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Facoltà di Scienze e Tecnologie
Dottorato di Ricerca in Informatica

XXXII ciclo
Settore scientifico INF/01

Static and dynamic analyses for protecting the
Java software execution environment

Ph.D. Candidate
Stefano Cristalli

Tutor
Prof. Andrea Lanzi

Coordinatore del Corso di Dottorato
Prof. Paolo Boldi

Anno Accademico 2018/2019



Abstract

In my thesis, I present three projects on which I have worked during my Ph.D.
studies. All of them focus on software protection in the Java environment with
static and dynamic techniques for control-flow and data-dependency analysis.
More specifically, the first two works are dedicated to the problem of deseri-
alization of untrusted data in Java. In the first, I present a defense system
that was designed for protecting the Java Virtual Machine, along with the re-
sults that were obtained. In the second, I present a recent research project
that aims at automatic generation of deserialization attacks, to help identify-
ing them and increasing protection. The last discussed work concerns another
branch of software protection: the authentication on short-distance channels
(or the lack thereof) in Android APKs. In said work, I present a tool that was
built for automatically identifying the presence of high-level authentication in
Android apps. I thoroughly discuss experiments, limitations and future work
for all three projects, concluding with general principles that bring these works
together, and can be applied when facing related security issues in high-level
software protection.
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Introduction

Several security problems affect high-level software environments. These prob-
lems can emerge regardless of security measures applied to the underlying sys-
tems. This is the case, for example, of problems arising from deserialization of
untrusted data in several programming languages, such as Java, PHP, Python,
and C#, where a technology with many legitimate uses (data serialization) is
exploited to obtain unintended and malicious behavior in software. By leverag-
ing object deserialization, attackers are able to chain pieces of benign software,
leading to effects such as arbitrary code execution on the target system. Solv-
ing these problems while maintaining functionality is not trivial, because some
of the causes that make the attack possible are needed key features of the se-
rialization technology. Also, in the code chains mentioned above, it is hard
to identify a single “culprit” that permits attacks; the malicious effects arise
from the interaction of pieces of benign software, with no single point of failure.
Another example of high-level security issue in software is the lack of authen-
tication. We have an example of this in the Android environment, specifically
when considering communication on short-distance channels, such as Bluetooth
and WiFi-Direct. Authentication and encryption are enforced directly by the
Android operating system, so that app developers can safely use standard APIs
and benefit from these properties without reimplementing the underlying se-
curity protocols. However, authentication on the channel is not sufficient: in
particular, it offers no guarantees on high-level authentication, the implemen-
tation of which is left to app developers. Experimental evaluation shows a lack
of awareness of this problem in the community of Android app developers, at
both amateur and professional levels. Again, we face an issue with difficult res-
olution: with the lack of APIs, developers must implement authentication on
a per-app basis without a standardized approach, and awareness is difficult to
increase without changes in the Android documentation.

These issues share common traits:

• They apply to Java-based environments.

• They are not caused by a specific low-level bug in code, or a single user’s
mistake; instead, they impact high-level security scenarios, with multiple
causes and actors.

• They are related to anomalies in the normal execution (control flow) of
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software.

Based on these unifying traits, we commit to the following research state-
ment for the work presented in this thesis:

We wish to study detection mechanisms, solutions and mitigations for high-
level security problems in Java-based environment by applying anomaly de-
tection techniques, control flow and data flow analyses. We try to approach
complex problems which have not yet been completely solved at the time of
writing, and perform a comprehensive study on their causes and possible de-
fenses.

As we state, a possible way to mitigate such security problems is the use
of static and dynamic program analysis techniques. By inspecting either the
source code, or the state of the software environment at runtime, it becomes
possible to infer the presence of vulnerabilities in software, or the event of an
ongoing attack during software execution.

Static techniques analyze unchanging information such as the source code
of the software or the one of its environment. They are helpful for modelling
control-flow information as well as data-dependency information. Dynamic tech-
niques analyze volatile information at runtime, concerning the state of the soft-
ware execution environment. By monitoring data, they are helpful for detecting
anomalies in software execution.

In this thesis, I applied both static and dynamic analysis techniques to the
resolution of the two security issues mentioned above:

1. The study of security problems related to deserialization of untrusted data
in the Java Virtual Machine, and approaches towards their resolution

2. The study of problems related to the lack of high-level app-to-app au-
thentication on short-distance communication channels in Android, and a
system for detecting authentication in Android apps

My thesis is consequently divided in two major parts, each treating a sep-
arate problem. The main underlying topic is the use of the aforementioned
techniques for software protection in Java environments.

Even though the analyzed problems have a high-level component which can
be abstracted from the specific programming language and environment, we
chose to focus on Java, tailoring our analysis and practical solutions to said lan-
guage. Given its widespread adoption in both commercial and non commercial
projects, and the variety of its applications (desktop software, web services, An-
droid apps), in our thinking Java represents the ideal candidate for research on
high-level software protection. The parts of our research that do not specifically
rely on Java features (for example, the threat model of CATCH in Android)
can be applied to other technologies; the more language-specific or architecture-
specific parts (for instance, modifying the JVM to counter deserialization at-
tacks) could also be adapted with additional technical work, but reusing the
conceptual framework.
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Part I is dedicated to “Deserialization of untrusted data in the Java Virtual
Machine”. After an introduction of the problem, I present the history of the
vulnerability, along with the background concepts necessary to understand it.
Afterwards, I present one research on the problem that I co-authored during
my Ph.D., which describes a defense system to effectively mitigate this security
problem by modification of the Java Virtual Machine. After a brief overview, I
present the architecture of the system, then I proceed describing the technical
details of its implementation. I conclude with experimental results, related
work, and what future improvements we have planned. The last sections of Part
I are dedicated to another research project, on which I have worked during my
Ph.D., which aims at automating the process of discovery of new vulnerabilities
based on deserialization of untrusted data, using static control-flow and data-
dependency techniques. I follow the same structure for the presentation of this
work.

Part II is dedicated to “High-level authentication on short-distance channels
in Android”. After introducing the problem, I present a third project completed
during my Ph.D., in which the other authors and I present a system for detect-
ing authentication on short-distance channels (or the lack thereof) in Android
APKs. The presentation starts with a section for background concepts, followed
by an overview of the system. Implementation details follow, before the part
on experimental evaluation. Afterwards, I present two practical case studies on
the problem, before moving on to the related work. A discussion on limitations
and future work is presented last, with some concluding considerations.

The last section summarizes the work I presented in my thesis, in an effort
to present general principles that can be applied when designing systems for
the broad category of problems that is discussed, with specific insight on the
control-flow and data-dependency analyses that are leveraged in the presented
works.
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Part I: Deserialization of
untrusted data in the Java
Virtual Machine

1.1 Problem introduction

Deserialization of untrusted data is a cause of security problems in many pro-
gramming languages [17]. In Java, it might lead to remote code execution (RCE)
or denial of service (DOS) attacks [59]. Even though it is easy to check whether
preconditions for this type of attack exist in an application (that is, deserial-
ization performed on user-controlled data), designing and carrying out a real
attack is a hard task, due to the complexity of creating the attack payload. In
order to exploit this type of vulnerability, an attacker has to create a custom
instance of a chosen serializable class which redefines the readObject method.
The object is then serialized and sent to an application which will deserialize
it, causing an invocation of readObject and triggering the attacker’s payload.
Since the attacker has complete control on the deserialized data, he can choose
among all the Java classes present in the target application classpath, and man-
ually compose them by using different techniques (e.g., wrapping instances in
serialized fields, using reflection), and create an execution path that forces the
deserialization process towards a specific target (e.g., execution of a dangerous
method with input chosen by the attacker). There are several public exploits [28]
that show the impact of the attack on real Java frameworks, such as JBoss and
Jenkins, which are based on several common Java libraries, such as Oracle JRE
1.7, Apache Commons Collection 3 and 4, Apache Commons BeanUtils, Spring
Beans/Core 4.x and Groovy 2.3.x.

We give a brief introduction to the problem and the related background
concepts in this section, and then proceed to illustrate our research contribute
on the topic, in two distinct but related works:

1. In Section 1.3, we present a defense mechanism integrated in the JVM for
runtime detection and protection against attacks based on deserialization
of untrusted data.
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2. In Section 1.4, we describe the steps we have made towards automated
discovery of new malicious deserialization payloads in libraries, with the
aim of developing tools to aid developers, uncovering potential bugs and
increasing software quality.

We adhere to our research statement by treating a problem that has multiple
high-level causes:

• The deserialization architecture in the Java Virtual Machine is vulner-
able by design to the dangers of processing untrusted data, as a direct
consequence of the high customization allowed in custom deserialization
behavior of classes

• Software libraries leverage object deserialization to achieve key features

• Although no specific class is generally insecure, with evident security bugs,
the interaction of deserialization code in different classes allows an attacker
to obtain malicious behaviour where such classes are included in the class-
path

Given the impossibility of performing a complete rework of the existent mech-
anism, or removing deserialization altogether, we treat the issue by designing
detection and protection techniques, based on control flow and data flow anal-
ysis. The analysis of anomalies in the control flow allows us to construct a
protection for the Java runtime environment, effectively enabling the detec-
tion and blocking of both known and novel deserialization exploits. Data flow
analysis techniques applied to software libraries reveal the possibility of semi-
automated discovery and validation of deserialization payloads, greatly reducing
the amount of manual analysis required to analyze and secure code.

1.2 Background

In this section I describe background concepts for understanding the security
problems with deserialization of untrusted data in Java. In particular, I briefly
describe the Java Virtual machine and the HotSpot JVM’s interpreter and com-
piler. Then I present the mechanisms of reflection and object deserialization in
Java, and how the latter can be used to obtain malicious side effects when
applied to untrusted data.

1.2.1 Java Virtual Machine

Java code runs on a virtual machine (the Java Virtual Machine, or JVM), which
executes Java low-level instructions (bytecodes) on the host system. Several im-
plementations for the JVM exist; in our research we focus on the HotSpot JVM,
implemented by Oracle and used in both Oracle JDK and OpenJDK products.
Since Java is an interpreted language, each JVM runs an interpreter, responsible
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for translating Java bytecodes into machine instructions for the host’s architec-
ture as programs are executed.

The template interpreter is the current interpreter in use in the HotSpot
JVM. The HotSpot runtime generates an interpreter in memory at the virtual
machine startup using the information in the TemplateTable (a structure con-
taining templates, assembly code corresponding to each bytecode). The Tem-
plateTable defines the templates and provides accessor functions to get the tem-
plate for a given bytecode [48].

In order to optimize performance, the JVM can compile some of the Java
bytecodes into native code. The HotSpot JVM includes two Just-In-Time (JIT)
compilers, C1 and C2, responsible for code optimization at runtime. C1, the
client compiler, is optimized for compilation speed while C2, the server compiler,
is optimized for maximal performance of the generated code. The HotSpot
JVM constantly analyzes the code as it runs to detect the critical parts that are
executed often (called hot spots, from which the JVM gets its name), which are
then compiled into native code [30].

1.2.2 Java Technologies

Java reflection

Java allows reflection via a set of API calls. Reflective code can be used for var-
ious purposes, such as inspecting methods in classes and calling them dynami-
cally. For example, a program could use reflection on a generic class instance i

to check whether its class has a public method named doSomething, and invoke
it on i in such case.

Java object serialization

Serialization is the process of encoding objects into a stream of bytes, while
deserialization is the opposite operation. In Java, serialization is used mainly
for lightweight persistence, network data transfer via sockets, and Java Remote
Method Invocation (Java RMI) [50]. Java deserialization is performed by the
class java.io.ObjectInputStream, and in particular by its method readOb-

ject. A class is suitable for serialization/deserialization if the following require-
ments are satisfied [51]: (1) the class implements the interface java.io.Seria-

lizable, (2) the class has access to the no-argument constructor of its first
non-serializable superclass.

A class C can specify custom behavior for deserialization by defining a pri-

vate void readObject method. If present, such method is called when an
object of type C is deserialized. Other methods can be defined to control dese-
rialization:

• writeObject is used to specify what information is written to the output
stream when an object is serialized

• writeReplace allows a class to nominate a replacement object to be writ-
ten to the stream
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Listing 1.1: readObject in java.util.PriorityQueue

1 private void readObject(java.io.ObjectInputStream s)

2 throws java.io.IOException,

3 ClassNotFoundException {

4 // Read in size, and any hidden stuff

5 s.defaultReadObject();

6

7 // Read in (and discard) array length

8 s.readInt();

9

10 queue = new Object[size];

11

12 // Read in all elements.

13 for (int i = 0; i < size; i++)

14 queue[i] = s.readObject();

15

16 heapify();

17 }

• readResolve allows a class to designate a replacement for the object just
read from the stream

As an example of custom behavior in deserialization, in listing 1.1 we show
the custom readObject method in class java.util.PriorityQueue<?>, which
defines both writeObject and readObject to handle serialization/deserializa-
tion of the elements of the priority queue. We can see that queue elements are
read from the ObjectInputStream one by one, by calling readObject multiple
times, and then the function heapify is called in the end.

1.2.3 Vulnerability example

The code reported in listing 1.1 does not contain evident vulnerabilities. How-
ever, there is a security problem that could potentially arise from this mecha-
nism: function calls defined inside readObject generally operate on data read
from the stream, and such data can be controlled by an attacker. In such a
context, an attacker can craft nested class objects in the deserialization input
stream and define a sequence of method calls that end up executing dangerous
operations at the operating system level, such as filesystem activities, command
execution, etc. Chains of method invocations that lead to arbitrary command
execution have been identified in different sets of classes in various libraries [28].
In general, it is hard to ensure that such gadgets do not exists in a given set of
Java classes, due to the complexity in which their methods can be composed to
create a valid execution.

In summary, three constraints need to be satisfied in order to obtain a suc-
cessful attack on a Java application: (1) the attacker needs to define his own
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invocation sequence by starting from a serializable class that redefines read-

Object; (2) to obtain malicious behavior, the attacker has to find a path that
starts from the deserialized class and reaches the invocation of one or more de-
sired methods; (3) all the classes considered in the attack execution path must
be present in the application’s classpath.

To give an example of a real attack, we present some code that shows how
an attacker can pilot a deserialization process and execute a dangerous native
method. In listing 1.2 we report the code for functions heapify, siftDown

and siftDownUsingComparator of class java.util.PriorityQueue. In listings
1.3 and 1.4 we show methods compare of class TransformingComparator and
method transform of InvokerTransformer, from library Apache Commons
Collections 4. Listing 1.5 shows an hypothetical class for wrapping a system
command.

