
International Journal of Electrical and Computer Engineering (IJECE)

Vol. 13, No. 5, October 2023, pp. 5782~5791

ISSN: 2088-8708, DOI: 10.11591/ijece.v13i5.pp5782-5791 5782

Journal homepage: http://ijece.iaescore.com

IPv6 flood attack detection based on epsilon greedy optimized

Q learning in single board computer

April Firman Daru1, Kristoko Dwi Hartomo2, Hindriyanto Dwi Purnomo2
1Faculty of Information Technology and Communication, Semarang University, Semarang, Indonesia

2Faculty of Information Technology, Satya Wacana Christian University, Salatiga, Indonesia

Article Info ABSTRACT

Article history:

Received Sep 13, 2022

Revised Apr 18, 2023

Accepted Apr 24, 2023

 Internet of things is a technology that allows communication between devices

within a network. Since this technology depends on a network to

communicate, the vulnerability of the exposed devices increased significantly.

Furthermore, the use of internet protocol version 6 (IPv6) as the successor to

internet protocol version 4 (IPv4) as a communication protocol constituted a

significant problem for the network. Hence, this protocol was exploitable for

flooding attacks in the IPv6 network. As a countermeasure against the flood,

this study designed an IPv6 flood attack detection by using epsilon greedy

optimized Q learning algorithm. According to the evaluation, the agent with

epsilon 0.1 could reach 98% of accuracy and 11,550 rewards compared to the

other agents. When compared to control models, the agent is also the most

accurate compared to other algorithms followed by neural network (NN),

K-nearest neighbors (KNN), decision tree (DT), naive Bayes (NB), and

support vector machine (SVM). Besides that, the agent used more than 99%

of a single central processing unit (CPU). Hence, the agent will not hinder

internet of things (IoT) devices with multiple processors. Thus, we concluded

that the proposed agent has high accuracy and feasibility in a single board

computer (SBC).

Keywords:

Epsilon greedy

Intrusion detection

IPv6 flooding

Off policy Q learning

Reinforcement learning

Single board computer

This is an open access article under the CC BY-SA license.

Corresponding Author:

April Firman Daru

Faculty of Information Technology and Communication, Semarang University

Soekarno-Hatta Street, West Tlogosari, Semarang 50196, Indonesia

Email: firman@usm.ac.id

1. INTRODUCTION

Network intrusions are a part of global network connectivity that occur everywhere and may cause

problems to all connected devices. From year to year, network intrusions are still growing on many sides such

as attack patterns and protocols. Before internet protocol version 6 (IPv6) was introduced, internet protocol

version 4 (IPv4) was often used as a medium to attack a network. But in a recent article, many hackers started

targeting IPv6-connected devices with flooding attacks [1]. Similar to the IPv4 protocol, the IPv6 network

protocol also has weaknesses in terms of security. This protocol could be used for flooding attacks with

different levels of risk [2], [3].

There are many types of intrusion that exist, one of them is known as denial of service. This kind of

intrusion floods spams data in massive numbers to shut down internet of things devices such as IP Cameras or

other types of monitoring devices [4]. Since those devices have lower processing capability, it was easier for

intrusions from outside to knock down the devices [5]–[7]. Another factor that increases the risk of the device

is the unattended mechanism that allows devices to work without human interference [8], [9]. Thus, the security

enhancement for Internet of Things devices became a trend and a challenge for future research [10].

https://creativecommons.org/licenses/by-sa/4.0/

Int J Elec & Comp Eng ISSN: 2088-8708

 IPv6 flood attack detection based on epsilon greedy optimized Q learning … (April Firman Daru)

5783

Many articles of research focus on IPv6 mitigation on the internet of things (IoT). The development

of IPv6 intrusion detection started from signatures-based until machine learning-based detection. Signature-

based intrusion detection is easier to implement on the internet of things since high processing power is not

required. The devices only need to read the rules and compare the characteristic of the data to determine the

detection. This kind of detection has high accuracy since the model only needs to check the existing signature

with the data [11], [12]. However, there is a problem detecting a complex attack. The signature-based detection

is not well-suited for complex detection, so machine learning is invented to overcome the problem [13], [14].

Machine learning-based detection usually uses a feature classification to detect intrusion into the network

[15]–[17]. For example, IPv6 intrusion detection for router advertisement flooding has an accuracy of up to

98.55%. This model can detect IPv6-based intrusion effectively with a machine learning algorithm [18]. Even

though machine learning-based detection has high detection accuracy, the implementation on the Internet of

Things device was not feasible due to its limitations [19]. Besides that, the supervised learning method in

machine learning only guesses the correct answer based on the trained model. Hence to improve its accuracy,

the researchers must be involved. Incapability to improve its accuracy without human interference is the main

weakness of the supervised learning method in the previous articles of the research [20].

