
SAFEWEB: A Middleware for Securing
Ruby-based Web Applications

Petr Hosek1, Matteo Migliavacca1, Ioannis Papagiannis1, David M. Eyers2,
David Evans3, Brian Shand4, Jean Bacon3, and Peter Pietzuch1

1 Imperial College London, {ph1310,migliava, ip108, prp}@doc.ic.ac.uk
2 University of Otago, dme@cs.otago.ac.nz

3 University of Cambridge, {firstname.lastname}@cl.cam.ac.uk
4 ECRIC, National Health Service, brian.shand@cbcu.nhs.uk

Abstract. Web applications in many domains such as healthcare and
finance must process sensitive data, while complying with legal policies
regarding the release of different classes of data to different parties. Cur-
rently, software bugs may lead to irreversible disclosure of confidential
data in multi-tier web applications. An open challenge is how developers
can guarantee these web applications only ever release sensitive data to
authorised users without costly, recurring security audits.
Our solution is to provide a trusted middleware that acts as a “safety
net” to event-based enterprise web applications by preventing harmful
data disclosure before it happens. We describe the design and imple-
mentation of SafeWeb, a Ruby-based middleware that associates data
with security labels and transparently tracks their propagation at differ-
ent granularities across a multi-tier web architecture with storage and
complex event processing. For efficiency, maintainability and ease-of-use,
SafeWeb exploits the dynamic features of the Ruby programming lan-
guage to achieve label propagation and data flow enforcement. We evalu-
ate SafeWeb by reporting our experience of implementing a web-based
cancer treatment application and deploying it as part of the UK National
Health Service (NHS).

1 Introduction

Enterprise web applications in areas such as healthcare, financial processing and
government services must selectively expose sensitive data to authorised sets of
web users. For example, a cancer researcher may want to query a centralised
patient database over the web for anonymised health records of patients that
have a given type of cancer. The costs of inadvertently disclosing confidential
data to the wrong users due to implementation errors in web applications are
high—hospitals and medical practitioners in the UK are legally liable for unau-
thorised disclosure of patient data without prior consent. Due to new legisla-
tion introduced in 2010, organisations can be fined up to £500,000 for security
breaches [25]. In this paper, we address how to implement secure enterprise web
applications that are guaranteed to comply with data protection policy.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/10636694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Enforcing a data protection policy end-to-end, i.e. , across an entire multi-tier
web application, is challenging. An implementation error in any tier of a web
application may result in unauthorised data disclosure. Developers may intro-
duce software bugs inadvertently or based on misunderstandings of requirements.
Achieving correctness is even more challenging for web applications that process
different types of data from multiple domains, such as hospitals, laboratories
and insurance providers, each with their own security requirements.

Current best practices include manual source code auditing for new applica-
tions, which is error-prone and costly. Tools for static analysis such as Pixy [10]
validate that the implementation satisfies given invariants. Their use, however,
requires expert knowledge to formalise invariants and they cannot handle large
heterogeneous distributed web applications due to these applications’ size and
complexity.

We make two assumptions: (1) In terms of the threat model, we assume that
the external environment is hostile, but that application code is not explicitly
malicious, even if threats might be caused by bugs in the implementation. (2) We
assume that stakeholders are willing to accept some performance overhead—in
terms of request throughput and latency—for increased security.

Our solution is to propose a middleware that implements a “safety net” by
providing a data-centric security approach that integrates well with multi-tier
web applications. Our middleware is based on two key ideas: It decouples the
processing of confidential data from the handling of web requests. In addition, it
tracks data as it flows through the web application in order to ensure its confi-
dentiality and integrity. This means that implementation bugs in the web request
handling logic cannot cause any unauthorised confidential data to be disclosed.
By tracking data propagation by means of security labels, the middleware per-
forms automatic and appropriate compliance checks at the boundaries between
application components without relying on developer support. This reduces the
effort required for security audits.

We demonstrate the practicality of this approach by describing SafeWeb,
a Ruby-based middleware that enforces data flow policy across web applica-
tions. SafeWeb consists of an event-processing backend that processes data
asynchronously from a confidential data store according to application-specific
business logic. Events are associated with security labels, which are tracked by
SafeWeb as they propagate between event processing components. This mecha-
nism is implemented efficiently through isolation of processing components using
Ruby’s safe levels. A separate web frontend serves processed event data in re-
sponse to web requests while maintaining security labels at the variable level
using Ruby’s meta-programming features. Before sending data to web users,
SafeWeb validates the associated security labels against user privileges, thus
preventing violations of the data protection policy.

SafeWeb is designed to integrate well with existing security practices at
an organisational, architectural and infrastructure level. From an organisational
viewpoint we complement existing security practices, such as network parti-
tioning through firewalls and security code auditing, without requiring signif-

icant changes. At the infrastructure level, SafeWeb can easily be applied to
production environments. In contrast with classical label-based approaches, we
avoid complex changes in the language runtime. We are able to provide tracking
purely at the middleware level through careful exploitation of Ruby’s meta-
programming and security features.

We evaluate SafeWeb in a real-world healthcare environment by develop-
ing MDT web portal, a web application that provides information about ongoing
cancer treatment of patients to teams of medical practitioners at hospitals. We
discuss the deployment of this application using SafeWeb as part of ECRIC—
an organisation within the UK National Health Service (NHS) that collects rel-
evant patient-sensitive oncological data. We show that SafeWeb can guarantee
that medical records are only exposed to authorised users—even with imple-
mentation bugs in the processing logic of the MDT web portal application. It
integrates well with existing information systems and introduces only minimal
overheads in terms of application development effort and performance.

In summary, the main contributions of the paper are: (1) a middleware for se-
curing enterprise web applications that uses event processing to decouple queries
from sensitive data; (2) an application of information flow control techniques
across all tiers of a web application to prevent non-compliant disclosure of sen-
sitive data to users and an efficient implementation of data tracking using Ruby
language mechanisms; (3) an evaluation of this approach in a healthcare envi-
ronment using a realistic web application for supporting cancer treatment at
hospitals.

In §2 we provide background on the security requirements of web applications
dealing with confidential data. Then, we present a general data-centric security
mechanism addressing these requirements, explaining why existing technologies
cannot be applied in production environments (§3). The SafeWeb middleware
is described in §4, focusing on the different components of its architecture. We
evaluate our approach in §5 through an implementation of a web application
using SafeWeb, describing its security properties and providing a performance
analysis. In §6, we discuss related work, and we draw conclusions in §7.