Listing 1.2: heapify and siftDownUsingComparator in PriorityQueue

1 private void heapify() {

2 for (int i = (size >>> 1) - 1; i >= 0; i--)

3 siftDown(i, (E) queue[i]);

4 }

5

6 private void siftDown(int k, E x) {

7 if (comparator != null)

8 siftDownUsingComparator(k, x);

9 else

10 siftDownComparable(k, x);

11 }

12

13 private void siftDownUsingComparator(int k, E x) {

14 int half = size >>> 1;

15 while (k < half) {

16 int child = (k << 1) + 1;

17 Object c = queue[child];

18 int right = child + 1;

19 if (right < size && comparator.compare((E) c, (E) queue[right]) > 0)

20 c = queue[child = right];

21 if (comparator.compare(x, (E) c) <= 0)

22 break;

23 queue[k] = c;

24 k = child;

25 }

26 queue[k] = x;

27 }

Listing 1.3: TransformingComparator.compare
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1 public int compare(final I obj1, final I obj2) { final O value1 =

2 this.transformer.transform(obj1); final O value2 =

3 this.transformer.transform(obj2); return

4 this.decorated.compare(value1, value2); }

Listing 1.4: InvokerTransformer.transform

1 public O transform(final Object input) {

2 if (input == null) return null;

3 try {

4 final Class<?> cls = input.getClass();

5 final Method method = cls.getMethod(iMethodName, iParamTypes);

6 return (O) method.invoke(input, iArgs);

7 ...

8 }

Listing 1.5: Command class

1 public class Command implements Serializable {

2 private String command;

3

4 public Command(String command) {

5 this.command = command;

6 }

7

8 public void execute() throws IOException {

9 Runtime.getRuntime().exec(command);

10 }

11 }

Listing 1.6: Sample payload

1 final InvokerTransformer transformer =

2 new InvokerTransformer("execute", new Class[0], new Object[0]);

3

4 final PriorityQueue<Object> queue =

5 new PriorityQueue<Object>(2, new TransformingComparator(transformer));

6

7 queue.add(1);

8 queue.add(new Command("rm -f importantFile"));

Now, suppose an attacker created and serialized an object as shown in list-
ing 1.6. When this object is deserialized, the first method invoked after reading
all the data from the priority queue is heapify as defined in the source code;
then siftDownUsingComparator is called (via siftDown), which uses the com-
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parator provided by the attacker into the serialized object, in this case a Trans-

formerComparator, for comparing the queue elements. The compare function in
TransformerComparator uses the field transformer, provided by the attacker,
and calls its transform function on the objects being compared. Invoker-

Transformer uses reflection to call the method with name equal to its field
iMethodName on input. The reflection in this case helps the attacker to invoke
methods of generic classes; by crafting the deserialization input, the attacker is
able to invoke method execute on an instance of the Command class with con-
trolled parameters and execute arbitrary commands. In listing 1.7 we report
the stack trace collected at the execution of Runtime.exec, which contains all
the Java methods invoked during the malicious deserialization event.

Listing 1.7: Stack trace of sample attack payload

1 Runtime.exec

2 Command.execute

3 Method.invoke

4 InvokerTransformer.transform

5 TransformingComparator.compare

6 PriorityQueue.siftDownUsingComparator

7 PriorityQueue.heapify

8 PriorityQueue.readObject

The attack vector described in this section is based on payload “Common-
sCollections2” from the ysoserial repository, used in real attacks. The main
difference with the original version is that no class like Command, which was in-
troduced for the sake of simplicity, is generally available in the classpath. The
real attack vector uses a specific method chain that leverages dynamic class
loading to pass from reflective method invoke to an execution of Runtime.exec
with controlled input.
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1.3 Trusted Execution Path For Protecting Java
Applications Against Deserialization of Un-
trusted Data

The following sections describe a novel defense approach for the JVM against
deserialization attacks, which I designed together with the other authors of the
paper [16] published at RAID 2018.

1.3.1 Introduction

The main generally recognized defense against this issue is a whitelist/blacklist
approach that allows only certain classes to be deserialized [54]. While blacklist
approaches are very effective on known attacks, they cannot recognize novel ex-
ploits. Whitelists, on the other hand, suffer from one fundamental problem: the
approach is based on static analysis (e.g. Look-Ahead Java Deserialization [54])
that processes the deserialization data input before the deserialization process
has been executed. In such a context, static analysis fails to detect some attack
vectors when, for example, the attacker uses reflection [34] or when he is able to
dynamically load classes at runtime [28]. Our method dynamically tracks the
execution path during the deserialization events.

Extracting such information from the Java execution model context is very
difficult. In particular, we need to deal with several challenges due to the dy-
namic loading of Java classes at runtime, the JIT compilation mechanism and
the native code instrumentation. Our proposed dynamic technique operates in
this direction and is able to precisely reconstruct the dynamic execution path
of object deserializations, and consequently mitigate the entire spectrum of the
attacks based on deserialization of untrusted data.

More in detail, we propose a novel dynamic approach to protect Java applica-
tions against deserialization of untrusted data attacks. Our system is completely
automatic and it is based on two phases: (1) training phase (2) detection phase.
During the learning phase, the system collects important information about the
behavior of benign deserialization processes and constructs the precise execu-
tion path in form of a collection of invoked Java methods (stack traces). In the
second phase, the system runs a lightweight sandbox embedded inside the Java
Virtual Machine, that acts during the deserialization process, and is able to
ensure that only trusted execution paths are executed. Our tool is very flexible,
and can be applied out of the box to protect any Java application. Its false
positive ratio can be tuned according to the application behavior and to the
desired level of protection. Our experiments, performed on two popular Java
applications, JBoss and Jenkins, show the effectiveness and efficiency of our
system.

To summarize, we make the following contributions:

• We design an approach to mitigate the problems of deserialization of un-
trusted data in the Java environment, based on the enforcement of precise
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execution paths an agnostic of any variable that is external to the Java
Virtual Machine (e.g., the operating system). We tackle several challenges
regarding the extraction of dynamic information from the Java execution
model such as: JIT compilation, runtime loading of the Java classes and
native code instrumentation.

• We design a lightweight sandboxing system for the Java environment that
is able to limit the attacker’s actions and mitigate the attacks by using in-
formation from benign stack traces. Such a sandbox is transparent to Java
applications and can be tuned according to a specific desired behavior.

• We perform an experimental evaluation on two real-world Java application
framework: JBoss and Jenkins, and we show that our system is able to
automatically extract detailed information about object deserialization
and perform a precise detection. We also analyze the limitations of our
system against new types of deserialization attacks.

We have presented background information related to Java deserialization
technologies along with our threat model in Section 1.2. In Section 1.3.2, we
discuss the principles of our defensive mechanism. Section 1.3.3 describes the
architecture and details of the system. Experimental evaluation of our tool with
various Java applications is discussed in Section 1.3.4. Related work is presented
in Section 1.3.5. We provide a discussion of how our current implementation
can be extended to handle other sophisticated deserialization attack techniques,
such as data attacks, in Section 1.3.6.

1.3.2 Overview

We now briefly describe a high-level overview of our approach. In our work,
we design an application centric model based on stack trace objects. More
precisely, the stack trace structure is defined as a sequence (stack) of n objects,
each of them is represented by one of the Java methods invoked during the
deserialization process. The first element (entry point of the stack trace), is
the first class that invokes the readObject method, while the last (exit point)
consists of a native method call. It is important to note that one stack trace
is always associated with only one native method invocation, and vice versa.
In our detection model, we consider only stack trace associated with native
methods that interacts with the operating system (e.g., process, filesystem and
network activities). By defining which stack trace a particular deserialization
event can invoke, it is possible to restrict the attack surface, mitigating the
attack itself. The information about which stack trace can be invoked will be
part of the sandbox policy, along with other information (e.g., native call) that
is used to determine the behavior of the deserialization process.

In order to define the legitimate deserialization behavior in terms of exe-
cution path, we need to dynamically collect the stack trace for a monitored
application by providing the appropriate input set to stimulate the deserializa-
tion process. During this phase, called constructing phase, the system collects
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the entire observed benign stack trace related to deserialization events. This
task is performed by dynamically monitoring a Java application at the inter-
preter/compiler level in the JVM. Extracting such dynamic information and
constructing the execution path is a complex task due to the nature of the
Java execution model, which includes JIT compiled code, and class loading at
runtime. Static analysis cannot be used in such a context since the complete
execution sequence of the Java methods is only known at runtime. Moreover
such execution model is exacerbated by the use of Java reflection, which com-
plicates static analysis itself. For example, a single dynamic method invocation
that uses reflection could in principle invoke any method in the currently loaded
classes, resulting in an over-approximate call graph and consequently enlarging
the attack surface [34].

Once the system has established the benign stack traces, our framework can
enter in the running phase, where it performs the detection task. At the starting
point, our system loads a specific set of policies for each application derived from
the constructing phase. Each set of policies is characterized by three elements
derived from the stack trace collection: (1) entry Java class point, (2) invocation
sequence of Java methods, (3) invocation of native method. The first element
is the entry point that represents the Java class that is deserialized. All the
deserialization operations for a specific application must start from a Java class
observed during the training phase, any other invocation of readObject from
any other class is blocked. The second element is the order of the sequence of
method invocations. Such a sequence has been observed during the constructing
phase and it must match the actual sequence at runtime, any deviation from
its order will stop the deserialization process. The third element is the native
call associated with the specific stack trace. Such native call will be checked
by our framework, and any invoked native method that is not defined into the
permitted set will trigger an alarm, causing the deserialization process to be
terminated.

Although based on fine-grained policies, our approach is very flexible. In
fact, our system can be tuned based on the level of information granularity that
we want to use for detecting the attack. More specifically, we can configure
the length of the extracted stack traces, and restrict or enlarge the attack sur-
face. Acting on a subset of the entire stack traces sequence has a considerable
advantage: by not checking all the sequence of the Java methods, the system
can lower the false positives while maintaining a good precision in detecting the
attacks as showed in the evaluation Section.

Threat Model

Our threat model considers an attacker who is able to exploit (either locally
or remotely) an object deserialization on untrusted and user-controlled data
inside a Java application running on the machine, and execute arbitrary method
calls on classes present in the Java classpath. The attacker has full control on
serialized data, as well as complete knowledge on the classes defined in the
application classpath and their source code. We assume that the machine is
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uncompromised when our defensive mechanism is loaded. We consider the Java
Virtual Machine execution environment trusted and we assume that the attacker
cannot compromise it by exploiting vulnerabilities such as memory errors.

1.3.3 System design and implementation

In this section we present the implementation details of our protection system.
We describe the architectural overview and the challenges that we faced for
dynamically tracing Java applications execution path.

Architectural overview

The principles provided in the previous section show how our approach can be
used for extracting stack trace related to a deserialization event. There are
two main requirements that need to be satisfied for our detection system: (R1)
for any stimulated event, the system needs to be able to precisely monitor the
execution path of the deserialization process, so that no relevant execution is
missed; (R2) the monitor component should not cause a high overhead. From
an architectural point of view our system is split into two main high-level com-
ponents: (1) a component, that is in charge of dynamically analyzing Java ap-
plications and extracting the precise execution path in terms of stack traces, and
(2) a lightweight sandbox component that monitors applications at runtime and
blocks incoming attacks, based on the rules derived by the constructing phase.

More in particular, in the constructing phase, our system intercepts all the
native methods invoked by the application; for each invocation, it inspects the
corresponding stack trace backwards, until it reaches the deserialization entry
point (i.e., a call to readObject), and then it extracts the execution path.
In case the readObject is not found on the stack we assume that the native
call is invoked in a different context than deserialization one and the system
discards the results. It is important to note that the presence of the invocation
of readObject method on the stack cannot be tampered by an attacker since
deserialization of untrusted data attack does not allow to directly write on the
stack. This information is then saved into a persistent storage called sandbox
policy, which will constitute the baseline for detecting malicious behavior.

Afterwards during the detection phase, when user input triggers deserializa-
tion event, the system performs only one check according to the sandbox policy:
when a native method is invoked by the application, the system intercepts it
and checks whether the entire stack trace executed has been already observed
in the learning phase. For this check the system maintains a memory structure
in the form of a hash table that contains only the execution paths that are
allowed for the applications. The keys of the hash table are strings composed
by the methods signatures present in each benign stack trace. Since a sequence
of method signatures uniquely identifies a specific stack trace (by definition),
the risk of collisions is very low, and the access to the hash table in terms of
computation time is constant on average.
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Building Trusted Execution Path

Both learning and protection modules, are composed by a tracing execution
path component that is the core of our detection system and is in charge to
efficiently and correctly intercept (requirements R1 and R2) any native method
call of any Java application that is running on the system. To achieve this
goal, the system needs to be able to intercept any Java method invoked after a
deserialization takes place in an application. In particular, we are interested in
intercepting all the execution path in form of stack trace in the following form,
for every deserialized class A and every corresponding native method call X:

A.readObject()

method1()

method12()

...

native call X

In order to extract the stack traces we first need to intercept the native meth-
ods and then parse the JVM stack memory structure to collect the invoked Java
methods. To this end we analyzed several approaches for our design. We first
considered dynamic bytecode instrumentation, but we found it unsuitable for
our purpose since native methods cannot be simply instrumented, as they do
not have bytecode. In order to overcome this problem we first need to create
a wrapper for each target native method, and then redirect to it all the calls
inside Java code that point to that native method. Although there exists a
mechanism to perform this operations [49], it would work only for classes that
have not already been loaded, since the JVM does not allow insertion of extra
methods to a class that is already loaded. As we would need to dynamically add
methods (the wrappers) to all the classes, including ones that have already been
loaded when instrumentation starts, this technique does not serve our goal.

Another idea could be to instrument every possible method in every loaded
class, and check every invoke bytecode instruction to see whether it points to
a native method. This approach fails as well, because at the time of instru-
mentation it is not known whether the resolved method will be native or not.
Finally, trivial logging of all the method calls after readObject via bytecode
tracing/instrumentation would be too expensive in terms of performance (R2)
and the system would not scale.

After these considerations, we decided to directly modify the Java Virtual
Machine to accomplish this task. Our implementation for tracing Java class
methods consists of a modification to the template interpreter generator. Specif-
ically, we modify the generation of native method entries by adding a call to
our custom logging functions inside the VM runtime environment. With this
approach we have two advantages:

• The system does not need to know which classes are going to be loaded,
nor we have to instrument each one of them. Moreover, by running inside
the JVM, our component can inspect every call to native methods, on any
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class (R1).

• Effectively extract only the information of our interest, focusing on na-
tive methods and their ancestor readObject. This gives a significant
advantage in terms of performance (R2) compared to the naive solution
of forward method logging starting from readObject calls.

We found that instrumentation of the interpreter alone was not enough to
achieve the entire coverage of all the native calls. The JIT compiler constantly
looks for code optimization, and our modification to the interpreter has no effect
on JIT-compiled code. Since we cannot make assumptions of how much code
will be compiled on the analyzed systems, and since we want to get an accurate
view of all native calls, we also instrumented the generation of wrappers for
native methods defined in the JIT compiler framework. By adding our custom
log logic to each of these wrappers, we are able to check the stack trace every
time a native call is made. In order to test the correctness of our approach, we
ran Java in fully compiled mode (with option -Xcomp), and in fully interpreted
mode (with option -Xint). We found that the interpreter component does not
log any JIT compiled method, and vice versa.