Because of this reason, this study tries a different approach to developing intrusion detection with

epsilon greedy optimized Q learning. Unlike the supervised learning method, this method not only guesses the

correct answer but also improves itself in the shape of reward feedback [20]. Q learning itself is a reinforcement

learning method that makes an internet of things device an agent to learn the characteristics of the intrusions

in the IPv6 network. Hence, the device can determine whether the data is an intrusion or neutral. This paper

stated the contributions of the study with the following statements. We proposed a reinforcement learning-

based flooding attack detection model based on the IPv6 package pattern. Unlike the current state-of-the-art

model that cannot improve its accuracy, the proposed model use epsilon greedy optimized

Q learning-based as the self-improving detection model.

2. THE PROPOSED METHOD

2.1. Data gathering

In this section, we explain the proposed method used to solve the problem that exists in the previous

studies. The proposed method consists of several parts such as the data sample for training and testing, the

algorithm, the environment of the agent, and the agent itself. To build an agent that is capable to detect

IPv6-based attacks, this study gathered several intrusion characteristics by capturing live. The setup topology

for data gathering is illustrated in the Figure 1.

Figure 1. Simple IPv6 network topology to capture data

Figure 1 is the process for gathering the required data. To obtain both neutral and intrusion data, this

study used two computers that connected via a wireless network to simulate the flooding attacks. One computer

is given a role as an attacker and equipped with The Hacker’s Choices tools (THC-IPv6) to flood the victim

with IPv6-based data. The used tools in this experiment consist of denial6, flood_unreach6, thcsyn6, nping,

and fping [21]. Meanwhile, the target computer is an internet of things processing board called Raspberry Pi

that is equipped with Wireshark to collect flood data. This study gathered two types of data that consist of

neutral and intrusion data. Each type also consists of two different protocols such as transmission control

protocol (TCP) and internet control message protocol version 6 (ICMPv6). The tools used to gather TCP-based

data such as thc-syn6 (as intrusion sample) and nping (as neutral sample). Meanwhile, denial6 (as intrusion

sample) and fping (as neutral sample) are used to gather ICMPv6-based data.

Table 1 explains the used flooding tools from the THC-IPv6 toolkit in the experiment. The attacks

consist of two protocols, ICMPv6 and TCP where each protocol has five different toolsets used as the dataset

generator. To generate the ICMPv6 dataset, we use fping to generate normal ICMPv6. Meanwhile, we use

denial6 from the THC-IPv6 toolkit with two different packet generation switches (one for hop-by-hop, and one

for large unknown option); flood-unreach6 for flooding the target with unreachable packets; rsmurf6 to smurf

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5782-5791

5784

the target (as part of distributed denial-of-service act). For the TCP data, we use nping to generate normal TCP

packets, thc-syn6 with four different switches to attack the target. The first switch for thcsyn6 will generate

TCP-synchronize (TCP-SYN) packets, the second switch generates TCP-acknowledge (TCP-ACK) packets,

the third switch generates TCP-SYN-ACK packets, and the last one generates hop-by-hop router alert TCP

packets.

Table 1. Attacks performed during data gathering
Num Performed THC command Protocol Packet details

Atk 1 fping-6 [target] ICMPv6 Neutral normal packet
Atk 2 denial6 [interface] [target] 1 ICMPv6 Flood attack with large hop-by-hop header

Atk 3 denial6 [interface] [target] 2 ICMPv6 Flood attack with large unknown option header

Atk 4 flood-unreach6 [interface] [target] ICMPv6 Flood target with unreachable ICMPv6 packets
Atk 5 rsmurf6 [interface] [target] ICMPv6 Smurf target in local network

Atk 6 nping-6–tcp [target] TCP Neutral normal packet

Atk 7 thcsyn6 [interface] [target] TCP Flood victim with TCP-SYN

Atk 8 thcsyn6-A [interface] [target] TCP Flood victim with TCP-ACK

Atk 9 thcsyn6-S [interface] [target] TCP Flood victim with TCP-SYN-ACK

Atk 10 thcsyn6-a [interface] [target] TCP Flood victim with hop-by-hop router alert

However, the obtained data from the data-gathering phase contains many unneeded fields. Since not

all fields are required, this study pre-processes the raw dataset into a finer dataset that contains required fields.

