includes multiple Java bytecode commands. For instance, BinaryAssign covers all arithmetic

bytecode commands which include, addition, subtraction, division, and multiplication. Note,

the present model does not cover Java exceptions or threads.

BinaryAssign is triggered whenever the result of an arithmetic operation between two local

variables arg1 and arg2 is assigned to a result variable res. Hence, data flows from arg1 and arg2

to res, and replaces the previous content in res. We model this event only for primitive-typed local

variables because an arithmetic operation can not be performed on reference-typed variables.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×{FIV ∪FSV}→ CP];∀p ∈ I;∀arg1, arg2, r e s ∈FIV ∪FSV :

(σ, p , BinaryAssign(arg1, arg2, res),σ′) ∈R

=⇒ σ′.s [σ. f (p , res)←σ.s (σ. f (p , arg1))∪σ.s (σ. f (p , arg2))]

∧ σ′.l =σ.l

∧ σ′. f =σ. f

UnaryAssign is triggered whenever a unary operation is executed. In case of primitive-typed

variables, this event performs either a type conversion (like the Java bytecode command i2b

which converts an integer into a byte value), or negation (like the Java bytecode command ineg

which negates an integer value) of the operator arg. Furthermore, as this operation modifies the

54

3.5. Data Flow Tracking Model for Java

original value of the arg, the result of this operation defines, according to the SSA specification,

a new variable res which contains the result of a unary operation.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀arg, res ∈FIV ∪FSV :

∀σ. f (p , arg),σ. f (p , res) ∈ CP : (σ, p , UnaryAssign(arg1, res),σ′) ∈R

=⇒ σ′.s [σ. f (p , res)←σ.s (σ. f (p , arg))]

∧ σ′.l =σ.l

∧ σ′. f =σ. f

In case of reference-typed variables, a unary operation corresponds to a typecast on variable

arg, and therefore, variable res still points to the same object as arg after a typecast.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C]; f o r a l l f ∈ [I ×F→ C];∀p ∈ I;∀arg, res ∈FIV ∪FSV :

σ. f (p , arg),σ. f (p , res) ∈ CR : (σ, p , UnaryAssign(arg1, res),σ′) ∈R

=⇒ σ′.s =σ.s

∧ σ′.l =σ.l

∧ σ′. f [(p , res)←σ. f (p , arg)]

ReadArray is triggered whenever an element at index i is read from an array arr and is

assigned to a local variable var. For primitive-typed values the content of the array element

(arr, i) is copied to var

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀arr ∈FA;∀i ∈N;∀var ∈FIV ∪FSV ;

∀σ. f (p , (arr, i)),σ. f (p , var) ∈ CP : (σ, p , ReadArray(arr, i, var),σ′) ∈R

=⇒ σ′.s [σ. f (p , var)←σ.s (σ. f (p , (arr, i)))]

∧ σ′.l =σ.l

∧ σ′. f =σ. f

In case of reference-typed variables variable var points to the same object as (arr, i)

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀arr ∈FA;∀i ∈N;∀var ∈FIV ∪FSV ;

∀σ. f (p , (arr, i)),σ. f (p , var) ∈ CR : (σ, p , ReadArray(arr, i, var),σ′) ∈R

=⇒ σ′.s =σ.s

∧ σ′.l =σ.l

∧ σ′. f [(p , var)←σ. f (p , (arr, i))]

WriteArray is triggered whenever a local variable var is assigned to an array arr at index i .

H D F T++ models arr and each array element (arr, i) as separated containers and link them via

55

3. Hybrid Data Flow Tracking

an alias mapping. For a primitive-typed variable var this mapping is fixed, and thus, the content

of an array element (arr, i) is overwritten with the content of var.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀arr ∈FA;∀i ∈N;∀var ∈FIV ∪FSV ;

∀σ. f (p , (arr, i)),σ. f (p , var) ∈ CP : (σ, p , WriteArray(arr, i, var),σ′) ∈R

=⇒ σ′.s [σ.Fp , (arr, i)←σ.Fσ. f (p , var)]

∧ σ′.l =σ.l

∧ σ′. f =σ. f

In case of reference-typed variables, H D F T++ models each array element as an alias relation

to var. For doing so, H D F T++ first deletes all possibly existing alias mappings for (arr, i), except

the mapping with arr, and afterwards, create a new alias mapping between (arr, i) and var.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀arr ∈FA;∀i ∈N;∀var ∈FIV ∪FSV ;

∀σ. f (p , (arr, i)),σ. f (p , var) ∈ CR : (σ, p , WriteArray(arr, i, var),σ′) ∈R

=⇒ σ′.s =σ.s

∧ σ′.l [σ. f (p , arr)←σ. f (p , var) ∪ σ.l (σ. f (p , arr)) \σ. f (p , (arr, i))]

∧ σ′. f [(p , (arr, i))←σ′. f (p , var)]

ReadField is triggered whenever a static or instance field fld is read and their content is

assigned to a local variable var. After the assignment variable var either contains a copy of the

field data

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀fld ∈FIF ∪FSF ;∀p ∈ I;∀var ∈FIV ∪FSV ;

∀σ. f (p , fld),σ. f (p , var) ∈ CP : (σ, p , ReadField(fld, var),σ′) ∈R

=⇒ σ′.s [σ. f (p , var)←σ.s (σ. f (p , fld))]

∧ σ′.l =σ.l

∧ σ′. f =σ. f

or variable var points to the same container as fld

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀fld ∈FIF ∪FSF ;∀p ∈ I;∀var ∈FIV ∪FSV ;

∀σ. f (p , fld),σ. f (p , var) ∈ CR : (σ, p , ReadField(fld, var),σ′) ∈R

=⇒ σ′.s =σ.s

∧ σ′.l =σ.l

∧ σ′. f [(p , var)←σ. f (p , fld)]

WriteField is triggered whenever the content of a local variable var is assigned to a static

or instance field fld. Here we also have to distinguish between primitive- and reference-typed

56

3.5. Data Flow Tracking Model for Java

variables, as depending on its type fld either contains the same value or points to the same data

as var. For primitive-typed variables, H D F T++ assumes that the alias relationship between o

and fld is already established as the field container stays the same.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀fld ∈FIF ∪FSF ;∀var ∈FIV ∪FSV ;

∀σ. f (p , fld),σ. f (p , var) ∈ CP : (σ, p , WriteField(fld, var),σ′) ∈R

=⇒ σ′.s [σ. f (p , f l d)←σ.s (σ. f (p , var))]

∧ σ′.l =σ.l

∧ σ′. f =σ. f

Furthermore, if fld belongs to an instance of an opaque class o , i.e. isOpaque(o) == true, then

H D F T++ adds an alias relation between o and fld; this makes it easier to get all data from the

opaque object.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀fld ∈FIF ∪FSF ;∀var ∈FIV ∪FSV ;

∀σ. f (p , fld),σ. f (p , var) ∈ CR : (σ, p , WriteField(fld, var),σ′) ∈R

=⇒ σ′.s =σ.s

∧ σ′.l [σ. f (p , fld)←σ.l (σ. f (p , fld)) ∪ σ. f (p , o)]o∈{FI |i s O p a q ue (o)}

∧ σ′. f [(p , fld)←σ. f (p , var)]

CallInstanceMethod is triggered whenever an instance method is invoked. Method param-

eters are passed via a stack frame on the operand stack into the method. H D F T++ distinguishes

between actual variable identifiers as ∈ FIV ∪FSV and the formal identifiers ps ∈ FIV . The

former ones are used inside the caller method to pass values into the method, whereas the

latter ones are identifiers which are used inside the called method. When a method returns its

corresponding stack frame is removed from the stack. What possibly remains on the stack is the

return value. In a broader sense, H D F T++ considers passing variables into a method as a kind

of variable assignment between formal and actual parameters of a method invocation, and thus,

also distinguishes between primitive- and reference-typed variables: ps either takes a copy of its

corresponding as or points to the same data as as. If the class of the callee object o is opaque

H D F T++ adds an alias relation from parameter ps to o because H D F T++ does not have any

information about how data is further distributed inside the callee object.

∀s ∈ [C→ 2D],∀l ∈ [C→ 2C],∀ f ∈ [I ×F→ C],∀p ∈ I,∀o ∈FI ,∀ps ∈FIV ,∀as ∈FIV ∪FSV :

(σ, p , CallInstanceMethod(o, as, ps),σ′) ∈R

=⇒ σ′.s [σ. f (p , ps)←σ. f (σ. f (p , as))]σ. f (p ,as), σ. f (p ,ps)∈CP

∧ σ′.l [σ. f (p , ps)←σ.l (σ. f (p , ps)) ∪ σ. f (p , o)]isOpaque(o)

∧ σ′. f [(p , ps)←σ. f (p , as)]σ. f (p ,as), σ. f (p ,ps)∈CR

57

3. Hybrid Data Flow Tracking

CallStaticMethod is triggered whenever a static method is invoked. Formally, it is similar

to CallInstanceMethod except that there is no callee object o . Thus, adding aliases from the

object to the parameters is not needed.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀ps ∈FSV ;∀as ∈FIV ∪FSV :

(σ, p , CallStaticMethod(as, ps),σ′) ∈R

=⇒
σ′.s [σ. f (p , p s)←σ.s (σ. f (p , a s))]σ. f (p ,a s),σ. f (p ,p s)∈CP

σ′.l =σ.l

σ′. f [(p , p s)←σ. f (p , a s)]σ. f (p ,a s),σ. f (p ,p s)∈CR

Passing return values back from a callee method to a caller method are modeled in H D F T++

with two separated events: PrepareMethodReturn and ReturnInstanceMethod, or respec-

tively ReturnStaticMethod for static method invocations. For the sake of simplicity, we con-

sider only the case where return values are assigned to local variables inside the caller method. As-

signments to object fields are modeled with two consecutive events: ReturnInstanceMethod

followed by a WriteField.

PrepareMethodReturn is triggered at the end of a method just before it returns. At this point,

the value of the method’s local variable var is temporarily stored into an intermediate return-

variable ret and provided as a copy or a reference to the caller-method, where it is possibly

assigned to another variable.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀v a r ∈FIV ∪FSV ;∀ret ∈FIR ∪FSR;

∀σ. f (p , var),σ. f (p , ret) ∈ CP : (σ, p , PrepareMethodReturn(var, ret),σ′) ∈R

=⇒ σ′.s [σ. f (p , ret)←σ.s (σ. f (p , var))]

∧ σ′.l =σ.l

∧ σ′. f =σ. f

In case of reference-typed return values, the formal definition is as follows

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀v a r ∈FIV ∪FSV ;∀ret ∈FIR ∪FSR;

∀σ. f (p , var),σ. f (p , ret) ∈ CR : (σ, p , PrepareMethodReturn(var, ret),σ′) ∈R

=⇒ σ′.s =σ.s

∧ σ′.l =σ.l

∧ σ′. f [(p , ret)←σ. f (p , var)]

ReturnInstanceMethod is triggered after a method execution m on instance o returns to

its caller-method and the method’s stack frame is popped from the operand stack. H D F T++

58

3.5. Data Flow Tracking Model for Java

models that by emptying all local variables lvar ∈FIV , including primitive- and reference-typed,

that were instantiated inside method m . Additionally, a possible return value ret is assigned to a

local variable var inside the caller method. In case isOpaque(o) == false this event is modeled

as

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀ret ∈FIR;∀m ∈MethodName;∀lvar ∈FIV ;

∀var ∈FIV ∪FSV ;∀p ∈ I,∀o ∈FI : (σ, p , ReturnInstanceMethod(o, m),σ′) ∈R

=⇒ σ′.s [σ. f (p , var)←σ.s (σ. f (p , ret)); f (p , lvar)←;]σ. f (p ,var),σ. f (p ,lvar),σ. f (p ,ret)∈CP

∧ σ′.l =σ.l

∧ σ′. f [(p , var)←σ. f (p , ret); (p , lvar)←;]σ. f (p ,var),σ. f (p ,lvar),σ. f (p ,ret)∈CR

Return values from opaque objects o are modeled differently, i.e. isOpaque(o) == true: as

H D F T++ do not track data flows inside o , H D F T++ can not determine which data is flowed

into ret, either passed via method parameters ps or instance fields fld. Therefore, H D F T++

models the connection between ps, fld, and o as an alias relationship (cf. WriteField and

CallInstanceMethod) and assign all data items of o , as well as from its aliases, to var.

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀ret ∈FIR;∀m ∈MethodName;

∀var ∈FIV ∪FSV ;∀p ∈ I;∀o ∈FI : (σ, p , ReturnInstanceMethod(o, m),σ′) ∈R

=⇒ σ′.s [σ. f (p , var)←σ.s (o)∪σ.s (c)]c∈{C|o∈σ.l (c)}

∧ σ′.l =σ.l

∧ σ′. f =σ. f

ReturnStaticMethod is triggered after the invocation of a static method m returns to its

caller method. It slightly differs to the ReturnInstanceMethod, as there is a callee class cl ∈
ClassFQN instead of a callee object o . Furthermore, as we do not model data flows within opaque

classes, i.e. isOpaque(cl) == true, we directly propagate data from a method’s actual parameters

prm to its return value ret = (cl, m) ∈FSR, and hence, possibly to a local variable var that receives

the return value inside the caller method. lvar are all those variables that are created and used

during the execution of m .

59

3. Hybrid Data Flow Tracking

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀var ∈FIV ∪FSV ;∀ret ∈FSR;

∀prm, lvar ∈FSV ;∀m ∈MethodName;∀cl ∈ClassFQN : (σ, p , ReturnStaticMethod(cl, m),σ′) ∈R

=⇒ σ′.s [σ. f (p , var)←σ.s (σ. f (p , prm))]σ. f (p ,prm)∈CP

∧ σ′.l =σ.l

∧ σ′. f [(p , var)←σ. f (p , prm)]σ. f (p ,prm)∈CR

In case isOpaque(cl) == false, we know that a precedent PrepareMethodReturn has hap-

pened, and therefore, either copy the content of variable ret into the container of var (for

primitive-typed values) or remap the var to the same container as ret (for reference-typed

values).

∀s ∈ [C→ 2D];∀l ∈ [C→ 2C];∀ f ∈ [I ×F→ C];∀p ∈ I;∀var ∈FIV ∪FSV ;∀ret ∈FSR;

∀prm, lvar ∈FSV ;∀m ∈MethodName;∀cl ∈ClassFQN : (σ, p , ReturnStaticMethod(cl, m),σ′) ∈R

=⇒ σ′.s [σ. f (p , var)←σ.s (σ. f (p , ret));σ. f (p , lvar)←;]σ. f (p ,var),σ. f (p ,lvar),σ. f (p ,ret)∈CP

∧ σ′.l =σ.l

∧ σ′. f [(p , var)←σ. f (p , ret); (p , lvar)←;]σ. f (p ,lvar),σ. f (p ,ret)∈CR

Source is triggered whenever a Java application reads data from the outside into its process

memory via a file (IO), network (NET), or database (DB) read-operation. Thus, H D F T++ defines

the set TYPE = {IO,NET,DB}. Typically, a source reads data from different locations LOC that

are uniquely identified by locid (e.g. an absolute file-path/-name, or a remote system’s ip and

port). To use data dat from a source, an application must assign dat to a reference variable var.

H D F T++ uses a helper function getInputCont : TYPE ×LOC 7→ CR that provides for a TYPE and

LOC a container CR for subsequent processing.

∀s ∈ [C→ 2D],∀l ∈ [C→ 2C],∀ f ∈ [I ×F→ C],∀p ∈ I,∀var ∈FIV ∪FSV ,

∀ f (p , var) ∈ CR,∀t ∈ TYPE :

(σ, p , Source(t, locid, var),σ′) ∈R =⇒ σ′.s [σ. f (p , var)← datid]

∧ σ′.l =σ.l

∧ σ′. f [(p , var)← getInputCont(t, locid)]

Sink is triggered whenever data d is transmitted from a variable var to a location locid outside

of a process memory. This happens via a write-operation of type t ∈ TYPE. To protocol where

60

3.6. Evaluation

data flows to the outside, H D F T++ creates a container c , identified by (t , locid), and map it to d.

∀s ∈ [C→ 2D],∀l ∈ [C→ 2C],∀ f ∈ [I ×F→ C],∀p ∈ I,∀var ∈FIV ∪FSV ,∀ f (p , var) ∈ CR :

(σ, p , Sink(var, t, locid),σ′) ∈R =⇒ σ′.s [σ. f (p , (t , locid))←σ.s (σ. f (p , var))]

∧ σ′.l =σ.l

∧ σ′. f [(p , (t , locid))← c]

3.6. Evaluation

This section illustrates and describes our conducted experiments and provides its evaluation

results in two dimensions: precision and performance. We have used a test-suite of different Java-

based applications for our experiments, standalone- and web-applications in particular: JZip and

JFTP are standalone-applications to zip and to transmit files via FTP respectively. BirthdayApp

is a Facebook-based web-application that fetches and displays birthday data from a Facebook

user and its friends in a calendar. For doing so, it authenticates a user to and queries its birthday

data from Facebook. SnipSnap and PersonalBlog are web-applications for blogger to post and to

publish blog-entries on a personal website, like an electronic diary. To save blog entries, those

web-applications are additionally backed up with a database storage. JZip and BirthdayApp are

applications that have been implemented by a student during his bachelor thesis, whereas the

others are taken from the Stanford SecuriBench 1 repository. Note, BirthdayApp and PersonalBlog

are pretty similar to those from our running example in section 1.2, except that they are using a

local database instead of a cloud storage service to store their data.

Based on our test-suite we address in Section 3.6.1 Caveat 1 and evaluate how much more

precise the present approaches are compared to a pure black-box approach (cf. Figure 1.4a).

Moreover, we provide a case study in Section 3.6.2 and show, along the lines of Java code samples,

the benefits of H D F T++ compared to S H R I F T. Note, we do not provide a general metric to

characterize and quantify H D F T++’s strengths, as this highly depends on actual run-time values,

and thus, on the actually taken control flow path through an application.

Finally, as our hybrid approach and its prototype implementation injects additional instruc-

tions into the AuS, Section 3.6.3 addresses Caveat 2 and evaluates and reveals the performance

run-time overhead, that our approaches impose compared to the AuS’s native execution. More-

over, performance results are benchmarked and compared with P H O S P H O R [10] and L I B DFT

[54], two pure dynamic data flow tracker. Besides that, to show the applicability of our solution,

we also conducted experiments on pure Java standalone-applications.

1https://suif.stanford.edu/~livshits/securibench/

61

https://suif.stanford.edu/~livshits/securibench/

3. Hybrid Data Flow Tracking

3.6.1. Precision

This section addresses Caveat 1 and conducts experiments to answer the research question RQ1

How can we improve the tracking precision, and thus, reduce overapproximation of the

tracking results compared to a pure black-box approach?

In first place, we are interested in the precision gain of S H R I F T and H D F T++ compared

to a pure black-box approach. By construction, S H R I F T and its extension H D F T++ cannot

be less precise than treating the AuS as a black-box where every output contains every input

read so far (cf. Figure 1.4a). Compared to a pure dynamic data flow tracker which considers

only a single execution trace at a time, static information flow analysis takes into account all

possible execution traces at once, and thus, is able to detect and analyze explicit and implicit

dependencies between sources and sinks. If at least one execution trace leads to a flow of data

then the sink statically depends on the source. For instance, static analysis reports for the code

in Listing 3.4, that the sink at line 8 depends on the source at line 1, even considering explicit

flows only.

In general, however, it is hard to quantify such precision gain. Considering that a black-box

approach would always be as precise as our approach, where every source is connected to

every sink, a possible metric for precision improvement could be the number of source-to-sink

connections that can be safely discarded, thanks to static analysis. Let #Flows denote the number

of statically computed dependencies between sinks and sources, we formally define precision

gain compared to a black-box tracking as [71]

Precision := 1− (#flows/(#sources×#sinks)) (Equation 3.1)

where 0 indicates that every source flows to every sink (like in the black-box approach) and

1 indicates that all sinks are independent from the sources, i.e. no data propagation; at the

moment of writing, the author is not aware of any better metric to measure precision of static

analysis with reference to dynamic monitoring. Note, our precision metric has a reduction

notion and must not be misunderstood with a prediction accuracy.

As reported in Table 3.1, we statically analyzed each AuS in our test-suite with various points-to-

analysis (0-1-CFA [36], 1-CFA, object-sensitivity, cf. Section 3.3), considering only explicit (D) and

additional implicit (DI) information flows; multi-column “(D)/(DI)” reports our results, whereas

the left-hand side of the slash-symbol illustrates the measured values considering explicit flows

62

3.6. Evaluation

Table 3.1.: Static analysis results with different points-to configurations. The number of detected

sources, sinks, and flows are listed in the columns “#Src./#Snk.” and “#Flows”, whereas

“Precision” shows the achieved precision in % according to Equation 3.1. All values

within the multi-column “(D/DI)” are reported considering only explicit (D) and

additional implicit (DI) information flows.