Input stimulation

In order to stimulate the deserialization process, we perform a static analysis on
the Java code, searching for classes that implement the Serializable interface
and define the readObject entry point. Starting from such classes we perform a
manual analysis and figure out the inputs that can stimulate object deserializa-
tions. We also collect a set of inputs from the normal use of the analyzed Java
frameworks, logging every object deserialization we observe. It is important to
note that input stimulation is not a contribution of our work; our system is
designed to improve the whitelist mechanism in two directions: (1) providing a
better detection model (precise execution path) in terms of detection so over-
coming the static analysis limitations that effects actual whitelist methods, (2)
and create an automatic extractor system that can operate at runtime with low
overhead and it is able to reconstruct and detect a precise execution path. An
automatic system for improving input stimulation is discussed in the Discussion
section.

1.3.4 Experimental evaluation

In order to evaluate our approach we analyzed two real-world Java frameworks,
JBoss and Jenkins, broadly used in several companies and IT infrastructures.
We also chose these frameworks since there are real attack samples available for
them [28]. For each application we derive a metric that is able to show the re-
duction of the attack surface considering our approach. The metric, Java Class
Invocation Attack Surface (JCAS), compares the number of Java classes ob-
served during the training phase in the deserialization context with the number
of potentially available classes in the monitored application’s classpath. In this
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context, a class is observed in the training phase if at least one of its methods
appears in at least one collected benign stack trace. Given the percentage p of
the classes that were observed during monitoring, compared to all the classes in
the classpath, the JCAS metric is expressed as the percentage 100%− p. Such
a metric is able to capture the attack surface reduction since it shows how our
detection model is able to restrict the set of actions of an attacker. In fact, with
our detection system in place, the attacker needs to follow the execution path
of the benign deserialized data and he cannot choose the gadgets (e.g. Java
classes) among the entire classpath of the Java vulnerable application. Our
metric exactly shows this reduction.

We also computed the overhead for each application considered in our ex-
periments. All tests were performed using a custom build of OpenJDK 8 with
our system enabled, and a clean OpenJDK 8 build as a baseline for comparison
in overhead. The tests were run on a quad-core, Intel Xeon machine with 8 GB
of RAM running Ubuntu 16.04 LTS.

JBoss Application Server

JBoss is an open-source Java application server, broadly used in industry. We
tested JBoss 5.1.0 with our framework. We collected the benign stack traces re-
lated to native method invocations in deserializations that occur during normal
operations. In particular, we stimulated the following operations: (1) server
start and shutdown, (2) application deploy/undeploy, and (3) use of manage-
ment consoles and deployed applications. We also trained our system on JBoss
for a period of one week. During this period, several operations were stimulated
by a group of users that produced hundreds of deserialization events. We col-
lected a total of 13298 stack traces from native calls made by deserializations.
We analyzed the classes necessary for computing our metric, in particular we
found a total of 43250 Java classes in the JAR files present in JBoss’ classpath,
plus a total of 6005 present in the Java standard libraries, for a sum of roughly
49000 Java classes. The total methods called during deserialization lead to a
total of 329 observed Java classes.

In Table 1.1 we can see the data and computed JCAS metric for JBoss,
showing the reduction of the attack surface; we see that by applying our model,
the attack surface is reduced by 99.2% considering the benign deserializations
observed during the learning phase.

Jenkins

Jenkins is an open source automation server for tasks related to software building
and continuous integration. It allows the creation of customizable and schedu-
lable jobs for building artifacts and performing related operations. We tested
Jenkins version 1.649. We collected the benign stack traces related to native
method invocations in deserializations that occur during normal operations. In
particular, we stimulated the following operations: (1) server start and shut-
down, (2) job creation and customization, and (3) job scheduling and running.
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Table 1.1: Attack Surface Reduction

Application JCAS Native method calls Total classes in stack traces
JBoss 99.2% 13298 329

Jenkins 99.8% 6526 74

Also for Jenkins we trained our system for a period of one week, asking a group
of user to access it and use it via web. As a result of our entire test, we collected
a total of 6526 stack traces from native calls made by object deserializations.
We analyzed the classes necessary for our metric: we found a total of 23493
classes in the JAR file present in Jenkins’ classpath, plus a total of 6005 present
in the Java standard libraries, for a sum of roughly 30000 classes. All the meth-
ods observed during deserialization came just from 74 classes. In Table 1.1 we
can see the data and computed JCAS metric for JBoss, showing the reduction
of the attack surface; we see that by applying our model the attack surface is
reduced by 99.8% considering the benign deserializations observed during the
learning phase

Effectiveness

For each application we tested the effectiveness of our approach by running the
real-world attack payloads provided in the ysoserial repository [28]. In partic-
ular, we ran payload CommonsCollections1 that uses reflection and runtime-
loading Java class mechanisms against JBoss, and validated its vulnerability
leading to arbitrary code execution with our system disabled; we also ran pay-
load CommonsCollections5 against Jenkins, with the same result. Afterwards,
we applied our protection by running the applications within our defensive
framework. We found that our system can effectively block such attacks on
both applications, after an appropriate learning phase. Both applications were
then tested over a period of one week with our protection enabled, by exposing
them via web to a group of users. Normal operations (including, but not limited
to the ones listed above for each program) were triggered in both applications,
leading to hundreds of deserialization events. No false positives were found by
our system, even when enforcing the execution of all the methods in learned
stack traces for an observed deserialized class.

Overhead

In this section we analyze the overhead introduced by our system. We performed
a micro-benchmark and a macro-benchmark to evaluate the sandbox efficiency.
The micro-benchmark focuses on local sandbox performance; we measure the
time taken by our checks on the stack traces to validate native method calls.
The macro-benchmark measures the overhead introduced in whole applications
from the user’s perspective.
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Table 1.2: Micro-benchmark results.

Sandbox component Mean Standard deviation
Interpreter 2.071x10−5s 6.640x10−5s
Compiler 2.883x10−5s 6.613x10−6s

Micro-benchmark For our micro-benchmark, we measured the time required
for our checks made at each native call to analyze the stack trace, reconstruct
the sequence of calls made from the readObject call onwards and compare it
to the policy learned in the training phase; table 1.2 shows the results. The test
has been conducted on a number of 10000 native call traces, on which average
and standard deviation were calculated. We differentiated the checks for the
compiler component and the interpreter component; we can see that the time
required for checking is consistent for both, and relatively small. The overhead
of the system is the result of the linear composition of the time taken for the
checks, triggered at each native method call.

Macro-benchmark For the macro-benchmark, we computed the time for
several common operations performed by end users in our test applications.
Given the huge number of native calls performed during the process, and the
determinism of the executed operations, this constitutes a reliable measurement
for the total overhead. The values were computed both programmatically and
manually (by triggering specific operations), and averaged over 10 measure-
ments. Initially, we observed a massive overhead of over 900% for the whole
startup process on JBoss. This inefficiency was due to the very high number of
instrumented native calls, some of which were invoked hundreds of thousands of
times in our measured runs, causing delays of several seconds with the sum of
their individual analyses, as explained in the discussion on the micro-benchmark.
After manually analyzing the most frequent native method calls, we established
that we could exclude most of them without any security concerns, as their
interaction with the OS is limited and does not constitute a threat, regardless
of their input. For example, native methods System.currentTimeMillis and
Class.isArray were excluded. With this tuning in place, we were able to sub-
stantially reduce the overhead introduced. Tables 1.3 and 1.4 show the result.
While the overhead is still relevant in percentage, it is worth noting that our
tuning of logged native calls can still be improved, and further drops of the over-
head are expected; a minimum overhead would be reached if the set of analyzed
native calls contained all and only the potentially dangerous invocation.

Possible improvements and current impact An additional reduction on
the overhead could be made by improving the checks on native method calls.
Currently, for each call we have to traverse its stack trace at least once to deter-
mine whether the call occurred during an object deserialization. Lighter checks
could be designed so that the stack trace would not have to be traversed out-
side of deserializations, reducing the times measured in the micro-benchmark.
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Table 1.3: Macro-benchmark results for JBoss

JBoss operation Baseline JDK Modified JDK Overhead
Startup time 21.0 s 29.5 s 40.5%
Console login 2.0 s 2.1 s 5.0%

Flush connections in datasource pool 1.5 s 1.9 s 26.7%
Sample WAR deployment 2.9 s 3.5 s 20.7%

Table 1.4: Macro-benchmark results for Jenkins

Jenkins operation Baseline JDK Modified JDK Overhead
Startup time 9.0 s 10.5 s 16.7%

Homepage loading 1.8 s 2.3 s 27.8%
Login 2.0 s 2.5 s 25.0%

Job saving after creation 2.3 s 2.6 s 13.0%

Another idea would be to completely disable the checks on native method calls
outside of the context of deserializations, bringing the overhead close to 0% for
most of the executed code. In our implementation, this would require a dynamic
patch to the templates produced by the JIT compiler, which would have to be
done at the beginning and the end of each readObject call. This investigation
will be part of our future research.

An important point to consider is that currently, even without these addi-
tional improvements, the net increase in the measured operations in terms of
seconds is not perceived by the end user, given the relatively small absolute
values of delays in the context of web applications. We can conclude that our
system shows good performance from an end user’s perspective, who does not
perceive any substantial delay experience when they have used the protected
applications.

1.3.5 Related work

A solution to address deserialization attacks could be avoid deserialization on
untrusted content, by signing serialized data and checking its signature upon
deserialization. While this works perfectly in theory, in practice one cannot
exclude the risk of signature counterfeiting if some bug is exploited on the
signing side and an attacker gets access to the keys [33], nullifying the whole
protection offered by this approach. Moreover in order to authenticate all data
we need to set up a PKI infrastructure and usually such structures do not scale
since they need a complex management setting. One possibility when trying to
directly tackle the problem of deserialization of untrusted data is to consider
a restriction of the attack surface by hardening the main deserialization entry
point: the class java.io.ObjectInputStream. An approach to perform this
type of hardening is the use of modified version of ObjectInputStream [54].
This can be done by extending the class and overriding its method, such as the
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resolveClass method, to insert security checks and perform validation before
deserializing data. A Look Ahead Object Input Stream (LAOIS) [54] is an input
stream relying on this logic, ”looking ahead” to check whether the data presents
some problem before actually deserializing it. Such method is based on static
analysis that failed when applied to some classes that resolve their methods or
addresses at runtime. With the reflection technique a single dynamic method
could call any method in the currently loaded application, resulting in a highly
inaccurate call graph for the entire application. When subclassing is not an
option (for example when the code to protect is owned by a third party), it is
possible to use other solutions to modify the behavior of ObjectInputStream
globally, such as the use of a Java Agent for dynamic instrumentation of the
classes.

The closest work to ours in terms of methodology is [25]. In their paper, the
authors characterize the application behavior based on the information retrieved
on the stack, function name, parameters etc. However our system is different
from this work in several ways: (1) first of all the attacks context is different: we
operate on different programming language and data information, they mainly
work on system calls invoked from C language, (2) our interception method is
based on JVM internals, instead they intercept system calls at the operating
system level. (3) The type of the attack is completely different: they are focusing
on memory errors while we are focusing on deserialization of untrusted data
attacks.

The use of sandboxes for protecting environments in which executed opera-
tions can be controlled and blocked is not new. In fact software compartmen-
talization has been proposed in several context and it is based on hardware
and language-based techniques [15, 24]. Karger proposed that fine-grained ac-
cess control could mitigate malware [32]. Process-based privilege separation us-
ing Memory Management Units (MMUs) has been applied to several different
applications: OpenSSH, Chromium and in Capsicum although with substan-
tial performance overheads and program complexity. More recently, hardware
primitives such as Mondriaan [64], CHERI [62], and CODOMs [61] have ex-
tended conventional MMUs to improve compartmentalization performance and
programmability. Java sandboxing develops a mature and complex policy mech-
anism on top of language, but leaves open the possibility of misbehaving native
code. Language-based capability systems, such as Joe-E [39] and Caja [40], al-
low safe compartmentalization in managed languages such as Java but likewise
do not extend to native code. In our work we design a sandbox system that
is able to intercept native methods by modifying the JVM internals. As we
already showed in the paper we have tackled several design and implementation
challenges in order to make our system handle the tracing of Java applications
starting from the native calls.

1.3.6 Discussion

In this section we present limitations of our approach, and possible future im-
provements of our system.
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Data attacks

We now describe an hypothetical attack that bases its effectiveness on manipu-
lation of the data inside the JVM’s memory, as opposed to direct execution of
arbitrary code. Such attacks are already present in the memory errors area [11].
Suppose that the gadget explained in section 1.2.3 was not used to reach an
endpoint for instantaneous remote command execution (or other malicious ef-
fect), but was instead targeted to invoke some method or change some fields
in a class (possibly via reflection), that could later be triggered, changing the
normal control flow of the application and causing the malicious effect to be
activated.

Listing 1.8: Data attack entry point

1 public class Commands {

2 private static lstCommandString = "ls -al";

3 public static lstCommand() {

4 Runtime.getRuntime().exec(lstCommandString);

5 }

6 }

Listing 1.8 shows a naive example of this possibility: if the class was in the
classpath and if the attacker was able to modify field lstCommandString with
a gadget, class Commands would be compromised and later use could lead to
remote command execution. By design, the analysis performed by our system
is limited to the temporal frame of readObject calls; moreover it focuses on
native method calls to build a recognition model for attacks. The example just
presented makes it clear that with our current approach we cannot block this
type of attack, due to these limitations. In order to overcome the threat posed
by data attacks, our system would also have to instrument the access to data and
either allow or deny it based on predefined policies; an example of policy could
be to deny all write operation on sensitive data during object deserializations.

Native call restrictions

Another limitation of our approach is evident when considering classes that by
design eventually invoke one or more potentially dangerous native calls when
deserialized. Our system, as currently designed, would learn that such calls
are normal benign behavior during the learning phase (provided the class is
appropriately stimulated); if the execution of such calls included user controlled
data (e.g. if one of the native calls used a field of the class as input), an
attacker would be able to obtain malicious behavior slipping under our radar,
with relatively little effort (a gadget exploiting a vulnerability of this type could
be as simple as a serialized object with a particular value for a String field).
One possible solution for this would be to make our model more fine-grained in
the future, making it able to take into account not only native method calls and
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their stack trace, but also their parameters. An appropriate learning strategy
would then need to be developed, to learn what constitutes benign input.