2 Data Confidentiality in Enterprise Web Applications

Organisations in the public and private sector collect, process and analyse per-
sonal data to improve the quality of the services that they offer. Due to the
sensitivity of personal data, maintaining its confidentiality is crucial. As a con-
sequence, it is necessary to verify that applications are not vulnerable to compro-
mise from external attacks and that confidential data is handled in compliance
with the policies set by organisations.

Current best practices to maintain data confidentiality in applications are
costly, error-prone and time consuming: organisations adopt a series of security
measures including risk assessments, internal security code reviews and external
security consultations. These measures are intertwined with project development
to the point that development of new services is limited. For example, health-

care organisations struggle to develop new medical applications that have the
potential to improve patient care quickly and cost-effectively.

Middleware can be used to reduce the cost of development and deployment of
new applications by moving security auditing effort from applications to reusable
middleware components. In this paper, we describe a middleware that can in-
crease the trust placed in applications that process and provide access to confiden-
tial data by placing applications within a “safety net” that, within the constraints
of a production environment, protects data from compromise and accidental dis-
closure. The goal is to satisfy the following two security requirements—both of
which are discussed in the context of a healthcare example in the next section:

S1 Access to confidential data by external users should be static and one-way;
it should not be possible from the outside to change which confidential data
items are exported from an internal network to the public Internet, or to
alter existing data stored within the internal network.

S2 Confidential data should be protected end-to-end; implementation errors in
an application should not result in the disclosure of confidential data and
violations of the specific security policy for that application.

2.1 Case Study: A Cancer Registration System

In this work, we consider the following real-world case study. The Eastern Can-
cer Registry and Information Centre (ECRIC) is part of the UK National Health
Service (NHS). ECRIC aims to produce a comprehensive picture of cancer cases
in the East of England. It receives patient data from many sources including
so-called Multidisciplinary Teams (MDTs), hospital Patient Administration Sys-
tems (PAS), pathology laboratories and the Office of National Statistics (ONS).

ECRIC’s software infrastructure has recently been chosen as the national
cancer registry platform for England. Most of its software systems are imple-
mented in the Ruby programming language for ease of development and due
to existing developer expertise. The main cancer registration database, hosted
in a secure private network, holds structured information about patients, tu-
mours, and associated treatments. Data are imported into the main database
from different sources and processed with the help of the domain knowledge of
staff. ECRIC staff can also operate off-site by using an external web application
server that has been extensively audited for security.

Based on discussions with ECRIC, we identified a new application that they
would like to offer: an MDT web portal that provides relevant data that can
support the operation of MDTs at hospitals. MDTs treating oncological pa-
tients currently provide reports to ECRIC about their patients through secure
email and paper forms. ECRIC wants to feed back both summary and detailed
patient information to MDTs, letting them compare data quality with their peers
and explore the underlying data to discover the cause of any discrepancies. At
present, resolving discrepancies is laborious, because staff at ECRIC have to
manually extract and release the relevant records for each MDT. In summary,
the MDT web portal should satisfy the following functional requirements:

F1 Doctors and MDT co-ordinators that are members of an MDT can log into
the MDT portal using a web browser and consult the details of patients
treated by that MDT, with the option of providing feedback (handled ex-
ternally, e.g. via secure NHS email).

F2 Doctors and MDT co-ordinators can consult various metrics about their pa-
tients, e.g. the level of completeness of the provided information or projected
survival statistics of patients under treatment.

F3 MDT co-ordinators can put those metrics into context by comparing them
with each MDT’s average in the same region or with regional aggregates.

The security policy for the MDT web portal is as follows:

P1 Details about patients can be consulted only by members of the MDT that
treats them. MDT-level aggregates can be consulted by all MDTs in the
same region. Regional-level aggregates can be seen by all MDTs.

A design of the MDT web portal as a standard web application using the
main ECRIC database would not be acceptable. The MDT web portal requires
interactive access to patient-level data, in violation of security requirement S1 —
an implementation bug could compromise the integrity and the confidentiality of
the whole ECRIC database. Furthermore, errors in the MDT web portal could
violate its security policy, conflicting with S2.

Enforcing the MDT security policy P1 with a traditional web application
architecture is challenging. The MDT web portal has a data flow path for confi-
dential data that involves multiple components at different layers: data must be
extracted from the ECRIC database, processed in an application-specific way,
and finally presented by a web front-end. Any component in the layers involved
could cause unauthorised data disclosure. The security policy is difficult to en-
force through a composition of local mechanisms because it is an end-to-end
property. The large amount of source code that needs to be trusted increases the
risk of defects and incurs a high code review effort.

In addition, the mechanisms used to protect from policy violations must
operate at a fine data granularity. For example, the application must distinguish
between confidential information at the level of single patients treated by an
MDT and access to aggregated data at MDT or regional level.

In summary, we need a security mechanism that (a) is able to enforce end-
to-end data flow guarantees, reducing the amount of trusted source code, and
(b) allows for fine-grained, data-centric protection of confidential information. In
the next section, we describe how controlling the propagation of security-labelled
data through the application, at the middleware level, can achieve this.

3 Controlling Data Propagation

Traditional access control models achieve security by restricting access to re-
sources: a principal, such as a user who owns data, can delegate to other prin-
cipals a subset of operations. In such a model, it is easy to control information

release but difficult to control its propagation. Once a user has delegated the priv-
ilege to read data to another user, information cannot be protected anymore—
e.g. the second user can write the data to a public Internet site. Thus, under a
traditional (discretionary) access control model, secure data processing means
that processors must be trusted—a data processor authorised to read confiden-
tial patient data must not disclose it to unauthorised parties.

The problem of unauthorised data disclosure is addressed by information
flow control (IFC), a mandatory access control model originally developed for
military systems [1, 6]. IFC protects the propagation of data. We can model an
IFC system as a set of inputs, outputs and processing components. An input
component, acting on behalf of a principal, can attach a tamper-resistant se-
curity label to the data—e.g. a label can be used to protect the confidentiality
of a patient medical report. The security labels can then be used to track the
propagation of data through the system and middleware can enforce end-to-end
restrictions on the permitted data flow. For example, if a component producing
patient records labels every record, labels can prevent a mailing component from
including records in emails, independently of the processing.