In some cases, there is value similarity inside a dataset, this study decided to choose at least one field to be

uniquely allowed in the dataset. Table 2 contains the used fields in the dataset:

Table 2. The packet characteristics for learning target
Feature ICMPv6 TCP

1 Source Addr Source Addr
2 Destination Addr Destination Addr

3 Protocol Protocol

4 Length Length
5 Payload length Payload length

6 Type Window size

7 Data Flags
8 Detection Detection

According to Table 2, the data fields were taken from the header and the payload of the data. In the

header part, there are, source address; destination address; protocol; length; and payload length are used as

unique fields. The header fields between TCP and ICMPv6 are the same since both protocols already have

unique values. The ICMPv6 payload part consists of type and data. Mean-while TCP payload part consists of

window size and flags. The last field labelled detection contains a manually assigned Boolean value to indicate

whether the data is an intrusion or not.

After completing the labelling process, this study continues the next portioning data process. This

study decides on a fair 50:50 portion for both intrusion and neutral packets (not based on the tools used).

Making this fair portioning will help prevent the agent to turn one side only. Besides data row size, this study

also portioned the data rows according to the protocol and its data type. Table 3 explains the portioning of the

data rows according to the protocol and its data type.

Table 3. Dataset sample and compositions
Protocol Tool(s) Row(s) Type

ICMPv6 fping 1,000 Neutral

 denial6 case 1 250 Intrusion

 denial6 case 2 250 Intrusion
 flood-unreach6 250 Intrusion

 rsmurf6 250 Intrusion

TCP nping 1,000 Neutral
 thcsyn6 no-opt 250 Intrusion

 thcsyn6 ACK 250 Intrusion

 thcsyn6 SYN-ACK 250 Intrusion
 thcsyn6 hop-by-hop 250 Intrusion

Total data rows 4,000 -

Int J Elec & Comp Eng ISSN: 2088-8708

 IPv6 flood attack detection based on epsilon greedy optimized Q learning … (April Firman Daru)

5785

The ICMPv6 protocol has 1,000 rows of fping data, 250 rows of denial6 test case1 data, 250 rows of

denial 6 test case 2 data, 250 rows of flood_unreach6 data, and 250 rows of rsmurf6 data. Hence the ICMPv6

has 1,000 neutral and 1,000 intrusion data. Meanwhile, the TCP protocol has 1,000 rows of nping data,

250 rows of thcsyn6 without option data, 250 rows of thcsyn6 ACK data, 250 rows of thc-syn6 SYN-ACK

data, and 250 rows of thcsyn6 hop-by-hop data. Similar to the ICMPv6 protocol, TCP has 1,000 neutral and

1,000 intrusion data. Adding various intrusion types to the dataset will increase the agent’s knowledge about

the intrusions. All dataset that contains neutral and intrusion data is stored inside a CSV file for easier access.

Before the training process starts, the agent load and split the dataset into 70:30 stratified training and test data.

The stratifying process during data split has the purpose to balance the number of rows in each data field. At the end

of dataset pre-processing, this study obtained 2,800 rows of training data and 1,200 rows of test data randomized.

2.2. Environment design

After the data pre-processing phase is complete, this study designed an environment for the agent to

learn the data. However, the environment used for intrusion detection is different from publicly available

environments. The problem lies in the numbering system that the environment uses. The publicly available

environments used rational numbers as their states. Thus, the dataset is not compatible with the current

environment. To solve this problem, this study changed the numbering system in the environment with the

whole number system. Besides changing the number system, this study also used number conversion through

truncated decimal converted SHA-1 checksum hash to change any values inside the data set into unique

numbers. Figure 2 illustrated the process of the number conversion of the dataset.

Figure 2. Data to decimal number conversion method

Figure 2 contains a method to convert any data type into unique numbers starting by encoding each

data into a UTF-8 string. The next step is to get the hash result of the string with the SHA-1 algorithm and turn

it into hexadecimal through digest. The decimal value can be obtained by the decimal conversion process of

hexadecimal hash. However, the result of the conversion is too long for the agent to store. Hence, the result

from the previous process is truncated into ten digits. This number is unique and useful to distinguish between

intrusion A and B. By using this method, the environment will accept the truncated decimal data.

The next process is to configure the reward mechanism in the environment. The reward is a feedback

mechanism that reinforcement learning uses to optimize the agent’s decision mechanism. The calculation of

the reward inside the environment uses IF-based rules by matching the detection indicator inside the data set

with the action taken by the agent. From this point, the environment can raise four different detection indicators.

Table 4 contains the reward calculation and detection indicators.

Table 4. Reward calculation and detection indicators
Indicator Detection Agent’s action Rewards

True positive (TP) True True +10

True negative (TN) False False +10
False positive (FP) False True -5

False negative (FN) True False -5

According to Table 4, the agent will receive positive rewards if the agent determines the correct action

and value (true positive (TP) and true negative (TN)). In the study, the environment will return ten points if the

agent determines correctly. Meanwhile, the agent will receive negative rewards if the agent determines the

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5782-5791

5786

values incorrectly (false positive (FP), false negative (FN)). The environment will return minus five points and

decrease the accumulated rewards. The accumulated rewards are usable for action decision factors and

performance evaluation at a later stage. The agent will determine the next action according to the accumulated

rewards. Besides that, high reward accumulations mean that the detection has good accuracy.