Improving learning

The precision of our model is limited by the coverage obtained in the applica-
tion during the learning phase. If learning is performed manually, even with
prolonged use by experienced users that voluntarily explore the application and
trigger benign deserialization behavior it is easy to argue that some possible
attack entry points could never be observed, if the application is sufficiently
complex. Moreover, the learning process is hard to engineer, and we cannot of-
fer generic guidelines on how to perform it for any application. For this reason,
in the future our system could benefit from a component for automated learn-
ing. This component would analyze source code (or bytecode) in applications to
automatically detect where possible entry points for deserialization are located.
Via static code analysis techniques, it would be possible to try and trace the
execution paths that lead to such entry points, of course after facing challenges
and limitations for static Java code analysis [37]. Combined with dynamic pro-
gram analysis, we could measure the coverage of the deserializations found, and
1) try to generate benign variations of input to further stimulate the program
automatically; we could also 2) detect if an entry point was not stimulated at
all, producing a report advising users to test it.

25



1.4 Towards automatic detection and validation
of deserialization vulnerabilities in the Java
Virtual Machine

In this project, other researchers and I applied static analysis techniques to the
problem of deserialization attacks. Our aim is to explore and develop techniques
for automatic generation of deserialization exploits, which can help developers
validate their code by ensuring that it’s exploit-free before publishing. A pub-
lication on the results we obtained is currently under writing.

1.4.1 Overview

The goal of our analysis is to find out, given a specific Java library, the re-
lationship among its classes and their methods in terms of execution. More
specifically, our goal is to discover valid serialization chains that are also ex-
ploitable. To find such chains, we first need to build a call graph that shows
the relationships between methods of the analyzed classes. Afterwards, we need
to extract valid deserialization chains that reach an exit point of our interest.
Among such chains, we need to identify the ones which are exploitable. In order
to verify such properties, we need to tackle several challenges.

Call Graph Construction

The first challenge to solve is related to the call graph generation. The first
trivial solution is to look at invoke instructions in Java bytecode, and build the
call graph from them. While this is a good starting point, it is not sufficient to
construct correct relationships among methods. For example, if we consider the
payload CommonsCollections2 in ysoserial (see Section 1.2), we can observe that
there is a transition between class PriorityQueue and class TransformingCom-
parator. However, PriorityQueue has a field of type Comparator, which is a
generic interface, and not specifically of type TransformingComparator, which
is an implementor of such interface. Such missing information (i.e., the link
between PriorityQueue and TransformingComparator) can lead to an incom-
plete graph, and produce false negatives in our analysis. We need to consider
this when building the graph, and include interface implementors and (for the
same reason) class extenders. Additionally, we create a link between methods
in the graph only when at least one of the following conditions is satisfied:

• (1) The method’s class implements the Serializable interface.

• (2) The callee method’s class is a superclass of the caller method’s class

• (3) The method has the static modifier.

If neither condition holds for a given method, it will not be possible to vali-
date the chain that contains it. It is important to note that all the objects (i.e.,
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methods) that appear in the chain should be serializable. The only exceptions
to such a case are calls to methods in a non-serializable superclass (condition 2),
or calls to static methods by directly invoking the method from the java class
(condition 3).

Exploitable Chain Validation

Once we have built the call graph, we extract the valid chains with entry and exit
points of our choice. Such chains need to be validated, and in case flagged as ex-
ploitable. As seen in the previous Section, not all valid chains are exploitable. To
see an example of this, we consider Listing 1.9. In the code we have method Ex-

ample.example that concatenates two strings, method StringBuilder.append,
which is called when performing such operation, and method String.valueOf,
called by the second. A correct call graph must link them, and the following
chain is always exploitable (with no input needed); i.e., an execution of Exam-

ple.example always results in the execution of the entire chain:

C1: Example.example -> StringBuilder.append -> String.valueOf

However, what happens if we want to continue the execution beyond the
last method? Just by looking at the call graph, we see that String.valueOf

calls method toString on its Object parameter, so we should be able to assign
an instance of Object (i.e. anything we want) to the parameter, and proceed
from there. While this reasoning is correct if we were considering only method
String.valueOf (or equivalently, a chain starting from it), in this case it would
certainly lead to errors, such as considering this chain as exploitable:

C2: Example.example -> StringBuilder.append -> String.valueOf ->

Example.toString

which is incorrect, as the parameter var0 can only be of type String (propa-
gated from Example.example, specifically it is the string "BAR"). We conclude
that the call graph alone has insufficient information on how to generate ex-
ploitable chains. In the example just shown, C2 is a false positive, while we are
interested in finding exploitable chains such as

C3: Example.example -> StringBuilder.append -> String.valueOf ->

String.toString
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Listing 1.9: Call graph precision example

1 class Example {

2 public example() {

3 return "FOO" + "BAR";

4 }

5 }

6

7 // class StringBuilder

8 public StringBuilder append(Object var1) {

9 return this.append(String.valueOf(var1));

10 }

11

12 // class String

13 public static String valueOf(Object var0) {

14 return var0 == null ? "null" : var0.toString();

15 }

16 }

In order to solve tackle this challenge we need to design a custom static
data-flow analysis, combining reaching definitions analysis and type propaga-
tion analysis. The idea is to build an inter-method data dependency graph,
containing information on control flow and data dependency between variables,
also across links in the chain. Next, by propagating the variable types in the
graph, we can mark type inconsistencies, i.e. situations like the example of
Listing 1.9 seen above, in which specific propagated types collide with broader
parameter/variable types in later calls; in the example we have the String

type restricting the possible types of parameter Object var0, causing a type
inconsistency in all the links in the graph between method valueOf and a class
different from String. This inconsistent links can be pruned from the graph, as
they always represent non-exploitable paths; in the end, if the pruned graph still
contains a path from entry point to exit point, we mark the chain as exploitable,
and validate the path through manual analysis. Otherwise, we mark the chain
as non-exploitable.

Search algorithm

Having analyzed the requirements for finding chains in the call graph, we im-
plement a depth-first search (DFS) to explore it. The call graph is built on a
finite set of classes, which is the first input parameter of our search algorithm.
Entry points and exit points are also customizable, and a maximum depth can
be specified. At each step of the search, we evaluate the conditions specified in
Section 1.4.1, and stop the search if our criteria are not met. If, at any point be-
fore reaching the maximum exploration depth, we find a path from entry point
to exit point, we output it as a potentially exploitable chain.
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Validation algorithm

After we have stated what problems we want to solve with respect to chain
exploitability, we design a validation algorithm that will be able to exclude
the false positives generated in the search phase (due to the causes analyzed
in Section 1.4.1). Given a single chain, our goal is to establish whether it is
exploitable. In order to detect if it is a false positive, we want to track data
dependency among variables in the bodies of its methods. In order to accomplish
this, we build an inter-method data dependency graph, in the following way:

• For each method in the chain, we generate the control-flow graph (CFG),
and trace data dependency starting from a reaching definitions analysis.

• For each link in the chain M1 -> M2, corresponding to a call to M2 in the
body of M1, we match the arguments in the call statement in M1 to the
corresponding variables in M2

At this point, we have the necessary information to track data dependency
among all variables in the chain. We can now apply a type propagation analysis,
and detect whether there is some case like the one analyzed in Listing 1.9, in
which some link may not exist because of type compatibility. In this situation,
we are able to prune such an occurrence from the graph, and proceed. If, at the
end of our analysis, there is a path from entry point to exit point, it means that
it has passed our analysis, and we deem the whole chain exploitable. Viceversa,
the absence of a path means that the chain is not exploitable, and it is marked
as a false positive in our search.

1.4.2 System implementation

We now describe the implementation of the algorithm, after having given an
overview in the previous section.

As we have seen, our strategy is made of two phases: 1) a search phase, in
which valid and potentially exploitable chains are extracted from a given class-
path, and 2) a validation phase, in which single chains are analyzed in detail, to
eliminate false positives. We match this distinction in our implementation, and
build two separate tools: ChainsFinder and ChainsAnalyzer, respectively
in charge of the first and the second phase.

To implement both tools, we leveraged the capabilities of Soot[60], a frame-
work for static analysis and transformation of Java bytecode. Soot works by
generating an intermediate representation (IR) of Java bytecode1, on top of
which various analyses can be performed.

Figure 1.1 schematizes the architecture. The input classpath (consisting of
the base JARs of the Java Runtime Environment (JRE), and an input JAR for
the library we want to explore) is fed into ChainsFinder, the tool for building the
call graph and extracting the potential chains. The identified potential chains

1Soot offers different intermediate representations. We use the Jimple IR for our imple-
mentation.

29



are passed to ChainsAnalyzer, the component responsible for performing the
data-flow analysis and identifying the exploitable ones. Both components are
described in detail in the next sections. Last but not least, manual analysis helps
us validate the result, and construct exploits (see experiments in Section 1.4.3).

Figure 1.1: Architecture of our system for deserialization exploit search and
validation

Chain search

For ChainsFinder, we leverage Soot’s capability of constructing the call graph
of our input classpath. Soot first generates the IR for all the classes and their
methods, and then builds the call graph from Java invoke statements. For
any invoke statement, Soot already includes class extenders and interface im-
plementors in the possible callees, so one of our challenges is taken care of. We
implement our other conditions seen in Section 1.4.1 by extracting the necessary
information from the IR via Soot’s API.

Intra-method data dependency

In ChainsAnalyzer, we start with the intra-method information. Soot offers
a data flow framework, which we leverage to implement our analysis. The
framework allows us to extend a generic data flow analysis, and specify which
operations we want to perform while traversing the CFG. The CFG generation
and traversal is performed by Soot, as well as the propagation of data flow sets
among nodes of the CFG during the analysis.

We extend the class ForwardFlowAnalysis, and implement a reaching def-
initions analysis. While performing the analysis and propagating the data flow
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information, we are able to build a data dependency graph (DDG) structure.
Each node in our DDG represents a particular variable in a particular statement,
and contains the following information:

• Method: determining the class and method of the current statement.

• Value: instance of Value, representing the current variable.

• Unit: instance of Unit, representing the current statement

Edges in the DDG represent dependency between nodes: there is an edge
between node A and node B if A depends on B, by the following definitions:

• a use of a variable V at a node N (with value V ) depends on the definition
of V an the node M

• the definition of a variable V at a node N depends on the use of another
variable U at a node M if N and M have the same unit

• a use of a variable V at a node N (with value different U different from
V ) depends on the definition of U at the node M

Figure 1.2: Detail of intra-method DDG for CommonsCollections2

At this point, the DDG contains only information about intra-method data
dependency; Soot does not automatically handle data flow between methods,
so we need to build the inter-method transitions manually. Figure 1.2 shows
a section of the DDG built for chain CommonsCollections2, specifically intra-
method data dependency inside PriorityQueue.heapify; different arc colors
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match different types of data dependency between nodes, according to our def-
initions. We can repeat this analysais for every method in our chain (which we
know in advance, since the analyzed chain is an input of our program), and add
nodes to the DDG.

Inter-method data dependency

In order to validate our chains across method links, we have to add inter-method
information to the graph. We can do this in our forward flow analysis by
inspecting Java invoke statement, which we can match with chain links. When
we find an invoke statement at method Mx in the chain, all we have to do is
check whether the callee is step Mx+1. If so, we can create an inter-method
edge in our DDG. There are two cases to distinguish:

1. inter-method parameter call - in this case, the value of node Mx is a
parameter of the method call (see Figure 1.3). We track the value and
make sure it is correlated with the appropriate parameter in the next
method’s DDG.

2. inter-method instance call - in this case, the value of node Mx is the object
on which the method call is performed (see Figure 1.4). Therefore, in the
CFG of Mx+1, such object will be referenced by the this pointer. Again,
we make sure to create the link, and make the Jimple @this value in Mx+1

depends on the value of the current node in Mx.

Figure 1.3: Inter-method parameter call. The value of the dependency (r1) is
a parameter of the method call.
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Figure 1.4: Inter-method instance call. The value of the dependency (r0) is the
object on which the method is invoked.

Type propagation

After the creation of these inter-method edges, we are ready to perform our
type analysis. We want to assign type information for nodes of which type is
certain, and then propagate the information through the graph to detect any
inconsistencies. We add additional information to each node:

• allowed types: a dictionary Map<Value, List<Type>, containing informa-
tion about the possible types for each known variable at a given node.

We start with a null value for allowed types at every node (meaning the node
has not been processed yet), then we initialize only nodes with no dependencies
for their value: for each node N with value V and no dependencies for V , we
put V.type() in the allowed types for V at N .

Next, we propagate type information in steps. At each steps, we process all
and only the nodes which have no dependencies with allowed types still set to
null. In other words, we process only nodes which do not depend on nodes
that are yet to process. When processing node N with value V , we copy the
allowed types for each variable in its successors in its allowed types dictionary
(duplicates are removed), with the following logic: each of them is compared
with the type T of V at N ; only types that “can hold” T are copied and
allowed for V at N (i.e., T and supertypes). If, after being processed, a node
with value V has the empty set as the allowed types for V , we have found a
type inconsistency, meaning that data-flow through that particular node is not
possible.

Special care is taken for inter-method links, which are handled separately.
The logic of type propagation is the same, but the types are matched also on
the called object and the method parameters, depending on the type of inter-
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method edge (as explained before).
After iterating this step of type propagation until there are no unprocessed

nodes (i.e. nodes with allowed types still set to null), we can prune the graph,
by removing all edges of nodes with type inconsistencies.

At this point, we are left with a reduced graph, on which we can perform
our final query: with a simple DFS visit, we see if there is a path from en-
try point to exit point, going in reverse; i.e., we search for a dependency path
from the exit point to the entry point. If we find one, we mark the chain as
exploitable, otherwise as non-exploitable. Figure 1.5 shows a detail of the com-
plete inter-method data dependency graph of chain CommonsCollections2 after
type analysis. The red and blue arcs describe intra-method data dependency
inside PriorityQueue.readObject, while the green arc represents the transi-
tion to PriorityQueue.heapify. The type of the variable r0 is propagated
from the start of the chain to the intra-method nodes, and through the method
invocation on the variable itself (its type is maintained in method heapify).

1.4.3 Experimental evaluation

In this section, I present the experimental results of our work. Our main aim
is to build a system for improving the automatic discovery and recognition of
exploitable chains. We evaluate both components of our system, ChainsFinder
and ChainsAnalyzer, measuring their effectiveness.

Structure of our search

Our tools have the purpose of finding new exploitable chains in libraries, or the
lack thereof, with the aim of securing them against attacks based on deserial-
ization of untrusted data. In order to evaluate their efficacy, we must have a
way of validating the chains produced by ChainsFinder and the exploitability
verdicts produced by ChainsAnalyzer. As our detection is not fully automatic,
and we lack formal proof of correctness for our search, we proceed by using
manual analysis and known exploitable chains as ground truth, to identify false
positives and false negatives and measure the accuracy of our detection.