IFC systems can guarantee that security labels are preserved by controlling
all data flow paths between components. When labelled data is copied or trans-
formed by a component, the IFC system maintains the labels. When labelled
data is processed or combined with data with different labels, the resulting la-
bels are a composition of the previous labels, i.e. the system preserves all the
data flow restrictions of the original labels. To achieve this, IFC systems require
components to be “sandboxed,” i.e. isolated from one another and from the ex-
ternal environment. Components can only communicate through primitives that
are under the control of the IFC system.

To output data protected by a label, a component must have a declassification
privilege [11]. This enables the component to remove the label from the data and
use these data without restriction. The original owner of the data can restrict the
data flow of, for example, a patient record by assigning declassification privileges
only to components acting on behalf of treating doctors.

Labels can also be used to protect data integrity, which is the dual of con-
fidentiality. The creator of an integrity label delegates to other components an
endorsement privilege to add this label to data. Components can then trust only
data that is “guaranteed” by this integrity label.

3.1 Applying Information Flow Control

IFC is a good fit for developing secure web applications because it can detect and
contain the effect of application bugs which could otherwise violate a security
policy (cf. security requirement S2). Note that we assume that application code
is not intentionally malicious; this problem can be tackled by organisational safe-
guards such as only allowing trusted developers to develop applications. Instead,
we focus on protection from unintentional software bugs.

We describe how IFC achieves our security goals in the context of the MDT
web portal application from §2.1. Consider the security policy P1 for the MDT

application. After creating a label for each patient, a component can (i) attach
the label to each patient’s data as it enters the system and (ii) assign the declas-
sification privilege over the label only to components that execute on behalf of
MDT principals treating the patient. Based on IFC enforcement, this guarantees
that each patient record can only be accessed by the correct MDT, independently
of the processing that happens between these two endpoints.

In the more complex case of MDT-level aggregate measures, which should
be visible only to MDTs in the same region, label tracking is overly conservative
because aggregates are considered as sensitive as the data of all involved patients,
preventing access by any MDT. Therefore a component trusted with patient data
must (i) remove all patient labels from aggregate data, (ii) relabel the aggregate
data with an MDT-specific label and (iii) assign a declassification privilege over
the MDT label to all MDTs in the region. The same mechanism can be used for
regional-level aggregates by defining regional-level labels.

In summary, the security policy of the MDT application can be enforced by
applying these three kinds of labels with corresponding privileges. Any compo-
nent that is not policy compliant due to implementation errors cannot violate
the MDT security policy. For example, a component for computing statistical
aggregates would be constrained in terms of the data that it can disclose publicly.
Even if its implementation is too large and complex to be audited, a software bug
in, say, its logging function, which might otherwise reveal confidential patient
data in externally accessible log files, would be prevented by IFC enforcement.

3.2 Practical Information Flow Control for Web Applications

In practice, applying a strong security model such as IFC to web applications
is challenging. For IFC to be used, it must have low impact on developers and
thus integrate with familiar architectures, programming models and languages.

Recently, researchers have proposed IFC techniques to improve the security
of applications. Jif [12] extends the Java type system to include labels and checks
them statically. DIFCA-J [31] rewrites Java bytecode to propagate labels in JVM
operations. Trishul [13] and Laminar [19] modify the JVM to track labels. DE-
FCon [11] isolates threads allowing communication only through labelled data.

All of these systems adopt a “strict” tracking model that is invasive to the
programmer and the system architecture. IFC tracking in these systems strives to
avoid false negatives, as a single false negative if exploited could compromise the
security of the whole platform. However, this strict application of IFC leads to
false positives that require applications to be restructured to remove ambiguity
in data flow tracking. Strict IFC also requires complex implementations: mature,
industrial-strength implementations of IFC systems are currently lacking. Adop-
tion of research prototypes in a production environment is undesirable because
they are difficult to verify, requiring expert knowledge of JVMs, runtime libraries
and bytecode rewriting techniques. Maintenance is also problematic when new
versions are released by upstream developers.

In contrast, our IFC tracking approach is inspired by Resin [30], which only
targets source code that does not actively try to evade data tracking. It is thus

Event Processing Engine

Event Broker

Web Application

Event Processing Unit

IFC Jail

Main
DB

Event-processing backend Web frontend

Application
DB

Web
DB

Unit 1

Taint Tracking

Application logic

Event Processing Unit

IFC Jail

Unit 3

Event Processing Unit

IFC Jail

Unit 2

Request Response

Policy

Labelled data flow

KEY

Unlabelled data flow

User

Fig. 1. Overview of the SafeWeb middleware architecture

possible to reduce the number of false positives, accepting a few false negatives
which are unlikely to be exercised by non-malicious code. IFC is thus used as
a safety net to catch implementation bugs, instead of acting as the primary
method of security policy enforcement. This approach integrates well with cur-
rent security practices adopted by organisations.

Our work differs from Resin in two key aspects. (1) We target enterprise
web applications instead of stand-alone applications built directly on a specific
database. In enterprise settings, it is important to support messaging services
in the backend with an appropriate information processing model. To the best
of our knowledge, we are the first to integrate IFC with two different processing
models at different granularities (cf. §4)—a proactive event-based model in the
backend with data tracking at the event level and a reactive web language model
in the frontend with tracking at the variable level. (2) We manage to support
IFC in the middleware without significant changes to the language runtime.
By using the Ruby language support for meta-programming and its powerful
security primitives, we avoid changes to the Ruby interpreter, leading to an IFC
implementation that is easy to understand, verify and maintain.

4 SAFEWEB Middleware Design

In this section, we describe SafeWeb, a Ruby-based middleware that separates
the processing of confidential data from presentation aspects, while enforcing
data flow constraints throughout the application. As shown in Figure 1, Safe-
Web consists of two parts: an event processing backend (left), which realises
the application logic, and a web frontend (right), which handles users’ requests
based on processing results. Application logic in SafeWeb is implemented in an
event-based fashion through one or more processing units (i.e. application com-
ponents), which produce and/or consume events. This architecture largely de-

couples the processing of confidential data from the handling of web requests [29]
and creates a unidirectional data flow from the backend to the frontend, in com-
pliance with security requirement S1.