2.3. Q learning agent

The last step of the environment design phase is to build the agent and its interaction with the

environment. The agent is the main system that determines whether a packet is an intrusion or not in this study.

However, the agent needs to interact with the environment to determine the correct action for each data row in

the dataset. The interaction between agent and environment will produce a state and a reward. The process of

the interaction for agent training and testing is illustrated in Figure 3.

Figure 3. Agent algorithm with epsilon greedy and Q learning

According to Figure 3, the interaction starts with the agent loading pre-processed training data and the

environment. After the loading process is complete, the agent chooses the action between random and Q Table

with the epsilon greedy method assistance [22], [23]. The formula used for Epsilon greedy is shown (1):

𝐴𝑡{𝑅𝑎𝑛𝑑𝑜𝑚𝐴𝑐𝑡𝑖𝑜𝑛(𝐴)𝑤𝑖𝑡ℎ𝑃(𝜖)
𝑚𝑎𝑥 𝑄(𝐴)𝑤𝑖𝑡ℎ𝑃(1−𝜖)

 (1)

where 𝐴 is the action taken for the agent, Q is the Q Table, P is the probability of action taken, 𝑡 is the time or

step, and 𝜖 is the value of the probability. Since this method uses probability, the agent will receive an action

from the maximum policy table or random action. Theoretically, forcing the agent to use the maximum policy

inside the Q table more often can increase the accuracy. It means that the learning model needs to explore first

and then exploit the result to achieve the best performance [24], [25]. At this point, the agent already has the

Int J Elec & Comp Eng ISSN: 2088-8708

 IPv6 flood attack detection based on epsilon greedy optimized Q learning … (April Firman Daru)

5787

dataset and the action. The agent inputs a data row and action into the environment and let the environment

calculate the reward. The environment returns the reward and the state after the process is complete. The agent

receives the state and the reward and evaluates the learning process with the Q learning algorithm. As shown

by (1) is the formula used for Q learning:

𝑄(𝑆𝑡 , 𝐴𝑡) ← 𝑄(𝑆𝑡 , 𝐴𝑡) + 𝛼[𝑅𝑡+1 + 𝛾. 𝑚𝑎𝑥𝑄(𝑆𝑡+1, 𝑎) − 𝑄(𝑆𝑡 , 𝐴𝑡)] (2)

This formula consists of several elements such as reward (R), state (S) dan action (A). Besides that,

this formula also counts 𝑡 as the time step or episode, 𝛼 as the agent’s learning rate, and 𝛾 as the reward discount

rate. These variables are also known as hyperparameters that may affect the learning process if changed. This

function is known as Q-Function or action-value function where the agent can determine the specific action to

take when exploiting the Q Table. Since this algorithm is an off-policy algorithm, the agent cannot decide

between exploration and exploitation explicitly. The agent stores the evaluation result in the coordinate of the

Q Table with the state on X-axis and action on Y-axis. The agent will repeat these steps until the specified

episodes in the training phase. Meanwhile, during the testing phase, the agent only needs to do it once with

Q Table as the action source.

3. METHOD

This section explains the agent’s performance evaluations by following four experiments with

different scenarios. Each scenario has a different epsilon size to evaluate the performance of intrusion detection.

With these scenarios, this study can understand the relationship between exploration and exploitation with

detection results. Table 5 explains the experiment's scenarios.

Table 5. Experiment scenario setup for evaluation
Scenario Epsilon Time Epoch Training Test

1 0.1 10 10 1

2 0.5 10 10 1
3 0.9 10 10 1

4 1.0 10 10 1

According to Table 5, this study uses four different scenarios to evaluate the learning capability of the

agent. Each scenario has a different epsilon configuration but the same training and test episodes. The epsilon

configuration in the table starts from the best-policy action (0.1) to pure random action (1.0). Since the range

is quite wide, this study only chooses the most significant epsilon value (0.1, 0.5, 0.9, 1.0). In the terms of

training and testing epochs, this study will execute the training for ten episodes starting from one. This

experiment uses a shorter period since the dataset contains repeated data and is sufficient to train the agent.

Meanwhile, the testing epoch is only one episode. This phase force the agent to use the best action available in

the table to test the accuracy of the detection. To obtain the accuracy of detection, this study uses a confusion

matrix to populate the detection results. With the help of the confusion matrix, this study can calculate the

accuracy of the detection. Thus, this study can understand better how the agent learns IPv6-based intrusions

[26]. Hence, the equation for the accuracy is in (3),

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
(𝑇𝑃+𝑇𝑁)

(𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁)
 (3)

where TP and TN. These two indicators are indicated that the agent chooses the correct action for the packet.