Our ideal target result is a complete, exploitable deserialization chain that
leads to arbitrary command execution. However, such chains can be very hard
to find. Considering ysoserial, there are just two gadgets in all the exploits for
libraries Commons Collections 3.1 and Commons Collections 4. Also, there is
a performance problem to take into account, that is the time taken by Chains-
Finder with respect to the maximum depth of its DFS search (which is a pa-
rameter, see Section 1.4.2). We found that the time to explore the call graph
increases exponentially with the depth of the search; this fact limits our possi-
bility of exploring the graphs with high depth parameters. However, we make
an observation. If we consider an exploitable deserialization chain of length n
in this form:

Class1.readObject -> Class2.method2 -> ... -> Classn.exitPoint
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Figure 1.5: Intra- and inter-method type propagation, with allowed types list.

we see that it can be arbitrarily split in two parts, by chosing an integer 1 <
m < n:

C1: Class1.readObject -> Class2.method2 -> ... ->

Classm.methodm
C2: Classm.methodm -> Classm+1.methodm+1 -> ... ->

Classn.exitPoint

We are left with C1 (which we call trigger), a valid exploitable deserializa-
tion chain (although its execution doesn’t lead to the exit point), and C2 (which
we call gadget), an exploitable chain (which leads to the exit point despite not
being a deserialization chain). The key point to observe is that C2 is a chain by
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itself: if executed, it will lead to the exit point. Knowing this, if we had a chain
such as C2, we could just search for a chain like C1 to activate it. We would do
so by searching for deserialization chains, with exit point Classm.methodm. It
is clear that this technique offers two advantages:

1. we no longer have to look for complete deserialization chains leading to
our exit point. We can find intermediate valuable gadgets, and then work
to find triggers to activate them. Due to the difficulty of finding complete
chains, we can also work by finding triggers to reuse known gadgets.

2. the complexity of the search is reduced. Instead of searching chains of
length n (with running time O(kn) for some k), we can now search gadgets
and triggers of the same length, effectively doubling our maximum chain
exploration depth, or exponentially decreasing the computation time if
the depth is kept constant, by performing two searches with running time
O(kn/2)

The approach also has a limitation: the right choice of interesting triggers
is assumed for the advantages to be present. If the search of combinations of
triggers and gadgets is not restricted, we still incur in an exponential complexity,
because the only choice is to save every chain of our search as a trigger, and
use its exit point as an entry point for potential gadgets. Of course, restricting
the possible combinations means that there is a higher risks of false negatives.
Only an accurate choice of interesting intermediate methods, i.e. intersections
between triggers and gadgets, ensures that this technique effectively reduces the
search complexity without cutting promising search paths. At the current state
of our research, we can only rely on known gadgets for making this choice highly
effective; in the future, we hope to develop heuristics and/or semi-automated
approaches that will guide the search of intermediate methods.

Unit testing

For evaluating the efficacy and accuracy of our recognition, we unit tested
ChainsAnalyzer on five known positive exploitable chains, and ten known neg-
ative, non exploitable potential chains found by ChainsFinder (and validated
by manual analysis). These tests were built and run while developing the tools,
serving as our ground truth. After finishing the complete implementation de-
scribed in Section 1.4.2, the accuracy of our unit testing is 100%, with no false
positives or negatives.

Results

The most relevant result produced so far by our project is the discovery of two
exploitable chains on the library Commons Collections 3.1 and Commons Col-
lections 4 [52, 46]. The payloads are not completely new: they reuse gadgets in
ysoserial that link java.lang.reflect.Method.invoke to java.lang.Runtime-
.exec (so they are in fact triggers for such gadgets). Also, since the reused
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gadgets have already been patched, the two chains do not work in newer ver-
sions of the library. The chains have been discovered with a combination of
use of ChainsFinder and manual analysis. Our software was launched on li-
brary Commons Collections 3.1, with java.lang.reflect.Method.invoke as
exit point. Since the possible entry points were searched in the scope of the
library, and included any method of serializable classes (not just readObject),
the tool found parts of the two chains, which were put together with manual
analysis to produce working payloads. Although the result could certainly be
improved (for instance, by finding a complete novel gadget for Runtime.exec),
we think that it already proves the potential of our approach in finding new
chains. Payload CommonsCollections8 in particular has an interesting property
that differentiates it from all other previous Commons Collections payloads: its
entry point (i.e. the serializable class TreeBag) is part of the library itself, while
all other known chains have entry points in standard Java classes found in the
JRE.

Besides this new payloads, so far our tool has not found any other exploitable
chain (no triggers leading to java.lang.reflect.Method.invoke and no gad-
gets leading to java.lang.Runtime.exec). So far we have tested the following
libraries, for chains of maximum depth 8:

apache-collections-commons-collections-3.1

commons-collections4-4.2

groovy-2.5.5

hibernate-core-5.4.1

javassist-3.24.1

jython-standalone-2.7.0

richfaces-api-3.3.4

spring-core-5.1.4

struts2-core-2.5.20

1.4.4 Related work

With our work, we try to automatize some parts of exploit search and construc-
tion. Automated exploit generation has various examples in literature, outside
the deserialization and Java domains. For instance, Alhuzali et al. [7] construct
a tool (Chainsaw) that automatically finds injection vulnerabilities in web ap-
plications; their research on PHP [8] is also relevant, where automated analysis
on a codebase reveals the presence of several vulnerabilities (which are turned
into working exploits).

Static analysis has already been applied in the context of bug finding and
security research. In their work, Livshits and Lam [38] apply static analysis
techniques to open source libraries, finding several security bugs.

In the particular context of deserialization vulnerabilities, a notable work
to mention is the tool serianalyzer by Bechler [47]. Serianalyzer uses static
Java bytecode analysis to trace native method calls made by methods during
deserialization. Altough it produces many false positives, it has been used
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to find many of the exploits present in the ysoserial repository. We decided
to implement our own tool for chain discovery, ChainsFinder, to leverage the
capabilities of Soot and its intermediate representation, and to extend the search
of exit points beyond native method calls.

Several attempts have been made for protection against attacks based on
deserialization of untrusted data. Besides the work already cited in Section 1.3.5
(which is relevant for this project as well), and our novel dynamic approach
presented in Section 1.3, notable work has been done by Dietrich et al. [20]. In
their publication, the authors analyze the problem of deserialization of untrusted
data not only in Java, but in several affected languages. After analyzing a few
chains that cause Denial Of Service, they study in detail possible mitigations
for the problem.

To the best of our knowledge, our work is the first approach towards auto-
matic static exploit validation in this area.

1.4.5 Discussion

In this section I present some limitations of our current work, and possible new
lines of research on the topic.

Incomplete search scope

At the moment, ChainsFinder and ChainsAnalyzer work by finding and vali-
dating chains based on the CFG constructed by Soot. Although this has proven
effective in both validating known exploitable chains, and finding new ones as
well, the approach has some limitations, as it cannot detect gadgets above a
certain complexity. Consider as an example the templatesImpl gadget from the
ysoserial repository, which makes use of dynamic class loading, or the chain
CommonsCollections1, which uses dynamic Java proxies. The two dynamic
techniques, along with others such as reflection, are not modeled by Soot, and
pose a challenge to static analysis in general. Simple modelling of dynamic tech-
niques for class loading and method calling would most likely be imprecise and
lead to an exponential increase in the call graph (due to the enormous amount
of possibilities, e.g., for a reflective call with arbitrary parameters), and a lot of
false positives if the search were performed without additional heuristics. We
think that only other approaches, such as symbolic execution or fuzzing could
have a hope of partially solving these issues.

Incomplete validation

Since our approach is based on pure static analysis, even when we find a positive
we are vulnerable to two issues:

1. False positives - our approach is unable to detect whether a branch in the
code will ever be taken. Trivially, Soot cannot detect a condition that is
always false at runtime in a particular chain, and will therefore build edges
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in the call graph of ChainsFinder even when they can never be executed.
The same reasoning holds true for ChainsAnalyzer.

2. Lack of positive proof - while for negative samples we can know exactly
what doesn’t work for exploitability, if our sample is flagged as positive
by ChainsAnalyzer we cannot automatically produce a payload to prove
that it is by executing it. The search of payloads is still manual.

Future work

We now explore possible approaches that have the possibility of addressing the
issues we have listed.

Fuzzing Fuzzing is the technique of feeding random, or partially random in-
put into a program, in order to stimulate unwanted behavior and corner cases.
Useful in software engineering for finding bugs, this techniques has also success-
fully been applied to information security [31]. In our context, we see fuzzing as
a possibility for finding payloads, once a potentially exploitable chain is known.
While random fuzzing has low probability of finding the correct input to exploit
a chain, there is very interesting work in the world of software engineering done
by Fraser et al. [26], on the use of branch distance metrics for automated test
generation with high code coverage. The guidance provided by these metrics
could be used to aim fuzzing in the precise direction of the wanted chain, by
generating inputs that satisfy branch conditions.

Symbolic execution To solve the problem of guiding the execution through
the correct conditional branches, constraint solving and symbolic execution tech-
niques could be used. At the moment, several possibilities exist for performing
symbolic execution in Java [6, 3]; however, while constraint solving works well
with basic types such as integers and strings, to the best of our knowledge there
is currently no modelling of custom objects in OOP. If such a model were devel-
oped, then the whole search of exploitable chains could be made more accurate,
by exactly solving constraints on objects and variables, and deterministically
generating inputs that allow a particular chain to be executed/exploited.

We think that the most promising road for future work is the use of fuzzing,
provided that the challenge of developing appropriate metrics is overcome. Once
correctly guided, we believe that fuzzing will have great potential of finding ex-
ploitable chains. The main advantage of fuzzing, compared to our approach,
would be a higher level of automation, as fuzzing could be used to find possible
paths for new chains and help to construct actual payloads for exploits; the
amount of manual analysis required would decrease. As a direct consequence,
the technique would scale better when increasing the size of the explored paths,
although we still think that a step of validation via static analysis checks would
remain useful, in order not to waste time on trying to find exploit on false pos-
itive paths. Symbolic execution could, in theory, eliminate the nondeterminism
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in both our approach and fuzzing. Deserialization chains would become ex-
act solution to a set of equations modelling the execution flow, cancelling the
type-I and type-II errors introduced by heuristics, and the need to introduce
randomness to find new results, as fuzzing does. However, even if the research
on the topic will advance and symbolic execution will be able to model OOP
Java programs, we think that two challenges would still need resolution:

• the complexity of some features could be hard to model in a symbolic
execution approach. Parallel asynchronous execution, reflection, dynamic
class loading, aspect oriented programming: all of these technologies are
present in Java and pose a direct challenge to symbolic execution, as they
greatly complicate the control flow of programs in nonlinear ways

• when translating the problem of finding exploits to the problem of finding
solution to constraints and control flow equations, it could happen that
some solutions would be too complex to find, in terms of the number of
variable involved in the equations. In such cases, a lighter approach such
as ours or a fuzzing-based one could yield better results, while still being
more error prone in general.

Other research scopes

As a final remark, we think that it would be interesting to explore the possibil-
ity of transferring our research and results to other domains that include seri-
alization/deserialization techologies. We think that our approach could easily
be applied to other languages and frameworks, where deserialization vulnera-
bilities are already known to be present. As an example, consider Android’s
Parcelable interface, which is a substitute for the Java standard Serializ-

able. While the technical details of the two mechanisms are different, the core
functionality is the same:

• objects can be serialized to and deserialized from binary stream of bytes

• the behavior for serialization and deserialization can be customized

We have seen that the last point (combined with an adequate customization
power, in terms of which operations are allowed during deserialization) is the
seed of all deserialization vulnerabilities. The main challenge when passing from
one technology to another is understanding the possible vulnerabilities that a
developer might introduce when assuming that the deserialized data will be
trusted. Once this analysis is complete, we think that our approach can be
applied with minimal effort if the similarities with plain Java deserialization are
strong enough. In the particular case of Parcelable objects in Android, we see
no particular differences in the step of object reconstruction during deserializa-
tion: in Java we have the readObject method, while in Android we have the
CREATOR field. Considered this, we think that this represents an ideal domain
for our research to be reproduced.
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Part II: High-level
authentication on
short-distance channels in
Android

The following sections describe a study of authentication (or the lack thereof)
in Android apps using short-distance communication channels. The work has
been accepted at ACSAC 2019.

2.1 Detecting (Absent) App-to-app Authentica-
tion on Cross-device Short-distance Chan-
nels

2.1.1 Problem introduction

Cross-device communications allow nearby devices to directly communicate by-
passing cellular base stations (BSs) or access points (APs) [22, 36, 35] . Such
a paradigm can bring many benefits, such as spectral efficiency improvement,
energy saving, and delay reduction. Without the need for infrastructure, such a
technology enables mobile users (e.g., Android) to instantly share information
(e.g., pictures and videos) with each other, even in areas without cellular cover-
age or access points [43]. It is also becoming an important technology for mobile
social networks [21]: friends close to each other can be automatically identified
and paired up. Moreover, this technology is used to establish the so-called mo-
bile ad-hoc clouds, which take advantage of unused resources of nearby devices
to provide cloud services, such as data and computation offloading. This is also
a typical case of IoT environment, where IoT devices communicate with each
other on short-distance channels [18].

Several solutions exist for securing cross-device communication. In the An-
droid environment, they allow authentication of devices and communication
channels [19, 42]. However, these solutions are not sufficient to protect the
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entire communication flow. Specifically, the proposed protection system in [19]
restricts apps’ access to external resources, such as Bluetooth, SMS and NFC,
by defining new SEAndroid types to represent the resources based upon their
identities observed from their channels. The policies bind an app to a partic-
ular device on a specific channel. In this case, a malicious app installed on
one device, which is allowed to communicate with a paired phone, can inter-
fere with the communication and inject data on the channel. This problem
is due to the fact that the authentication between apps is missing, and such
authentication is needed in addition to the device-level and channel-level au-
thentication. One can solve this problem by designing Android access control
at system level for preventing an unauthorized access to communication channel
(e.g, Bluetooth) during security operations, and removing public resources for
stopping side-channel attacks [42]. This, however, makes the system less usable
and compatible for the apps that already use the public resources for legitimate
purposes. Moreover, these systems do not handle channels such as: SMS, Audio,
Wi-Fi and NFC. We name this security issue cross-device app-to-app commu-
nication hijacking, or CATCH. We argue that CATCH is critical and is due to
the fact that no APIs or mechanisms are made available to Android program-
mers for performing app-level authentication on short-distance channels (e.g.,
Bluetooth, Wi-Fi-Direct).