AuS Points-To #Src./#Snk. (D/DI)

#Flows Precision

JZip

0-1-CFA 33 / 56 192 / 666 89.6 / 64.0

1-CFA 10 / 55 135 / 213 75.5 / 61.3

obj.-sens. 10 / 55 115 / 186 79.1 / 66.2

JFTP

0-1-CFA 7 / 4 6 / 22 78.6 / 21.4

1-CFA 7 / 4 4 / 21 85.7 / 25.0

obj.-sens. 7 / 4 6 / 19 78.6 / 32.1

BirthdayApp

0-1-CFA 13 / 99 98 / 646 92.3 / 51.8

1-CFA 13 / 45 20 / 229 96.6 / 60.9

obj.-sens. 13 / 45 18/229 96.9 / 60.9

PersonalBlog

0-1-CFA 8 / 37 162 / 258 45.3 / 12.8

1-CFA 8 / 32 136 / 183 46.9 / 28.5

obj.-sens. 8 / 32 56 / 167 78.1 / 34.8

SnipSnap

0-1-CFA 108 / 101 2554 / 8060 76.6 / 26.1

1-CFA 108 / 95 848 / 6229 91.7 / 39.3

obj.-sens. 108 / 95 291 / 5964 97.2 / 41.9

63

3. Hybrid Data Flow Tracking

(D) only, and the right-hand side additional implicit (DI) flows. According to Equation 3.1, the

achieved precision gain compared to a pure black-box approach (cf. column “precision”) varies

between 58% and 89.61% for JZip, between 66.47% and 77.01% for JFTP, between 60.85% and

96.92% for BirthdayApp, between 34.76% and 46.87% for PersonalBlog, and between 41.87%

and 71% for SnipSnap, depending on the configuration. These numbers also confirm that

taking into account additional implicit flows leads to more sink-source dependencies, and thus

according to our metric in Equation 3.1, to a result that is less precise than considering only

explicit dependencies. Because of that, we use analysis-reports with a focus on explicit flows

only for our experiments in Section 3.6.3 and Section 3.6.2. Although some of these analyses are

incomparable in theory, object-sensitivity tends to deliver more precision, as already reported

for various client analyses [74]. This effect is also partially observable here, at least for the

configurations in which indirect flows are ignored (D). The reason is that the points-to analysis

result is mainly used to compute data dependencies and has only a limited effect on the control

dependencies. For instance, for JFTP object-sensitivity even results in worse precision than 1-

and 0−1-CFA. Note, these numbers are hard to relate to dynamic values because they depend

on the specific AuS and do not take into account how many times a certain source- or sink-

instruction is executed at run-time. Furthermore, our proposed metric in Equation 3.1 is only

based on parameters that are statically collected from the static analysis phase and does not

take into account run-time data and values. Therefore, we argue that our reported precision

values build the lowest threshold for precision improvement compared to a black-box approach.

Although these experiments are primarily devoted to investigate the precision gain compared

to a pure black-box approach, where sensitive inputs are conservatively propagated to all outputs,

we also measured other dimensions of our static information flow analysis experiments in order

to get an intuition about the computational-power and -resources that are required to run the

experiments. Concretely, we report in Table 3.2 the required time in minutes to build the SDG

(column “TSDG”) and to run the analysis (column “TANA”, which also includes the time to

build the SDG), as well as, the occupied memory size in GB (column “Memory”). As Table 3.2

illustrates, the analysis time and required memory size highly varies between the different points-

to configurations and also depends on considering implicit flows or not. On closer inspection,

we can observe that generating the SDG graph (column “TSDG"), which is the base to run the

static information flow analysis, takes the bulk of the total analysis time “TANA” for the majority

of experiments. In all experiments, building the SDG requires between ∼ 75% – ∼ 99% of the

total analysis time. For instance, even for small applications, like JZip, the analysis time varies

between 0.43 min. – 6.11 min., whereof 5 out of 6 experiments require more than > 75% of the

total analysis time for the SDG generation while the rest is spent on slicing and running the

64

3.6. Evaluation

Ta
b

le
3.

2.
:S

ta
ti

c
an

al
ys

is
re

su
lt

s
fo

r
d

if
fe

re
n

tp
oi

n
ts

-t
o

co
n

fi
gu

ra
ti

on
s.

A
ll

va
lu

es
w

it
h

in
th

e
m

u
lt

i-
co

lu
m

n
“(

D
/D

I)
”

ar
e

re
p

or
te

d
co

n
si

d
er

-

in
g

o
n

ly
ex

p
li

ci
t

(D
)

an
d

ad
d

it
io

n
al

im
p

li
ci

t
(D

I)
in

fo
rm

at
io

n
fl

ow
s.

T
h

e
co

lu
m

n
s

“T
A

N
A”

an
d

“M
em

o
ry

"
sh

ow
th

e
re

q
u

ir
ed

ti
m

e
in

m
in

u
te

s
(w

h
ic

h
al

so
in

cl
u

d
es

th
e

ti
m

e
to

b
u

ild
th

e
SD

G
,c

f.
co

lu
m

n
“T

SD
G

”)
an

d
th

e
re

q
u

ir
ed

m
em

o
ry

co
n

su
m

p
ti

o
n

in
G

B
to

ru
n

th
e

an
al

ys
is

.C
ol

u
m

n
s

“T
SD

G
”,

“#
SD

G
-e

d
ge

s”
an

d
“#

SD
G

-n
od

es
”

ill
u

st
ra

te
th

e
re

q
u

ir
ed

ti
m

e
in

m
in

u
te

s
to

b
u

ild

th
e

SD
G

,t
h

e
n

u
m

b
er

o
fg

en
er

at
ed

SD
G

-e
d

ge
s

an
d

SD
G

-n
o

d
es

re
sp

ec
ti

ve
ly

.

A
u

S
P

o
in

ts
-T

o
(D
/D

I)
#

SD
G

-n
o

d
es

TA
N

A
M

em
o

ry
T

SD
G

#
SD

G
-e

d
ge

s

JZ
ip

0-
1-

C
FA

0.
43
/

0.
48

0.
80
/

0.
78

0.
32
/

0.
26

75
52

85
/

82
84

03
61

41
7

1-
C

FA
1.

67
/

1.
39

3.
02
/

3.
04

1.
64
/

1.
33

14
20

14
0
/

15
10

75
3

95
68

7

o
b

j.-
se

n
s.

6.
07
/

6.
11

1.
35
/

0.
99

6.
01
/

6.
05

13
81

99
6
/

14
67

54
1

14
23

96

JF
T

P

0-
1-

C
FA

15
.7

6
/

11
.7

4
13

.0
7
/

13
.0

7
15

.5
2
/

11
.6

3
15

84
75

64
/

17
92

72
07

41
82

64

1-
C

FA
34

8.
29
/

21
4.

04
61

.4
3
/

60
.9

9
34

8.
16
/

21
2.

6
11

51
21

37
0
/

12
94

36
28

6
21

80
51

1

o
b

j.-
se

n
s.

7.
61
/

6.
30

10
.9

8
/

10
.9

7
7.

08
/

5.
79

76
37

99
0
/

10
64

78
81

71
19

01

B
ir

th
d

ay
A

p
p

0-
1-

C
FA

75
6.

46
/

40
8.

10
83

.0
9
/

92
.8

7
75

4.
79
/

40
4.

17
75

52
85
/

82
84

03
87

37
57

1-
C

FA
63

.6
0
/

40
.1

3
26

.3
1
/

26
.6

5
63

.4
2
/

39
.5

7
42

77
22

13
/

46
43

89
73

65
02

31

o
b

j.-
se

n
s.

12
4.

17
/

10
4.

00
73

.6
6
/

79
.0

7
12

3.
89
/

10
2.

59
17

67
54

89
4
/

18
02

93
27

2
80

26
74

Pe
rs

o
n

al
B

lo
g

0-
1-

C
FA

78
19

.0
4
/

39
00

.2
9

19
1.

95
/

16
3.

58
77

77
.3

9
/

38
71

.1
0

26
67

02
26

4
/

28
11

22
76

5
14

71
27

7

1-
C

FA
15

1.
73
/

90
.2

0
30

.8
8
/

31
.5

8
15

0.
82
/

89
.1

0
41

41
19

23
/

44
74

98
31

74
48

92

o
b

j.-
se

n
s.

90
7.

63
/

55
3.

74
10

5.
58
/

88
.8

7
90

5.
14
/

54
9.

32
11

65
61

67
2
/

13
82

94
91

1
19

87
40

4

Sn
ip

Sn
ap

0-
1-

C
FA

46
98

.9
4
/

33
22

.2
8

17
9.

68
/

16
6.

43
29

97
.9

0
/

15
06

.5
1

27
79

05
08

9
/

29
54

87
80

4
17

50
31

6

1-
C

FA
22

4.
32
/

16
5.

79
55

.4
8
/

80
.2

1
21

9.
76
/

15
4.

56
75

79
76

64
/

91
33

15
07

15
62

33
5

o
b

j.-
se

n
s.

23
33

.3
3
/

25
95

.5
6

23
2.

42
/

25
6.

36
23

28
.7

8
/

25
28

.0
5

30
47

36
89

3
/

42
62

57
05

3
43

22
47

9

65

3. Hybrid Data Flow Tracking

information flow analysis algorithm. Depending on the chosen points-to analysis, the SDG size

determined by the number of nodes and edges (column # SDG-nodes and # SDG-edges) varies

tremendously: for instance, for JZip the graph size exhibits between 60 ∗103 and 105 nodes, as

well as, between 75.5 ∗105 and 1.3 ∗106 edges, and thus directly affects the total analysis time.

As expected, all experiments taking into account implicit flows (DI) generate more SDG-edges

than considering explicit flows only (D), and hence, results in more dependencies between

sources and sinks. In the (D) configuration, SDGs have between 11% and 34% fewer edges

than in the respective (DI) configuration. In sum, we have observed that the chosen points-to

analysis tremendously influences the SDG size, and thus directly affects the total analysis time,

and SDG’s build time in particular. Moreover, even for small applications, like JZip, the required

memory resources are non-negligible: calling a simple Java system class from the application

code involves an avalanche of other related Java classes which have to be taken into account for

the analysis.

3.6.2. S H R I F T versus H D F T++

As S H R I F T and H D F T++ reuse a statically pre-computed analysis-report (cf. Section 3.3) to

track only those data flow dependencies that actually lead to a flow of data, both approaches

exhibit at least a better tracking precision than a pure black-box approach (cf. Section 3.6.1).

However, their run-time behavior is different. S H R I F T monitors only those sink- and source-

instructions which have a data flow dependency between each other (cf. Section 3.4), whereas

H D F T++ additionally tracks intermediate instructions which reside on a dependency path. This

way, H D F T++ is able to differentiate more accurately if a data flow actually happens or not at

run-time. For instance, consider the flow of data from line 1 to line 8 in listing 3.4: irrespective of

the condition value in line 3, S H R I F T always reports the flow of data even if the assignment

in Line 4 does not happen. In contrast, H D F T++ reports the flow of data only if the condition

value is true at run-time, because then the assignment in line 4 is executed; otherwise, no flow

of data is reported by H D F T++.

However, assessing and quantifying the precision gain of H D F T++ compared to S H R I F T in

general is non trivial. Depending on actual run-time values only a subset of chop instructions

may be executed on a data flow dependency, and thus, would make a dependency path critical,

so that data can flow from a source to a critical sink. In this section, we examine the benefits

of H D F T++ compared to S H R I F T along the lines of different Java source-code samples which

take different randomly generated input data. We show further, how the PIP-state evolves with

H D F T++ and S H R I F T and illustrate when H D F T++ provides a more accurate tracking result.

For the sake of illustration, we always show the whole PIP state with all mapping entries which

66

3.6. Evaluation

are created at run-time. Although someone may argue that not all PIP state entries are actually

required to take a policy decision, we retort that all the other entries are needed to follow the

dependency chain from a source to a sink. As the PIP state may grow quite fast after several

runs, a proper extension mechanism which sanitizes the PIP state from unneeded mappings

could be implemented in future work.

For the sake of simplicity, we use dedicated code samples to make H D F T++’s precision gain

more tangible. We do not claim that our chosen code samples are complete, but to the best

of our knowledge they reflect common code structures, like branch- and loop-commands or

inheritance relations, which are typically used inside applications. All code samples in this

section have been statically analyzed with object-sensitiveness enabled and targeting explicit

flows only (cf. Section 3.6.1 and Section 3.6.3 for the reasoning).

Sample 1: Branch instruction

Our first code sample in Listing 3.9 shows a data flow dependency between the sink- (line 11)

and the source-method (line 3). The assignment instruction ’out=in’ in line 6 is the main

reason for the existence of this data flow dependency. Depending on the actual run-time size

of the byte-array out (which is randomly determined in line 2) the assignment instruction is

executed or not, and thus, either transfers the data item in a copy-by-reference manner from

the source to the sink or not.

Listing 3.9: Data flow dependency crosses a IF-command

1 public static void main(String [] args) {
2 int size = new Random (). nextInt (10);
3 byte[] in = source("Test"). getBytes ();
4 byte[] out = new byte[size];
5 if(in.length < out.length){
6 out = in;
7 }
8 else {
9 out = "DoNothing".getBytes ();

10 }
11 sink(new String(out));
12 }
13

14 public static String source(String s){ return s;}
15 public static void sink(String s){ System.out.println(s);}

Listing 3.10 shows the corresponding analysis-report which is generated during the static

analysis phase for Listing 3.9 (cf. Section 3.3). As expected, it lists the data flow dependency

between the source- and the sink-method (sink-source-pairs in line 16 and line 17), as well

67

3. Hybrid Data Flow Tracking

as the corresponding chop nodes (chopNode-tags, line 18 – line 35) which belongs to that

dependency path. Each chop node provides information about its unique program location

inside the AuS, which is identified by the bytecode offset bci and the fully-qualified method

name om (because of limited space reason, we use a shortened version of the fully-qualified

method name and omit the Java package information).

Listing 3.10: Static analysis-report for the IF-example in Listing 3.9.

1 <source >
2 <id>Source0 </id>
3 <location >..main (.) V:38</location >
4 <signature >.. source(Ljava/lang/String ;)Ljava/lang/String;</signature >
5 <return/>
6 </source >
7 ...
8 <sink>
9 <id>Sink0</id>

10 <location >..main (.) V:76</location >
11 <signature >..sink(Ljava/lang/String ;)V</signature >
12 <param index="1"/>
13 </sink>
14 ...
15 <flows >
16 <sink id="Sink0">
17 <source id="Source0"/>
18 <chop>
19 <chopNode bci="38" lab="v20 = source (#(Test))" om="..main (.)V"/>
20 <chopNode bci="41" lab="v22 = v20.getBytes ()" om="..main (.)V"/>
21 <chopNode bci="44" lab="v23 = v22" om="..main (.)V"/>
22 <chopNode bci="46" lab="v24 = new []" om="..main (.)V"/>
23 <chopNode bci="48" lab="v25 = v24" om="..main (.)V"/>
24 <chopNode bci="50" lab="v26 = v22.length" om="..main (.)V"/>
25 <chopNode bci="52" lab="v27 = v24.length" om="..main (.)V"/>
26 <chopNode bci="53" lab="if (v26 >;= v27) goto 63" om="..main (.)V"/>
27 <chopNode bci="57" lab="v32 = v22" om="..main (.)V"/>
28 <chopNode bci="58" lab="goto 68" om="..main (.)V"/>
29 <chopNode bci="63" lab="v30 = #(DoNothing). getBytes ()" om="..main (.)V"/>
30 <chopNode bci="66" lab="v31 = v30" om="..main (.)V"/>
31 <chopNode bci="68" lab="v34 = new java.lang.String" om="..main (.)V"/>
32 <chopNode bci="73" lab="v34.<init >;(v33)" om="..main (.)V"/>
33 <chopNode bci="76" lab="sink(v34)" om="..main (.)V"/>
34 <chopNode bci="-8" lab="PHI v33 = v22 , v30" om="..main (.)V"/>
35 </chop>
36 </sink>
37 </flows >

Moreover, it also provides the Java command statement in J O A N A’s intermediate SSA repre-

sentation language (cf. lab-attribute). Based on the analysis-report in Listing 3.10, we monitor

68

3.6. Evaluation

the code in Listing 3.9 with H D F T++ and S H R I F T to investigate how the PIP-state evolves when

the sink-method in line 6 is reached. In particular, we are interested in the PIP-states when

the assignment instruction in Listing 3.9 line 6 is executed and also when it is not executed.

Listing 3.11 shows the excerpt from H D F T++’s PIP-state if line 6 in Listing 3.9 is executed,

i.e. in this case the byte-array size of variable out is greater than the byte-array size of variable

in in Line 3, and therefore the assignment instruction in Listing 3.9 line 6 is executed. Each

line shows a simplified mapping between the naming identifier F (left-hand side) and the data

identifier D (right-hand side). For the sake of simplicity, this mapping representation omits the

container identifier C and instead directly shows which naming identifiers point to which data

items inside the PIP-state. Because of limited space reason, we only show the last tail of the

naming identifiers and omit the fully qualified naming terms, as described in Section 3.5.

Listing 3.11: H D F T++’s PIP-state with executed assignment instruction in Listing 3.9 Line 6

1 .. Source0 ---> Source0
2 ..3863861312| main (.)V|v20 ---> Source0
3 ..3863861312| main (.)V|v22 ---> Source0
4 ..3863861312| main (.)V|v33 ---> Source0
5 ..3863861312| main (.)V|v34 ---> Source0
6 ..Sink0 ---> Source0

H D F T++ derives from the analysis-report that the sourcemethod is called inside the method

..main(..)V at bytecode-offset 38 (cf. XML-attribute bci in Listing 3.10 line 19) and that its

return value is assigned to v20 which is an identifier at J O A N A’s SSA representation language.

This fact is tracked by H D F T++ in Listing 3.11 line 2; note, Source0 is a unique identifier

inside the PIP to identify data that originates from the source method call. Next, when the

source-method’s return value is transformed into a byte-array by the getBytes() method

call in Listing 3.9 line 3, H D F T++ deduces from the corresponding chop node in Listing 3.10

line 20 that this method is called on an object identified by v20 and that the return value is

assigned tov22. At that point, the PIP state reveals that the identifierv20 is pointing toSource0,

and thus, the method call getBytes() may transfer Source0 to v20 as well. Because of that,

H D F T++ updates the PIP-state with line 3 in Listing 3.11. Line 4 and line 5 in Listing 3.11 are

the most crucial mapping-entries in the PIP-state. According to Listing 3.10 line 33, identifier

v34 represents the passed parameter to the sink-method at J O A N A’s intermediate language,

and thus, corresponds to the String-object in Listing 3.9 line 11. Whereas, v33 represents

the parameter which is passed to the String-constructor in Listing 3.9 line 11 (cf. Listing 3.10

line 32). As it is statically not possible to determine if line 6 or line 9 is executed in Listing 3.9,

Listing 3.10 line 34 reports that identifier v33 either points to v22 or v30, which themselves

either points to the source method invocation (cf. Listing 3.10 line 20) or to the constant string

69

3. Hybrid Data Flow Tracking

’DoNothing’ (cf. Listing 3.10 line 29). Note, Listing 3.10 line 34 does not report v32 from line 27

because the assignment in Listing 3.9 line 6 happens in a copy-by-reference manner and v32 is

not used afterwards in any Java statements. J O A N A resolves and detects this fact statically and

therefore only reports v22. However, based on Listing 3.10 line 34 H D F T++ knows that v33 may

potentially point to v22 or v30 at run-time. Therefore, whenever v22 or v30 are overwritten,

i.e. line 20 or line 29 in Listing 3.10 is executed, H D F T++ also updates the mapping for v33 to

point to the same data identifier as v22 or v30 do (cf. Listing 3.11 line 4). As in this sample only

line 20 from Listing 3.10 is executed, Listing 3.11 shows in line 4 that v33 points to Source0;

in Listing 3.12 we will discuss the case if variable out is overwritten with a constant string (cf.

Listing 3.9 line 9). Based on that information and the PIP-state, H D F T++ reports in Listing 3.11

line 6 that data from the source has flowed into the sink. UC infrastructures benefit from

such tracking results and are able, depending on the deployed policies inside the PDP, either to

preventively prohibit or detectively log the violation of such flows.

In contrast to Listing 3.11, Listing 3.12 shows the PIP-state if the assignment instruction in

Listing 3.9 line 6 is not executed. In that case, the byte-array size of variable out is smaller than

the byte-array size of variable in, and therefore, variable out is overwritten with a constant

string in line 9. Because of that, the corresponding chop node in Listing 3.10 line 29 is executed

at run-time, and thus, v33 maps to the constant string and not to Source0. Therefore, the data

flow dependency between line 3 and line 11 in Listing 3.9 gets disrupted at run-time and data can

not flow from the source to the sink. Thus, H D F T++ does not report a data flow in Listing 3.12.

Note, v20 and v22 in Listing 3.12 line 2 and line 3 are identifiers from J O A N A’s intermediate

language representation, and are pointing according to line 19 and line 20 in Listing 3.10 to the

source-method’s return value.