The sum value of these two indicators is divided by the sum of all indicators (TP, TN, FP, and FN). The result

of division is the accuracy of the detection. A higher value indicates that the agent has a good detection of the

intrusions.

Besides the accuracy benchmark, this study also uses a reward graph to evaluate how well the agent

performs. If the confusion matrix focuses on how good the detection is, then the reward graph shows how good

the agent chooses the correct action for each data. This type of evaluation is not feasible in supervised learning

since the algorithm does not use an agent to do the learning process. As the control for the accuracy evaluation,

this study compares machine learning-based intrusion detection with the agent.

Using a reward graph as the evaluation aspect, this study can compare the agent’s performance to pick

the correct action for each data. If the agent chooses the correct action, then the accumulated rewards will

increase. But if the agent incorrectly chooses the action, the accumulated rewards will decrease. Also, if the

agent has maximum accumulated rewards, it means that it can correctly determine all the test data.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5782-5791

5788

The last aspect of the evaluation is the processing performance of the internet of things device. Since

this study uses Raspberry Pi as the target device, this study also needs to gather performance evidence during

the whole process. Benchmarking the performance of the agent inside the Raspberry Pi device, this study can

understand the impact of reinforcement learning inside an IoT device. In this aspect, the research can gather

the CPU and the memory usage during the training and testing phases.

4. RESULTS AND DISCUSSION

This section elucidates the result of the agent’s evaluation. The results contained a detection summary,

agent’s accuracy and reward graphs, accuracy comparison with different algorithms, and performance

benchmark. The first evaluation is the detection results during experiments, the data stored in a shape of a table

with TP, TN, FP, and FN indicators. The second evaluation is the agent's performance with accuracy and

reward graph. The third evaluation was the comparison result between other classification algorithms. The last

one was the hardware performance benchmark for epsilon greedy optimized Q learning for low-end devices

like single board computer (SBC).

According to Table 6, agent 0.1 correctly determines the test data during the experiment. This agent

did not have a value larger than 0 in false positive and false negative indicators. Unlike agent 0.1, the other

agents did not have zero results in their results. This table showed that a higher epsilon value can lower the

result in true indicators. Hence, the accuracy of the detections should be lower. To prove this statement, this

study calculated Table 6 results into accuracy. Then, compare the accuracy and the rewards side by side for

each agent with different epsilon. Figure 4 shows the comparison result between each agent.

Table 6. Q learning agent’s average detection results
Agent TP TN FP FN

0.1 570 600 0 30
0.5 480 510 90 120

0.9 488 330 270 112

1.0 465 134 123 478

According to Figure 4, the agent with epsilon 0.1 has the highest accuracy and rewards. With average

detection accuracy up to 98% and average rewards of 11,500, this agent outperformed the rest of the agents.

Meanwhile, the result of each agent was: the agent epsilon 0.5 in the second place with the accuracy reached

83% and accumulated reward up to 8,850, in the third place is the agent epsilon 0.9 with accuracy reached 68%

and reward of 6,262, and the last place is the agent without learning reached accuracy up to 50% and reward

2,974.

The next step for the evaluation is to compare with the control model from another machine learning

algorithm. Using the published article as the main reference for comparison, this study put the result of the

comparison side by side. The cited references were using a similar tool to generate the intrusions, but different

in the terms of detection model. Figure 5 showed the comparison between this agent’s accuracy with the model

from the article [27].

Figure 4. Accuracy and reward comparison

between agents

Figure 5. Accuracy comparison between

algorithms

Int J Elec & Comp Eng ISSN: 2088-8708

 IPv6 flood attack detection based on epsilon greedy optimized Q learning … (April Firman Daru)

5789

Based on the result of Figure 5, this study compared several algorithms like support vector machine

(SVM), naive Bayes (NB), decision tree (DT), k-nearest neighbor (KNN), neural network (NN), and epsilon

greedy optimized Q learning (EG-QL). Compared to other machine learning models, the proposed Q learning

agent has the highest accuracy of 98%. This means that the proposed model has the best performance compared

to other models. Followed by NN with 81.57%, KNN with 81.57%, DT with 80.79%, naïve Bayes with 80.54%,

and SVM up to 78.78%

The last aspect of the evaluation is the performance benchmark for the Raspberry Pi device. In this

part, this study split the performance benchmark into two parts: CPU and memory usage. The CPU usage result

of the agents are illustrated in Figure 6.