In our work, we study the problem of mutual authentication between two
apps running on two different devices and communicating over a short-distance
channel. Although such channels already provide device pairing and authentica-
tion methods, these methods only operate at the device or channel level. They
are oblivious to the apps running on the devices. In this study, we first define
the authentication scheme for short-distance channels. We then design a new
tool that is able to analyze a given Android app and detect potential CATCH
vulnerabilities (i.e., the lack of app-to-app authentication). Our tool uses sev-
eral data-flow analysis techniques and is able to recognize specific if-statement
conditions in the code related to the authentication scheme. Such particular
conditions can be precisely recognized since, in our context, the analyzed au-
thentication model must be performed with some sort of dynamically generated
secret (out-of- band authentication) (Section 2.1.3) that is usually stored in the
dynamic memory (e.g. heap, stack). We perform some experiments to show the
flexibility of our tool on detecting authentication schemes, even when the target
app has been manipulated with the ProGuard obfuscator, one on the most used
obfuscators for Android [4]. Our tool can be deployed in several contexts: it
can serve as a tool for the developer, or it can scan apps in distributing envi-
ronments (e.g. Google Play) for detecting potential vulnerabilities on Android
apps that communicate by using short-distance channels.

In summary, we make the following contributions:

• We identify a security problem called cross-device app-to-app commu-
nication hijacking (CATCH), which commonly exists in Android apps that
use short-distance channels, and afflicts all the tested Android versions.
We perform experiments on a dataset that contains 662 Android apps that
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use Bluetooth technology, collected in the Androzoo repository.

• We provide a solution to the CATCH problem by designing and develop-
ing an authentication scheme detector that analyzes Android apps to dis-
cover potential vulnerabilities. We tackle several challenges in identifying
code boundaries of the authentication scheme, along with the authentica-
tion checks.

• We validate the results of our system on Android apps with manual
analysis, and test its resilience in detecting the authentication scheme.
The results show that our approach produces 0% of false positives and
false negatives. We also show two case studies on real Android apps.

The problem we study fits in our broader research goals, stated in the intro-
duction of this thesis. As per the Java deserialization works presented earlier, we
are again dealing with a high-level, multifactorial security issue, which involves
protocol architecture, the design of specific features of the operating system,
and coding practices of single developers. While it is hard to identify a “silver
bullet” solution to patch the problem at any level, we are able to tackle the
problem with the following steps:

1. We identify and model the problem’s environment

2. While we can’t cover 100% of possible authentication protocols that may
be affected by CATCH, we define a threat model which we repute both
broad and realistic enough to capture the essence of the problem, and
perform meaningful study regarding its treatment

3. We leverage control flow and data flow analysis to treat the problem in
the scope of out threat model; specifically, we build a system that allows
us to analyze Android APKs and detect functional high-level features (in
our case, authentication over a channel) based on the constructed flow
graphs.

Although our analyses alone are not sufficient to completely overcome the prob-
lem, they allow us to analyze its presence in a dataset of real-world Android
APKs, and build tools that can be deployed to raise the awareness of developers’
towards the problem, and/or to help secure app markets by performing static
analyses on uploaded APKs.

2.1.2 Background

In this section we provide the necessary background to understand the security
vulnerabilities in Android apps performing peer-to-peer communication.

Authentication for Cross-device App-to-app Communication

We study the problem of mutual authentication between two apps running on
different devices and communicating over a short-distance channel. Although
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such channels already provide device pairing and authentication methods, these
methods only operate at the channel level: they allow two devices to be paired
and mutually authenticated (i.e., establishing a channel) but they are oblivious
of the apps running on the devices (i.e., all apps on these devices share this
established channel). As a result, when two devices are paired and authenticated
at the channel level, it is possible for a malicious app on one device to interfere
in a communication on the channel between two legitimate apps.

Currently, most cross-device, peer-to-peer communications channels are au-
thenticated by using an out-of-band scheme that works as follows. A user
(requesting user) A initiates a communication from his device to a nearby
device, whose user (accepting user) B is then prompted with confirmation.
The confirmation is requested either with a secret PIN that B has to communi-
cate to A via a separate channel (e.g., verbally), or as a simple “accept” button
presented along with information that enables the identification of the device
trying to initiate the communication. These steps are already implemented in
Android; one never needs to re-implement authentication for the communication
channel. Once authentication has passed, communication can begin. Bluetooth
uses encryption to protect the channel. It is important to note two points related
to authentication in this scenario:

1. Authentication occurs via sharing of out-of-band information/secret.

2. Authentication performed on the channel (Figure 2.6) is not sufficient to
guarantee authentication between higher level applications communicating
over the channel.

Point 1) is important as a general property of authentications performed in
our scenario. The exchanged information needed to confirm authentication is,
in practice, visual and verbal contact between the two users, and the out-of-
band element is a constant in all this type of authentications. More strongly,
we exclude the possibility of authentication being carried out exclusively via
information passed on the same channel being authenticated, as a result of
previous research [13, 56].

Figure 2.6: Authentication of A2A communication is not guaranteed by channel
authentication
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To understand why the lack of app-level authentication is dangerous, let
us consider the following example (Figure 2.7): a chat app using Wi-Fi-Direct
opens a ServerSocket, accepting communication through it and display incom-
ing messages to the final user.

Figure 2.7: Malicious app sending content to chat app

The intended use of the app is to be installed on two devices that commu-
nicate with each other in a peer-to-peer fashion. We also consider the presence
of a malicious app on one device, this is a common threat model, as shown
in [42]. Since the devices are authenticated, and not the apps, the malicious
app has permission to communicate over the channel, as any other app installed
on the device. The malicious app can therefore craft custom messages to send
to the other device, which are displayed as if they were sent from the original
app. If there is no code performing authentication in the benign app, there is
no possibility of detecting this sort of action.

Depending on the particular context, there are some scenarios in which the
attack can become very dangerous:

• Phishing : in cases like the example described above, the malicious app
could send phishing material to the other app. The user will be likely to
trust and open the content, as he will have no means to distinguish it from
benign content sent from the device communicating with him.

• Malware delivery : the same system could be used to deliver malware to
the user, in the form of malicious files that would trigger a vulnerability
upon opening (for instance, a malicious PDF file that targets a vulnerable
PDF reader).

• Exploitation: if the target app performs internal operations depending on
commands received from the communication channel, the malicious app
could send commands that could change the execution flow and trigger
unwanted behavior. For instance, a command to delete the user data
could be issued to a file manager app that accepts operations via Bluetooth
device.
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It is important to note that other network attacks such as MiTM are difficult
to accomplish in this context, since the attacker should be physically close to
the devices in order to hijack the communication, and would also need to over-
come or bypass the channel protections, such as encryption. For this reason we
believe that the attack explained above is the most realistic in this environment.
We name the underlying problem common to all these scenarios cross-device
app-to-app communication hijacking, or CATCH. Having established the
potential impact of the problem, we aim at building a system for automatic
analysis of Android apps, targeted at detecting the presence (or lack thereof) of
authentication on particular communication channels. The purpose of our sys-
tem is to provide a tool that will help app developers to secure their software.
Moreover, our detector can also be used as a security scanner on app markets
(e.g., Google Play) for detecting potential authentication vulnerabilities.

2.1.3 Approach overview

This section describes the design and structure of our approach. We build
our system with the goal of automatically verifying the existence of app-to-app
authentication in Android apps. To detect app authentication in an automated
way, we mainly face the following challenges:

C1) We need to define a generic scheme that captures the essential logic of
app-to-app authentication. Such a scheme is necessary for identifying and
evaluating the implementation of authentication in apps. (Section 2.1.3)

C2) We need to define a strategy for differentiating between an if-statement
that does not operate on security critical data and an if-statement that is
a part of the authentication scheme. (Section 2.1.3)

C3) Additionally, the authentication scheme can be implemented in several
ways according to the developer experience. This adds an additional layer
of difficulty for our analysis, that should be general enough to also capture
such cases. (Section 2.1.3)

We now proceed to illustrate our approach for building an analysis tool that is
able to tackle these challenges and provide accurate results in terms of detection.

Authentication Definition

In this section we define an authentication scheme for cross-device communi-
cation in Android environment. More specifically our authentication model
considers two devices, D1 and D2, with apps A1 and A2 respectively installed.
The two devices establish an authenticated channel, on top of which A1 and A2
initiate a communication. Such form of authentication proposes authenticated
information exchange between mobile devices using several methods different
than the standard RF channel [56]. These are called out-of-band, side-channels
or location-limited channels (LLCs) [58], and include audio, visual, infrared,
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ultrasound, and other forms of transmission [45, 57, 53, 12]. Such techniques
allow the receiver to physically verify the source of the transmission. Using
this information, the devices are mutually authenticated, and a secure shared
key can be established. More precisely in such an authentication scheme we
recognize the following steps:

1. A2 obtains a secret that will be used to authenticate communication.
This secret is either generated on device D2, and then communicated
to app A1, or it is generated by D1 and then shared with A2. Such a
communication uses an out-of-band channel which is also called a “human
assisted channel”. Such a channel cannot be manipulated by an attacker,
and thus it is considered trusted by definition.

2. Once A1 and A2 share the same secret, they can start sending data, using
the secret as authenticator. Depending on what the secret is and the
application protocol, the data could be encrypted with a key derived from
the secret (e.g., Hash(Secret)), or the secret could be sent as plaintext
along with the data for authenticating the transmission.

3. In both cases (encryption with key derived from the secret, or secret sent
with data as a simple pass-phrase/PIN), app A2 needs to perform au-
thentication checks on the received data. In the first case, A2 needs to
check that the decryption operation performed by the secret key is correct,
and in the second case A2 needs to check whether the pass-phrase/PIN is
correct. These checks must occur before any critical use of the data, other-
wise the communication is not authenticated. Only in case the checks are
correct, the data is authenticated and the communication can continue.

We mentioned “authentication checks” that are performed in step 3. It is
crucial to define what form these controls might assume, in a way that helps us
target their recognition in code. Moreover such a definition should be general
enough to capture the majority of several forms of the authentication schemes
deployed by different developers. We define a communication in our model as
some exchange of data from A1 to A2, beginning when A2 reads the data from
the communication channel. We define a use of the data as any operation whose
result depends on the data itself. We define an authenticated use of the data
as any instruction that needs to be authenticated before access to the data. We
give the following definition of authentication in our model: given a commu-
nication over a peer-to-peer channel with exchanged data D, an authentication
is a condition in code situated between the beginning of the communication and
the first authenticated use of D, which either: (1) allows the execution to con-
tinue, in case D is successfully authenticated, or (2) prevents any authenticated
uses of D every time the authentication is unsuccessful. The internal logic of
the authentication checks depends on the context, and is therefore not possible
to include it in the definition.
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Listing 2.10: Sample Bluetooth socket communication

1 try {

2 socket = mmServerSocket.accept();

3 } catch (IOException e) {

4 Log.e(TAG, "Socket’s accept() method failed", e);

5 break;

6 }

7

8 if (socket != null) {

9 InputStream inputStream;

10 try {

11 inputStream = socket.getInputStream();

12 byte[] buffer = new byte[10];

13 inputStream.read(buffer);

14 if (buffer[1] == 10) {

15 writeToFile(buffer);

16 FunctionLibrary fl = new FunctionLibrary();

17 writeToFile(fl.return6());

18 }

19 mmServerSocket.close();

20 } catch (IOException e) {

21 e.printStackTrace();

22 }

23 break;

24 }

Detection of Authentication Scheme

For detecting authentication, we first explore the possibility of identifying au-
thentication schemes via the use of particular APIs. If such APIs existed, then
we could reduce our analysis to a code reachability problem. This is the case,
for instance, of authentication over Unix domain sockets [55]. Unfortunately,
we could not find any standard APIs for app-level authentication for the tech-
nologies we analyzed. For this reason, we shift our focus on detecting a set of
instructions in the code that might indicate the presence of an authentication
mechanism. In such a context we must clearly define a strategy for identifying
possible authentications once we track the data of our interest. The first step
for creating a scalable analysis framework is to identify boundary code points
in the application. Such boundary permits to restrict the analysis only to a
part of code that potentially could contain an authentication scheme. After the
boundary area is identified we can apply further code analysis techniques in
order to validate the authentication scheme. In our system the boundary area
is defined by two main elements: the entry and exit points.

More specifically, an entry point is an instruction in the code that indicates
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the start of the communication over the analyzed channel (e.g., data receiving).
Given this broad definition, we can recognize multiple entry points in an appli-
cation for a given communication. For example, In Listing 2.10 we can see an
example of Bluetooth communication in Android app. Since the data is read
from the stream at line 13, the instruction represents an entry point. The call
socket.getInputStream() at line 11 is also an entry point for this communi-
cation. We are obviously interested in entry points that help to indicate the
start of communication for a specific channel such as Bluetooth. An accurate
identification of the entry points for a communication channel will ensure that
all possible communications over such channel are identified and targeted by
our analysis.

The end of the boundary is defined by an exit point. An exit point is rep-
resented by the first authenticated use of the data coming from the monitored
channel. Even though exit points exist for every communication, it is hard to
define whether an exit point is an authenticated use of the data or not, since this
is a semantic property of an use. As an example, the use of line 15 in Listing
2.10, where the data is written to file, may or may not be an authenticated use,
depending on what the file is used for. If it is a log file used simply for de-
bugging purposes, and virtually never checked unless an error occurs, then it is
not important that authentication necessarily occurs before such point. On the
other hand, if the data defined into the file is part of the main flow of the app
protocol, then authentication must necessarily occur in order to avoid untrusted
and potentially dangerous data in the file.

Due to this ambiguity of the use of the data, we design a detection strat-
egy that is not dependent on exit points. In particular we design an algorithm
(Algorithm 2.1.1), based on program analysis techniques, that performs data
and control flow analysis. The algorithm starts computing the Control Flow
Graph (CFG) and Data Dependency Graph (DDG) for each analyzed app (line
7-8). Both graphs are necessary to find out the relationships between data of
our interest and the condition statements that depend on such data. Then, for
each node in the CFG, the system determines whether it is an entry point by
using function isEP. This function uses a pre-defined table based on function
signatures related to a specific communication channel (Section 2.1.4). If no
entry points are found, the result NO AUTH NEEDED is returned (lines 9-12). In
all the other cases, each node in the DDG is analyzed. If the node represents a
condition in the code (function isCondition), then the system checks if there
exists a path in the DDG that connects an entry point to the conditional node
(lines 16-17).

Algorithm 2.1.1: Authentication detection

1 input: APK app
2 output: NO AUTH NEEDED |
3 NO AUTH FOUND |
4 POSSIBLE AUTH FOUND
5

6 entry points ← []
7 cfg ← computeCFG(app)
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8 ddg ← computeDDG(app)
9 foreach node in cfg

10 if isEP(node) then entry points.add(node)
11 end
12 if entry points == [] then return NO AUTH NEEDED
13

14 foreach node in ddg
15 if isCondition(node) then
16 foreach ep in entry points
17 path ← findPath(ep, node, ddg)
18 if path != null
19 then
20 if isCheckConstant(node, ddg) == false
21 then return POSSIBLE AUTH FOUND
22 endif
23 end
24 endif
25 end
26

27 return NO AUTH FOUND

If such a path exists, it means that we possibly found an authentication
scheme. However it is still possible to obtain false positives: simple sanity
checks or other controls on data would be all erroneously identified as authenti-
cation. In order to reduce the number of false positives among conditions that
are candidate for authentication, the algorithm applies a constant propagation
technique. Technically speaking, such technique is using reaching definition
analysis results. In particular, if a constant value is assigned to a variable, and
such variable is not modified before a point P in code, then the variable has a
constant value at P and can be replaced with the constant.