Listing 3.12: H D F T++’s PIP-state without executed assignment instruction in Listing 3.9 Line 6

1 .. Source0 ---> Source0
2 ..3863861312| main (.)V|v20 ---> Source0
3 ..3863861312| main (.)V|v22 ---> Source0

To make H D F T++’s achieved precision gain (cf. Listing 3.11 and Listing 3.12) more tangible,

we also monitored the code in Listing 3.9 with S H R I F T. In contrast to H D F T++, S H R I F T only

leverages source- and sink-information from the analysis-report (cf. Listing 3.10 line 1, line 8,

line 17, and line 16) and does not take chop node information into account. Because of that,

S H R I F T does not track the individual instructions on a dependency path, and thus, is not able

to differentiate if the assignment in Listing 3.9 line 6 is executed or not. Once a sink is reached,

S H R I F T signals to the PIP on which sources the sink depends on. Therefore S H R I F T always

reports a flow of data from the source- to the sink-method in Listing 3.13 line 2, even if the

70

3.6. Evaluation

assignment in Listing 3.9 line 6 is not executed.

Listing 3.13: S H R I F T’s PIP-state after executing the code in Listing 3.9.

1 .. Source0 ---> Source0
2 ..Sink0 ---> Source0

Sample 2: Loop instruction

Listing 3.14 shows our second sample where a data flow dependency between the source-

and sink-method passes a WHILE-loop-statement. Similar to Listing 3.9, the size of the output

byte-array out, i.e. the value of variable size, is randomly determined in line 2. If the size of

byte-array out is large enough, input data from variable in is transferred in a copy-by-value

manner to byte-array out in line 7.

Listing 3.14: Example of a data flow dependency crossing a WHILE-command

1 public static void main(String [] args) {
2 int size = new Random (). nextInt (10);
3 byte[] in = source("Test"). getBytes ();
4 byte[] out = new byte[size];
5 int idx = 0;
6 while(idx < in.length && out.length >in.length){
7 out[idx] = in[idx];
8 idx ++;
9 }

10 sink(new String(out));
11 }
12

13 public static String source(String s){ return s;}
14 public static void sink(String s){ System.out.println(s);}

Listing 3.15 shows the corresponding analysis-report. As expected, J O A N A detects the flow

from the source to the sink and also reports all chop nodes that are part of a dependency

path. The most crucial chop nodes are in line 26 and line 27: both chop nodes together forge

the assignment in Listing 3.14 line 7. Thereby, line 26 represents the right-hand side of this

assignment, i.e. reading and loading the content from the byte-array in at index idx on the

Java stack, and line 27 represents the left-hand side of the assignment, i.e. writing and storing

the top stack entry (which correspond to the previously read value from byte-array in) into the

byte-array out at index idx; v22 andv24 are identifiers at J O A N A’s intermediate representation

layer for variable in and out respectively. Note, the analysis-report reports two chop nodes for

a Java assignment-statement because assignment-statements are compiled into a load and

store bytecode command by the Java compiler and each of them represents an own chop node

inside the SDG.

71

3. Hybrid Data Flow Tracking

Listing 3.15: Analysis-report for the WHILE-example in Listing 3.14.

1 <source >
2 <id>Source0 </id>
3 <location >..main (.) V:38</location >
4 <signature >.. source(Ljava/lang/String ;)Ljava/lang/String;</signature >
5 <return/>
6 </source >
7 ...
8 <sink>
9 <id>Sink0</id>

10 <location >..main (.) V:89</location >
11 <signature >..sink(Ljava/lang/String ;)V</signature >
12 <param index="1"/>
13 </sink>
14 ...
15 <flows >
16 <sink id="Sink0">
17 <source id="Source0"/>
18 <chop>
19 <chopNode bci="38" lab="v20 = source (#(Test))" om="..main (.)V"/>
20 <chopNode bci="41" lab="v22 = v20.getBytes ()" om="..main (.)V"/>
21 <chopNode bci="44" lab="v23 = v22" om="..main (.)V"/>
22 <chopNode bci="46" lab="v24 = new []" om="..main (.)V"/>
23 <chopNode bci="48" lab="v25 = v24" om="..main (.)V"/>
24 <chopNode bci="50" lab="v27 = #(0)" om="..main (.)V"/>
25 <chopNode bci="52" lab="goto 69" om="..main (.)V"/>
26 <chopNode bci="61" lab="v31 = v22[v35]" om="..main (.)V"/>
27 <chopNode bci="62" lab="v24[v35] = v31" om="..main (.)V"/>
28 <chopNode bci="63" lab="v33 = v35 + #(1)" om="..main (.)V"/>
29 <chopNode bci="69" lab="v28 = v22.length" om="..main (.)V"/>
30 <chopNode bci="70" lab="if (v35 >;= v28) goto 81" om="..main (.)V"/>
31 <chopNode bci="74" lab="v29 = v24.length" om="..main (.)V"/>
32 <chopNode bci="76" lab="v30 = v22.length" om="..main (.)V"/>
33 <chopNode bci="77" lab="if (v29 >; v30) goto 61" om="..main (.)V"/>
34 <chopNode bci="81" lab="v36 = new java.lang.String" om="..main (.)V"/>
35 <chopNode bci="86" lab="v36.<init >;(v24)" om="..main (.)V"/>
36 <chopNode bci="89" lab="sink(v36)" om="..main (.)V"/>
37 <chopNode bci="-8" lab="PHI v35 = #(0), v33" om="..main (.)V"/>
38 </chop>
39 </sink>
40 </flows >

Listing 3.16 shows the corresponding H D F T++’s PIP-state with the executed assignment-

statement in Listing 3.14 line 7. Line 2 and line 3 in Listing 3.16 have the same reasoning as in

sample 1 (cf. Listing 3.11 line 2 and line 3). Line 4 and line 5 in Listing 3.16 are the mappings

which points to the byte-array out and its elements. Thereby, identifier v31 is a helper identifier

at the SSA level: it first takes a value from byte-array in (identified by v22, cf. Listing 3.15 line 20)

at index idx (identified by v35, cf. Listing 3.15 line 26), and second, assigns its value to the

72

3.6. Evaluation

Listing 3.16: H D F T++’s PIP-state with executed assignment-statement in Listing 3.14 line 7

1 .. Source0 ---> Source0
2 ..3863862904| main (.)V|v20 ---> Source0
3 ..3863862904| main (.)V|v22 ---> Source0
4 ..3863862904| main (.)V|v24 ---> Source0
5 ..3863862904| main (.)V|v31 ---> Source0
6 ..3863862904| main (.)V|v36 ---> Source0
7 ..Sink0 ---> Source0

byte-array out (identified by v24, cf. Listing 3.15 line 27) at index idx (identified by v35, cf.

Listing 3.15 line 27). According to Listing 3.15 line 36, v36 is the intermediate variable identifier

that is passed as a parameter to the sink-method. At run-time, H D F T++ detects that v24which

points to Source0 (cf. Listing 3.16 line 4) flows into v36 (cf. Listing 3.15 line 35). Therefore,

H D F T++ reports that Source0 has also flowed into the sink Sink0 (cf. Listing 3.16 line 7).

Listing 3.17 shows the PIP-state without the executed assignment-statement from Listing 3.14

line 7. As expected H D F T++ does not report the flow of data because the copy-by-value assign-

ment is not executed. Similar as in Listing 3.12, the intermediate identifiers v20 and v22 are

pointing to the return value from the source-method invocation, cf. Listing 3.15 line 19 and

line 20.

Listing 3.17: H D F T++’s PIP-state without executed assignment-statement in Listing 3.14 line 7

1 .. Source0 ---> Source0
2 ..3863861336| main (.)V|v20 ---> Source0
3 ..3863861336| main (.)V|v22 ---> Source0

To compare H D F T++’s tracking results with S H R I F T, we also run and analyzed Listing 3.15

with S H R I F T. Listing 3.18 shows the corresponding tracking result. As both code samples,

Listing 3.9 and Listing 3.14, are structure-wise pretty similar (except that data is transferred in a

copy-by-value manner in Listing 3.14) S H R I F T provides the same tracking results for both code

samples, regardless of the assignment instruction in Listing 3.14 line 7.

Listing 3.18: S H R I F T’s PIP-state after executing the code in Listing 3.14.

1 .. Source0 ---> Source0
2 ..Sink0 ---> Source0

Sample 3: Inheritance relation

Listing 3.19 shows our third sample where the data flow dependency between the source- and

sink-method crosses a randomly chosen Java object (cf. Listing 3.19 line 6).

73

3. Hybrid Data Flow Tracking

Listing 3.19: Example of a data flow dependency passing through an inheritance relation

1 public static void main(String [] args) {
2 int size = new Random (). nextInt (10);
3 byte[] in = source("Test"). getBytes ();
4 byte[] out;
5

6 Copy[] copies = new Copy []{ new Copy(), new CopyByRef(), new CopyByValue ()};
7 int i = new Random (). nextInt (3);
8 out = copies[i].copy(in);
9

10 sink(new String(out));
11 }
12 public static String source(String s){ return s;}
13 public static void sink(String s){ System.out.println(s);}
14

15 // Root class for all Copy -classes. Returns an empty byte array
16 public static class Copy{
17 public byte[] copy(byte[] a){
18 System.out.println("Copy");
19 return new byte [10];
20 }
21 }
22

23 /* Returns a new reference which points to the byte -array parameter */
24 public static class CopyByRef extends Copy{
25 public byte[] copy(byte[] a){
26 System.out.println("CopyByRef");
27 byte[] _return=a;
28 return _return;
29 }
30 }
31

32 /* Copies every element from the byte -array parameter to the return array */
33 public static class CopyByValue extends Copy{
34 public byte[] copy(byte[] a){
35 System.out.println("CopyByValue");
36 byte[] _return = new byte[a.length];
37 for(int i = 0; i < a.length; i++){
38 _return[i] = a[i];
39 }
40 return _return;
41 }
42 }

74

3.6. Evaluation

Listing 3.20: Analysis-report for the INHERITANCE-example in Listing 3.19.

1 <source >
2 <id>Source0 </id>
3 <location >..main (.) V:38</location >
4 <signature >.. source(Ljava/lang/String ;)Ljava/lang/String;</signature >
5 <return/>
6 </source >
7 <sink>
8 <id>Sink0</id>
9 <location >..main (.) V:113</location >

10 <signature >..sink(Ljava/lang/String ;)V</signature >
11 <param index="1"/>
12 </sink>
13 <flows >
14 <sink id="Sink0">
15 <source id="Source0"/>
16 <chop>
17 <chopNode bci="1" lab="<init >;()" om="Copy.<init >;()V"/>
18 <chopNode bci="10" lab="v8 = new []" om="Copy.copy([B)[B"/>
19 <chopNode bci="12" lab="return v8" om="Copy.copy([B)[B"/>
20 <chopNode bci="1" lab="this.<init >;()" om="CopyByRef.<init >;()V"/>
21 <chopNode bci="9" lab="v7 = p1" om="CopyByRef.copy([B)[B"/>
22 <chopNode bci="11" lab="return p1" om="CopyByRef.copy([B)[B"/>
23 <chopNode bci="1" lab="this.<init >;()" om="CopyByValue.<init >;()V"/>
24 <chopNode bci="-8" lab="PHI v17 = #(0), v15" om="CopyByValue.copy([B)[B"/>
25 <chopNode bci="9" lab="v7 = p1.length" om="CopyByValue.copy([B)[B"/>
26 <chopNode bci="10" lab="v8 = new []" om="CopyByValue.copy([B)[B"/>
27 <chopNode bci="14" lab="v11 = #(0)" om="CopyByValue.copy([B)[B"/>
28 <chopNode bci="22" lab="v13 = p1[v17]" om="CopyByValue.copy([B)[B"/>
29 <chopNode bci="23" lab="v8[v17] = v13" om="CopyByValue.copy([B)[B"/>
30 <chopNode bci="24" lab="v15 = v17 + #(1)" om="CopyByValue.copy([B)[B"/>
31 <chopNode bci="34" lab="return v8" om="CopyByValue.copy([B)[B"/>
32 <chopNode bci="38" lab="v20 = source (#(Test))" om="..main (.)V"/>
33 <chopNode bci="41" lab="v22 = v20.getBytes ()" om="..main (.)V"/>
34 <chopNode bci="46" lab="v25 = new Copy[]" om="..main (.)V"/>
35 <chopNode bci="51" lab="v27 = new Copy" om="..main (.)V"/>
36 <chopNode bci="58" lab="v25 [#(0)] = v27" om="..main (.)V"/>
37 <chopNode bci="61" lab="v30 = new CopyByRef" om="..main (.)V"/>
38 <chopNode bci="68" lab="v25 [#(1)] = v30" om="..main (.)V"/>
39 <chopNode bci="71" lab="v33 = new CopyByValue" om="..main (.)V"/>
40 <chopNode bci="78" lab="v25 [#(2)] = v33" om="..main (.)V"/>
41 <chopNode bci="98" lab="v41 = v25[v39]" om="..main (.)V"/>
42 <chopNode bci="100" lab="v43 = v41.copy(v22)" om="..main (.)V"/>
43 <chopNode bci="105" lab="v45 = new java.lang.String" om="..main (.)V"/>
44 <chopNode bci="110" lab="v45.<init >;(v43)" om="..main (.)V"/>
45 <chopNode bci="113" lab="sink(v45)" om="..main (.)V"/>
46 </chop>
47 </sink>
48 </flows >

75

3. Hybrid Data Flow Tracking

Those Java objects are derived from the Java classCopyand overwrite its methodcopy(byte[]

a) with an own individual copying behavior. The super-class method Copy.copy(byte[] a)

always returns a new byte-array, irrespective of parameter a’s value, whereas the sub-class

methods either return a new reference (cf. CopyByRef.copy(byte[] a)) or a copy-by-value

copy (cf. CopyByValue.copy(byte[] a)) of the passed byte-array parameter “a”. The main

difference between those copy methods is, that the latter one allocates new memory for the

copied byte-array, whereas the former one provides a new reference to the same memory region.

Depending on the randomly chosen Java object, one of those copy-method implementations

is invoked in Listing 3.19 line 8 and transfers data from its input parameter to its return value.

Listing 3.20 shows an excerpt from the static analysis-report for Listing 3.19 (the complete

analysis-report is provided in Listing A.2). As J O A N A performs a whole-program analysis the

flow of data between the source- and sink-method, as well as its corresponding chop-nodes,

are reported, taking into account the different copy(byte[] a) method implementations,

which potentially could be invoked in Listing 3.19 line 8. Listing 3.20 line 17 – line 19 list all

chop nodes which belongs to the method Copy.copy(byte[] a); line 20 – line 22 list all chop

nodes which belongs to the methodCopyByRef.copy(byte[] a); line 23 – line 31 list all chop

nodes which belongs to the method CopyByValue.copy(byte[] a). Line 42 in Listing 3.20

is the most crucial one: this chop node represents the copy-method invocation on a randomly

chosen Java object from the array copies (cf. line 8 and line 6 in Listing 3.19); the identifier

v41 in Listing 3.20 line 42 represents the randomly chosen Java object on which this method is

invoked. Note, line 34 – line 40 in Listing 3.20 provides all the chop nodes which create and fill

up the copies array with the corresponding Copy objects (v25 is the corresponding identifier

from J O A N A’s SSA representation).

Listing 3.21: H D F T++’s PIP state with executed Copy.copy(byte[] a) method.

1 .. Source0 ---> Source0
2 ..3863889976| sample ()V|v20 ---> Source0
3 ..3863889976| sample ()V|v22 ---> Source0

As every copy(byte[] a) method-implementation has a different behavior regarding the

way how data is transferred from the input parameter “a” to the return value, we run H D F T++

several times on the code in Listing 3.19 to examine how the PIP-state evolves when each of

those different method-implementations is executed in line 8. Listing 3.21 shows the PIP-state

when the method Copy.copy(byte[] a) is executed. As this method always returns a new,

empty byte-array, the PIP-state does not report a flow of data from the source to the sink.

Similar as in sample 1 and 2, the intermediate identifiers v20 and v22 are pointing to the return

value from the source-method (cf. Listing 3.20 line 32 and line 33).

76

3.6. Evaluation

Listing 3.22 shows the PIP-state when the methodCopyByRef.copy(byte[] a) is executed.

As this method returns a new reference to the byte-array parameter “a”, the PIP-state reports that

data has flowed from the source to the sink (cf. Listing 3.22 line 7). The intermediate identifier

v43 points to the return value from the copy(byte[] a) method invocation (cf. Listing 3.20

line 42), whereas v45 points to the method parameter which is passed to the sink-method (cf.

Listing 3.20 line 45).

Listing 3.22: H D F T++’s PIP state with executed CopyByRef.copy(byte[] a) method.

1 .. Source0 ---> Source0
2 .. CopyByRef |3871454440| copy([B)[B|p1 ---> Source0
3 ..3863890152| main (.)V|v20 ---> Source0
4 ..3863890152| main (.)V|v22 ---> Source0
5 ..3863890152| main (.)V|v43 ---> Source0
6 ..3863890152| main (.)V|v45 ---> Source0
7 ..Sink0 ---> Source0

Listing 3.23 shows the PIP state when the CopyByValue.copy(byte[] a) is executed. As

this method returns an identical copy of the byte-array “a” the PIP-state reports that data has

flowed from the source to the sink (cf. Listing 3.23 line 7). Note, as copying of data happens

in a copy-by-value manner inside the method CopyByValue.copy(byte[] a) H D F T++ ++

also reports v8 in Listing 3.23 line 4 which basically corresponds to the variable _return in

Listing 3.19 line 38.

Listing 3.23: H D F T++’s PIP state with executed CopyByValue.copy(byte[] a) method.

1 .. Source0 ---> Source0
2 ..3863890024| main (.)V|v20 ---> Source0
3 ..3863890024| main (.)V|v22 ---> Source0
4 .. CopyByValue |3871626072| copy([B)[B|v8 ---> Source0
5 ..3863890024| main (.)V|v43 ---> Source0
6 ..3863890024| main (.)V|v45 ---> Source0
7 ..Sink0 ---> Source0

We also analyzed the code in Listing 3.19 with S H R I F T to investigate how the randomly

chosen Java object in Listing 3.19 line 8 may influence the tracking result. However, here we

could observe the same behavior as in the previous samples: as S H R I F T does not take into

account any run-time information, the tracking result in Listing 3.24 stays always the same.

Even if the method Copy.copy(byte[] a) is executed in Listing 3.19 line 8, which even does

not transfer any data, S H R I F T still reports a flow of data.

Listing 3.24: S H R I F T’s PIP-state after executing the code in Listing 3.20.

1 .. Source0 ---> Source0
2 ..Sink0 ---> Source0

77

3. Hybrid Data Flow Tracking

3.6.3. Performance

To track the flow of data from a source to a sink, S H R I F T and H D F T++ inject additional instruc-

tions into the AuS. As any additional instruction needs to be processed at run-time, it may affect

and influence the native execution time of the AuS, i.e. the time the AuS would need without

being monitored. This sub-section addresses Caveat 2 and describes the experiments, including

their evaluation results, to investigate the performance overhead S H R I F T and H D F T++ impose

on the AuS.

We set up the following experimental setting: before running each performance experiment

each AuS has been statically analyzed concerning possible information flows (cf. Section 3.6.1).

As J O A N A is highly configurable, like with or without object-sensitiveness [74], the static analy-

sis phase needs more or less resources depending on the configuration setting (cf. Table 3.1).

However, because of its good trade-off between (high) precision and resource consumption

all AuSs have been statically analyzed with object-sensitiveness and explicit flows only (cf. Sec-

tion 3.6.1); any other points-to analysis would generate statistically indistinguishable run-time

performance [71]. Prior to the experiment’s execution and to factor out needed instrumentation-

time, we statically instrumented the AuS according to the analysis report. All performance

experiments have been executed on a virtual system with a 8-core CPU (2.6 GHz Xeon-E5) and

10GB of RAM. To weed out possible environmental noise, median values for 30 runs are reported

in Table 3.3.

To evaluate the performance overhead of our approaches, a test-suite of different Java-based

standalone- (JZip and JFTP) and web-applications (BirthdayApp, SnipSnap, WebGoat, and

PersonalBlog) have been used, whose computational loads range from low to high. While the

former ones are directly executed in the Java Virtual Machine (JVM), web-applications need a

run-time-container to operate; Apache Tomcat 8.0.9 has been used for that. Further, all required

S H R I F T- or H D F T++-classes have been added to the Java classpath on startup to be available

at run-time for the injected PEP inside the AuS.

Table 3.3 shows the performance evaluation of our test-suite. Column “native” yields the

execution time without, and columns “S H R I F T” and “H D F T++” provide the execution time

with the corresponding tracking logic in place. To trigger different dependencies inside the AuS,

we run experiments with different inputs (like using different file sizes) or we executed different

tasks inside the AuS (like LI or LO for BirthdayApp).

For the JZip and JFTP experiments, we vary the file-size (1MB and 10MB) and their internal

buffer for file- and network-I/O operations. By default, both applications use a 1-kByte internal

buffer for reading and writing data. We increased this buffer to 32-kByte for the experiments

JZip 32 and JFTP 32 to investigate how a larger buffer affects the run-time performance overhead.