The event processing backend hosts the application logic for processing con-
fidential data. Events are created from confidential data retrieved from a data
source (illustrated as the Main Database in the figure) and labelled appropri-
ately. Event Processing Units act as generators, filters or processors of events
and exchange labelled events through an IFC-aware Event Broker. Units are
constrained in their operation by the Event Processing Engine, which acts as a
run-time environment for application components. Its IFC Jail controls commu-
nication of units with the environment and preserves labels during event commu-
nication. Privileges for units over specific labels are configured through a data
flow Policy. Result events are stored with appropriate labels in an Application
Database after processing.

The web frontend serves synchronous web requests from users by accessing
the application database. State that is specific to a given web session is stored
in a separate Web Database to isolate it from application data. Labels from
the application database are propagated in the web application by SafeWeb’s
runtime Taint Tracking library and are checked when generating responses. As a
result, security labels are associated with data throughout the processing pipeline
and checked at boundaries between components with respect to the application
policy, thus satisfying requirement S2.

4.1 Events with Security Labels

Event processing units communicate through events. Data models for events can
vary widely [7]. For ease-of-use, we adopt one of the simplest yet popular choices:
events in SafeWeb consist of a set of key-value attribute pairs and an optional
data payload. The keys, values and the body are untyped strings.

SafeWeb associates a set of security labels with each event. There are two
types of labels, confidentiality labels and integrity labels. Confidentiality labels
prevent sensitive data from escaping a given system boundary, whereas integrity
labels are used to prevent low-integrity data from entering parts of an applica-
tion. Confidentiality labels are “sticky”—once they are associated with an event,
all events that are derived from that event will also contain those labels. In con-
trast, integrity labels are “fragile”—they are applied to an event only if all the
events that this event was derived from also contain the same integrity labels.

Labels are represented as URIs. For example, label:conf:ecric.org.uk/
patient/33812769 could be used as a confidentiality label to protect the data of
a specific patient, while label:int:ecric.org.uk/mdt could act as the integrity
label for all data contained within the whole MDT application. In the MDT ap-
plication, an event processing unit periodically reads unlabelled patient records
from the main ECRIC database and produces events which are labelled accord-
ing to the encountered patient ID. This operation does not require privileges—it
is always possible to add extra confidentiality labels to events. MDT-level ag-

gregates, such as survival statistics or measures of information completeness
(cf. §2.1), are labelled with a confidentiality label specific to that MDT.

Label enforcement is managed using associated privileges. Two types of priv-
ileges are used for confidentiality labels. The clearance privilege is used to access
information protected by a confidentiality label. The privilege to make labelled
information public by removing the label is referred to as declassification. Anal-
ogous privileges for integrity labels exist: clearance to low integrity and endorse-
ment. To simplify presentation, we consider only confidentiality labels and the
associated privileges in the rest of the paper.

Privilege assignment and checking is performed in SafeWeb by the event
processing engine and the web frontend. Privileges associated with labels are
assigned directly to units (in the backend) and requests (in the frontend) through
a policy specification file. For more complex policies with dynamic privileges, a
label manager could delegate privileges to units at runtime.

4.2 Event Broker

Units communicate by publishing events and by subscribing to events that they
are interested in. To dispatch events among units, SafeWeb uses an event broker
that matches subscriptions with published events. To support fine-grained data
processing, SafeWeb uses a topic-based subscription language with optional
content filtering on event attributes within a topic [7].

The event broker filters events according to their security labels. This is used
to restrict the set of events that units can receive: for an event to be delivered to
a subscriber, the set of its confidentiality labels must be a subset of those labels
for which the subscriber possesses clearance privileges.

The event broker uses a modified version of the Streaming Text Oriented
Message Protocol (STOMP) [23]—a simple, extensible, HTTP-inspired message
protocol. It is language- and platform-agnostic and an open-source implementa-
tion [24] exists for Ruby. In STOMP, each request consists of a command, such as
CONNECT, SEND or SUBSCRIBE, a set of optional headers and an optional body. A
destination header is used to match subscriptions with publications by topic.
An optional SQL-92 selector header specifies content-based subscriptions.

The implementation of our IFC-aware event broker is based on the STOMP
implementation but has been extended with SSL support at the transport layer.
At the dispatching layer, we have changed the matching semantics to respect
labels, which are encoded as event headers with special semantics in SEND and
SUBSCRIBE messages. In addition, subscriptions include unique identifiers to sim-
plify the handling of subscriptions issued by different units. The client side of
the STOMP implementation uses the event-based EventMachine I/O library [8].

4.3 Event Processing Engine

The event processing engine in SafeWeb provides a framework to support and
control unit execution. Its key functions are (1) control of unit execution by

1 subscribe '/patient report', 'type=cancer' do |event|
2 list = get 'patient list'
3 list push event[:patient id]
4 set 'patient list', list
5 end
6 subscribe '/next day' do |event|
7 list = get 'patient list'
8 publish '/daily report', list, :remove => $LABELS,
9 :add => ['label:conf:ecric.org.uk/patient list']

10 end

Listing 1. Example unit

checking and tracking security labels, (2) assignment of privileges to units and
(3) restriction of access to the environment. An event processing unit is realised
as one or more classes that implement the business logic of the application.
The engine configures, instantiates and runs units and provides communication
facilities using the event broker.

Listing 1 shows a unit that computes a daily list of patients with pro-
cessed reports. The unit registers subscriptions for events published on the topics
patient report (line 1) and next day (line 6). When a subscription is issued by
a unit, the engine reads the set of labels from the unit’s policy file for which the
unit has clearance privileges. The engine then issues a subscription request to
the broker with this set of labels; this set is used to check that a matching event
can be processed by the unit. To support stateful units, the engine provides a
unit-specific key-value store with labels associated with keys. It can be used for
reading (lines 2 and 7) or storing (line 4) values, thus allowing different callbacks
to communicate by exchanging state between them.

The engine prevents units from inadvertently disclosing confidential data
because it controls the labelled events that they publish and isolates them from
the external environment. We describe the two mechanisms for this in turn.

Label tracking. To ensure correct labelling, the engine associates a set of labels
with the execution of a callback. This set, accessible to units as $LABELS, is
initialised to the set of labels of the event being processed. When an event is
published, the engine attaches all labels in $LABELS to the event. With each
publish call, the unit can specify a set of labels to add or remove from the
published event (lines 8 and 9), although removal is only permitted when the
unit has the appropriate declassification privilege.