Figure 6. Performance benchmark on an SBC

According to Figure 6, all agents utilized more than 99% to process the data in the training and test

phases. The process of the agent is in a single processor, so there are three more processors available for the

operating system to use. If calculated roughly, the agent only used 25% of all processors available in the

Raspberry Pi. Hence, the process itself will not disturb the whole system. According to the result, most agents

have similar memory usage except agent 1.0. The dataset inside the agent caused the high memory usage in

each agent. Besides that, the agent also stored the learning policy (Q Table) inside the agent. Thus, storing the

learning policy also increased the memory usage in every agent (Agent 0.1, 0.5, and 0.9).

The last part of this section discusses the result of the agents’ evaluation and comparison. The

discussion covers the accuracy of the detection agents, the impact of the dataset on training and test processes,

and the performance benchmark in the Raspberry Pi device. In the detection accuracy evaluation phase, this

study compared Q learning agents with each other and the previously available models. The first comparison

found that the best agent has the highest accuracy compared to other agents. In this case, the agent with epsilon

configured to 0.1 has the best accuracy up to 98%. The agent can reach the top accuracy because the agent used

the best policy more often than random action space. Using the best policy as the main source of action can

give the agent more proper choice than depending on the randomization. Thus, the agent can reach maximum

accuracy faster than other agents. Reward evaluation determines how well the agent detects the intrusion.

Similar to the accuracy test, a higher reward is always preferable to others. In this case, the agent with epsilon

0.1 has the highest reward with 11,550. Followed by agent 0.5 with 8,850 rewards, agent 0.9 with 6,262

rewards, and agent 1.0 with 2,974 rewards. Agent 1.0 in the evaluation phase has the lowest rewards since the

agent relies on randomness to detect the intrusions.

The second comparison was the top agent with other machine learning algorithms. According to the

second comparison’s result, the epsilon greedy optimized Q learning agent has the highest accuracy. Then,

followed by NN, KNN, DT, naive Bayes, and SVM. There are several reasons why the agent has the highest

accuracy compared to other models. One of the reasons is also related to the dataset used in the training and

test phases. The dataset used to teach the agents consists of two components: neutral and intrusion data.

No matter what type of attack is inside the dataset, the number is the most important factor. The balanced

number can prevent the agent from siding on the heavier side after the training process. To do that, this study

used stratified data split process to make sure the data is balanced. The next factor is the test data used in the

testing process. Since the agent learned everything in the training process, the agent already has the best policy

for each test data. However, if new unknown data is added to the test data the accuracy could decrease.

 ISSN: 2088-8708

Int J Elec & Comp Eng, Vol. 13, No. 5, October 2023: 5782-5791

5790

The last discussion is the performance benchmark on the Raspberry Pi device. The purpose of the

evaluation is to test the agent’s feasibility in an embedded device. According to the performance benchmark,

the agents used more than 99% in a single processor to run the whole process. From a single processor point

of view, this is a bad practice and not feasible to implement the agent in a real situation. If the agent is installed

on a device with multiple processors, the system still has three more processors available. The last performance

benchmark is memory usage. This aspect evaluated the memory usage of the agents during the whole process.

The usage of each agent is affected by the dataset used. It means that the more dataset used in the agent, the

more memory will be used. Agent 1.0 is an exception because the agent did not split the data into training and

testing data. Thus, did not increase memory usage. In the terms of feasibility of memory usage, all the agents

can run normally inside the Raspberry Pi without hindering the operating system. It can be concluded that the

proposed algorithm and its agent can determine whether the packet data is an intrusion or not correctly.

Compared to control models from a previously published article, the proposed agent has the best accuracy

among the models. Besides that, the agent has lower system specifications and is feasible on the internet of

things device.

5. CONCLUSION

Network security is a vital aspect of this modern era. Since many devices are connected to the internet,

security protection is a serious concern. One technology that depends on network connectivity is IoT. The IoT

device is connected to the internet and exposed to the invisible risk of attack. Besides that, the use of IPv6 as

the communication protocol also posed an additional risk to the devices. To mitigate this problem, this study

proposed an intrusion detection system using reinforcement learning. According to the evaluation results, the

Q learning detection agent 0.1 outperformed the other agents’ accuracy and rewards. With up to 98% of

accuracy and 11,550 rewards, agent 0.1 has the highest accuracy compared to other agents. If compared to

control models from the published article, the current agent is still in the first place. The current agent has an

accuracy of up to 98%, followed by NN with 81.57%, KNN at 81.57%, DT at 80.79%, NB at 80.54%, and

SVM up to 78.78%. Besides accuracy, the agent is also evaluated for the performance benchmark to test its

feasibility. According to the performance benchmark, the agent has the highest CPU usage with more than 99%

and memory usage up to 9.96%. However, in multi-processor devices, this is not a big problem. Hence, the

agent is feasible to be installed on Raspberry Pi devices only.

ACKNOWLEDGEMENTS

The authors are grateful to the Education and Culture Ministry Republic of Indonesia for supporting

this study through the Grant Research World Class Professor in 2021.