78

3.6. Evaluation

Ta
b

le
3.

3.
:P

er
fo

rm
an

ce
m

ea
su

re
m

en
t

re
su

lt
s

in
m

il
li

se
co

n
d

s.
M

ed
ia

n
va

lu
es

fo
r

30
ru

n
s

ar
e

re
p

o
rt

ed
.C

o
lu

m
n

“n
at

iv
e”

li
st

s
th

e
n

at
iv

e

ex
ec

u
ti

o
n

ti
m

e
o

f
th

e
A

u
S,

w
h

er
ea

s
th

e
co

lu
m

n
s

“S
H

R
IF

T
”

an
d

“H
D

F
T
++

”
sh

ow
th

e
ex

ec
u

ti
o

n
ti

m
e

w
it

h
S

H
R

IF
T

an
d

H
D

F
T
++

en
ab

le
d

.J
Z

ip
an

d
JF

T
P

w
er

e
ev

al
u

at
ed

w
it

h
an

in
te

rn
al

b
u

ff
er

o
f1

-k
B

yt
e.

w
h

er
ea

s
JZ

ip
32

an
d

JF
T

P
32

re
p

o
rt

s
th

e

sa
m

e
ex

p
er

im
en

ts
w

it
h

an
32

-k
B

yt
e

in
te

rn
al

-b
u

ff
er

si
ze

.T
h

e
p

ro
to

ty
p

e
im

p
le

m
en

ta
ti

o
n

is
b

en
ch

m
ar

ke
d

w
it

h
L

IB
D

F
T
[5

4]

an
d

.i
fp

o
ss

ib
le

.w
it

h
P

H
O

S
P

H
O

R
[1

0]
.

A
u

S
In

p
u

t
n

at
iv

e
S

H
R

IF
T

S
H

R
IF

T
/n

at
iv

e
H

D
F

T
++

H
D

F
T
++
/n

at
iv

e
[5

4]
[5

4]
/n

at
iv

e
[1

0]
[1

0]
/n

at
iv

e

JZ
ip

1M
B

38
.5

3
51

.7
6

1.
34

99
.7

8
2.

58
58

1.
82

15
.1

0
83

.4
9

2.
16

10
M

B
87

.6
4

16
4.

04
1.

87
81

8.
44

9.
33

18
14

.5
4

20
.7

0
70

8.
91

8.
10

JZ
ip

32

1M
B

31
.9

1
33

.3
4

1.
04

37
.0

0
1.

15
32

0
10

.0
2

71
.7

2
2.

24

10
M

B
68

72
.4

9
1.

06
11

6.
21

1.
70

13
92

.5
7

20
.4

7
69

1.
51

10
.1

6

JF
T

P
10

M
B

69
3.

88
72

5.
73

1.
04

5
17

27
.5

2
2.

48
12

78
1.

96
18

.4
2

18
73

.8
2

2.
7

JF
T

P
32

10
M

B
28

3.
94

29
5.

94
1.

04
2

65
9.

54
2.

32
98

31
.8

6
34

.6
2

11
04

.8
5

3.
89

B
ir

th
d

ay
A

p
p

SP
0.

31
0.

66
2.

12
1,

03
3.

33
18

.8
1

60
.6

8

–
LI

51
0.

91
54

3.
41

1.
06

56
2.

11
1.

10
19

84
.5

9
3.

88

LO
0.

32
0.

51
1.

59
24

.8
6

77
.6

8
12

,5
4

39
.2

1

P
er

so
n

al
B

lo
g

U
C

14
.0

4
14

.7
7

1.
05

19
.9

7
1.

42
27

1.
28

19
.3

2
–

Sn
ip

Sn
ap

U
C

12
.7

9
14

.7
9

1.
15

15
.3

2
1.

19
24

7.
35

19
.3

3
–

79

3. Hybrid Data Flow Tracking

In case of the BirthdayApp application, we executed different tasks (cf. BirthdayApp-block in

Table 3.3): display the start page (row SP), login to (row LI) and logout from (row LO) Facebook.

Finally, for the SnipSnap and PersonalBlog web-application we executed a use-case scenario:

display the start- and login-page, editing and creating a new post, and logout from the web-

application (row UC).

These evaluation results reveal that tasks with a higher native execution time exhibit a lower

relative run-time overhead (column “S H R I F T/native” and “H D F T++/native” in Table 3.3).

For instance, as the BirthdayApp’s facebook-login task LI needs to query Facebook’s API to

authenticate a user its relative run-time overhead is lower than rendering the start page after

logout SPLO. However, this observation does not hold for all experiments: as zipping a 10MB file

with a 1-kByte internal buffer takes natively longer than a 1MB file, the relative overhead increases

with the file size. In case of BirthdayApp though, the time expensive Facebook authentication

happens only once at the beginning, and thus, absorbs the imposed run-time overhead.

Moreover, we discovered that the program structure, that is passed by a dependency inside

the AuS, has also an influence on the performance overhead. For instance, in case of JZip the

dependency (i.e. chop) crosses a loop structure that encompasses chopCMDs for reading and

writing source-files to the zipped-file. Because of that, a lot of notification events are exchanged

between the PEP and the other UC components. To confirm this statement, we repeat the

JZip experiments but with a 32-kByte internal buffer (row JZip 32 in Table 3.3) for reading and

writing data. Our evaluation results show, that with a larger internal buffer the total performance

overhead gets smaller. The same also holds for JFTP.

To benchmark our hybrid approaches with competitive data flow trackers, the same experi-

ments have been conducted with L I B DFT [54] and (partially) with P H O S P H O R [10]. L I B DFT is

a dynamic data flow tracker for x86-binaries and instruments every single instruction inside the

binary. Our proposed hybrid approaches outperform performance-wise L I B DFT in all experi-

ments and achieve better results because data flow tracking happens only selectively at those

program locations that actually lead to a flow of data. Such a comparison may be considered

as unfair because L I B DFT injects its tracking logic into the JVM itself to monitor executed

bytecode commands, and therefore, its total performance overhead would be also influenced by

the JVM’s bootstrapping- and shutdown-time. However, we were very careful the way how we

conducted the comparison: we measured and compared the performance overhead between

the start and the end of each executed use-case in Table 3.3. For instance, for JZip we measured

the performance overhead between the start and the end of the Java main-method; in case of

web-applications we measured the time between entering and exiting the HTTP(-GET) method.

This way we were able to factor out bootstrapping- and shutdown-time required by the JVM.

80

3.6. Evaluation

As L I B DFT is specially designed for x86-binaries, we also benchmarked our approaches

against P H O S P H O R, a pure dynamic data flow tracker for Java, and Java-bytecode in particular.

P H O S P H O R requires that the AuS, as well as the complete run-time environment, has to be

instrumented to propagate data flows. This includes not only Java system classes but also any

middleware or third-party library used by the AuS. Because of that, the same experiments

could not be evaluated on the whole test-suite with P H O S P H O R, as some of the Java classes

belonging to the Tomcat-web-server and/or third-party framework (like Spring [110] or Java

Cryptography Extension) did not pass the JRE signature verification, and hence, could not be

loaded after instrumentation. The results achieved in the experiments JFTP, JFTP 32, and JZip 32,

outperform P H O S P H O R, whereas for JZip the proposed approach slows down the execution

time about∼1.0x compared to P H O S P H O R. The reason is, that the latter experiments stress-test

the hybrid approach: zipping files in chunks of 1 kByte leads to a lot notifications between PEP

and the other UC components. JZip32 underpins this statement as here the larger internal buffer

(32-kByte) leads to fewer notifications, and hence, to a reduced performance-overhead.

Remarks on performance: S H R I F T and H D F T++ inject a minimal IRM into the AuS, that

tracks point-wise only those program locations that actually lead to a flow of data. As both

approaches monitor fewer program locations than a pure dynamic data flow tracker does

(with full instrumentation), we could achieve performance-wise better results (cf. Section 3.6).

Moreover, instead of signaling extracted context information on every PoI’s execution which

actually impose unnecessary performance overhead and does not provide better tracking results,

S H R I F T and H D F T++ transmit collected information only the first time when a PoI is executed.

Moreover, the PEP signals executed chopCMDs and sinks only when their respective source

was executed before.

Remarks on portability: S H R I F T and H D F T++ are able to increase the portability of the

monitored AuS, as run-time tracking logic is only injected in the application’s program code

(cf. Figure 1.6), excluding 3rd-party libraries and Java’s JRE system-classes. As the static analy-

sis phase in S H R I F T and H D F T++ performs a whole-program data flow analysis, taking into

account the entire application’s code, data flow dependencies which start and end at the ap-

plication program code and pervade the entire JRE are detected. Because of that, the present

work argues that S H R I F T’s and H D F T++’s run-time tracking logic is not necessarily required

for the excluded code parts. Thus, the monitored AuS can be executed on any off-the-shelf JRE.

Concerning tracking precision, we have to rely on the static analysis results for the excluded

code parts. At run-time, however, this might lead to imprecision as we are not able to handle

properly situations inside Java system classes or 3rd-party libraries (cf. Section 3.4 Listing 3.4).

However, at the end the tradeoff between precision versus portability and performance remains:

81

3. Hybrid Data Flow Tracking

a more precise tracking result requires to spread tracking logic over the entire AuS (i.e. applica-

tion’s program code, 3rd-party and system libraries) at the expense of less portability and higher

performance overhead (cf. section 3.6.3), and vice versa.

3.6.4. Threats to Validity

Although we evaluated our proposed approaches carefully there are several threats to validity

which are discussed in the following.

Evaluation Environment. We used a virtual machine with a pre-installed Tomcat web-server

instance to run our performance experiments in Section 3.6.3. One may argue that such an

environmental setting does not properly reflect a PaaS cloud scenario as we have motivated in

Section 1.2. Though this is a valid argument, we advocate that our employed environmental

setting is pretty similar to the way how PaaS cloud platforms are providing their execution

environments. For instance, Amazon’s Elastic Beanstalk [2] provides a Java-Tomcat software

stack at its central core to run Java-based web-applications. Thus, we advocate that running our

experiments on a full-blown PaaS cloud platform would result in the same, comparable relative

performance overhead. Moreover, we would like to emphasize that the present work considers

the immediately enclosing unit which runs the AuS’s code as a “run-time environment". For

instance, in case of a Java program the Java Runtime Environment is the “run-time environment”

which runs the AuS’s code, or the Python interpreter in case of a Python application. We do not

subsume under the term “run-time environment” all other components inside a PaaS cloud

platform, like load balancers, containers, virtualization, etc.

Generalisability to arbitrary applications. How well do S H R I F T and H D F T++ generalize to

arbitrary Java applications? As SIFA is a central element in the present work our approaches

also inherit their limitations. This means in reverse, our approaches generalize to arbitrary

applications as good as SIFA tools are able to do it. For instance, Java reflection and system

callbacks are fundamental limitations in the field of SIFA for which no general solution is

available (cf. Section 3.7 for a thorough discussion on that). As some applications in our test-

suite are using such Java features, our test-results do not cover those source code regions inside

the AuS which are called via system callbacks or reflection.

Further, the required memory resources to run static analysis also affect the generalisability

of our approaches. SIFA tools, like J O A N A or F L O W D R O I D, rely on SDGs which are an ab-

stract, whole-program representation of the complete AuS, including all required system- and

third-party-libraries. Depending on the application size, generating and storing an SDG may

require different large memory space. As our results show in Section 3.6.1 analyzing even small

applications, like JZip (which has approximately 330 lines of program code and one external

82

3.6. Evaluation

library), needs already non-negligible memory resources. With larger applications, like SnipSnap

(which has approximately 26000 lines of code and 36 external libraries), those requirements get

larger (cf. Table 3.2). A common technique to approach that issue are flow models [7]. These

are pre-computed summaries about data flows inside specific code regions of the AuS. During

the actual static analysis those information are reused, instead of analyzing those code regions

represented by the flow models again. Applying flow models, for instance, on Java system- and

third-party-libraries can reduce the memory consumption for static analysis as a full analysis

of those libraries is not needed. However, in the end SIFA techniques are able to scale and to

generalize to a certain degree, and not in general to arbitrary Java applications. Potential future

research work in that direction could be to run static information flow analysis on a distributed

cluster of interconnected machines, instead on a single machine, as current approaches in the

field of SIFA are doing it.

Test-suite. We chose a set of different Java-based standalone- and web-applications for our

evaluation. Those applications have different sizes regarding lines of code and number of used

third-party libraries. For instance, JZip is our smallest application with approximately 330 lines

of code and uses one external library to parse command line parameters. In contrast, SnipSnap

is the largest application in our test-suite with approximately 26000 lines of code and with

36 external libraries. The remaining applications are somewhere in between: PersonalBlog

has 3606 lines of code and 33 external libraries, BirthdayApp has 1931 lines of code and 7

external libraries, and JFTP has 3010 lines of code and no external libraries. Further, some

applications were developed by us, like JZip, and some were downloaded from the internet,

like PersonalBlog. With this collection of applications, we aime to achieve a diversified test-

suite which exhibit different sizes and different levels of complexity, in order to investigate how

S H R I F T and H D F T++ behaves not only on small and less complex programs, like JZip, but also

on larger and more complex applications, like Snipsnap or BirthdayApp (which, for example, are

using XML-parser- or REST-Client-libraries). We do not claim for completeness of our test-suite,

more-complex and larger applications can be added to our test-suite, keeping limitations of

static analysis in mind.

Precision. Our primary driver to improve data flow tracking precision is the reduction of

overapproximation in a black-box tracking approach (cf. Section 1.3) where every source flows to

every sink, i.e. the number of potential data flow dependencies is #flowsb = #sources×#sinks. We

quantified our precision improvement in Section 3.6.1 as the number of data flow dependencies

which can be safely discarded from #flowsb, i.e. the number of data flows which would mistakenly

be reported in a black-box approach. Depending on the static analysis configuration, the number

of discarded dependencies differ, and thus, provides different precision results according to our

83

3. Hybrid Data Flow Tracking

metric (cf. Section 3.6.1). Thus, as S H R I F T and H D F T++ are reusing those results at run-time

both provide by design at least a better tracking precision than a pure black-box approach

(cf. Section 3.6.1). H D F T++ is an extension of S H R I F T and additionally tracks intermediate

instructions on a sink-source data flow dependency, aiming to weed out mistakenly reported

dependencies, which may not occur at run-time due to different run-time values. Because

S H R I F T does not take into account instructions on a data flow dependency path, S H R I F T is

not able to distinguish if a data flow dependency is still critical or not when its sink is reached.

Quantifying H D F T++’s precision gain over S H R I F T with a general metric is non-trivial, as it

highly depends on the actual run-time values, and thus, on the taken data flow path inside

the application (cf. Section 3.4 Listing 3.4). To the best of our knowledge, we illustrated in

Section 3.6.2 H D F T++’s precision gain compared to S H R I F T along the lines of a use case study

and point-out under which conditions H D F T++ provides a more precise tracking result than

S H R I F T. However, it may happen that a crucial instruction which leads to a data flow, like

line 4 Listing 3.4, may also be located inside a RTE’s system- or a 3rd-party-library-class which

is not monitored by H D F T++ for the sake of portability. In this case, H D F T++ would miss it

and also mistakenly report a flow of data although a flow may not happen. But in the end, the

tradeoff between precision and portability remains: more precise tracking results require data

flow tracking inside the entire AuS at the cost of less portability, and vice versa.

3.7. Strengths and Limitations

Compared to pure dynamic taint tracking, like P H O S P H O R [10] or L I B DFT [54], S H R I F T and

H D F T++ do not require to instrument each command within the AuS. By utilizing statically pre-

computed analysis results a “minimal” IRM is injected which monitors only those instructions

that lead to a flow of data. This way, the run-time performance overhead of our hybrid approach

exhibits less or comparable performance overhead than a pure dynamic tracker, while collecting

valuable information about executed and passed data flow dependencies.

To address RQ2 and RQ3, S H R I F T and H D F T++ are able to inject their tracking logic only

inside a selected code region, and thus, are able to preserve application’s portability. Figure 3.4 il-

lustrates this aspect along the lines of our BirthdayApp application from our running example (cf.

Section 1.2). Considering Figure 1.6, we divide BirthdayApp into the code blocks: BirthdayApp-

program (which contains the main application logic), REST-Client (which enables to call OSN’s

REST-API), a Tomcat-Webserver (which provides all libraries for Java web-service support, i.e.

those implement the JSR 109), and Java system classes (which are provided by the standard

JRE installation); note, for the sake of simplicity we illustrate only one external library in Fig-

84

3.7. Strengths and Limitations

BirthdayApp
(program)

REST-Client
(3rd-party library)

Tomcat web-server

Input

O
ut

pu
t

Java System Classes
(run-time environment)

(a) Tracking logic is injected inside the Birth-

dayApp program block and the REST-Client.

Java system-classes and Tomcat web-server

are excluded.

Java System Classes
(run-time environment)

BirthdayApp
(program)

REST-Client
(3rd-party library)

Tomcat web-server

Input

O
ut

pu
t

Java System Classes
(run-time environment)

(b) Tracking logic is distributed over all

code blocks, including BirthdayApp program,

REST-Client, Tomcat web-server, and Java

system-classes.

Figure 3.4.: BirthdayApp is modularised into a program block, which contains the actual ap-

plication logic, a REST-Client, to call OSN’s REST-API, a Tomcat web-server, which

provides libraries to run Java web-services, and Java system-classes. Figure 3.4a illus-

trates the S H R I F T and H D F T++ approach: tracking logic is injected selectively

at the BirthdayApp program block and into the REST-Client. Contrary, dynamic data

flow trackers, like P H O S P H O R, also injects its tracking logic inside the Tomcat web-

server and Java system-classes, in order to propagate the flow of data across every

single command (cf. Figure 3.4b). Thus, all components are tightly interwoven.

ure 3.4, viz. REST-Client, although BirthdayApp has in total 7 libraries. A pure dynamic data

flow tracker, like P H O S P H O R, disperses and injects its tracking logic into all those code

blocks (cf. Figure 3.4b) in order to track the flow of data from inputs to outputs. Thus, all code

blocks get tightly coupled and interwoven so that they need each other to operate at run-time. In

particular, BirthdayApp-program, which contains the main application logic, gets dependent on

appropriately instrumented Java system-classes, REST-Client- and Tomcat web-server-library.

In contrast, as S H R I F T and H D F T++ are based on a static analysis phase, which takes into

account the entire code base, they are able to track data flow dependencies only inside selected

code regions and exclude designated code blocks at run-time. For instance, based on the static

analysis-report S H R I F T and H D F T++ monitor only those program instructions inside the

BirthdayApp-program code block that are relevant for a flow of data, and do not rely on any

components or modifications inside the run-time environment, i.e. the JVM or the Java system

classes in particular (cf. Figure 3.4b). Because of that, the monitored BirthdayApp-program

can be easily transferred and executed, together with the injected tracking logic, on different

85

3. Hybrid Data Flow Tracking

off-the-shelf JRE run-time environments without requiring specially instrumented Java system-

classes or third-party-libraries. We argue, that the portability benefits of our proposed approach

come into full effect inside domains where computational resources are costly and therefore

shared among different applications; for instance, inside the cloud domain where a common

run-time execution platform is shared among multiple cloud services, i.e. technically those

cloud services are executed on the same JRE (cf. Section 1.2). Moreover, as our experiments

show, instrumenting the entire environment may also lead to non-operational applications (cf.

Section 3.6.3). However, in the end the portability benefits of our proposed approach highly

depends on which code blocks are instrumented and equipped with the tracking logic inside

the AuS (cf. the schematic illustration in Figure 1.6). Although it is technically possible to place

tracking logic inside all code blocks of an application and to reuse them inside other applications,

we do not recommend this method as it can lead to falsified run-time data flow tracking results.

For instance, reusing the instrumented REST-Client library from BirthdayApp inside another

application, like PersonalBlog, would lead to the case that excuted chopCMDs, which belong to

data flow dependencies from BirthdayApp, are also reported under the execution of PersonalBlog.

Because of that, this thesis advocates to place tracking logic only inside those code blocks which

are not shared between applications at run-time. As Java system classes are usually shared

between all Java applications which run on the JRE, we do not inject our tracking logic inside

those system classes and rely, with regard to data flow dependencies, on the static analysis-report

for the excluded code blocks. As third-party libraries, like BirthdayApp’s REST-Client, are usually

bundled and deployed together with an application we also inject our tracking logic into them

(cf. Figure 3.4a) – we assume that third-party libraries are integral components of applications,

and thus, are not shared betwen applications at run-time. But, however, if third-party libraries

are also shared between applications at run-time (the same case as with Java system classes)

the present approaches also support to exclude tracking logic inside those third-party libraries

(because of the same, previously described reasons). In the end, it is a matter between tracking

precision and run-time overhead. A more precise tracking result demands to inject tracking

logic into all code blocks at the expense of higher performance run-time overhead and vice

versa.