As values in the key-value store are labelled on a per-key basis, when a value
is read from the store, $LABELS is updated to reflect its confidentiality—all the
labels associated with the value’s key are added to $LABELS. When writing to the
store, all confidentiality labels in $LABELS are saved as the key’s confidentiality,
optionally adding and removing labels analogous to the publish call.

By maintaining labels from the received events to the published ones, and
by labelling all datapaths through the shared key-store appropriately, confiden-
tiality labels are preserved. However, unit callbacks could access other forms of
unlabelled shared state, which would ignore label protection. In addition, they
could bypass the event broker and use external APIs for console, disk or net-

Engine
Startup isolated

execution
($SAFE=4)

normal
execution
($SAFE=0)

KEY

Unit1

Callback

Engine
STOMP
Client

2
3

Fig. 2. Isolation of units and callbacks
performed by the event processing engine

Sinatra Web Framework

SAFEWEB Taint Tracking Lib
Application

DB
Web
DB

Request Response

Application logic

User's Privileges

2

1

3

4

Fig. 3. Variable-level taint tracking in
the web frontend

work I/O, thus disregarding labels completely. To prevent this, the engine must
execute unit callbacks in isolation.

Isolation. The goals of isolation are twofold: to prevent the use of I/O operations
and to prevent access to variables outside of the callback local scope, i.e. , global
variables, instance variables and local variables of enclosing scopes.

To isolate units from I/O and access to global variables, we use Ruby’s safe
levels. They restrict the execution mode of Ruby code and provide different kinds
of isolated environments. $SAFE is a thread-local global variable that controls
the current safe level. When set to safe level 4, it creates the most restrictive
environment with the following irreversible effects on the current thread: (i) no
access to I/O operations, (ii) all new objects are marked with a flag called “taint”
and (iii) no write access to any object that is not tainted.

In Figure 2, we show how safe levels are used to achieve callback isolation.
The engine executes units in a new thread, after setting $SAFE=4 to prevent the
unit’s initialisation code (step 1) from performing I/O operations. Units register
callbacks (step 2) that execute when events arrive. When the STOMP client
library that interacts with the event broker receives a matching event, it creates
a new thread, sets $SAFE=4 and executes the callback (step 3). The callback code
cannot perform I/O or store events in global variables. It can only store events
in the unit’s key-value store that is tainted explicitly during unit allocation.

Isolation in safe level 4 still allows a callback to access variables of its en-
closing scopes. To prevent this, we duplicate these variables when the callback is
registered by using the meta-programming features of the Rubinius runtime [20].

Some units, however, need access to APIs that perform I/O, e.g. units that
import and export events between the event engine and databases. To support
this, the engine allows privileged units to execute without isolation at $SAFE=0
and, thus, access I/O facilities. This effectively allows them to declassify any
received event. To limit the power of privileged units, the engine prevents them
from receiving events with certain labels by withholding their clearance privilege.

4.4 Web Frontend

The web frontend of SafeWeb presents results from the backend to users and
enforces IFC without requiring changes to web applications. Web developers
could be not fully aware of the policy requirements of the data that they present

or, more often, they may introduce implementation bugs leading to unintended
data disclosure. In the web frontend, SafeWeb’s taint tracking library labels all
data to reflect the confidentiality of the principals that the data correspond to.
When an application that is not policy compliant attempts to return incorrect
data to the client, the operation can be aborted, preventing data disclosure.

The web frontend has a traditional, database-driven architecture: a client is-
sues an HTTP request, the request is served by the application server using the
application database, and the HTTP response returns the result to the client.
Since the application server handles requests from all users, it must have access
to the data that any user may receive, i.e. all sensitive data in the applica-
tion database. As a consequence, the web application would have to be trusted
to remove all labels associated with data. Clearly, this would violate security
requirement S2 because any implementation error in the web application could
result in inadvertent disclosure of data that should be visible only to a particular
group of users, such as a given MDT.

To achieve the end-to-end security requirement, SafeWeb tracks data at a
different granularity in the web frontend than in the event-processing backend.
Instead of labels being attached to events, they are associated with individual
variables. For example, when a variable n stores a patient name, n will carry a
label that conveys the confidentiality of the patient name.

Labels are checked by SafeWeb when the web application returns an HTTP
response to a client. For example, before the content of variable n is sent to a
client, the client’s privileges are validated to be a superset of the confidentiality
labels associated with n. As described next, this is sufficient to provide end-to-
end confidentiality guarantees without requiring a new application architecture,
which would be challenging to adopt in a production environment [15].

Figure 3 shows the operation of SafeWeb’s taint tracking library for Ruby.
In step 1, an HTTP request arrives at the server. The request is authenticated
and the confidentiality privileges of the associated user are retrieved from the
web database. In step 2, the application queries the application database for the
data needed to serve the request. SafeWeb’s taint tracking library transpar-
ently adds the labels produced by units in the backend to the data fetched from
the application database. In step 3, the application produces a response by car-
rying out application-specific processing of the data. SafeWeb’s taint tracking
library alters Ruby program statements and library methods to propagate labels
correctly; e.g. , when two strings are concatenated, the resulting string receives
both operands’ labels. In step 4, before sending the response to the user, the
response’s label is compared to the user’s privileges from step 1—unless the user
has the required privileges, the operation is aborted.

SafeWeb implements variable taint-tracking in Ruby using labels as follows.
Its taint-tracking library redefines Ruby’s String and Numeric subclasses (1) to
store labels within each instance and (2) to propagate labels correctly across
method invocations. For example, SafeWeb’s taint tracking library should
propagate labels upon string concatenation. For this, it declares a new con-
catenation method in the String class called nconcat(). The taint tracking

library then aliases the existing “+” method to call nconcat() and propagate
labels. From then onwards, the runtime transparently invokes the redefined “+”
method when two strings are concatenated. Since we only support non-malicious
code (§3.2), these changes are enough to effect label propagation.

The implementation exploits a standard meta-programming feature of Ruby
and Ruby’s pure object-oriented foundations. Ruby classes are open, all oper-
ators are defined as methods, and method definitions can change at any time.
Implementing a similar taint-tracking library in other popular web languages,
such as Java [4] or PHP [30], would require more extensive changes to the lan-
guage runtime, making maintenance difficult in a production environment.