REFERENCES
[1] A. Shiranzaei and R. Z. Khan, “IPv6 security issues - a systematic review,” in Next-Generation Networks, 2018, pp. 41–49,

doi: 10.1007/978-981-10-6005-2_5.

[2] A. A. Bahashwan, M. Anbar, and S. M. Hanshi, “Overview of IPv6 based DDoS and DoS attacks detection mechanisms,” in ACeS
2019: Advances in Cyber Security, 2020, pp. 153–167, doi: 10.1007/978-981-15-2693-0_11.

[3] L. Ubiedo, T. O’Hara, M. J. Erquiaga, and S. Garcia, “Current state of IPv6 security in IoT,” arXiv:2105.02710, May 2021.

[4] I. Butun, P. Osterberg, and H. Song, “Security of the internet of things: Vulnerabilities, attacks, and countermeasures,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 1, pp. 616–644, 2020, doi: 10.1109/COMST.2019.2953364.

[5] M. A. M. Sadeeq, S. R. M. Zeebaree, R. Qashi, S. H. Ahmed, and K. Jacksi, “Internet of things security: a survey,” in

2018 International Conference on Advanced Science and Engineering (ICOASE), Oct. 2018, pp. 162–166,
doi: 10.1109/ICOASE.2018.8548785.

[6] O. Yousuf and R. N. Mir, “A survey on the internet of things security,” Information and Computer Security, vol. 27, no. 2,

pp. 292–323, Jun. 2019, doi: 10.1108/ICS-07-2018-0084.
[7] E. A. Shammar and A. T. Zahary, “The internet of things (IoT): a survey of techniques, operating systems, and trends,” Library Hi

Tech, vol. 38, no. 1, pp. 5–66, Oct. 2019, doi: 10.1108/LHT-12-2018-0200.

[8] R. Mahmoud, T. Yousuf, F. Aloul, and I. Zualkernan, “Internet of things (IoT) security: current status, challenges and prospective
measures,” in 2015 10th International Conference for Internet Technology and Secured Transactions (ICITST), Dec. 2015,

pp. 336–341, doi: 10.1109/ICITST.2015.7412116.

[9] A. Triantafyllou, P. Sarigiannidis, and T. D. Lagkas, “Network protocols, schemes, and mechanisms for internet of things (IoT):
Features, open challenges, and trends,” Wireless Communications and Mobile Computing, vol. 2018, pp. 1–24, Sep. 2018,

doi: 10.1155/2018/5349894.

[10] S. Zeadally and M. Tsikerdekis, “Securing internet of things (IoT) with machine learning,” International Journal of Communication
Systems, vol. 33, no. 1, Jan. 2020, doi: 10.1002/dac.4169.

[11] A. Sforzin, F. G. Marmol, M. Conti, and J.-M. Bohli, “RPiDS: Raspberry Pi IDS - a fruitful intrusion detection system for IoT,” in

2016 IEEE Conferences on Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing and
Communications, Cloud and Big Data Computing, Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), Jul. 2016, pp. 440–448, doi: 10.1109/UIC-ATC-ScalCom-CBDCom-IoP-

Int J Elec & Comp Eng ISSN: 2088-8708

 IPv6 flood attack detection based on epsilon greedy optimized Q learning … (April Firman Daru)

5791

SmartWorld.2016.0080.
[12] T. Sommestad, H. Holm, and D. Steinvall, “Variables influencing the effectiveness of signature-based network intrusion

detection systems,” Information Security Journal: A Global Perspective, vol. 31, no. 6, pp. 711–728, Nov. 2022,

doi: 10.1080/19393555.2021.1975853.
[13] T. Jiang, J. L. Gradus, and A. J. Rosellini, “Supervised machine learning: a brief primer,” Behavior Therapy, vol. 51, no. 5,

pp. 675–687, Sep. 2020, doi: 10.1016/j.beth.2020.05.002.

[14] I. H. Sarker, “Machine learning: algorithms, real-world applications and research directions,” SN Computer Science, vol. 2, no. 3,
May 2021, doi: 10.1007/s42979-021-00592-x.

[15] A. M. Karimi, Q. Niyaz, W. Sun, A. Y. Javaid, and V. K. Devabhaktuni, “Distributed network traffic feature extraction for a real-

time IDS,” in 2016 IEEE International Conference on Electro Information Technology (EIT), May 2016, pp. 0522–0526.
doi: 10.1109/EIT.2016.7535295.

[16] T. Ahmad and M. N. Aziz, “Data preprocessing and feature selection for machine learning intrusion detection systems,” ICIC

Express Letters, vol. 13, no. 2, pp. 93–101, 2019.
[17] H. Malhotra and P. Sharma, “Intrusion detection using machine learning and feature selection,” International Journal of Computer

Network and Information Security, vol. 11, no. 4, pp. 43–52, Apr. 2019, doi: 10.5815/ijcnis.2019.04.06.