As S H R I F T and H D F T++ are based on static information flow analysis techniques they inherit

and suffer from their limitations. By its nature, static information flow analysis is not able to

distinguish every possible execution and therefore introduces overapproximation which results

in imprecision in the information flow analysis. One possibility to improve precision is the

use of a more precise points-to analysis. But this usually comes at the price of considerably

longer analysis times and higher memory consumption, meaning scalability problems [71]. The

86

3.7. Strengths and Limitations

scalability problems are worsened by the fact that even small Java applications use large parts

of the Java standard library – sometimes just referencing a prominent class name makes the

structures which J O A N A constructs (callgraph and SDG) very large. Currently, J O A N A performs

a whole-program analysis which means that all libraries used by the AuS need to be analyzed

every time. There exists an approach to make the PDG construction more modular by pre-

computing appropriate approximations of library PDGs and re-using them when calls of library

methods are encountered [7, 35], but this approach has not been fully integrated yet, so it is

unclear whether it brings considerable performance gains in practice. In the end, however, the

problem remains a trade-off between precision and performance.

Another limitation of J O A N A is the inability to properly analyze applications that do not

have a main entry point, but are rather used through callback handlers which originate from

system calls/interrupts (e.g. UI-interactions, like mouse-clicks, in Swing). Callback handlers

and reflective code are critical programming constructs that impose further challenges for static

whole-program analysis. Analyzing callback-based applications requires a model that captures

the way callback handlers are used (e.g. which simulates the user). Such a model, for example,

could be obtained by running the application, by specification in a dedicated language, or by

simulating all possible callback connections.

Furthermore, like callbacks, dealing with reflection in a sound but not overly imprecise way

is not a J O A N A-specific issue but rather a fundamental challenge in static information flow

analysis, for which a general precise solution is impossible. Additional analyses, like string

analysis or run-time information [11], may help to resolve reflection (e.g. find out the name of a

dynamically loaded class), but in general either very coarse assumptions have to be made or

unresolvable reflective code has to be ignored. Further, the contribution of this work does not

focus on side-channel attacks, like timing or power analysis attacks, which could be used to

infer information or features about a specific data item. In a worst-case scenario, such an attack

may expose the original data item, and thus, would allow an attacker to use the data item in an

unrestricted manner.

The notion of soundness depends on the notion of information flow. In the present approach,

information flows solely caused by exceptions are intentionally ignored. This has to do with the

fact that every I/O operation may cause an exception, making the execution of every source

influencing every following sink by possible failing. J O A N A can handle exceptional control-flow,

but during our evaluation this feature was disabled.

If we run the static analysis phase to detect explicit flows only then the inlined reference moni-

tor inside the application guarantees a property similar to Volpano’s weak secrecy [119]. However,

it would be easy to circumvent the analysis by transforming each direct assignment within the

87

3. Hybrid Data Flow Tracking

application into an “indirect” assignment (i.e. a loop that leaks the value of a variable one bit at

a time via a control-flow dependency). This way, the analysis would report no dependencies

between sources and sinks. However, sound and precise system-wide non-interference assess-

ments (including implicit flows) require a static analysis of all applications together at once. This

is, because independent analyses for single applications are inherently non-compositional, they

cannot model dependencies generated by the concurrent interactions on shared resources [103].

Due to its exponential nature, a global all-at-once analysis would be unfeasible even for a small

number of applications of a reasonable size and would also likely lead to results that are too

conservative to be useful (i.e. too many false positives). The proposed approach resides some-

how in-between these two extremes: by considering all possible flows during the intra-process

analysis, non-interference between inputs and outputs is guaranteed for each application if

they do not appear in the report, while data flows through and across applications are captured

at run-time. This property is stronger than weak secrecy, which ignores intra-process implicit

flows, but still weaker than system-wide non-interference, due to the aforementioned general

lack of compositionality of the analyses for different applications.

3.8. Summary and Conclusion

In summary, this chapter presents S H R I F T and its extension H D F T++, two hybrid data flow

tracking solutions. Both approaches are specifically designed to provide a reasonable balance

between performance and portability of the AuS. Furthermore, these solutions are innovative

as they minimize the number of and track only those program instructions at the application’s

program code level (cf. Figure 1.6) that actually contribute to a flow of data from sources to sinks.

At run-time S H R I F T and H D F T++ collect valuable information about the executed data flows

in order to support UC policy enforcement, like Policy P1. Conceptually, S H R I F T and H D F T++

share the same methodological steps (cf. section 3.2):

(i) statically analyze the AuS for sinks, sources, and possible dependencies between them.

(ii) instrument program instructions inside the AuS based on the analysis result from (i).

S H R I F T instruments only instructions that correspond to a source or sink, whereas

H D F T++ also instruments all instructions in between sources and sinks.

(iii) extract and signal context information, like read files, to the UC PIP component that

keeps track of flowed data inside the AuS.

We instantiated S H R I F T and H D F T++ prototypically for Java and evaluated them on a set of

different Java applications. Our results (cf. Section 3.6) show that the run-time performance

88

3.8. Summary and Conclusion

overhead highly depends on the program structure of the analyzed application as well as on

the computational load of its native execution. Nevertheless, we observed that the relative

performance overhead gets smaller for computational-intensive than for non-computational-

intensive applications. Furthermore, compared to L I B DFT [54] and P H O S P H O R [10], S H R I F T

and H D F T++ impose less or approximately similar run-time slow-down. By design, both ap-

proaches ensure the portability of the AuS as they do not rely on tracking logic inside the

run-time environment (cf. Figure 3.4). That way, once a AuS is equipped with such a solution it

can be executed on any run-time environment. Furthermore, our design decision also provides

for both approaches at least a better tracking precision than a pure black-box approach. Further,

as S H R I F T and H D F T++ exhibit a different run-time behavior, which results in different tracking

precisions, we also conducted in Section 3.6.2 a comparison between S H R I F T and H D F T++.

We illustrate along the lines of sample source codes in which situations H D F T++ provides a

more precise tracking result than S H R I F T.

89

4. Related work

This chapter relates the present work to related and similar work from the literature. In particular,

it discusses the substantial distinctions in terms of Information Flow Tracking (cf. Section 4.1)

and distributed Data Usage Control (cf. Section 4.1), the two major pillars this thesis builds

upon.

4.1. Information Flow Tracking

The research field of Information Flow Tracking (IFT) tackles the question of how data flows

inside a data processing system from its inputs to its outputs. A clear understanding of how data

flows through a system may contribute to solving different problems, e.g. malware detection

[125], privacy protection [23] or Usage Control policy enforcement [92], as it is envisaged in

this thesis. Beyond that, IFT solutions have also been successfully applied within different

domains to secure the confidentiality and integrity of data (like Android [8], Web-Applications

[114], Java-Application [10]). Those solutions mostly follow a static or dynamic approach [102].

Hybrid approaches, where statically computed results are combined with dynamic run-time

information are rare but become increasingly attractive. The following shortly recaps static IFT

approaches and broadly discusses dynamic and hybrid IFT approaches, as the present work is

closely related to the latter; cf. Section 3.3 for a more thorough discussion of static information

flow analysis.

To detect possible information flows, static approaches analyze the complete code of the AuS

without executing it and consider all possible information flow traces at once [20, 120]. A given

program is certified as secure if no flow of information between sensitive sources and public

sinks can be found. Such a static certification can be used, for example, to reduce the need

for runtime checks [21]. Various approaches (apart from PDGs) can be found in the literature,

usually based on type checking [76, 88, 120], hoare logic [9], or taint analysis [3, 4]. Because of

their nature, static approaches have problems with handling dynamic aspects of applications

like callbacks or reflective code (Section 3.7) and are confined to the application under analysis.

In contrast, dynamic approaches mark sensitive data items with a dedicated label and propa-

gate this label along the lines of executed commands at run-time. Moreover, they are able to

91

4. Related work

leverage additional run-time information, like concrete user input or the file that was read by a

source. Strictly speaking, and in a more abstract sense, S H R I F T and H D F T++ are also a kind

of dynamic data flow tracker. But in contrast to pure dynamic approaches from the literature,

S H R I F T and H D F T++ optimize the number of program locations that need to be monitored

at run-time as they rely on statically pre-computed results. Therefore, the remaining section

focuses on pure dynamic approaches and discusses their demarcation to the work in this thesis;

a discourse on static approaches for data flow analysis is provided in Section 3.1.

L I B DFT [54] provides a pure dynamic data flow tracker for x86 binaries by using shadow

tag maps to store taint marks for every single register and memory address. At run-time, those

taint marks are properly propagated along the lines of executed binary instructions. Although

L I B DFT’s reported evaluation results show little performance overhead [54] those numbers

were not reproducible during our evaluation (cf. Section 3.6.3): on most of the use cases in

Table 3.3 L I B DFT imposes a larger performance overhead than the presented approach.

S H A D O W R E P L I C A [46, 47], which builds upon L I B DFT, is a dynamic data flow tracker for x86

binaries. Instead of inlining, S H A D O W R E P L I C A decouples and offloads its data flow tracking

logic in a separated analyzer-thread. Only a small, optimized piece of code is injected into the

AuS which collects and transmits run-time data, like involved memory addresses of an instruc-

tion, via a ring-buffer to the analyzer. This way, the AuS run-time performance is only affected by

the piece of code which collects run-time data. Compared to our approach, S H A D O W R E P L I C A

relies on a whole run-time instrumentation and does not consider an AuS as a composition

of different code blocks. Because of that, this thesis advocates that S H A D O W R E P L I C A affects

the portability of AuS, and especially, is not well applicable within domains where run-time

environments are simultaneously shared between different applications, like in our running

sample in Section 1.2.

Nair et al. propose T R I S H U L [77], a policy-based information flow control framework for Java-

based applications. For one thing, T R I S H U L injects its tracking logic into all parts (cf. Figure 1.6)

of an AuS, and for another thing, T R I S H U L requires a dedicated JVM which is equipped with

a modified JavaCC compiler in order to rearrange the method code layout. According to the

authors, the latter implementation is required to retrieve the object of a polymorphic method

invocation. Anyway, as one may notice the T R I S H U L approach is quite invasive and definitely

handicaps the portability of a monitored AuS, as a properly modified JVM is always required to

run the application.

In contrast to T R I S H U L, Bell et al. provide P H O S P H O R [10], a pure dynamic data flow tracker

for Java-based applications, which tracks the flow of data at the Java bytecode level and does

not require a modified JVM. To do so, P H O S P H O R requires to instrument all Java classes which

92

4.1. Information Flow Tracking

belong to the AuS including the program, third-party libraries, and Java system-classes (cf.

Figure 1.6). Moreover, P H O S P H O R also requires to modify the method signatures of all Java

classes in order to properly propagate taint-labels at run-time. We argue that such an approach

negatively affects the portability of the AuS as every execution of the program, which contains the

actual AuS’s logic, requires properly instrumented Java system-classes and third-party libraries.

Moreover, P H O S P H O R considers methods with return values as possible sources and therefore

introduces a taint-label value at the end of a method implementation. Introducing taint-label

values this way makes the portability of the AuS more worse, especially when potential source

methods belong to Java system-classes. Beyond that, for computational environments where

resources (e.g. Java system-classes) are shared among different applications, e.g. in the cloud

where a single JRE runs multiple cloud services (cf. Section 1.2), the P H O S P H O R approach

would require dedicated instrumented Java system-classes for any single monitored service,

which practically jacks up the costs. In contrast, our approach instruments and tracks only

dedicated program locations at the code level that lead to a flow of data. Because of that, our

approach additionally ensures by design the portability of the AuS once it is equipped with our

tracker.

Apart from the literature which investigates IFT for particular programming languages or one

of its intermediate representation, a major body of work is devoted to research IFT problems

within different domains. In what follows, we exemplarily describe related work from the cloud

and Android domain.

Pappas et al. propose C L O U D F E N C E [81], a data flow tracking framework for the cloud

domain. The authors intend that C L O U D F E N C E is offered by cloud hosting providers, like

IaaS- or PaaS-providers, to their tenants, i.e. service providers which run their services on an

Infrastructure as a Service (IaaS)-/ PaaS-infrastructure. Via a dedicated API, service providers

are able to integrate C L O U D F E N C E into their services and mark sensitive user input, that needs

to be protected, with a dedicated label. However, integration of C L O U D F E N C E happens in a

discretionary manner where service providers are not obliged to use C L O U D F E N C E or may even

put API-calls deliberately wrong. Contrarily, our approach tracks the data flow in a mandatory

manner and focuses on collecting detailed run-time information about the executed program

instructions. Beyond that, C L O U D F E N C E uses PIN [87], an analysis-tool which performs whole

process instrumentation, i.e. data flow tracking logic is dispersed over the entire codes base.

Contrary to our approach, such a solution negatively affects the portability of the AuS.

To detect data leakages between multiple PaaS tenants (which for example may happen by

a misconfigured cloud software stack), Priebe et al. propose C L O U D S A F E T Y N E T [96], a data

flow tracker at the network layer. To do so, C L O U D S A F E T Y N E T provides a Javascript-based

93

4. Related work

client-library which enables a cloud service consumer to tag sensitive user input, e.g. an HTML

form field. A tag is encrypted with the tenant’s public key. Furthermore, C L O U D S A F E T Y N E T

equips a tenant’s cloud service with a dedicated socket-level monitor which analyzes and parses

all incoming and outgoing data traffic, with the aim of detecting tagged user input. A data leakage

exists if such a monitor is not able to decrypt a submitted tag and therefore assumes that it must

be a foreign tag label. Thus, the quintessence is that a data leakage is detected once a service client

request or response contains tags from different PaaS-tenants. However, C L O U D S A F E T Y N E T

does not track the flow of data inside a PaaS-tenant’s service, and therefore, exhibits conceptually

similarities to the black-box approach and also suffers from the overapproximation problem (cf.

Figure 1.4a).

TA I N T D R O I D [23] provides a purely dynamic data flow tracking approach at the program-

variables-, method-, file-, and message-level for system-wide real-time privacy monitoring

within Android. To do so, TA I N T D R O I D places dedicated monitors not only at the program’s

code level but also inside the Android operating system. Although the results show a relatively

small runtime overhead, TA I N T D R O I D has to place data flow monitors not only at the applica-

tion level but also into the operating system. Thus, TA I N T D R O I D limits the overall portability

of the Android application. For instance, to monitor a specific application with TA I N T D R O I D

the entire Android device needs to be flashed.

Yin et al. [125] propose PA N O R A M A to detect malware in Windows systems. To do that,

PA N O R A M A relies on taint graphs whose vertices represent operating system resources and

edges represent the flow of data from one resource to another. Based on taint graphs and

a set of policies, which describe the characteristic of malign behavior, PA N O R A M A detects

patterns inside the taint graph that matches the malicious behavior. A further key element in

PA N O R A M A’s data flow tracking solution is a so-called shadow memory which stores the taint

status of each physical memory, CPU’s registers, the hard disk, and network interface buffer.

Once a data source gets tainted, PA N O R A M A performs a fine-grained hardware-level taint

tracking and monitors every CPU instruction or Direct Memory Access (DMA) operation which

affects the taint status of the shadow memory. This way PA N O R A M A is able to track data flows

system-wide in a Windows operating system. Although PA N O R A M A detects all malware samples

from their test set with a zero false-negative rate, its data flow tracking approach slows down

the AuS’s run-time performance by an average factor of 20. However, as S H R I F T and H D F T++

reuse statically precomputed information flow results at run-time, both solutions impose much

less performance overhead than PA N O R A M A.

Demsky [19] presents G A R M, a tool to track data provenance information across multiple

applications and machines. G A R M instruments the application binary to track and to store the

94

4.1. Information Flow Tracking

flow of data within and across applications, and beyond that, to monitor interactions with the

OS. Similar to our approaches, G A R M leverages static analysis to generate optimized dynamic

instrumentation by eliminating redundant provenance computations which may happen when

the same value or variable is repeatedly combined with other values. However, G A R M’s static

analysis focuses on optimizing dynamic instrumentation for a single basic block, which is defined

as a sequence of instructions with one entry and possibly multiple exit points. In contrast, the

present approach relies on static analysis which performs a whole-program information flow

analysis. This way, the present results are able to optimize dynamic intra-application data flow

tracking by monitoring all source-, sink-, and chop-node-instructions which are relevant for a

data flow dependency.

Zhang et al. [127] present N E O N, a fine-grained data flow tracking approach for derived data

management. N E O N is implemented as an extension for the XEN virtual machine monitor

and tracks data flows on the granularity of individual bytes by tainting each memory address

with an n-bit taint mark. Taint marks are propagated on each memory write or read access

through and across systems. Although N E O N presents a sophisticated fine-grained tracking

approach it suffers from a high false-negative rate, where derived data from a tainted source

does not acquire a taint, and false positives, where data becomes tainted through an unintended

dependency. Additionally, the performance overhead that is imposed by N E O N is too high for

daily-used applications.

Hybrid approaches aim at combining static and dynamic data flow tracking techniques to

optimize certain aspects of data flow trackers. For instance, one aspect could be to mitigate run-

time overhead by reducing the number of tracking points inside the AuS or to cope with implicit

flows at run-time. Usually, the AuS first undergoes a static analysis phase and subsequently a

dynamic analysis phase, based on the previous results.

As a step toward this direction, Chandra et al. [13] present a fine-grained information flow

analysis approach for Java-based applications. Under the assumption to have only the Java

bytecode available, their approach composes static and dynamic techniques with the aim to

make dynamic analysis more intelligent about implicit flows. During the static phase their

approach computes security annotations that are used to inject compensating commands into

the AuS for taken and non-taken control flow paths. At run-time, those annotations reveal which

branch is executed and how its execution affects the variable taint-labels within the executed

and non-executed branches. However, their approach requires to instrument all instructions

that might lead to a flow of data including even those that do not contribute to a data flow. In sum,

Chandra et al. [13] provides primarily a dynamic data flow tracker which leverages static analysis

to also track implicit flows at run-time; however, taking implicit flows into account might result

95

4. Related work

in less tracking precision, cf. Section 3.3. Contrarily, the present approach uses static analysis to

instrument only those program locations that actually lead to a flow of information between

a source and a sink. This way, our approach optimizes and reduces run-time performance

overhead and improves the precision of tracking results.

J A D A L [75] is probably the most related approach to ours. To detect data leaks inside Java-

based applications, the authors propose a two-stage approach to detect data flows from high-

level inputs to low-level outputs. In the first stage, the AuS is statically analyzed to compute all

those program instructions that may contribute to, and thus, are relevant for data leakage. In a

second stage, J A D A L injects its tracking logic into the AuS only at those program locations that

are reported from the previous stage. This way, J A D A L monitors only those program instructions

at run-time that are relevant for a flow of data, excluding all other program instructions. However,

to do that J A D A L requires to inject and to spread its tracking logic over the entire AuS’s codebase.

We argue, that compared to our approach, such an approach negatively affects the portability

of the AuS as all three application code parts, i.e. the program, 3rd-party libraries, and Java

system-classes (cf. Figure 1.6) are tightly weld together by the tracking logic. Furthermore, our

approach provides a semantic model that shows how the flow of data is propagated at run-time,

at every single instruction, residing on a chop. Unfortunately, we were not able to benchmark

H D F T++ and S H R I F T against J A D A L, as we could not get access to J A D A L’s implementation

(even after contacting J A D A L’s authors several times).

As pure non-interference is too strict to be practical, Rocha et al. [100] propose a hybrid data

flow tracking approach in combination with declassification rules in order to allow data flows

if they satisfy certain conditions. During the static analysis phase, their approach computes

possible dependencies between sinks and sources as well as, based on declassification rules,

possible program locations that might downgrade the security level of a dependency path

from high to low. This way, a tainted data item may be safely released to a sink if it passes a

downgrading instruction at run-time. Although their approach shows promising results, their

primary goal is to relax non-interference: the security label of a data flow is only downgraded if

certain declassification criteria are satisfied at run-time on a data flow dependency, and thus,

would permit that data flows into the corresponding sink. The present work, in contrast, aims

to improve the tracking precision with a hybrid data flow tracking approach and monitors

only those program instructions that reside on a dependency path. This way, we are able to

distinguish if a data flow really happens or not, whereas Rocha et al. assume that a reported

data flow will always happen, irrespective of the executed instructions in between of a data flow

dependency path. From our point of view the present work and the results from Rocha et al. are

complementary to each other; combining both results is a potential candidate for future work.

96

4.2. Usage Control

To use the (statically computed) information flow dependencies at run-time our hybrid ap-

proach uses a technique called Inline Reference Monitor (IRM) [25]. Different IRM approaches

have been proposed in the literature for different abstraction layers [118, 126], including the

Java bytecode layer [24]. To enforce security properties, IRMs usually inject code into a target

application to intercept and process sensitive events. Typically, this happens inside the moni-

tored process. Our approach, in contrast, offloads and outsources such event processing to an

external tracker. This allows us to aggregate data flow tracking results across and from multiple

distributed systems, and to have the flexibility of changing policies for data and for applications

at runtime, without requiring restarting nor re-instrumenting the running applications.