In our context, since the analyzed authentication model must be performed
with some sort of dynamically generated secret (out-of-band authentication, Sec-
tion 2.1.3) that is usually stored in the dynamic memory (e.g., heap, stack), by
using constant propagation we can discard all the conditions that use constant
values in their comparison, as they certainly do not represent authentication on
data. Constant propagation is a very powerful technique for our analysis, and
it helps to reduce the false positives to 0% in our experiments as we will show
in Section 2.1.5.

2.1.4 Implementation details

We now discuss our practical implementation choices for the algorithm presented
in Section 2.1.3, by describing the technical details of our system.

Overview

We implemented our system on top of the Argus-SAF framework [63]. The
framework offers various tools for analyzing Android apps, such as the gener-
ation of the CFG and DDG that we need in our algorithm. Also, the frame-
work translates Dalvik bytecode into an intermediate representation (IR), called
Jawa, on which our algorithm performs the analysis. In particular, various con-
ditions in code, including while and for loops, if statements and exception
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try/catch blocks, are all translated into if statements in the intermediate rep-
resentation. The CFG and DDG built by the framework contain nodes that
map to single Jawa instructions, making it possible to have the fine-grained,
instruction-level information that we need in our algorithm for targeting con-
ditions. Furthermore, Argus-SAF permits inter-component modeling, meaning
that transitions between components such as Android intents are integrated in
the graphs. These features made possible for us to explore the application code
together with the graphs built by Argus-SAF on top of it. Our system is com-
posed of three main components: (1) Graphs Builder, (2) Path Finder and (3)
App-to-app Authentication Finder. Our framework accepts an app in input (as
an APK file), and outputs either that no authentication has been found, or a
list of specific instructions in code that may contain authentication checks.

• The Graphs Builder starts the Argus-SAF analysis on the APK. The
framework applies four sequential steps: (1) the Jawa IR is generated
from the Dalvik bytecode, then (2) an environment model of the Android
system is generated. This is crucial to capture the control flow and in-
teractions between components, such as the dispatch of intents between
activities. (3) At this point, Argus-SAF builds an inter-component con-
trol flow graph (ICFG) of the whole app. At the same time, it performs
data flow analysis and builds an inter-component data flow graph (IDFG)
on top of the ICFG. (4) Finally, the framework builds a data dependency
graph (DDG) on top the IDFG. We mainly use information from this
graph in our analysis. The information of our interest is extracted in the
Graph Builder by using classes ComponentBasedAnalysis and InterCom-

ponentAnalysis for extracting the CFG and DDG. The graphs are then
passed to the next component.

• The main goal of the second component, Path Finder, is to locate areas in
the code where an authentication scheme may exist. This is done by iden-
tifying data flows for the protocol of our interest, and performing reaching
definitions analysis to see if any conditional statement operates on data
read from the channel that we are inspecting. The Path Finder component
traverses the CFG received from Graphs Builder, and marks entry points
for the analyzed channel based on a predefined list of method signatures.
It then finds all conditional statements, which is accomplished by extract-
ing all the nodes of type IfStatement in Argus-SAF. At this point, it is
possible to perform reaching definition analysis, to check whether there is
at least one conditional statement using a variable that was earlier defined
as data read from the channel. The DDG obtained from Graphs Builder
contains all the information to perform this search: definition-use pairs
map to edges in the graph, so Path Finder traverses it in order to find
possible authentication paths. It sends the discovered paths, if any, to the
last component.

• App-to-app Authentication Finder applies further checks to the paths re-
ceived from Path Finder, in order to exclude false positive results by rec-
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ognizing checks against constant values. In particular, it analyzes the if

statements in the Jawa IR, which can be divided into two types: (1) com-
parisons between two variables, (2) comparisons between a variable and a
constant. The system immediately discards the conditions of the second
type from our search, as they certainly do not represent the authentica-
tion scheme that we look for (see Section 2.1.3). For conditions of the first
type, our system uses constant propagation to determine if one of the two
variables in the condition is a constant. It walks up the DDG from the
IfStatement to their definition, reconstructing the value-history of the
variables from their initialization. If the last-assigned value to either of
the two variables (before the IfStatement) is a constant, then we are in
the same case of type-two conditions, and the path is again discarded for
the same reasons.

Choice of Entry Points

In our implementation we focused on Bluetooth, since it is the most used tech-
nology in Android apps for short-distance communication. Wi-Fi-Direct is still
not very common among the Android apps, in fact in the dataset that we an-
alyzed we only found a few samples (10) of it. To show the security issue
of CATCH applied on Wi-Fi-Direct channel we analyzed one of these apps
as a case study (Section 2.1.7). However, the core of our analysis is orthog-
onal to any communication channel. The only part that can change among
different channels is the identification of the entry points. For Bluetooth com-
munication based on BluetoothSocket, we found two possible entry points
(i.e., where a BluetoothSocket stream starts receiving data): Bluetooth-

Socket.getInputStream and InputStream.read. A typical Bluetooth com-
munication flow involves the former function, called to obtain an InputStream

object, followed by an invocation to the latter function. In the DDG of an
application containing this type of communication, the instructions operating
on data read from the channel are linked to both functions. It would appear
that InputStream.read is the best choice for an entry point: semantically,
it actually represents the point in which the data from the stream enters the
control flow of the app. However, given the general use of class InputStream

outside the context of Bluetooth communication, this choice led to many false
positives in practical experiments. For this reason, the choice of Bluetooth-

Socket.getInputStream worked much better as definition for our entry point
for Bluetooth. Although it is an instruction preceding the actual read operation
of data from the Bluetooth stream, it uniquely identifies our protocol of interest.
Moreover in all the communication flows that we observed in Bluetooth apps
operating on BluetoothSockets, the functions are always used in pairs.

2.1.5 Experimental evaluation

In this section we present and discuss the results about the experiments we
performed to validate our system.
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Preliminary considerations

In order to test the efficacy of our algorithm we need to collect a balanced dataset
that contains both positive (i.e. apps with authentication at application level)
and negative samples (i.e. apps without authentication). In our analysis we
noticed that the security problem of CATCH afflicts all the Android apps using
Bluetooth in our dataset. For this reason the dataset is unbalanced. To test our
system under such conditions, we divided the experiments into two main cate-
gories: (1) a dataset analysis on APKs retrieved from a research repository [9],
aiming at confirming the efficacy of the algorithm on negative samples; (2) a
targeted analysis on custom apps built by applying code transformation tech-
niques (e.g. obfuscation) for proving that the authentication scheme is correctly
detected by our algorithm.

Dataset analysis of Android apps

To evaluate the efficacy of our system, we ran tests on a large number of APKs
collected from the Androzoo repository [9]. The Androzoo dataset contains
more than three million unique Android apps, crawled from several Android
markets: Google Play, Anzhi and AppChina. In our experiments we pre-filtered
APKs from the dataset and selected non-obfuscated apps that use Bluetooth.
We decided to focus only on Bluetooth apps considering the amount of manual
analysis we performed during the design of our algorithm, which could help
us as a ground truth for validating our results. We started analyzing a total
of 210,425 APKs, randomly chosen from the Androzoo repository. In order to
select the appropriate Bluetooth APKs we applied the following filter: check if
an app (1) requires the Bluetooth permissions in the manifest file; (2) contains
certain libraries and classes related to Bluetooth (e.g., BluetoothSocket). The
filter produced a total of 2,739 APKs.

We then applied a second filter where we exclude the obfuscated apps since
it is quite hard validate them at this first step. For this filtering we focus on the
ProGuard obfuscation tool, which is the free software most commonly used by
developers, and it is referred in the Android Documentation [4]. In particular,
we implemented some heuristics for recognition based on the typical class names
(e.g. a.class) produced by ProGuard in obfuscated APKs. This filter selected
a total of 942 APKs from the initial set of 2,793, which means that the majority
of the apps in our dataset, almost 70%, use ProGuard for code obfuscation.
After running our algorithm, we discovered that 704 of the selected apps do not
have any entry point for Bluetooth communication in the CFG. This happens
in cases where Bluetooth functionality is imported in some library/classes, but
never used in the code, so the instructions that we would mark as entry points
for our analysis never appear in the CFG/DDG. We also excluded such APKs
from our dataset. Finally, we obtained a number of 238 APKs, suitable for our
analysis and evaluation.

We then performed our first experiment. We ran our system on the 238 APKs
without constant propagation enabled. This experiment shows the important
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role of the constant propagation technique on reducing false positives. It shows
that 26 APKs out of 238 are found positive (i.e., about 11% of the APKs are
potentially performing authentication on data read from Bluetooth sockets) and
the rest are found negative (i.e., not performing authentication). they never
applied any checks on data received form the Bluetooth channel.

In our second experiment, we enabled the constant propagation technique
and we ran our system on the same set of 238 APKs. In this case we observed
that all of the positive samples found previously were actually false positives
(i.e., they used one constant value in the parameter of the if statement marked as
possible authentication). This result shows that no app in the dataset performs
app-to-app authentication when using Bluetooth.

At this point, we manually investigated the negative cases to check for any
false negatives. To this end, for validating our results we chose a sample of 20
random APKs from our dataset of 238 APKs and we manually analyzed them.
We observed that all of them receive data from the Bluetooth channel, but they
never apply any checks on such data before using it. Our manual analysis found
0 false negatives. Our experiments show that 100% of the analyzed APKs in
our dataset which perform Bluetooth communication using Bluetooth sockets
are potentially vulnerable to the CATCH attack model.

Dataset composition

We analyzed the composition of our dataset to make sure that we did not run
tests on sample/unused/abandoned apps. We sampled 300 APKs (containing
permissions/classes for Bluetooth) from our dataset, and performed a manual
analysis by searching them on Google Play. We found that about 30% of the
apps were present on this market. We classified the apps by category, depend-
ing on their description. The vast majority of apps belongs in the following
categories:

• Game apps, where Bluetooth is used for playing peer-to-peer

• IoT apps for specific devices, where Bluetooth is used to send and receive
data from the controlled device or sensors

• Business apps, using Bluetooth to send data from smartphone to com-
puter, or again smartphone to device

Other categories with less APKs included health apps, used for communicating
with medical devices, cryptocurrency-related apps, and smart home manage-
ment apps.

Targeted analysis

For our second analysis, we built a custom app using Bluetooth. It only performs
these basic operations: it reads from a BluetoothSocket when the user triggers
an action, and it displays any received content on screen. We then patched the
app to include a basic authentication scheme fitting our model: upon starting,
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the app generates a random secret PIN of 4 digits, and shows it on the screen.
This secret needs to be communicated out-of-band to other apps interacting
with ours (e.g., verbally to another user wanting to send data). When reading
from the BluetoothSocket, the app first expects to receive the PIN in plaintext,
in the first four bytes read from the socket’s InputStream. If the PIN matches
the one generated by the app, the communication is accepted; otherwise it is
rejected and the user is informed of the event. We found that our algorithm
correctly predicts the possible presence of authentication.

We ran another test to check if changes introduced by common optimization
and obfuscation tools would impact our algorithm. In this case we validate the
obfuscation transformation since we can check the ground-truth provided by our
application. In particular, we used the ProGuard tool [2] on our sample app,
since it is the most commonly used by developers and it is recommended in
the Android documentation [4]. ProGuard performs a series of transformations
aiming to remove unnecessary code, and renames types and variables to hinder
reverse engineering. We ran ProGuard on both versions of our test app (with
and without authentication). We found that the transformations introduced by
this tool do not impact the detection capabilities of our algorithm, which cor-
rectly discriminates the apps’ behavior. In particular, we observed the following
results:

• Sample app without authentication and ProGuard disabled, the system
returns NO AUTH FOUND.

• Sample app without authentication and ProGuard enabled, the system
returns NO AUTH FOUND.

• Sample app with authentication and ProGuard disabled, the system re-
turns POSSIBLE AUTH FOUND.

• Sample app with authentication and ProGuard enabled, the system re-
turns POSSIBLE AUTH FOUND.

Analysis of obfuscated APKs

Our results from the targeted tests indicate that ProGuard transformations
do not affect the precision of our tool in the detection of authentication. For
this reason, we decided to run our tool on ProGuard-obfuscated APKs from
our dataset. We selected the 1797 obfuscated APKs that were initially dis-
carded, and filtered them for Bluetooth use and appearance of entry points in
the CFG/DDG as we did for non-obfuscated ones. This process yielded a total
of 424 APKs, which we analyzed (combined with the previous experiments, we
have a total of 662 APKs analyzed that use Bluetooth technology). 100% of the
APKs were identified as negative (i.e., not containing authentication) by our
tool, with constant propagation enabled. To validate this result, we manually
analyzed 15 APKs, randomly chosen from the obfuscated APKs dataset. Since
our tool indicates where the entry points are located in the CFG, and what
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the possible authentication paths have been analyzed, we were able to manu-
ally validate the absence of authentication checks, confirming that our heuristic
approach is not only powerful enough for detection, but also that it is resilient
to the obfuscation techniques.

2.1.6 Performance Analysis

In this section we report the time needed for each phases of our analysis.

Time Threshold One of the main critical point for our analysis is how to
set a time threshold for building the CFG and DDG in Argus-SAF, since the
computational complexity explodes for large applications, and the system is not
able to construct the entire graphs within reasonable time. After this threshold
is hit while analyzing a single component in an APK, Argus-SAF will stop its
analysis and move to the next component. In order to set up a correct time
threshold we need to be sure that the constructed CFG and DDG include the
Bluetooth entry points and the authentication checks (if present). To this end,
we performed some experiments on APKs collected in our dataset. In particular,
for each analyzed app we first built the graphs by setting a certain time threshold
T, and we then search for Bluetooth entry points inside the computed CFG.
Afterwards, we compute the number of nodes that are dominated by the entry
point node in the graph that represents the number of instructions that can
potentially include the authentication scheme. We start with a threshold of T

= 30 sec., and then increase the value to T = 60 sec. and T = 120 sec. By
comparing the different results, we notice two important things: (1) for any
entry point, both the number of reachable nodes in the CFG and the number
of data dependency nodes in the DDG are sufficient to contain a potential
authentication scheme. More in details we found on average more than 10,000
instructions that are dominated by the entry point and the CFG reachability
from a single entry point to any node in the graph is always above 99%, an
expected result given by the inter-component connections in Android code. (2)
The variation of the results between the three runs is minimal, that it means
that we generally do not miss any important information that would have been
considered adding more time of analysis. For this reason we chose a threshold
of 30sec. for our experiments.