SafeWeb supports Ruby web applications running on the Rubinius run-
time [20] and using the Sinatra web framework [22]. We use Rubinius due to its
ability to manipulate the regular expression variables ($~, $1, etc.) directly. This
is necessary to add taint tracking to Ruby’s regular expression methods. Sinatra
is used for its well-defined interception points of HTTP requests and responses.
This allows SafeWeb’s taint tracking library to intercept all communication to
and from the client and attach label checks or fetch user privileges.

We do not introduce explicit features to prevent traditional Cross-Site Script-
ing (XSS) or SQL injection (SQLI) attacks. Ruby objects support a taint

method that marks a given object as originating from the user. The Ruby run-
time stores this information per object and propagates it when strings are pro-
cessed, similar to our label propagation. In the context of web applications, this
mechanism can be used to ensure that every string is sanitised before being used
in a sensitive operation, such as an HTML response or an SQL query.

5 Evaluation

The goals of our experimental evaluation are to explore the effectiveness of the
SafeWeb middleware in preventing unauthorised data disclosure and to mea-
sure its performance overhead. We evaluate its security properties as part of the
prototype implementation of the MDT web portal application.

5.1 Case Study: MDT Web Portal Application

As shown in Figure 4, the MDT web portal application uses three units: (a) A
data producer obtains data from the main ECRIC database, leveraging the ex-
isting ECRIC framework for data access. It reads fields from different tables,
labels them appropriately according to MDT and patient ID and publishes them
as events to the event broker. For the sake of simplicity, we use only MDT-level
labels as these are sufficient to satisfy our security requirements. (b) A data ag-
gregator continuously collects all events related to individual cancer cases and
combines their data. It produces aggregated records required by the MDT web
application to satisfy functional requirements F1–F3. Implementation errors will
not disclose data because of the isolation mechanism of SafeWeb. (c) Finally,
a data storage unit, which has declassification privileges for all MDTs, handles

Cancer
Registration
Database

Internal webapp
server

ECRIC Intranet ECRIC DMZ

SAFEWEB frontend:
MDT feedback

server

External webapp
server

Hospital 1

NHS-wide N3 network

MDT coordinators
Clinicians

Patient
notes

On-site ECRIC staff

Arrows show direction
of connections

Off-site ECRIC staff

Previous workflow

Fi
re

wa
ll

App
DB

Event Processing
Engine

Event
Broker

App
DB

Replication Web
DB

1

2

3

4

5 6

Data producer

Data aggregator

Data storage

a

b

c

Fig. 4. Deployment of the MDT web portal application using SafeWeb within
ECRIC’s infrastructure

data persistence. It stores processed records with their security labels in the
CouchDB application database. Security features of SafeWeb (i.e. IFC and
strong isolation) allow the application to satisfy the security policy P1.

The Sinatra-based web frontend of the application uses CouchRest [5] to
access CouchDB, and ERB for embedding Ruby in web pages. SafeWeb’s taint
tracking library enforces authentication centrally by adding hooks to all defined
Sinatra rules. User accounts and their label privileges are stored in the web
database. Currently, the web frontend uses HTTP basic authentication and TLS.
We plan to add support for authentication using NHS smartcards in the future.

Deployment. Figure 4 shows how ECRIC’s network is separated into three
zones: an Intranet, a demilitarised zone (DMZ) and the NHS-wide N3 network.
The Intranet is a restricted zone separated from the DMZ by a firewall, which
permits only unidirectional connections to the DMZ. Core ECRIC infrastructure
such as the main database is accessible only from within the Intranet.

The MDT web portal application is deployed within ECRIC as follows. The
event broker (1) acts as a secure event bus for event processing units and is
deployed within the ECRIC internal network. The units belonging to the appli-
cation execute as part of the event processing engine (2). The MDT application
uses a CouchDB application database (3) which contains the result data from
the event-processing backend and provides result data to the web frontend (4).
Because ECRIC’s firewall only permits connections from the Intranet to the
DMZ, we run two instances of the application database: in the Intranet (3) and
in the DMZ (5). The application database is replicated periodically between the
two instances using CouchDB push replication. The DMZ instance is read-only
in order to prevent modifications by the web frontend, thus satisfying require-
ment S1. Data specific to the web frontend, e.g. session and usage data, is stored
separately in a local web database (6) using the SQLite database engine.

1 require `sinatra'
2 require `safeweb−tracking'
3 get '/records/:mid' do
4 content type :json
5 return nil if !check privileges(params[:mid])
6 r = Records.by mid(:key => params[:mid])
7 process r
8 r.to json
9 end

Listing 2. Example of a rule in the web
frontend of the MDT web portal

1 def check privileges id
2 m = Measurement.find(id)
3 @is admin or Privileges.count(
4 :conditions => {
5 :u id => User.find by name(@username).id,
6 :hospital => m.hospital id,
7 :clinic => m.type
8 }) > 0
9 end

Listing 3. An access control check used
by the MDT web portal

5.2 Security Properties

Given the lack of third-party SafeWeb applications, we assess the security prop-
erties of SafeWeb by analysing its effectiveness in defending against known
types of implementation errors. We inspected the Common Vulnerabilities and
Exposures (CVE) database for vulnerabilities classified as “Information Dis-
closure”, “Access Control” or “Design Error” and organised them into generic
subcategories that share the same underlying cause. We then inject similar vul-
nerabilities to our MDT application and observe if SafeWeb can prevent them.

Omitted Access Checks. The most common problem that leads to information
disclosure (e.g. , CVE reports 2011-0701, 2010-2353 and 2010-0752) is the omis-
sion of access control checks. To emulate this, we remove the MDT privilege
check from the patient filtering routine that normally precedes the filtering of
patient details (Listing 2, line 5). Without SafeWeb’s taint tracking library
(line 2), sensitive information disclosure occurs in line 8. However, when the
taint tracking library is included and an MDT requests data they are not al-
lowed to see, the library correctly taints the JSON string (line 8) and displays
an error message.

Errors in Access Checks. Even when an access control check is present, it may
not specify the correct security policy and may result in information disclosure.
Often, these errors involve specially constructed input and do not manifest them-
selves under normal operation, making them hard to discover (e.g. , CVE reports
2011-0449, 2010-3092 and 2010-4403). To introduce such a problem, we modify
the user lookup operation (listing 3, line 5) to ignore the case of the username.
This may lead to two MDTs sharing privileges. To test this, we create two MDTs
with usernames mdt1 and MDT1 but with different privileges. SafeWeb’s taint
tracking library, when included, successfully prevents access of the second MDT
to all the patient details that only the first MDT should see.