4.2. Usage Control

As described in Chapter 2, Usage Control (UC) is an extension of access control and tackles the

question of how data may or may not be used once initial access has been granted. Originally,

UC was introduced and coined by Park et al. in [82, 84], and further extended to UCONABC [83,

107] by the same authors. In particular, the latter one provides a comprehensive formal model

which imposes to evaluate obligations before, during, and after the usage of an object. However,

their model has a container-centric characteristic, i.e. obligation constraints are specified on

one particular object-item and do not take into account multiple copies of a protected object.

Hilty et al. investigate the problem of a clear and precise understanding of how data protec-

tion requirements have to be specified and enforced in a system [43]. The authors propose to

differentiate between observable- and non-observable-obligations which forms the foundations

to distinguish between preventive and detective enforcements [93]. Furthermore, this frame-

work was refined and extended in [42] to Obligation Specification Language (OSL), a formal

language to specify data usage obligations in the form of propositional-, temporal-, and cardinal-

constraints. In [60, 61] Kumari et al. provide a framework to translate high-level OSL-based data

usage requirements into low-level, machine-readable policies. Apart from OSL, other usage

control frameworks and policy languages have been proposed, like UCONABC [83], XACML [79],

Ponder [17, 117], or PrimeLife Policy Language [6, 12, 113]. Howbeit, a comparison of those

policies is provided in [38, 58] and not further discussed at this point.

As OSL’s main purpose focuses on the specification of data usage restrictions by the data

owner, Pretschner et al. provide in [90] a formal model to characterize enforcement mechanisms

in terms of traces on top of OSL. According to the authors, these mechanisms are categorized

into executors (which allows a particular data usage), modifiers (which modify some parts of

a data usage), inhibitors (which inhibit a particular data usage), and delayers (which delay a

97

4. Related work

particular data usage). In its original form, UC policies are expressed and enforced on data in

a container-centric manner, i.e. data usage restrictions are specified in terms of the container

name where data was stored. For instance, to protect a secret that is stored in a file “private.txt”

from dissemination a possible policy would be “Do not disseminate private.txt”. However, in a

data processing system where data may be copied, e.g. file “private.txt" gets copied to “public.txt",

a container-centric approach requires to write a UC policy also for “public.txt" and for all other

copies as well. As this might become a tedious and cumbersome task if the number of copies

grows, Harvan et al. [39] extend the UC model and integrates a generic data flow model which

provides a holistic solution to enforce data usage restrictions on all possible copies of a data item.

Furthermore, this way it has become possible to specify data usage restrictions in a data-centric

manner where data usage restrictions are centralized around a concrete data item instead of its

representation.

In further works, UC infrastructures have been designed and implemented for different

ecosystems, like Android [26], MS Windows [124], MS Office [108], X11 [95], the IP Internet

Protocol [53], Thunderbird [69], SIP [50], Grid Computing [14, 73], or Online Social Networks

[51, 62]. As those solutions are tailored for one particular abstraction layer they are able to take

into account layer-specific domain knowledge in order to track the flow of data and to enforce

UC-policies. Thus, depending on the collected domain knowledge tracking and enforcement

results are more or less fine-grained. Howbeit, a comprehensive survey on UC enforcement

mechanisms and usage control is provided in [67, 78].

98

5. Conclusion and Future Work

This chapter summarises and concludes the present work in Section 5.1 and discusses and

points out future work in Section 5.2.

5.1. Conclusion

The research field of DUC tackles the fundamental question of how data may or may not be used

once initial access has been granted by the data owner. In order to implement such functionality,

modern DUC systems heavily rely on IFT systems to capture the distinction between data

and its concrete representation. This way, it is possible to track and to enforce DUC policies

on all copies of a policy affected data item. In recent years, a body of work has been published

in the literature that addresses this aspect and proposes different approaches and solutions

to track the flow of data. However, as pointed out in Section 1.3 those solutions (i) suffer from

overapproximation (Caveat 1) [39, 53, 124], (ii) or they impose too much performance overhead

(Caveat 2) [54], (iii) or they affect the portability of the AuS (Caveat 3)[10].

To address those caveats, this thesis contributes with a novel data flow tracking approach

for DUC systems, and addresses the research questions (cf. Section 1.3) How can we improve

the tracking precision, and thus, reduce overapproximation of the tracking results compared to a

pure black-box approach? (RQ1), How can we track efficiently and effectively data flows inside

an AuS from its input- to its output-channels, and simultaneously, preserve and maintain the

portability of the AuS? (RQ2), How can we track the flow of data separately inside different AuS

that share the same RTE? (R3).

To address these research questions, this work contributes with a two-staged hybrid data flow

tracking solution which combines static and dynamic data flow analysis techniques. The first

stage statically analyzes the AuS on possible data flow dependencies and dumps the result into

an analysis-report. This stage detects all instructions that correspond either to a source (i.e.

data flows into the AuS), a sink (i.e. data flows out of the AuS), or an instruction that resides

on a data flow dependency path. The second stage uses those results and injects a minimal

run-time monitor into the AuS which monitors only those program locations that are reported

in the analysis-report, as only those program locations are actually relevant for a flow of data.

99

5. Conclusion and Future Work

We propose two variants of instrumentation: S H R I F T and its extension H D F T++ (cf. Chapter 3).

While S H R I F T monitors source and sink instructions only, and propagates the flow of data

based on a static mapping, H D F T++ takes also into account all instructions that reside on a data

flow dependency path from a source to a sink. This way, H D F T++ is able to take a more accurate

decision if a data flow path is still critical once the program flow reaches a sink instruction (cf.

Listing 3.4). However, this surplus is implemented on the costs of a slightly worse run-time

performance overhead compared to S H R I F T, as our evaluation results reveal in Section 3.6.3.

By design S H R I F T and H D F T++ are able to inject their tracking logic only at the program-code

level (cf. Figure 1.6) and abstract away shared third-party- or Java system-classes. This way, they

preserve the portability of the AuS as they rely only on tracking logic inside the program-code,

and thus, are able to execute the monitored AuS on any off-the-shelf JVM. In contrast, compared

solutions from the literature, like P H O S P H O R [10], also require to inject tracking logic inside

the Java system-classes or the JVM, and therefore, negatively affect the AuS’s portability.

In sum, our solution contributes to modern DUC systems by mitigating the overapproxima-

tion concerns (cf. Figure 1.4) and increasing the portability of the monitored AuS. Of course,

someone may argue that existing data flow trackers, like P H O S P H O R [10], may be sufficient

to track the flow of data for DUC policy enforcement and there is no need to keep the AuS

portable. But in the end, however, we learned that this point of view highly depends on the

setting and environment where the flow of data has to be tracked for DUC policy enforcement.

For instance, we would not benefit that much from the portability advantages if applying our

proposed approach on a single Java-based application, which runs in a single Java process.

In that case, we could also simply use e.g. P H O S P H O R which disseminates its tracking logic

over the entire process. However, for a setting where multiple applications run within the same

Java process, as it happens for web-applications in our running scenario (Section 1.2), our ap-

proach definitely provides great benefits. With our approach we are able to track the flow of

data selectively, modularized within different applications, running within the same process.

5.2. Future Work

The results presented in this thesis provide a basement in several directions for future work.

Static information flow analysis is a fundamental element in our overall approach as our run-

time data flow tracker is based on the generated analysis-report. Therefore, the more powerful

static information flow analysis performs, the more precise we can track the flow of data at

run-time. However, current state-of-the-art static information flow analyzers are not able to

handle properly reflection during the analysis. Although some solutions have been proposed in

100

5.2. Future Work

the literature [11], a general approach for reflection-handling has not been found. Callbacks

are another type of programming language constructs that challenge static information flow

analyzer. The main problem is, that callbacks are triggered and called at any point in time by

components that are outside of the process, e.g. a mouse click event is passed via the operating

system into the application where a callback-method handles the event properly. Therefore,

callbacks are pretty hard to statically analyze with respect to information flow.

Extension for distributed applications: This thesis focuses on applications that run at most in

one process. Applications whose logic is spread across different processes or across multiple

machines are not covered by our solution. Kelbert [52] provides already a data flow model to

track data flows in a distributed setting. Integrating his solution with ours would provide a

solution where data flows are tracked comprehensively in a distributed setting.

Evaluation: This thesis’s evaluation shows that the precision improvement compared to a pure

black-box approach highly depends on the chosen analysis configuration. Considering explicit

flows only provides a better precision result in all our experiments, than taking into account

additional implicit flows. However, H D F T++ monitors not only source and sink instructions, as

S H R I F T do, but also all instructions in between which contribute to the flow of data. This way,

H D F T++ is able to assess if a data flow is still critical or not once a sink is reached (cf. Section 3.4).

In order to understand and to provide a formal description about the actual precision gain of

H D F T++ compared to S H R I F T further investigations and experiments are required. As one

may notice, quantifying such an improvement in general is a non-trivial task as the precision

gain of H D F T++ highly depends on actual run-time values, which influence if a particular code

may be executed or not at run-time (cf. variable condition in Listing 3.4).

Declassification: The research field of declassification provides means and mechanisms to

specify and enforce declassification policies, and thus, to relax non-interference [33], i.e. reducing

the sensitivity level of a data flow dependency. For instance, consider that a data item gets

encrypted on a data flow dependency path at run-time. Under the assumption, that only the

data owner knows the private key for decryption, a declassification mechanism may allow to

release encrypted data into a sink as only the private-key owner is able to decrypt and recover

the original data. However, extending H D F T++ and S H R I F T with the notion of declassification

will definitely contribute reducing the overapproximation problem, and thus, to provide a more

precise PIP-state. As already suggested in Section 4.1, combining and complementing the

present results with the work from Rocha et al. [100]will be definitely a potential candidate for

future work. In the end, such an extension contributes to DUC systems as it allows to take data

usage policy decisions more precisely only on policy-affected data items.

101

A. Appendix

A.1. Analysis reports

This section shows the complete analysis-reports for our examples in Listing 3.5 (cf. Listing A.1)

and Listing 3.19 (cf. Listing 3.20). Those analysis-reports show all sources, sinks, and chopCMDs

(cf. chop-tags) of all detected data flow dependencies.

Listing A.1: The complete static analysis-report from the example in Listing 3.5, where a secret

value is read from a file and transmitted to a remote server. Depending on a random

value, the secret value is overwritten with a public value.

1 <source >
2 <id>Source0 </id>
3 <location >SampleReadSend.readFile(Ljava/lang/String ;)...
4 ... Ljava/lang/String;:51</location >
5 <signature >java.io.BufferedReader.readLine () Ljava/lang/String;</signature >
6 <return/>
7 </source >
8 <sink>
9 <id>Sink0</id>

10 <location >SampleReadSend.sample () V:195</location >
11 <signature >java.io.PrintWriter.write(Ljava/lang/String ;)V</signature >
12 <param index="1"/>
13 </sink>
14 <flows>
15 <sink id="Sink0">
16 <source id="Source0"/>
17 <chop>
18 <chopNode bci="-8" lab="PHI v20 = #(), v19"
19 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
20 <chopNode bci="6" lab="v5 = new java.io.FileReader"
21 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
22 <chopNode bci="11" lab="v5.<init>(p1)"
23 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
24 <chopNode bci="16" lab="v7 = new java.io.BufferedReader"
25 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
26 <chopNode bci="22" lab="v7.<init>(v5)"
27 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
28 <chopNode bci="27" lab="goto 51"
29 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>

103

A. Appendix

30 <chopNode bci="30" lab="v12 = new java.lang.StringBuilder"
31 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
32 <chopNode bci="35" lab="v14 = valueOf(v20)"
33 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
34 <chopNode bci="38" lab="v12.<init>(v14)"
35 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
36 <chopNode bci="42" lab="v17 = v12.append(v10)"
37 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
38 <chopNode bci="45" lab="v19 = v17.toString ()"
39 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
40 <chopNode bci="51" lab="v10 = v7.readLine ()"
41 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
42 <chopNode bci="56" lab="if (v10 != #(null)) goto 30"
43 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
44 <chopNode bci="60" lab="return v20"
45 om="SampleReadSend.readFile(Ljava/lang/String ;)Ljava/lang/String;"/>
46 <chopNode bci="-8" lab="PHI v41 = v36 , v40"
47 operation="assign" om="SampleReadSend.sample ()V"/>
48 <chopNode bci="107" lab="v36 = this.readFile (#(public.txt))"
49 om="SampleReadSend.sample ()V"/>
50 <chopNode bci="114" lab="if (v7 <= #(5)) goto 125"
51 om="SampleReadSend.sample ()V"/>
52 <chopNode bci="120" lab="v40 = this.readFile (#(secret.txt))"
53 om="SampleReadSend.sample ()V"/>
54 <chopNode bci="125" lab="v42 = new java.net.Socket"
55 om="SampleReadSend.sample ()V"/>
56 <chopNode bci="131" lab="v43 = v32 [#(0)]"
57 om="SampleReadSend.sample ()V"/>
58 <chopNode bci="134" lab="v44 = v32 [#(1)]"
59 om="SampleReadSend.sample ()V"/>
60 <chopNode bci="135" lab="v46 = parseInt(v44)"
61 om="SampleReadSend.sample ()V"/>
62 <chopNode bci="138" lab="v42.<init>(v43 , v46)"
63 om="SampleReadSend.sample ()V"/>
64 <chopNode bci="143" lab="v48 = java.lang.System.out"
65 om="SampleReadSend.sample ()V"/>
66 <chopNode bci="146" lab="v49 = new java.lang.StringBuilder"
67 om="SampleReadSend.sample ()V"/>
68 <chopNode bci="152" lab="v49.<init>(#(Sending data to))"
69 om="SampleReadSend.sample ()V"/>
70 <chopNode bci="157" lab="v52 = v32 [#(1)]"
71 om="SampleReadSend.sample ()V"/>
72 <chopNode bci="158" lab="v54 = v49.append(v52)"
73 om="SampleReadSend.sample ()V"/>
74 <chopNode bci="163" lab="v57 = v54.append (#())"
75 om="SampleReadSend.sample ()V"/>
76 <chopNode bci="167" lab="v59 = v57.append(v7)"
77 om="SampleReadSend.sample ()V"/>
78 <chopNode bci="170" lab="v61 = v59.toString ()"
79 om="SampleReadSend.sample ()V"/>

104

A.1. Analysis reports

80 <chopNode bci="173" lab="v48.println(v61)"
81 om="SampleReadSend.sample ()V"/>
82 <chopNode bci="176" lab="v63 = new java.io.PrintWriter"
83 om="SampleReadSend.sample ()V"/>
84 <chopNode bci="182" lab="v65 = v42.getOutputStream ()"
85 om="SampleReadSend.sample ()V"/>
86 <chopNode bci="186" lab="v63.<init>(v65 , #(1))"
87 om="SampleReadSend.sample ()V"/>
88 <chopNode bci="195" lab="v63.write(v41)"
89 om="SampleReadSend.sample ()V"/>
90 </chop>
91 </sink>
92 </flows >

Listing A.2: The full analysis-report for Listing 3.19. It shows a data flow dependency which

contains an inheritance relation on its path from a source to a sink.

1 <source >
2 <id>Source0 </id>
3 <location >..main (.) V:38</location >
4 <signature >.. source(Ljava/lang/String ;)Ljava/lang/String;</signature >
5 <return/>
6 </source >
7 <sink>
8 <id>Sink0</id>
9 <location >..main (.) V:113</location >

10 <signature >..sink(Ljava/lang/String ;)V</signature >
11 <param index="1"/>
12 </sink>
13 <flows>
14 <sink id="Sink0">
15 <source id="Source0"/>
16 <chop>
17 <chopNode bci="1" lab="<init >;()" om="Copy.<init >;()V"/>
18 <chopNode bci="0" lab="v4 = java.lang.System.out" om="Copy.copy([B)[B"/>
19 <chopNode bci="5" lab="v4.println (#(Copy))" om="Copy.copy([B)[B"/>
20 <chopNode bci="10" lab="v8 = new []" om="Copy.copy([B)[B"/>
21 <chopNode bci="12" lab="return v8" om="Copy.copy([B)[B"/>
22

23 <chopNode bci="1" lab="this.<init >;()" om="CopyByRef.<init >;()V"/>
24 <chopNode bci="0" lab="v4 = java.lang.System.out" om="CopyByRef.copy([B)[B"/>
25 <chopNode bci="5" lab="v4.println (#(CopyByRef))" om="CopyByRef.copy([B)[B"/>
26 <chopNode bci="9" lab="v7 = p1" om="CopyByRef.copy([B)[B"/>
27 <chopNode bci="11" lab="return p1" om="CopyByRef.copy([B)[B"/>
28

29 <chopNode bci="1" lab="this.<init >;()" om="CopyByValue.<init >;()V"/>
30 <chopNode bci="-8" lab="PHI v17 = #(0), v15" om="CopyByValue.copy([B)[B"/>
31 <chopNode bci="0" lab="v4 = java.lang.System.out" om="CopyByValue.copy([B)[B"/>
32 <chopNode bci="5" lab="v4.println (#(CopyByValue))" om="CopyByValue.copy([B)[B"/>
33 <chopNode bci="9" lab="v7 = p1.length" om="CopyByValue.copy([B)[B"/>

105

A. Appendix

34 <chopNode bci="10" lab="v8 = new []" om="CopyByValue.copy([B)[B"/>
35 <chopNode bci="12" lab="v9 = v8" om="CopyByValue.copy([B)[B"/>
36 <chopNode bci="14" lab="v11 = #(0)" om="CopyByValue.copy([B)[B"/>
37 <chopNode bci="15" lab="goto 29" om="CopyByValue.copy([B)[B"/>
38 <chopNode bci="22" lab="v13 = p1[v17]" om="CopyByValue.copy([B)[B"/>
39 <chopNode bci="23" lab="v8[v17] = v13" om="CopyByValue.copy([B)[B"/>
40 <chopNode bci="24" lab="v15 = v17 + #(1)" om="CopyByValue.copy([B)[B"/>
41 <chopNode bci="29" lab="v12 = p1.length" om="CopyByValue.copy([B)[B"/>
42 <chopNode bci="30" lab="if (v17 < v12) goto 22" om="CopyByValue.copy([B)[B"/>
43 <chopNode bci="34" lab="return v8" om="CopyByValue.copy([B)[B"/>
44

45 <chopNode bci="38" lab="v20 = source (#(Test))" om="..main (.)V"/>
46 <chopNode bci="41" lab="v22 = v20.getBytes ()" om="..main (.)V"/>
47 <chopNode bci="44" lab="v23 = v22" om="..main (.)V"/>
48 <chopNode bci="46" lab="v25 = new Copy[]" om="..main (.)V"/>
49 <chopNode bci="51" lab="v27 = new Copy" om="..main (.)V"/>
50 <chopNode bci="55" lab="v27.<init >;()" om="..main (.)V"/>
51 <chopNode bci="58" lab="v25 [#(0)] = v27" om="..main (.)V"/>
52 <chopNode bci="61" lab="v30 = new CopyByRef" om="..main (.)V"/>
53 <chopNode bci="65" lab="v30.<init >;()" om="..main (.)V"/>
54 <chopNode bci="68" lab="v25 [#(1)] = v30" om="..main (.)V"/>
55 <chopNode bci="71" lab="v33 = new CopyByValue" om="..main (.)V"/>
56 <chopNode bci="75" lab="v33.<init >;()" om="..main (.)V"/>
57 <chopNode bci="78" lab="v25 [#(2)] = v33" om="..main (.)V"/>
58 <chopNode bci="79" lab="v35 = v25" om="..main (.)V"/>
59 <chopNode bci="81" lab="v36 = new java.util.Random" om="..main (.)V"/>
60 <chopNode bci="85" lab="v36.<init >;()" om="..main (.)V"/>
61 <chopNode bci="89" lab="v39 = v36.nextInt (#(3))" om="..main (.)V"/>
62 <chopNode bci="92" lab="v40 = v39" om="..main (.)V"/>
63 <chopNode bci="98" lab="v41 = v25[v39]" om="..main (.)V"/>
64 <chopNode bci="100" lab="v43 = v41.copy(v22)" om="..main (.)V"/>
65 <chopNode bci="103" lab="v44 = v43" om="..main (.)V"/>
66 <chopNode bci="105" lab="v45 = new java.lang.String" om="..main (.)V"/>
67 <chopNode bci="110" lab="v45.<init >;(v43)" om="..main (.)V"/>
68 <chopNode bci="113" lab="sink(v45)" om="..main (.)V"/>
69 </chop>
70 </sink>
71 </flows >

106

Bibliography

[1] J. J. Alferes, F. Banti, and A. Brogi. “An Event-Condition-Action Logic Programming Lan-

guage”. In: Logics in Artificial Intelligence: 10th European Conference, JELIA 2006 Liver-

pool, UK, September 13-15, 2006 Proceedings. Ed. by M. Fisher, W. van der Hoek, B. Konev,

and A. Lisitsa. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 29–42. I S B N:

978-3-540-39627-7. D O I: 10.1007/11853886_5.