Time of Analysis For our tool a use case would be code validation where the
detector could serve as a pre-release tool to check for unauthenticated commu-
nication. In such a context the tool should perform its analysis in a short-time.
In this direction we perform several experiments that show the overhead of
the analysis. In particular the experiments were performed on a laptop run-
ning Ubuntu Linux 17.10, with a Intel Core i7-6700HQ CPU (2.60GHz) and 16
GB of RAM. We specifically measured the time taken to analyze the 26 apps
that were found positive by the first version of our system (without constant
propagation). The average time spent for modeling the APK in Argus-SAF is
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5 minutes, while the average running time of our algorithm on the generated
graphs is 2 minutes, giving a total average time of 7 minutes. Although the
variance is high, we think that even the worst-case execution time is suitable
for the use cases we designed, considering that the release of an app is not an
instantaneous process, and that an average of 10 minutes is a feasible testing
time for an automated developing pipeline of Android apps. Moreover we can
decrease the time threshold for building graphs from 2 minutes to 30 sec. and
gain more efficiency by reducing the average time from 7 to 5 minutes in total.

2.1.7 Case studies

In this section, we present two real attacks case studies that we select from
our dataset in which our analyzer gave negative results. Such applications are
representative of the common type of applications that can be used in peer-to-
peer communication environment: (1) chat app, (2) data sharing app. We will
now discuss the attack implementation, and the engineering effort required for
its setup and execution along with its own limitations.

Data injection on BluetoothChat

We target the Android BluetoothChat app [1]. This app is a working exam-
ple of peer-to-peer chat that is affected by CATCH problem, since it does not
implement any app-level authentication scheme. The BluetoothChat app gives
the user the possibility to scan for nearby devices, connect to one of them by
using RFCOMM identifier, and then send text messages via Bluetooth. In this
attack scenario we will describe a data injection attack to a remote device.

Attack Preparation To accomplish a successful attack we need to satisfy
two preliminaries requirements: (1) the malicious app needs to recognize the
presence (i.e., installation) of the target application on the device. (2) the
malicious app needs to detect when the target application is opened and run on
the device. These two states, installed and opened, allow the malicious app to
identify a potential active connection between BluetoothChat applications on
different devices.

In order to detect the presence of the target app, the malicious app can
retrieve a list of installed apps by querying the PackageManager object. Such
operation is not privileged and it can be executed by any app installed on the
device. For the Bluetooth Chat sample, the malicious app can detect the in-
stallation of it just looking at the package name. Once the presence of the
vulnerable app has been identified, the next step for the malicious app is to
exploit a legitimate communication for spoofing content and deliver the attack
payload. However, this may happen at unpredictable time since the malicious
app does not know when a remote communication will be activated. While it is
possible for the malicious app to continuously try to exploit the communication
by using polling technique, this is not desirable from the attacker’s perspective
since it creates suspicious events that can be detected. The best result would be
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achieved if the malicious app could monitor the vulnerable app, and perform the
attack only at the appropriate time. While it is very difficult to fully monitor
the behavior of other apps from another app [65], a possible way to partially
achieve the result is to monitor the list of open apps, obtainable via the Ac-

tivityManager class, specifically with the getRunningAppProcesses method.
Again, this information can be requested to the Android system by any app
without any specific privilege; the malicious app can continuously poll this list,
and try the attack when the communication is open and running in foreground.

Payload Running If the attacker has satisfied the previous two requirements
the attack can be performed successfully. In particular for the BluetoothChat
case, the attacker needs to install a malicious app on one of the two devices
that performs the communication. The communication protocol over Bluetooth
is implemented with BluetoothSocket, with a RFCOMM identifier for the chat
service. If the attacker knows the identifier, his malicious app can send messages
to the app on the other device, which will be indistinguishable from benign ones.
In this case, the app is open source, so the RFCOMM identifier is embedded
inside the application, and a simple manual investigation can reveal it. Once the
attacker knows the identifier he can perform data injection on the remote device,
and send a message to a remote application. The impact of this data injection is
potentially high especially if the receiver trusts the sender and for instance she
is opening any forwarded links, which in this case could lead to phishing pages
controlled by the attacker. The following figure shows an example of hijacked
communication in BluetoothChat. The first two messages are written by the
user on the device Huawei P9 Lite, while the third is sent by our malicious app;
the receiving user on device Nexus 6 will be unable to distinguish the malicious
messages.

58



Data injection on Wi-Fi Direct +

In this second case study we focus on real-world app that use Wi-Fi Direct +
[5] collected from the Google Play market. This file sharing app has more than
500,000 downloads, it is constantly being updated, and it has a paid version, Wi-
Fi Direct + Pro. This information definitely indicates that the app is relevant for
our analysis. Since this apps does not implement and app-to-app authentication
as revealed by our tool we can perform a data injection attack.

App Functionalities Wi-Fi Direct + offers the possibility to share file be-
tween two Android devices, via Wi-Fi-Direct protocol. After performing Wi-Fi-
Direct pairing, on one device the user should select the option for receiving files.
At this point, his device is entering in listening mode for incoming connections.
When the user on the other device selects the option for sending a file. A success
dialog is then displayed on the receiving device and the file is transferred.
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Payload running After pairing has been established, the app on the receiving
device opens a ServerSocket, and accepts connections on it. If a malicious app
on the sending device tries to connect to the socket, we have a typical CATCH
scenario, in which the receiving app is not able to distinguish legitimate and
malicious data. For the attack to succeed, some technical details have to be
considered. The attacker needs to study the Wi-Fi Direct + protocol used
to send files in order to replicate it without errors, then he has to build a
malicious app for sending files with this protocol. At this point, by activating
the sending of a file from the malicious app at the right time, as explained in
the previous case study, the attacker is able to inject data in the communication
with another device. With Wi-Fi Direct + in particular, the useful time window
for data injection is reduced in comparison to the BluetoothChat case study;
this is because Wi-Fi Direct + on the receiving device will accept only one file
before closing the communication channel, as opposed to BluetoothChat, which
keeps listening for incoming messages. This is a problem for the attacker: if the
benign app sends its file first, then the file sent by the malicious app will not be
accepted (race condition). If the opposite happens instead, the benign file will
be rejected, and the sending user will be notified of an error. Depending on the
situation, the users might verbally communicate and establish that something
suspicious happened. This risk is always present, but it is greatly reduced in
cases such as BluetoothChat, where no error messages are displayed to the
users. Although we recognize this problem for the attacker in some cases, we
have to also consider the situations in which the users are not able to identify
the attack. For instance, the sending user receiving an error message may think
of a bug in the app, especially if the receiving user confirms that the file has been
correctly received (his app will display the correctly received malicious file). In
our experiments we were able to perform the attack successfully. We were able
to run the malicious app and send a malicious file without causing any alarm
on the target device.

2.1.8 Related work

To the best of our knowledge, we are the first to explore the potential dangers
associated with the lack of app-to-app authentication in Android apps. However,
previous research has made important contributions in related areas.

Security of Android communication channels Previous work highlighted
the problems existing in Android device-to-device communications [42, 19]. In
particular, Demetriou et al. [19] studied several channels of communication in
Android (such as Bluetooth, SMS, Internet and audio) showing that the secu-
rity model of Android does not offer adequate measures for protecting certain
secrets. To address this problem, they build a security system, called SEACAT,
to enforce fine-grained protection on the above resources. Our work continues
the exploration of missing security features in Android, and how apps can be
vulnerable if developers make the wrong assumptions about the security of the
underlying system.
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Security models of peer-to-peer protocols Claycomb and Shin formally
studied the problem of authentication in mobile devices [13], and use BAN logic
to prove that device authentication using a single communication channel is not
possible. We consider this result when building our model: in particular, this
justifies our assumption of the secret exchange happening out-of-band. Shen
et al. focus on Wi-Fi Direct technology, studying its security and discussing
related best practices [56]. Again, importance of out-of-band channels to obtain
authentication is highlighted, and used in the implementation of a secure Wi-Fi
Direct protocol.

Using static analysis for detecting authentication Static analysis tech-
niques have been extensively used in previous work, for instance for detecting
malicious application logic on Android or Web application[27, 44, 14], and for
detecting privacy leaks in both iOS [23] and Android [29] apps. Closely related
to ours is the work of Shao et al., which studies the presence of authentication
in the use of Unix domain sockets on Android [55]. We followed the same choice
of tools used to perform the analyses, favoring Argus-SAF [63] (formerly Aman-
droid) over FlowDroid [10] because of its superior handling of inter-component
communication. An important difference is that we could not model our prob-
lem with as a standard taint-analysis reachability search, so we had to build our
custom data dependency analysis on top of the tools provided by Argus-SAF.

2.1.9 Discussion

In this section we discuss about limitations of our analysis along with impact
of the problem that we found out.

Impact of the problem

From our research, it is clear that high-level, app-to-app authentication is almost
never present in Android apps that communicate on channels such as Bluetooth.
Aside from the results of our algorithm on the large dataset, we could not man-
ually find apps performing this type of authentication for the specific channels
of our interest. We postulate that this is due to a lack of awareness in pro-
grammers, who build their code relying on sources such as the official Android
documentation, and the network Stack Overflow for learning how to use a par-
ticular technology (e.g. Bluetooth). It is common to reuse sample code snippets
from these sources with minimal adapting [41]; since they seem not to address
the problem we are stating in any way, the issue is propagated, and any app
using these technology is potentially vulnerable. It is worth noting that the
actual impact of the vulnerabilities, as well as the difficulty of hypothetical at-
tacks, greatly depend on the functionalities of the specific app being attacked,
and need to be evaluated on a case-by-case basis. The evaluation of the general
danger introduced by the lack of app-to-app authentication on a large scale is
out of the scope of this research. We think that generally, vulnerabilities based
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on apps accepting unauthenticated content would be medium-impact (as in per-
mitting phishing and/or DOS at best), but we cannot exclude the existence of
particular apps where it would be possible to obtain more severe effects (e.g.
arbitrary code execution).

Limitations of our analysis

From the experiments, our system shows excellent performance in detecting the
presence of CATCH vulnerabilities in Android apps. However, the results have
to be considered together with the limitations of our technique. Our analysis
suffers from the general limitations of static analysis. One of these limitation
concerns the precision of the model of apps control flow. Argus-SAF is not able
to handle particular intra-component and inter-component transitions, such as
ones performed with reflection, and it cannot correctly model concurrency [63].
In practice, reflection is not commonly used by Android developers to perform
normal tasks such as transitions between Activities. Instead concurrency is
definitely present in peer to peer apps; to avoid blocking input/output, sepa-
rate threads are typically spawned on demand to handle read/write operations
on the channel (this applies to both Bluetooth and Wi-Fi Direct). In case of
authentication, we expect to see controls on data read from the channel imme-
diately after a read operation, following our authentication model. So, while
it is true that it would be a problem to correctly model authentication flows
that involved concurrent operations, there is no reason to expect authentication
occurs in a separate thread in reality (see Listing 2.12). To further validate our
results (Section 2.1.5) we manually analyzed 20 Android apps from 662 dataset
apps and we check whether threads functions defined in the apps include any au-
thentication scheme (false negative results). Our manual analysis shows that no
one of the app functions threads analyzed contained any authentication scheme.
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Listing 2.12: Threads in Bluetooth communication

1 // Main thread code

2 new ReadThread().start()

3

4 ...

5

6 // ReadThread code

7 public void run() {

8 ...

9 if (socket != null) {

10 InputStream inputStream;

11 try {

12 inputStream = socket.getInputStream();

13 inputStream.read(buffer);

14 // We expect authentication happening here,

15 // not in a separate thread

16 }
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Chapter 3

Conclusion

In my thesis, I applied the use of static and dynamic analyses to the topic of
software protection in the Java environment. We have seen how control-flow
information can be useful in all the problem that have been faced:

• in protecting the JVM, dynamic control-flow information has been crucial
to reconstruct the execution trace, enabling distinction between benign
and malicious samples

• in deserialization chain analysis, an accurate CFG has been the basis for
derivation of the call graph and the data dependency graph

• in the analysis of Android APKs, an accurate model of the app’s control-
flow has been necessary to perform our data dependency analysis

We have also seen the benefits brought by data-flow information:

• in exploit validation, data-flow analysis and type propagation have possi-
ble to distinguish between exploitable and non exploitable deserialization
chains, effectively improving the precision of a naive call graph search

• in Android app analysis, type propagation applied to the inter-method
DDG has enabled us to detect the absence of authentication schemes in
code (based on our threat model).

Even though they are affected by the discussed limitations, the positive
results obtained in the presented novel works have proven the effectiveness of
the applied techniques, in the limited research scope of each work.

Some of the limitations are fundamentally tied to the type of the performed
analyses, for instance in the case of reconstructing information related to re-
flective method calls with static analysis (a problem which affects both chain
generation/validation in Java and authentication analysis in Android). By ap-
plying multiple techniques to the same problem, it is sometimes possible to build
a comprehensive defense approach. In our work on the topic of Java deserial-
ization attacks, we have tried to view the problem under different perspective;
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we have designed both a dynamic defense system, which can be applied to the
JVM without changing application code, and we have also made steps towards
automatic exploit generation and validation with our tools ChainsFinder and
ChainsAnalyzer.

Some security problems in high-level software are due to the architecture of
the framework that developers have to work with, and also their lack of awere-
ness of security issues. This statement certainly applies to both deserialization
of untrusted data (in which the developer of a class is rarely aware of its poten-
tial interaction with other benign code which could lead to security problems)
and high-level app authentication in the Android environment, which not only
lacks any sort of API to allow developer to perform such important task in a
standardized, secure way, but also has no documentation on the problem. In
our work, we have tried to show such risks, and highlighted the importance of
either building frameworks that are secure by design, to prevent unintentional
bug introduction from the developers, or raising developer awareness on poten-
tial security issues, possibly providing them with semi-automated software tools
for code validation.

I personally think that the situation regarding the problems we studied is
going to evolve, and in a positive direction. Awareness of information secu-
rity topics is constantly growing in both the software engineering community
and the industry management, and it is in the interest of maintainers of pro-
gramming languages to provide secure technologies to companies, and end users
in general. At the time of writing, Oracle has already included a section re-
garding deserialization in the Secure Coding Guidelines for Java SE1, stating
that “Deserialization of untrusted data is inherently dangerous and should be
avoided”. It is important that such directions are clearly imparted and not un-
derestimated, as education of the developers’ community is crucial for software
quality and security. As most areas of information security, software protection
is constantly improving, as new techniques emerge for discovering and treating
vulnerabilities. With software codebases becoming bigger and more complex
everyday, automated and semi-automated approaches are already paramount
in software validation for security. For example, the development and release
cycle of Javascript engines includes vulnerability testing via fuzzing. This trend
of increasing importance of such techniques gives a clear direction to research,
which will keep shifting from manual to automated analysis.

1https://www.oracle.com/technetwork/java/seccodeguide-139067.html (visited-
December 2019)
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