[18] M. Anbar, R. Abdullah, B. N. Al-Tamimi, and A. Hussain, “A machine learning approach to detect router advertisement flooding attacks
in next-generation IPv6 networks,” Cognitive Computation, vol. 10, no. 2, pp. 201–214, Apr. 2018, doi: 10.1007/s12559-017-9519-8.

[19] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan, and R. Jain, “Machine learning-based network vulnerability analysis

of industrial internet of things,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6822–6834, Aug. 2019,
doi: 10.1109/JIOT.2019.2912022.

[20] P. Winder, Reinforcement learning: Industrial applications of intelligent agents. O’Reilly Media, 2020.

[21] M. Schrötter, T. Scheffler, and B. Schnor, “Evaluation of intrusion detection systems in IPv6 networks,” in Proceedings of the 16th

International Joint Conference on e-Business and Telecommunications, 2019, pp. 408–416, doi: 10.5220/0007840104080416.

[22] W. Dabney, G. Ostrovski, and A. Barreto, “Temporally-extended ε-greedy exploration,” arXiv:2006.01782, Jun. 2020.

[23] M. Kubat, An introduction to machine learning. Cham: Springer International Publishing, 2017, doi: 10.1007/978-3-319-63913-0.
[24] B. Jang, M. Kim, G. Harerimana, and J. W. Kim, “Q-learning algorithms: A comprehensive classification and applications,” IEEE

Access, vol. 7, pp. 133653–133667, 2019, doi: 10.1109/ACCESS.2019.2941229.

[25] J. Clifton and E. Laber, “Q-learning: theory and applications,” Annual Review of Statistics and Its Application, vol. 7, no. 1,
pp. 279–301, Mar. 2020, doi: 10.1146/annurev-statistics-031219-041220.

[26] A. A. Salih and A. M. Abdulazeez, “Evaluation of classification algorithms for intrusion detection system: a review,” Journal of

Soft Computing and Data Mining, vol. 02, no. 01, Apr. 2021, doi: 10.30880/jscdm.2021.02.01.004.
[27] S. Manickam et al., “Labelled dataset on distributed denial-of-service (DDoS) attacks based on internet control message protocol

version 6 (ICMPv6),” Wireless Communications and Mobile Computing, vol. 2022, pp. 1–13, 2022, doi: 10.1155/2022/8060333.

BIOGRAPHIES OF AUTHORS

April Firman Daru is currently studying for a Doctor of Computer Science at the

Universitas Kristen Satya Wacana (UKSW) Salatiga, Indonesia. Since 2010 until now he has

been a Lecturer in the Informatics Engineering Study Program at the Universitas Semarang

(USM). His research interests are in the fields of internet of things, artificial intelligence, attack

detection and machine learning. He can be contacted at email: firman@usm.ac.id.

Kristoko Dwi Hartomo completed his doctorate in the Doctorate Program of

Computer Science, Science Faculty of Gadjah Mada University in 2017. He has been active in

research since 2008 until now on intrusion detection systems, spatial data processing and remote

sensing. He has published his papers in international journals, has 5 copyrights, and wrote some

reference books on remote sensing data analysis and modelling in Indonesia and English. He

can be contacted at email: kristoko@uksw.edu.

Hindriyanto Dwi Purnomo is an Associate Professor at Department of Information

Technology, Universitas Kristen Satya Wacana, Indonesia. He received his bachelor’s degree

in engineering physics, from Gadjah Mada University, Indonesia, in 2005, Magister of

Information Technology from The University of Melbourne, Australia in 2009 and Doctor of

Philosophy in Industrial and System Engineering from Chung Yuan Christian University,

Taiwan, in 2013. He has received several recognitions and awards for his academic

achievement. He also has published many articles in reputable journals, conferences, and books.

His research interests are in the field of metaheuristics, soft computing, machine learning and

deep learning. He can be contacted at email: hindriyanto.purnomo@uksw.edu.

https://orcid.org/0000-0001-9494-7032
https://scholar.google.co.id/citations?user=0BqGW74AAAAJ
https://www.scopus.com/authid/detail.uri?authorId=57220093663
https://orcid.org/0000-0003-0237-851X
https://scholar.google.co.id/citations?hl=en&user=ylUt_TIAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=56543586000
https://www.webofscience.com/wos/author/record/2182069
https://orcid.org/0000-0001-6728-7868
https://scholar.google.co.id/citations?user=K94eXrEAAAAJ
https://www.scopus.com/authid/detail.uri?authorId=42462221100
https://www.webofscience.com/wos/author/record/32430589