[2] Amazon’s Elastic Beanstalk.https://docs.aws.amazon.com/de_de/elasticbeanstalk/

latest/dg/concepts.platforms.html.

[3] T. Amtoft and A. Banerjee. “Information Flow Analysis in Logical Form”. In: Static Analysis.

Springer Berlin Heidelberg, 2004.

[4] T. Amtoft, S. Bandhakavi, and A. Banerjee. “A Logic for Information Flow in Object-

oriented Programs”. In: vol. 41. 1. New York, NY, USA: ACM, Jan. 2006, pp. 91–102. D O I:

10.1145/1111320.1111046.

[5] L. O. Andersen. “Program analysis and specialization for the C programming language”.

PhD thesis. University of Cophenhagen, 1994.

[6] C. A. Ardagna et al. “PrimeLife Policy Language”. In: W3C Workshop on Access Control

Application Scenarios. Nov. 2009, pp. 1–6. I S B N: 978-88-97253-00-6.

[7] S. Arzt and E. Bodden. “StubDroid: Automatic Inference of Precise Data-flow Summaries

for the Android Framework”. In: Proceedings of the 38th International Conference on

Software Engineering. ICSE ’16. Austin, Texas: ACM, 2016, pp. 725–735. I S B N: 978-1-4503-

3900-1. D O I: 10.1145/2884781.2884816.

[8] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon, D. Octeau, and

P. McDaniel. “Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware

taint analysis for android apps”. In: ACM SIGPLAN Notices. Vol. 49. 6. ACM. 2014, pp. 259–

269.

[9] J. Banatre, C. Bryce, and D. L. Métayer. Compile-Time Detection of Information Flow in

Sequential Programs. 1994.

107

https://doi.org/10.1007/11853886_5
https://docs.aws.amazon.com/de_de/elasticbeanstalk/latest/dg/concepts.platforms.html
https://docs.aws.amazon.com/de_de/elasticbeanstalk/latest/dg/concepts.platforms.html
https://doi.org/10.1145/1111320.1111046
https://doi.org/10.1145/2884781.2884816

Bibliography

[10] J. Bell and G. Kaiser. “Phosphor: Illuminating Dynamic Data Flow in Commodity Jvms”.

In: Proceedings of the 2014 ACM International Conference on Object Oriented Program-

ming Systems Languages & Applications. OOPSLA ’14. Portland, Oregon, USA: ACM,

2014, pp. 83–101. I S B N: 978-1-4503-2585-1. D O I: 10.1145/2660193.2660212.

[11] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. “Taming Reflection: Aiding

Static Analysis in the Presence of Reflection and Custom Class Loaders”. In: Proceedings

of the 33rd International Conference on Software Engineering. 2011.

[12] L. Bussard, G. Neven, and F.-S. Preiss. “Downstream Usage Control”. In: IEEE Interna-

tional Symposium on Policies for Distributed Systems and Networks (POLICY). July 2010,

pp. 22–29. D O I: 10.1109/POLICY.2010.17.

[13] D. Chandra and M. Franz. “Fine-Grained Information Flow Analysis and Enforcement

in a Java Virtual Machine”. In: 23rd Annual Computer Security Applications Conference.

Dec. 2007, pp. 463–475. D O I: 10.1109/ACSAC.2007.37.

[14] M. Colombo, F. Martinelli, P. Mori, and A. Lazouski. “On Usage Control for GRID Services”.

In: International Joint Conference on Computational Sciences and Optimization. Vol. 1.

Apr. 2009, pp. 47–51. D O I: 10.1109/CSO.2009.479.

[15] G. Cugola and A. Margara. “Processing Flows of Information: From Data Stream to

Complex Event Processing”. In: ACM Comput. Surv. 44.3 (June 2012), 15:1–15:62. I S S N:

0360-0300. D O I: 10.1145/2187671.2187677.

[16] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Efficiently Computing

Static Single Assignment Form and the Control Dependence Graph”. In: ACM Trans.

Program. Lang. Syst. 13.4 (Oct. 1991), pp. 451–490. I S S N: 0164-0925. D O I: 10.1145/

115372.115320.

[17] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. “The Ponder Policy Specification

Language”. English. In: Policies for Distributed Systems and Networks. Ed. by M. Sloman,

E. Lupu, and J. Lobo. Vol. 1995. Lecture Notes in Computer Science. Springer Berlin

Heidelberg, 2001, pp. 18–38. I S B N: 978-3-540-41610-4. D O I: 10.1007/3-540-44569-

2_2.

[18] S. De Capitani di Vimercati. “Access Control Policies, Models, and Mechanisms”. In:

Encyclopedia of Cryptography and Security. Ed. by H. C. A. van Tilborg and S. Jajodia.

Boston, MA: Springer US, 2011, pp. 13–14. I S B N: 978-1-4419-5906-5. D O I:10.1007/978-

1-4419-5906-5_806.

108

https://doi.org/10.1145/2660193.2660212
https://doi.org/10.1109/POLICY.2010.17
https://doi.org/10.1109/ACSAC.2007.37
https://doi.org/10.1109/CSO.2009.479
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1007/3-540-44569-2_2
https://doi.org/10.1007/3-540-44569-2_2
https://doi.org/10.1007/978-1-4419-5906-5_806
https://doi.org/10.1007/978-1-4419-5906-5_806

Bibliography

[19] B. Demsky. “Cross-application Data Provenance and Policy Enforcement”. In: ACM Trans.

Inf. Syst. Secur. (2011).

[20] D. E. Denning. “A Lattice Model of Secure Information Flow”. In: Comm. ACM (1976).

[21] D. E. Denning and P. Denning. “Certification of Programs for Secure Information Flow”.

In: Comm. ACM (1977).

[22] D. Durham, J. Boyle, R. Cohen, R. Rajan, S. Herzog, and A. Sastry. RFC 2748: The COPS

(Common Open Policy Service) Protocol. 2000.

[23] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. “TaintDroid:

An Information-flow Tracking System for Realtime Privacy Monitoring on Smartphones”.

In: Proceedings of the 9th USENIX Conference on Operating Systems Design and Imple-

mentation. OSDI’10. Vancouver, BC, Canada: USENIX Association, 2010, pp. 393–407.

[24] Ú. Erlingsson. “The Inlined Reference Monitor Approach to Security Policy Enforcement”.

AAI3114521. PhD thesis. Ithaca, NY, USA, 2004.

[25] Ú. Erlingsson and F. B. Schneider. “IRM Enforcement of Java Stack Inspection”. In: Pro-

ceedings of the 2000 IEEE Symposium on Security and Privacy. 2000.

[26] D. Feth and A. Pretschner. “Flexible Data-Driven Security for Android”. In: 2012 IEEE

Sixth International Conference on Software Security and Reliability. June 2012, pp. 41–50.

D O I: 10.1109/SERE.2012.14.

[27] Frama-C. http://frama-c.com/.

[28] A. Fromm and V. Stepa. “HDFT++Hybrid Data Flow Tracking for SaaS Cloud Services”.

In: 2017 IEEE 4th International Conference on Cyber Security and Cloud Computing

(CSCloud). June 2017, pp. 12–19. D O I: 10.1109/CSCloud.2017.17.

[29] A. Fromm, F. Kelbert, and A. Pretschner. “Data Protection in a Cloud-Enabled Smart

Grid”. In: Smart Grid Security. Ed. by J. Cuellar. Vol. 7823. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2012, pp. 96–107. I S B N: 978-3-642-38029-7. D O I:

10.1007/978-3-642-38030-3_7.

[30] R. Gay, J. Hu, and H. Mantel. “CliSeAu: Securing Distributed Java Programs by Cooperative

Dynamic Enforcement”. In: Information Systems Security: 10th International Conference,

ICISS 2014, Hyderabad, India, December 16-20, 2014, Proceedings. Ed. by A. Prakash and

R. Shyamasundar. Cham: Springer International Publishing, 2014, pp. 378–398. I S B N:

978-3-319-13841-1. D O I: 10.1007/978-3-319-13841-1_21.

[31] D. Giffhorn. “Slicing of Concurrent Programs and its Application to Information Flow

Control”. PhD thesis. Karlsruher Institut für Technologie, 2012.

109

https://doi.org/10.1109/SERE.2012.14
http://frama-c.com/
https://doi.org/10.1109/CSCloud.2017.17
https://doi.org/10.1007/978-3-642-38030-3_7
https://doi.org/10.1007/978-3-319-13841-1_21

Bibliography

[32] D. Giffhorn and G. Snelting. “A new algorithm for low-deterministic security”. In: Inter-

national Journal of Information Security 14.3 (2015), pp. 263–287. I S S N: 1615-5270. D O I:

10.1007/s10207-014-0257-6.

[33] J. A. Goguen and J. Meseguer. “Security Policies and Security Models”. In: 1982 IEEE

Symposium on Security and Privacy. Apr. 1982, pp. 11–11. D O I: 10.1109/SP.1982.

10014.

[34] J. A. Goguen and J. Meseguer. “Unwinding and Inference Control”. In: 1984 IEEE Sympo-

sium on Security and Privacy. Apr. 1984, pp. 75–75. D O I: 10.1109/SP.1984.10019.

[35] J. Graf. “Information Flow Control with SDGs — Improving Modularity, Scalability and

Precision for Object Oriented Languages”. Forthcoming. PhD thesis. Karlsruhe Institute

of Technology, Department of Informatics, 2014.

[36] D. Grove and C. Chambers. “A Framework for Call Graph Construction Algorithms”. In:

ACM Trans. Program. Lang. Syst. (2001).

[37] C. Hammer and G. Snelting. “Flow-Sensitive, Context-Sensitive, and Object-sensitive

Information Flow Control Based on Program Dependence Graphs”. In: International

Journal of Information Security 8.6 (Dec. 2009), pp. 399–422. D O I: 10.1007/s10207-

009-0086-1.

[38] W. Han and C. Lei. “A Survey on Policy Languages in Network and Security Management”.

In: Computer Networks 56.1 (2012), pp. 477–489. I S S N: 1389-1286. D O I: 10.1016/j.

comnet.2011.09.014.

[39] M. Harvan and A. Pretschner. “State-Based Usage Control Enforcement with Data Flow

Tracking using System Call Interposition”. In: Third International Conference on Network

and System Security. Oct. 2009, pp. 373–380. D O I: 10.1109/NSS.2009.51.

[40] K. Havelund and A. Goldberg. “Verified Software: Theories, Tools, Experiments”. In: ed.

by B. Meyer and J. Woodcock. Berlin, Heidelberg: Springer-Verlag, 2008. Chap. Verify

Your Runs, pp. 374–383. I S B N: 978-3-540-69147-1. D O I: 10.1007/978-3-540-69149-

5_40.

[41] K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer. Tech. rep.

2001.

[42] M. Hilty, A. Pretschner, D. Basin, C. Schaefer, and T. Walter. “A Policy Language for

Distributed Usage Control”. In: Proceedings of the 12th European Conference on Research

in Computer Security. ESORICS’07. Dresden, Germany: Springer-Verlag, 2007, pp. 531–

546. I S B N: 3-540-74834-2, 978-3-540-74834-2.

110

https://doi.org/10.1007/s10207-014-0257-6
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1982.10014
https://doi.org/10.1109/SP.1984.10019
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1007/s10207-009-0086-1
https://doi.org/10.1016/j.comnet.2011.09.014
https://doi.org/10.1016/j.comnet.2011.09.014
https://doi.org/10.1109/NSS.2009.51
https://doi.org/10.1007/978-3-540-69149-5_40
https://doi.org/10.1007/978-3-540-69149-5_40

Bibliography

[43] M. Hilty, D. Basin, and A. Pretschner. “On Obligations”. In: Proceedings of the 10th Euro-

pean Conference on Research in Computer Security. ESORICS’05. Milan, Italy: Springer-

Verlag, 2005, pp. 98–117. I S B N: 3-540-28963-1, 978-3-540-28963-0. D O I: 10.1007/

11555827_7.

[44] S. Horwitz, T. Reps, and D. Binkley. “Interprocedural Slicing Using Dependence Graphs”.

In: Proceedings of the ACM SIGPLAN 1988 Conference on Programming Language Design

and Implementation. PLDI ’88. Atlanta, Georgia, USA: ACM, 1988, pp. 35–46. I S B N: 0-

89791-269-1. D O I: 10.1145/53990.53994.

[45] Java. https://java.com/de/.

[46] K. Jee, V. P. Kemerlis, A. D. Keromytis, and G. Portokalidis. “ShadowReplica: Efficient

Parallelization of Dynamic Data Flow Tracking”. In: Proceedings of the 2013 ACM SIGSAC

Conference on Computer & Communications Security. CCS ’13. Berlin, Germany:

ACM, 2013, pp. 235–246. I S B N: 978-1-4503-2477-9. D O I: 10.1145/2508859.2516704.

[47] K. Jee, G. Portokalidis, V. P. Kemerlis, S. Ghosh, D. I. August, and A. D. Keromytis. “A General

Approach for Efficiently Accelerating Software-based Dynamic Data Flow Tracking on

Commodity Hardware”. In: In Proc. of the 19 th NDSS. 2012.

[48] X. Jin, R. Krishnan, and R. Sandhu. “A Unified Attribute-based Access Control Model Cov-

ering DAC, MAC and RBAC”. In: Proceedings of the 26th Annual IFIP WG 11.3 Conference

on Data and Applications Security and Privacy. DBSec’12. Paris, France: Springer-Verlag,

2012, pp. 41–55. I S B N: 978-3-642-31539-8. D O I: 10.1007/978-3-642-31540-4_4.

[49] JOANA. http://joana.ipd.kit.edu.

[50] G. Karopoulos, P. Mori, and F. Martinelli. “Usage Control in SIP-based Multimedia Deliv-

ery”. In: Comput. Secur. 39 (Nov. 2013), pp. 406–418. I S S N: 0167-4048. D O I: 10.1016/j.

cose.2013.09.005.

[51] F. Kelbert and A. Fromm. “Compliance Monitoring of Third-Party Applications in Online

Social Networks”. In: 2016 IEEE Security and Privacy Workshops (SPW). May 2016, pp. 9–

16. D O I: 10.1109/SPW.2016.13.

[52] F. M. Kelbert. “Data Usage Control for Distributed Systems”. Dissertation. München:

Technische Universität München, Mar. 2016.

[53] F. Kelbert and A. Pretschner. “Data usage control enforcement in distributed systems”.

In: Proceedings of the third ACM conference on Data and application security and privacy.

CODASPY ’13. San Antonio, Texas, USA: ACM, 2013, pp. 71–82. I S B N: 978-1-4503-1890-7.

D O I: 10.1145/2435349.2435358.

111

https://doi.org/10.1007/11555827_7
https://doi.org/10.1007/11555827_7
https://doi.org/10.1145/53990.53994
https://java.com/de/
https://doi.org/10.1145/2508859.2516704
https://doi.org/10.1007/978-3-642-31540-4_4
http://joana.ipd.kit.edu
https://doi.org/10.1016/j.cose.2013.09.005
https://doi.org/10.1016/j.cose.2013.09.005
https://doi.org/10.1109/SPW.2016.13
https://doi.org/10.1145/2435349.2435358

Bibliography

[54] V. P. Kemerlis, G. Portokalidis, K. Jee, and A. D. Keromytis. “Libdft: Practical Dynamic Data

Flow Tracking for Commodity Systems”. In: SIGPLAN Not. 47.7 (Mar. 2012), pp. 121–132.

I S S N: 0362-1340. D O I: 10.1145/2365864.2151042.

[55] R. Keskisärkkä and E. Blomqvist. “Semantic complex event processing for social media

monitoring-a survey”. In: Proceedings of Social Media and Linked Data for Emergency Re-

sponse (SMILE) Co-located with the 10th Extended Semantic Web Conference, Montpellier,

France. CEUR workshop proceedings (May 2013). 2013.

[56] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. “Frama-C: A software

analysis perspective”. In: Formal Aspects of Computing 27.3 (2015), pp. 573–609. I S S N:

1433-299X. D O I: 10.1007/s00165-014-0326-7.

[57] A. Kulkarni and J. Walker. RFC 4261: Common Open Policy Service (COPS) Over Transport

Layer Security (TLS). 2005.

[58] P. Kumaraguru, J. Lobo, L. F. Cranor, and S. B. Calo. “A Survey of Privacy Policy Languages”.

In: Proceedings of the 3rd Symposium on Usable Privacy and Security /Workshop on Usable

IT Security Management. ACM, 2007.

[59] P. Kumari. “Model-Based Policy Derivation for Usage Control”. PhD thesis. Technische

Universität München, Garching b. München, Germany, 2015.

[60] P. Kumari and A. Pretschner. “Deriving implementation-level policies for usage control

enforcement”. In: Proc. 2nd ACM Conference on Data and Application Security and

Privacy. San Antonio, Texas, USA, 2012, pp. 83–94. I S B N: 978-1-4503-1091-8. D O I: 10.

1145/2133601.2133612.

[61] P. Kumari and A. Pretschner. “Model-Based Usage Control Policy Derivation”. In: Engi-

neering Secure Software and Systems. Ed. by J. Jürjens, B. Livshits, and R. Scandariato.

Vol. 7781. Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2013, pp. 58–

74. I S B N: 978-3-642-36562-1. D O I: 10.1007/978-3-642-36563-8_5.

[62] P. Kumari, A. Pretschner, J. Peschla, and J.-M. Kuhn. “Distributed Data Usage Control for

Web Applications: A Social Network Implementation”. In: Proceedings of the First ACM

Conference on Data and Application Security and Privacy. CODASPY ’11. San Antonio,

TX, USA: ACM, 2011, pp. 85–96. I S B N: 978-1-4503-0466-5. D O I: 10.1145/1943513.

1943526.

[63] B. W. Lampson. “Protection”. In: SIGOPS Oper. Syst. Rev. 8.1 (Jan. 1974), pp. 18–24. I S S N:

0163-5980. D O I: 10.1145/775265.775268.

[64] C. E. Landwehr. Protection (Security) Models and Policy. 1997.

112

https://doi.org/10.1145/2365864.2151042
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/2133601.2133612
https://doi.org/10.1145/2133601.2133612
https://doi.org/10.1007/978-3-642-36563-8_5
https://doi.org/10.1145/1943513.1943526
https://doi.org/10.1145/1943513.1943526
https://doi.org/10.1145/775265.775268

Bibliography

[65] P. A. Laplante. What Every Engineer Should Know About Software Engineering (What Every

Engineer Should Know). Boca Raton, FL, USA: CRC Press, Inc., 2007. I S B N: 0849372283.

[66] A. Lazouski, G. Mancini, F. Martinelli, and P. Mori. “Architecture, Workflows, and Prototype

for Stateful Data Usage Control in Cloud”. In: 2014 IEEE Security and Privacy Workshops.

May 2014, pp. 23–30. D O I: 10.1109/SPW.2014.13.

[67] A. Lazouski, F. Martinelli, and P. Mori. “Usage Control in Computer Security: A Survey”.

In: Computer Science Review 4.2 (2010), pp. 81–99. I S S N: 1574-0137. D O I: 10.1016/j.

cosrev.2010.02.002.

[68] D. Lienert. “Distributed Usage Control for the MySQL Database Server”. Diploma Thesis.

Karlsruhe Institute of Technology, Germany, 2012.

[69] M. Lörscher. “Data Usage Control for the Thunderbird Mail Client”. MA thesis. University

of Kaiserslautern, Germany, 2012.

[70] E. Lovat. “Cross-layer Data-centric Usage Control”. PhD thesis. Technische Universität

München, Garching b. München, Germany, 2015.

[71] E. Lovat, A. Fromm, M. Mohr, and A. Pretschner. “SHRIFT System-Wide HybRid Infor-

mation Flow Tracking”. In: ICT Systems Security and Privacy Protection. Springer, 2015,

pp. 371–385.

[72] M. Maalej. “Usage Control for Apple iOS”. Master Thesis. Technische Universität München,

Germany, 2012.

[73] F. Martinelli, P. Mori, and A. Vaccarelli. “Towards Continuous Usage Control on Grid Com-

putational Services”. In: Joint International Conference on Autonomic and Autonomous

Systems and International Conference on Networking and Services. Oct. 2005, pp. 82–82.

D O I: 10.1109/ICAS-ICNS.2005.93.

[74] A. Milanova, A. Rountev, and B. G. Ryder. “Parameterized Object Sensitivity for Points-to

Analysis for Java”. In: ACM Trans. Softw. Eng. Methodol. (2005).

[75] M. Mongiovì, G. Giannone, A. Fornaia, G. Pappalardo, and E. Tramontana. “Combining

Static and Dynamic Data Flow Analysis: A Hybrid Approach for Detecting Data Leaks

in Java Applications”. In: Proceedings of the 30th Annual ACM Symposium on Applied

Computing. SAC ’15. Salamanca, Spain: ACM, 2015, pp. 1573–1579. I S B N: 978-1-4503-

3196-8. D O I: 10.1145/2695664.2695887.