Inappropriate Access Checks. Security policies are often complicated and devel-
opers may not fully understand them. This category of vulnerabilities covers
correctly applied checks that do not enforce the intended policy (e.g. , CVE
reports 2010-4775 and 2009-2431). To emulate such issues, we remove the check
for clinic equality from check privileges (Listing 3, line 7). This effectively
enables any MDT to see the data of all the patients in the same hospital. Again,
the error does not result in information disclosure: SafeWeb’s taint tracking
library detects the taint of the output, generates an error and prevents access.

Frontend

0 20 40 60 80 100 120 140 160 180

Backend

0 10 20 30 40 50 60 70 80
Processing times (ms)

Authentication
87ms

Privilege fetching 3ms

Template rendering
63ms

Label
propagation

17ms

Other
10msEvent

processing
51ms

Data
(de)serialisation

20ms

Label
management

13ms

Fig. 5. Processing latency within the MDT web portal application

Design Errors. The last category captures vulnerabilities due to design errors in
the application’s business logic (e.g. , CVE reports 2011-0899 and 2010-3933).
Such errors involve the application processing sensitive data in unexpected ways
that lead to data disclosure. To emulate this, we modify the data aggregator
unit to ignore the hospital of origin when matching events. As a result, the unit
generates records that mix data of different MDTs. SafeWeb’s event processing
backend allows access to these events but requires that the output records have
labels of all relevant MDTs. Thus, when the frontend attempts to display these
records, access is prevented because no MDT has the necessary privileges.

Trusted Codebase. SafeWeb enforces security policies but it does not elim-
inate trusted code: (1) SafeWeb’s taint tracking library must be trusted to
correctly authenticate users, associate privileges with their requests, propagate
labels and check the labels of each response. (2) The event backend must iso-
late non-privileged units and label their output. (3) Privileged units must label
events that they publish or store in the application database correctly. (4) The
policy file that specifies user privileges in the web frontend and unit privileges in
the event backend, as well as the scripts that edit it, must be audited for errors.

A code audit is still required, but it can focus on the SafeWeb implementa-
tion and only includes a small application-specific part. SafeWeb’s taint track-
ing library consists of 1943 LOC and the event processing engine has 1908 LOC.
After this trusted codebase has been audited once, data confidentiality only de-
pends on the correctness of a small part of each application. For the MDT web
portal, the code that has to be audited involves the two privileged units in the
backend (138 LOC) and the code that assigns privileges to new MDTs in the
frontend (142 LOC). The confidentiality of patient data does not depend on the
other 2841 LOC of the MDT application—no further security audit is required.

5.3 Performance Overhead

In this section, we measure the performance overhead of SafeWeb in terms of
latency and throughput. All measurements are taken on an AMD Opteron 6136
2.4GHz system with 16 GiB of RAM running Ubuntu 10.04. The 95% confidence
interval for each value we report extends to each side at most 5% of the value.

For the web front-end, we measure the page generation time of the MDT ap-
plication’s front page with and without SafeWeb’s taint tracking library. We
issued 1000 requests and measured the time required to render the response.

With SafeWeb’s taint tracking library, the page generation time increases by
14% from 158 ms to 180 ms. For the back-end, we measure the average latency of
individual events from the data producer to the data storage unit during the pro-
cessing of 1000 events. With SafeWeb’s isolation and label checks, the latency
to process a single event increases by 15% from 73 ms to 84 ms. Overall, this is
an acceptable overhead for a web application with strong security requirements.

Figure 5 shows a break-down of the overall latency when SafeWeb is en-
abled. In the front-end, HTTP basic authentication takes 87 ms to which priv-
ilege fetching adds 3 ms; processing of the ERB template takes 63 ms, to which
label propagation adds 17 ms. “Other” includes operations like network trans-
mission and database access. For the back-end, processing an event takes 51 ms
plus 20 ms for serialisation, to which SafeWeb adds 13 ms for label management
including label (de)serialisation and checking.

SafeWeb provides ample throughput for the low event rates of the MDT
portal. We employ a synthetic benchmark with two units, an event producer and
an event consumer, to measure the throughput reduction that SafeWeb incurs.
We measured the end-to-end event throughput between the two units by having
the producer publishing events at the maximum sustainable rate while confirm-
ing that the memory consumption remained stable. We sampled the throughput
once per second for 1000 seconds. With label tracking active, event throughput
decreased (−17%) from 4455 events/second to 3817 events/second. Due to the
language isolation support in Ruby, the decrease in performance is minimal and
comparable to approaches that rely on low-level runtime modifications [30].

6 Related Work

The most common security problems in web applications arise from the handling
of untrusted user data in the application’s output. This leads to problems such as
XSS and SQL injection attacks. Web application frameworks protect against such
vulnerabilities (e.g. XSS, CSRF) [26]. Applications developed with SafeWeb
can still benefit from this (e.g. RailsXSS [18], Rack::Csrf [17]) to avoid traditional
exploits that often disclose data by hijacking user accounts. In addition, Safe-
Web improves these frameworks to prevent sensitive data disclosure.

Such data disclosure is often caused by insufficient authorisation, missing
access control checks or by errors in application semantics. Potential solutions
include static analysis [9, 10], symbolic execution [3] and runtime taint track-
ing [4, 28, 14, 16, 30]. Static analysis tools for dynamic web languages often have
high false positive rates [9] or do not support all language features [10]. Sym-
bolic execution explores all possible execution paths of a web application and
can prove absence of certain errors [3]. However, devising assertions for symbolic
execution is a manual task and involves many of the shortcomings of manual se-
curity audits. In contrast, our approach requires minimal developer involvement.

At runtime, access control can be enforced transparently on each opera-
tion [21, 2] or when sensitive events are received [27]. Nevertheless, if the ap-
plication has to process sensitive data, errors in the application logic may still

convey sensitive information. Taint tracking systems transparently track sensi-
tive data and protect against inadvertent disclosure despite application errors.
They have been provided, amongst others, for Java [4], C [28, 14], PHP [16, 30]
and Ruby [2]. Simple approaches use one bit taint per string for injection at-
tack protection [16]. In contrast, SafeWeb’s taint tracking library attaches full
security labels to each variable, offering end-to-end guarantees about sensitive
data disclosure. Resin [30] uses pointers to user-defined policy objects, such as
IFC labels; however, it requires extensive language runtime modifications.

