8 research outputs found

    IPv6 flood attack detection based on epsilon greedy optimized Q learning in single board computer

    Get PDF
    Internet of things is a technology that allows communication between devices within a network. Since this technology depends on a network to communicate, the vulnerability of the exposed devices increased significantly. Furthermore, the use of internet protocol version 6 (IPv6) as the successor to internet protocol version 4 (IPv4) as a communication protocol constituted a significant problem for the network. Hence, this protocol was exploitable for flooding attacks in the IPv6 network. As a countermeasure against the flood, this study designed an IPv6 flood attack detection by using epsilon greedy optimized Q learning algorithm. According to the evaluation, the agent with epsilon 0.1 could reach 98% of accuracy and 11,550 rewards compared to the other agents. When compared to control models, the agent is also the most accurate compared to other algorithms followed by neural network (NN), K-nearest neighbors (KNN), decision tree (DT), naive Bayes (NB), and support vector machine (SVM). Besides that, the agent used more than 99% of a single central processing unit (CPU). Hence, the agent will not hinder internet of things (IoT) devices with multiple processors. Thus, we concluded that the proposed agent has high accuracy and feasibility in a single board computer (SBC)

    Vulnerabilities to Online Social Network Identity Deception Detection Research and Recommendations for Mitigation

    Get PDF
    Identity deception in online social networks is a pervasive problem. Ongoing research is developing methods for identity deception detection. However, the real-world efficacy of these methods is currently unknown because they have been evaluated largely through laboratory experiments. We present a review of representative state-of-the-art results on identity deception detection. Based on this analysis, we identify common methodological weaknesses for these approaches, and we propose recommendations that can increase their effectiveness for when they are applied in real-world environments

    Efficient data uncertainty management for health industrial internet of things using machine learning

    Full text link
    [EN] In modern technologies, the industrial internet of things (IIoT) has gained rapid growth in the fields of medical, transportation, and engineering. It consists of a self-governing configuration and cooperated with sensors to collect, process, and analyze the processes of a real-time system. In the medical system, healthcare IIoT (HIIoT) provides analytics of a huge amount of data and offers low-cost storage systems with the collaboration of cloud systems for the monitoring of patient information. However, it faces certain connectivity, nodes failure, and rapid data delivery challenges in the development of e-health systems. Therefore, to address such concerns, this paper presents an efficient data uncertainty management model for HIIoT using machine learning (EDM-ML) with declining nodes prone and data irregularity. Its aim is to increase the efficacy for the collection and processing of real-time data along with smart functionality against anonymous nodes. It developed an algorithm for improving the health services against disruption of network status and overheads. Also, the multi-objective function decreases the uncertainty in the management of medical data. Furthermore, it expects the routing decisions using a machine learning-based algorithm and increases the uniformity in health operations by balancing the network resources and trust distribution. Finally, it deals with a security algorithm and established control methods to protect the distributed data in the exposed health industry. Extensive simulations are performed, and their results reveal the significant performance of the proposed model in the context of uncertainty and intelligence than benchmark algorithms.This research is supported by Artificial Intelligence & Data Analytics Lab (AIDA) CCIS Prince Sultan University, Riyadh Saudi Arabia. Authors are thankful for the support.Haseeb, K.; Saba, T.; Rehman, A.; Ahmed, I.; Lloret, J. (2021). Efficient data uncertainty management for health industrial internet of things using machine learning. International Journal of Communication Systems. 34(16):1-14. https://doi.org/10.1002/dac.4948114341

    Engineering the application of machine learning in an IDS based on IoT traffic flow

    Get PDF
    Internet of Things (IoT) devices are now widely used, enabling intelligent services that, in association with new communication technologies like the 5G and broadband internet, boost smart-city environments. Despite their limited resources, IoT devices collect and share large amounts of data and are connected to the internet, becoming an attractive target for malicious actors. This work uses machine learning combined with an Intrusion Detection System (IDS) to detect possible attacks. Due to the limitations of IoT devices and low latency services, the IDS must have a specialized architecture. Furthermore, although machine learning-based solutions have high potential, there are still challenges related to training and generalization, which may impose constraints on the architecture. Our proposal is an IDS with a distributed architecture that relies on Fog computing to run specialized modules and use deep neural networks to identify malicious traffic inside IoT data flows. We compare our IoT-Flow IDS with three other architectures. We assess model generalization using test data from different datasets and evaluate their performance in terms of Recall, Precision, and F1-Score. Results confirm the feasibility of flowbased anomaly detection and the importance of network traffic segmentation and specialized models in the AI-based IDS for IoT.info:eu-repo/semantics/publishedVersio

    Enhancing Security and Energy Efficiency in Wireless Sensor Network Routing with IOT Challenges: A Thorough Review

    Get PDF
    Wireless sensor networks (WSNs) have emerged as a crucial component in the field of networking due to their cost-effectiveness, efficiency, and compact size, making them invaluable for various applications. However, as the reliance on WSN-dependent applications continues to grow, these networks grapple with inherent limitations such as memory and computational constraints. Therefore, effective solutions require immediate attention, especially in the age of the Internet of Things (IoT), which largely relies on the effectiveness of WSNs. This study undertakes a comprehensive review of research conducted between 2018 and 2020, categorizing it into six main domains: 1) Providing an overview of WSN applications, management, and security considerations. 2) Focusing on routing and energy-saving techniques. 3) Reviewing the development of methods for information gathering, emphasizing data integrity and privacy. 4) Emphasizing connectivity and positioning techniques. 5) Examining studies that explore the integration of IoT technology into WSNs with an eye on secure data transmission. 6) Highlighting research efforts aimed at energy efficiency. The study addresses the motivation behind employing WSN applications in IoT technologies, as well as the challenges, obstructions, and solutions related to their application and development. It underscores that energy consumption remains a paramount issue in WSNs, with untapped potential for improving energy efficiency while ensuring robust security. Furthermore, it identifies existing approaches' weaknesses, rendering them inadequate for achieving energy-efficient routing in secure WSNs. This review sheds light on the critical challenges and opportunities in the field, contributing to a deeper understanding of WSNs and their role in secure IoT applications

    Harnessing Artificial Intelligence Capabilities to Improve Cybersecurity

    Get PDF
    Cybersecurity is a fast-evolving discipline that is always in the news over the last decade, as the number of threats rises and cybercriminals constantly endeavor to stay a step ahead of law enforcement. Over the years, although the original motives for carrying out cyberattacks largely remain unchanged, cybercriminals have become increasingly sophisticated with their techniques. Traditional cybersecurity solutions are becoming inadequate at detecting and mitigating emerging cyberattacks. Advances in cryptographic and Artificial Intelligence (AI) techniques (in particular, machine learning and deep learning) show promise in enabling cybersecurity experts to counter the ever-evolving threat posed by adversaries. Here, we explore AI\u27s potential in improving cybersecurity solutions, by identifying both its strengths and weaknesses. We also discuss future research opportunities associated with the development of AI techniques in the cybersecurity field across a range of application domains
    corecore