113

https://doi.org/10.1109/SPW.2014.13
https://doi.org/10.1016/j.cosrev.2010.02.002
https://doi.org/10.1016/j.cosrev.2010.02.002
https://doi.org/10.1109/ICAS-ICNS.2005.93
https://doi.org/10.1145/2695664.2695887

Bibliography

[76] A. C. Myers. “JFlow: Practical Mostly-static Information Flow Control”. In: Proceedings of

the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

POPL ’99. San Antonio, Texas, USA: ACM, 1999, pp. 228–241. I S B N: 1-58113-095-3. D O I:

10.1145/292540.292561.

[77] S. K. Nair, P. N. D. Simpson, B. Crispo, and A. S. Tanenbaum. Trishul: A Policy Enforcement

Architecture for Java Virtual Machines. 2008.

[78] Å. A. Nyre. “Usage Control Enforcement - A Survey”. In: Availability, Reliability and Secu-

rity for Business, Enterprise and Health Information Systems. Ed. by A. Tjoa, G. Quirchmayr,

I. You, and L. Xu. Vol. 6908. Lecture Notes in Computer Science. Springer Berlin Heidel-

berg, 2011, pp. 38–49. I S B N: 978-3-642-23299-2. D O I: 10.1007/978-3-642-23300-

5_4.

[79] Organization for the Advancement of Structured Information Standards (OASIS). “eX-

tensible Access Control Markup Language (XACML) Version 3.0”. In: OASIS Standard

(Jan. 2013), pp. 1–154.

[80] OW2-ASM instrumentation framework. http://asm.ow2.org/.

[81] V. Pappas, V. Kemerlis, A. Zavou, M. Polychronakis, and A. Keromytis. “CloudFence:

Data Flow Tracking as a Cloud Service”. English. In: Research in Attacks, Intrusions, and

Defenses. Ed. by S. Stolfo, A. Stavrou, and C. Wright. Vol. 8145. Lecture Notes in Computer

Science. Springer Berlin Heidelberg, 2013, pp. 411–431. I S B N: 978-3-642-41283-7. D O I:

10.1007/978-3-642-41284-4_21.

[82] J. Park and R. Sandhu. “Originator control in usage control”. In: Proceedings Third In-

ternational Workshop on Policies for Distributed Systems and Networks. 2002, pp. 60–66.

D O I: 10.1109/POLICY.2002.1011294.

[83] J. Park and R. Sandhu. “The UCONABC Usage Control Model”. In: ACM Trans. Inf. Syst.

Secur. 7.1 (Feb. 2004), pp. 128–174. I S S N: 1094-9224. D O I: 10.1145/984334.984339.

[84] J. Park and R. Sandhu. “Towards usage control models: beyond traditional access control”.

In: Proc. 7th ACM Symposium on Access Control Models and Technologies. Monterey,

California, USA, 2002, pp. 57–64. I S B N: 1-58113-496-7. D O I: 10.1145/507711.507722.

[85] J. Peschla. “Information Flow Tracking for JavaScript in Chromium”. Master’s Thesis.

University of Kaiserslautern, Germany, 2012.

[86] PHP. http://php.net/.

[87] PIN.https://software.intel.com/en-us/articles/pin-a-dynamic-binary-

instrumentation-tool.

114

https://doi.org/10.1145/292540.292561
https://doi.org/10.1007/978-3-642-23300-5_4
https://doi.org/10.1007/978-3-642-23300-5_4
http://asm.ow2.org/
https://doi.org/10.1007/978-3-642-41284-4_21
https://doi.org/10.1109/POLICY.2002.1011294
https://doi.org/10.1145/984334.984339
https://doi.org/10.1145/507711.507722
http://php.net/
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool
https://software.intel.com/en-us/articles/pin-a-dynamic-binary-instrumentation-tool

Bibliography

[88] F. Pottier and V. Simonet. “Information Flow Inference for ML”. In: SIGPLAN Not. 37.1

(Jan. 2002), pp. 319–330. I S S N: 0362-1340. D O I: 10.1145/565816.503302.

[89] A. Pretschner. “An Overview of Distributed Usage Control”. In: Proc. International Con-

ference on Knowledge Engineering. Knowledge Engineering: Principles and Techniques.

Romania, July 2009.

[90] A. Pretschner, M. Hilty, D. Basin, C. Schaefer, and T. Walter. “Mechanisms for Usage Con-

trol”. In: Proc. 2008 ACM Symposium on Information, Computer and Communications

Security. Mar. 2008, pp. 240–244. I S B N: 978-1-59593-979-1. D O I: 10.1145/1368310.

1368344.

[91] A. Pretschner, M. Hilty, F. Schutz, C. Schaefer, and T. Walter. “Usage Control Enforcement:

Present and Future”. In: Security Privacy, IEEE 6.4 (July 2008), pp. 44–53. I S S N: 1540-7993.

D O I: 10.1109/MSP.2008.101.

[92] A. Pretschner, E. Lovat, and M. Büchler. “Representation-Independent Data Usage Con-

trol”. In: Data Privacy Management and Autonomous Spontaneus Security. Vol. 7122.

Springer Berlin Heidelberg, 2012, pp. 122–140. I S B N: 978-3-642-28878-4.

[93] A. Pretschner, F. Massacci, and M. Hilty. “Usage Control in Service-Oriented Architec-

tures”. In: Trust, Privacy and Security in Digital Business: 4th International Conference,

TrustBus 2007, Regensburg, Germany, September 3-7, 2007. Proceedings. Ed. by C. Lam-

brinoudakis, G. Pernul, and A. M. Tjoa. Berlin, Heidelberg: Springer Berlin Heidelberg,

2007, pp. 83–93. I S B N: 978-3-540-74409-2. D O I: 10.1007/978-3-540-74409-2_11.

[94] A. Pretschner, J. Rüesch, C. Schaefer, and T. Walter. “Formal Analyses of Usage Control

Policies”. In: International Conference on Availability, Reliability and Security. ARES. Mar.

2009, pp. 98–105. D O I: 10.1109/ARES.2009.100.

[95] A. Pretschner, M. Büchler, M. Harvan, C. Schaefer, T. Walter, et al. “Usage control enforce-

ment with data flow tracking for x11”. In: Proc. 5th Intl. Workshop on Security and Trust

Management. 2009, pp. 124–137.

[96] C. Priebe, D. Muthukumaran, D. O’ Keeffe, D. Eyers, B. Shand, R. Kapitza, and P. Pietzuch.

“CloudSafetyNet: Detecting Data Leakage Between Cloud Tenants”. In: Proceedings of

the 6th Edition of the ACM Workshop on Cloud Computing Security. CCSW ’14. Scotts-

dale, Arizona, USA: ACM, 2014, pp. 117–128. I S B N: 978-1-4503-3239-2. D O I: 10.1145/

2664168.2664174.

115

https://doi.org/10.1145/565816.503302
https://doi.org/10.1145/1368310.1368344
https://doi.org/10.1145/1368310.1368344
https://doi.org/10.1109/MSP.2008.101
https://doi.org/10.1007/978-3-540-74409-2_11
https://doi.org/10.1109/ARES.2009.100
https://doi.org/10.1145/2664168.2664174
https://doi.org/10.1145/2664168.2664174

Bibliography

[97] S. Rasthofer, S. Arzt, E. Lovat, and E. Bodden. “DroidForce: Enforcing Complex, Data-

centric, System-wide Policies in Android”. In: 2014 Ninth International Conference on

Availability, Reliability and Security. Sept. 2014, pp. 40–49. D O I: 10.1109/ARES.2014.

13.

[98] T. Reps, S. Horwitz, and M. Sagiv. “Precise Interprocedural Dataflow Analysis via Graph

Reachability”. In: Proceedings of the 22Nd ACM SIGPLAN-SIGACT Symposium on Princi-

ples of Programming Languages. POPL ’95. San Francisco, California, USA: ACM, 1995,

pp. 49–61. I S B N: 0-89791-692-1. D O I: 10.1145/199448.199462.

[99] T. Reps, S. Horwitz, M. Sagiv, and G. Rosay. “Speeding Up Slicing”. In: Proceedings of

the 2Nd ACM SIGSOFT Symposium on Foundations of Software Engineering. SIGSOFT

’94. New Orleans, Louisiana, USA: ACM, 1994, pp. 11–20. I S B N: 0-89791-691-3. D O I:

10.1145/193173.195287.

[100] B. Rocha, M. Conti, S. Etalle, and B. Crispo. “Hybrid Static-Runtime Information Flow

and Declassification Enforcement”. In: Information Forensics and Security, IEEE Trans-

actions on 8.8 (Aug. 2013), pp. 1294–1305. I S S N: 1556-6013. D O I: 10.1109/TIFS.2013.

2267798.

[101] Ruby. https://www.ruby-lang.org/de/.

[102] A. Russo and A. Sabelfeld. “Dynamic vs. Static Flow-Sensitive Security Analysis”. In:

Proceedings of the 2010 23rd IEEE Computer Security Foundations Symposium. CSF ’10.

Washington, DC, USA: IEEE Computer Society, 2010, pp. 186–199. I S B N: 978-0-7695-

4082-5. D O I: 10.1109/CSF.2010.20.

[103] A. Sabelfeld and A. Myers. “Language-based information-flow security”. In: Selected

Areas in Communications, IEEE Journal on (2003).

[104] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. “Role-based access control

models”. In: Computer 29.2 (Feb. 1996), pp. 38–47. I S S N: 0018-9162. D O I: 10.1109/2.

485845.

[105] R. S. Sandhu and P. Samarati. “Access Control: Principle and Practice”. In: Comm. Mag.

32.9 (Sept. 1994), pp. 40–48. I S S N: 0163-6804. D O I: 10.1109/35.312842.

[106] R. S. Sandhu. “Lattice-Based Access Control Models”. In: Computer 26.11 (Nov. 1993),

pp. 9–19. I S S N: 0018-9162. D O I: 10.1109/2.241422.

116

https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1109/ARES.2014.13
https://doi.org/10.1145/199448.199462
https://doi.org/10.1145/193173.195287
https://doi.org/10.1109/TIFS.2013.2267798
https://doi.org/10.1109/TIFS.2013.2267798
https://doi.org/10.1109/CSF.2010.20
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/2.485845
https://doi.org/10.1109/35.312842
https://doi.org/10.1109/2.241422

Bibliography

[107] R. Sandhu and J. Park. “Usage Control: A Vision for Next Generation Access Control”. In:

Computer Network Security: Second International Workshop on Mathematical Methods,

Models, and Architectures for Computer Network Security, MMM-ACNS 2003, St. Peters-

burg, Russia, September 21-23, 2003. Proceedings. Ed. by V. Gorodetsky, L. Popyack, and

V. Skormin. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003, pp. 17–31. I S B N: 978-3-

540-45215-7. D O I: 10.1007/978-3-540-45215-7_2.

[108] S. Saxena. “Data Usage Control In Office Application”. Master’s Thesis. Technische Uni-

versität München, Germany, 2014.

[109] O. Shivers. “Control Flow Analysis in Scheme”. In: Proc. PLDI. 1988.

[110] Spring. https://spring.io/.

[111] B. Steensgaard. “Points-to Analysis in Almost Linear Time”. In: Proceedings of the 23rd

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL ’96.

St. Petersburg Beach, Florida, USA: ACM, 1996, pp. 32–41. I S B N: 0-89791-769-3. D O I:

10.1145/237721.237727.

[112] Tomcat. http://tomcat.apache.org.

[113] S. Trabelsi, A. Njeh, L. Bussard, and G. Neven. “PPL Engine: A Symmetric Architecture

for Privacy Policy Handling”. In: W3C Workshop on Privacy and data usage control. W3C,

2010, pp. 1–5. I S B N: 978-88-97253-01-3.

[114] O. Tripp, M. Pistoia, P. Cousot, R. Cousot, and S. Guarnieri. “Andromeda: Accurate and

Scalable Security Analysis of Web Applications”. English. In: Fundamental Approaches

to Software Engineering. Ed. by V. Cortellessa and D. Varró. Vol. 7793. Lecture Notes

in Computer Science. Springer Berlin Heidelberg, 2013, pp. 210–225. I S B N: 978-3-642-

37056-4. D O I: 10.1007/978-3-642-37057-1_15.

[115] O. Tripp, M. Pistoia, S. J. Fink, M. Sridharan, and O. Weisman. “TAJ: Effective Taint Analysis

of Web Applications”. In: SIGPLAN Not. 44.6 (June 2009), pp. 87–97. I S S N: 0362-1340.

D O I: 10.1145/1543135.1542486.

[116] Trishul. http://srijith.net/vu/trishul/publications.php.

[117] K. Twidle, N. Dulay, E. Lupu, and M. Sloman. “Ponder2: A Policy System for Autonomous

Pervasive Environments”. In: Autonomic and Autonomous Systems, 2009. ICAS ’09. Fifth

International Conference on. Apr. 2009, pp. 330–335. D O I: 10.1109/ICAS.2009.42.

[118] D. Vanoverberghe and F. Piessens. “A Caller-Side Inline Reference Monitor for an Object-

Oriented Intermediate Language”. In: Proceedings of the 10th IFIP WG 6.1 International

Conference on Formal Methods for Open Object-Based Distributed Systems. 2008.

117

https://doi.org/10.1007/978-3-540-45215-7_2
https://spring.io/
https://doi.org/10.1145/237721.237727
http://tomcat.apache.org
https://doi.org/10.1007/978-3-642-37057-1_15
https://doi.org/10.1145/1543135.1542486
http://srijith.net/vu/trishul/publications.php
https://doi.org/10.1109/ICAS.2009.42

Bibliography

[119] D. M. Volpano. “Safety Versus Secrecy”. In: Proceedings of the 6th International Sympo-

sium on Static Analysis. 1999.

[120] D. Volpano, C. Irvine, and G. Smith. “A Sound Type System for Secure Flow Analysis”. In:

J. Comput. Secur. 4.2-3 (Jan. 1996), pp. 167–187. I S S N: 0926-227X.

[121] D. Wasserrab and D. Lohner. “Proving Information Flow Noninterference by Reusing

a Machine-Checked Correctness Proof for Slicing”. In: 6th International Verification

Workshop - VERIFY-2010. 2010.

[122] P. Wenz. “Data Usage Control for ChromiumOS”. Diploma Thesis. Karlsruhe Institute of

Technology, Germany, 2012.

[123] WhatsApp. https://www.whatsapp.com/.

[124] T. Wüchner and A. Pretschner. “Data Loss Prevention Based on Data-Driven Usage

Control”. In: Software Reliability Engineering (ISSRE), 2012 IEEE 23rd International Sym-

posium on. 2012, pp. 151–160. D O I: 10.1109/ISSRE.2012.10.

[125] H. Yin, D. Song, M. Egele, C. Kruegel, and E. Kirda. “Panorama: Capturing System-wide

Information Flow for Malware Detection and Analysis”. In: Proceedings of the 14th ACM

Conference on Computer and Communications Security. CCS ’07. Alexandria, Virginia,

USA: ACM, 2007, pp. 116–127. I S B N: 978-1-59593-703-2. D O I: 10.1145/1315245.

1315261.

[126] B. Zeng, G. Tan, and Ú. Erlingsson. “Strato: A Retargetable Framework for Low-level

Inlined-reference Monitors”. In: Proceedings of the 22Nd USENIX Conference on Security.

2013.

[127] Q. Zhang, J. McCullough, J. Ma, N. Schear, M. Vrable, A. Vahdat, A. C. Snoeren, G. M.

Voelker, and S. Savage. “Neon: System Support for Derived Data Management”. In: SIG-

PLAN Not. 45.7 (Mar. 2010), pp. 63–74. I S S N: 0362-1340. D O I: 10.1145/1837854.

1736008.

118

https://www.whatsapp.com/
https://doi.org/10.1109/ISSRE.2012.10
https://doi.org/10.1145/1315245.1315261
https://doi.org/10.1145/1315245.1315261
https://doi.org/10.1145/1837854.1736008
https://doi.org/10.1145/1837854.1736008

Index of Acronyms

AC Access Control

AuS Application under Scrutiny

CEP Complex Event Processing

DDFT Dynamic Data Flow Tracking

DFT Data Flow Tracking

DMA Direct Memory Access

DTA Dynamic Taint Analysis

DUC Data Usage Control

EBNF Extended Backus-Naur Form

ECA Event-Condition-Action

AEB Amazon’s Elastic Beanstalk

IaaS Infrastructure as a Service

ILP Implementation Level Policy

IFT Information Flow Tracking

IRM Inline Reference Monitor

JRE Java Runtime Environment

JVM Java Virtual Machine

LTL Linear Temporal Logic

OSL Obligation Specification Language

119

OSN Online Social Network

PaaS Platform as a Service

PDP Policy Decision Point

PEP Policy Enforcement Point

PDG Program Dependence Graph

PIP Policy Information Point

PMP Policy Management Point

PoI Points of Interest

RTE Runtime Environment

SDG System Dependence Graph

SIFA Static Information Flow Analysis

SLP Specification Level Policy

SSA Static-Single-Assignment

UC Usage Control

UCI Usage Control Infrastructure

JSR Java Specification Requirements

List of Tables

2.1. Technical evaluation of DUC policy operators . 29

2.2. Sample DUC policies as ECA-rule representation . 32

3.1. Static analysis results concerning precision . 63

3.2. Static analysis results concerning SDG size and required computational resources 65

3.3. Run-time performance results . 79

List of Figures

1.1. DUC is an extension of AC . 2

1.2. Alice protects her transmitted data D by a policy . 3

1.3. PaaS provider PaaS-A provides a shared run-time environment 4

1.4. The overapproximation problem . 6

1.5. Software abstraction layer stack . 7

1.6. The three code blocks of an application . 8

2.1. Usage Control Infrastructure . 25

2.2. Sample expression tree . 27

2.3. Usage Control Infrastructure . 28

3.1. The S H R I F T and H D F T++ approach overview . 36

3.2. S H R I F T versus H D F T++ . 38

3.3. Sample SDG chop and its corresponding Java source code 40

3.4. BirthdayApp and its modularization into code blocks . 85

121

List of Listings

List of Listings

3.1. Example static analysis-report generated by J O A N A . 41

3.2. Example sink- source-specification that is used by J O A N A 42

3.3. Example Java code fragment for zipping files inside an application 44

3.4. Example of an explicit flow dependency. 46

3.5. Example application which reads data from a file and transmits it to a remote

server. 48

3.6. Static analysis-report excerpt for the example code in Listing 3.5. 49

3.7. PIP state only reading secret.txt. 51

3.8. PIP state reading secret.txt and subsequently public.txt. 51

3.9. Data flow dependency crosses a IF-command . 67

3.10. Static analysis-report for the IF-example in Listing 3.9. 68

3.11. H D F T++’s PIP-state withexecuted assignment instruction in Listing 3.9 Line 6 . . 69

3.12. H D F T++’s PIP-state withoutexecuted assignment instruction in Listing 3.9 Line 6 70

3.13. S H R I F T’s PIP-state after executing the code in Listing 3.9. 71

3.14. Example of a data flow dependency crossing a WHILE-command 71

3.15. Analysis-report for the WHILE-example in Listing 3.14. 72

3.16. H D F T++’s PIP-state withexecuted assignment-statement in Listing 3.14 line 7 . . 73

3.17. H D F T++’s PIP-state withoutexecuted assignment-statement in Listing 3.14 line 7 73

3.18. S H R I F T’s PIP-state after executing the code in Listing 3.14. 73

3.19. Example of a data flow dependency passing through an inheritance relation 74

3.20. Analysis-report for the INHERITANCE-example in Listing 3.19. 75

3.21. H D F T++’s PIP state with executed Copy.copy(byte[] a) method. 76

3.22. H D F T++’s PIP state with executed CopyByRef.copy(byte[] a) method. 77

3.23. H D F T++’s PIP state with executed CopyByValue.copy(byte[] a) method. . . 77

3.24. S H R I F T’s PIP-state after executing the code in Listing 3.20. 77

A.1. The complete static analysis-report from the example in Listing 3.5, where a

secret value is read from a file and transmitted to a remote server. Depending on

a random value, the secret value is overwritten with a public value. 103

A.2. The full analysis-report for Listing 3.19. It shows a data flow dependency which

contains an inheritance relation on its path from a source to a sink. 105

122

	Introduction
	Motivation
	Running Example
	Gap Analysis and Problem Statement
	Assumptions
	Solution and Contribution
	Thesis outline
	Relevant Publications

	Foundations on Usage Control
	Usage Control Elementaries
	Usage Control Policies and Mechanisms
	Specification Level Policy
	Implementation Level Policy
	Usage Control Mechanisms

	Generic Data Flow Model
	Usage Control Infrastructure
	Policies by Examples

	Hybrid Data Flow Tracking
	State of the Art Information Flow Analysis
	Overview of the hybrid approach
	Static Information Flow Analysis
	Run-time Data Flow Tracking
	Data Flow Tracking Model for Java
	Evaluation
	Precision
	Shrift versus Hdft++
	Performance
	Threats to Validity

	Strengths and Limitations
	Summary and Conclusion

	Related work
	Information Flow Tracking
	Usage Control

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix
	Analysis reports

	Index of Acronyms