7 Conclusion

We have designed and implemented SafeWeb, a middleware for creating secure,
event-based enterprise web applications. It provides strong end-to-end security
guarantees, while integrating with existing web development practices. We have
demonstrated SafeWeb as part of a web application for assisting cancer treat-
ment practices within the UK National Health Service (NHS).

The strict data security requirements across multiple interacting organisa-
tions provided us with a set of real design constraints. The sensitivity of health-
care data required careful consideration of the parts of the middleware that
push and pull data. The back-end requirements suited an event-driven design,
whereas the front-end is a typical web application. We showed that information
flow control can be applied to both the event-processing back-end and the web
front-end as part of a middleware. This gives security assurances regarding data
disclosure and minimises organisations’ code audits.

In future work, we plan to explore how SafeWeb could become the basis
for wider deployment of healthcare applications at the national level. Scaling
up will involve creating separate, independent regional instances of SafeWeb,
which can interact with each other in a secure fashion. In addition, we want to
investigate the use of SafeWeb for other classes of web applications.

Acknowledgements

This work was supported by grants EP/F042469 and EP/F044216 (“Smart-
Flow: Extendable Event-Based Middleware”) and grant EP/I501053 (“SafeWeb:
Demonstrating End-to-End Security of NHS Patient Data”) from the UK Engi-
neering and Physical Sciences Research Council (EPSRC).

References

1. D. Bell and L. LaPadula. Secure computer system: Unified exposition and Multics
interpretation. Technical report, MITRE Corporation, 1976.

2. J. Burket, P. Mutchler, M. Weaver, M. Zaveri, and D. Evans. GuardRails : A data-
centric web application security framework. In WebApps, pages 1–12, Portland,
OR, 2011. USENIX.

3. A. Chaudhuri and J. Foster. Symbolic security analysis of Ruby-on-Rails web
applications. In Computer and communications security, Chicago, IL, 2010. ACM.

4. E. Chin and D. Wagner. Efficient character-level taint tracking for Java. In Work-
shop on Secure Web Services (SWS), pages 3–12, Chicago, IL, 2009. ACM.

5. CouchRest. http://github.com/couchrest, 2011. Accessed 5-Sep-2011.

6. Department of Defense. Trusted computer system evaluation criteria, 1983.

7. P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces
of publish/subscribe. ACM Computing Surveys, 35(2):114–131, 2003.

8. EventMachine. http://rubyeventmachine.com, 2011. Accessed 5-Sep-2011.

9. Y.-W. Huang, F. Yu, et al. Securing web application code by static analysis and
runtime protection. In World Wide Web (WWW), New York, NY, 2004. ACM.

10. N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for detecting
web application vulnerabilities. In Symposium on Security and Privacy, pages
258–263, Berkeley, CA, 2006. IEEE.

11. M. Miglivacca, I. Papagiannis, D. Eyers, B. Shand, J. Bacon, and P. Pietzuch.
High-performance event processing with information security. In USENIX Annual
Technical Conference, Boston, MA, 2010.

12. A. Myers and B. Liskov. Protecting privacy using the decentralized label model.
Transactions on Software Engineering and Methodology, 9(4):410–442, 2000.

13. S. Nair, P. Simpson, B. Crispo, and A. Tanenbaum. A virtual machine based infor-
mation flow control system for policy enforcement. Electronic Notes in Theoretical
Computer Science, 197(1):3–16, 2008.

14. S. Nanda, L.-C. Lam, and T.-c. Chiueh. Dynamic multi-process information flow
tracking for web application security. In Middleware, Toronto, Canada, 2007. ACM.

15. I. Papagiannis, M. Migliavacca, D. M. Eyers, B. Shand, et al. Enforcing user
privacy in web applications using Erlang. In W2SP, Oakland, CA, 2010.

16. T. Pietraszek and C. Berghe. Defending against injection attacks through context-
sensitive string evaluation. In Recent Advances in Intrusion Detection, pages 124–
145, Menlo Park, CA, 2006. Springer.

17. Rack::Csrf. http://github.com/baldowl/rack_csrf, 2011. Accessed 5-Sep-2011.

18. RailsXSS. http://github.com/rails/rails_xss, 2011. Accessed 5-Sep-2011.

19. I. Roy, D. Porter, M. Bond, K. McKinley, and E. Witchel. Laminar: Practical fine-
grained decentralized information flow control. In PLDI, Dublin, Ireland, 2009.

20. Rubinius. http://rubini.us, 2011. Accessed 5-Sep-2011.

21. P. D. Ryck, L. Desmet, and W. Joosen. Middleware support for complex and
distributed security services in multi-tier web applications. In Engineering Secure
Software and Systems (ESSoS), pages 114–127, Madrid, Spain, 2011.

22. Sinatra. http://www.sinatrarb.com, 2011. Accessed 5-Sep-2011.

23. Stomp protocol. http://stomp.github.com, 2011. Accessed 5-Sep-2011.

24. StompServer. http://stompserver.rubyforge.org, 2011. Accessed 5-Sep-2011.

25. UK Information Commissioner’s Office. Data breaches to incur up to
£500,000 penalty. http://www.ico.gov.uk/~/media/documents/pressreleases/

2010/PENALTIES_GUIDANCE_120110.ashx, 2010. Accessed 5-Sep-2011.

26. J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song. An
empirical analysis of XSS sanitization in web application frameworks. Technical
report, UC Berkeley, 2011.

27. A. Wun and H.-A. Jacobsen. A policy management framework for content-based
publish/subscribe. In Proceedings of the ACM/IFIP/USENIX 2007 International
Conference on Middleware, pages 368–388, Newport Beach, CA, 2007. ACM.

28. W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks. In Security Symposium, pages 121–136,
Vancouver, Canada, 2006. USENIX.

29. C. Ye and H.-A. Jacobsen. Event exposure for web services: a grey-box approach
to compose and evolve web services. In M. Chignell, J. Cordy, J. Ng, and Y. Yesha,
editors, The Smart Internet, pages 197–215. Springer-Verlag, Berlin, Heidelberg,
2010.

30. A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek. Improving application secu-
rity with data flow assertions. In SOSP, Big Sky, MT, 2009. ACM.

31. S. Yoshihama, T. Yoshizawa, Watanabe, et al. Dynamic information flow control
architecture for web applications. In ESORICS, Dresden, Germany, 2007.

