
Intelligent Systems with Applications 17 (2023) 200189

Contents lists available at ScienceDirect

Intelligent Systems with Applications

journal homepage: www.journals.elsevier.com/intelligent-systems-with-applications

Engineering the application of machine learning in an IDS based on IoT 

traffic flow

Nuno Prazeres a, Rogério Luís de C. Costa b,∗, Leonel Santos a,b, Carlos Rabadão a,b

a School of Technology and Management (ESTG), Polytechnic of Leiria, Leiria, 2411-901, Portugal
b Computer Science and Communication Research Centre (CIIC), Polytechnic of Leiria, Leiria, 2411-901, Portugal

A R T I C L E I N F O A B S T R A C T

Keywords:

Intrusion detection systems
Internet of things
Machine learning
Smart city
Cybersecurity

Internet of Things (IoT) devices are now widely used, enabling intelligent services that, in association with 
new communication technologies like the 5G and broadband internet, boost smart-city environments. Despite 
their limited resources, IoT devices collect and share large amounts of data and are connected to the internet, 
becoming an attractive target for malicious actors.
This work uses machine learning combined with an Intrusion Detection System (IDS) to detect possible attacks. 
Due to the limitations of IoT devices and low latency services, the IDS must have a specialized architecture. 
Furthermore, although machine learning-based solutions have high potential, there are still challenges related to 
training and generalization, which may impose constraints on the architecture.
Our proposal is an IDS with a distributed architecture that relies on Fog computing to run specialized modules 
and use deep neural networks to identify malicious traffic inside IoT data flows. We compare our IoT-Flow 
IDS with three other architectures. We assess model generalization using test data from different datasets and 
evaluate their performance in terms of Recall, Precision, and F1-Score. Results confirm the feasibility of flow-
based anomaly detection and the importance of network traffic segmentation and specialized models in the 
AI-based IDS for IoT.
1. Introduction

The Internet of Things (IoT) paradigm is one of the drivers for a new 
generation of communication networks, combining a wide variety of 
hardware and software that provide customers easy-to-use experience 
and low-cost solutions. IoT devices are present in our cities, homes, 
industry, healthcare facilities, vehicles, and personal gadgets and can 
perform several critical tasks and make our lives more comfortable 
(Figueiredo et al., 2022, Tewari & Gupta, 2017). IoT networks are made 
up of a large number of devices and sensors that collect and share large 
volumes of data, including confidential and private ones (Neisse et al., 
2014, Tewari & Gupta, 2020). The use of IoT devices has also boosted 
the creation of smart environments, such as smart cities. In these con-
texts, they provide a wide variety of services, increasing the well-being 
of the population and the conscious use of resources (Figueiredo et al., 
2022).

Despite handling and generating a large volume of data, IoT devices 
are generally cheap and have low CPU capacity, low storage, and low 

* Corresponding author.
E-mail addresses: 2192642@my.ipleiria.pt (N. Prazeres), rogerio.l.costa@ipleiria.pt (R.L.C. Costa), leonel.santos@ipleiria.pt (L. Santos), 

memory resources. IoT devices may be vulnerable to attacks if there are 
no security measures, producing unexpected behaviors in the private 
networks, compromising services availability, data confidentiality, and 
the user’s privacy (Butun et al., 2019, Hromada et al., 2021). Hence, 
the IoT ecosystem is a potential target for cybercriminals and requires 
novel solutions to deal with data protection and cybersecurity threats 
(Hromada et al., 2021, Tsimenidis et al., 2022).

Intrusion Detection Systems (IDS) are key security solutions for net-
works as they may detect non-authorized accesses and attacks against 
systems through the analyses of network communications and internal 
activities (Moustafa et al., 2019b). But the traditional knowledge-based 
IDS must be replaced by intelligent and data-driven solutions (Tsi-
menidis et al., 2022). Artificial Intelligence (AI) and machine learning 
methods have been used in the last years to analyze large volumes of 
data in diverse environments, correlating events, identifying patterns, 
and detecting anomalous behavior that otherwise would remain hidden 
(Berman et al., 2019). In this work, we deal with the use of machine 
Available online 24 January 2023
2667-3053/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access

carlos.rabadao@ipleiria.pt (C. Rabadão).

https://doi.org/10.1016/j.iswa.2023.200189
Received 31 July 2022; Received in revised form 13 December 2022; Accepted 19 J
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

anuary 2023

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/intelligent-systems-with-applications
mailto:2192642@my.ipleiria.pt
mailto:rogerio.l.costa@ipleiria.pt
mailto:leonel.santos@ipleiria.pt
mailto:carlos.rabadao@ipleiria.pt
https://doi.org/10.1016/j.iswa.2023.200189
https://doi.org/10.1016/j.iswa.2023.200189
http://crossmark.crossref.org/dialog/?doi=10.1016/j.iswa.2023.200189&domain=pdf
http://creativecommons.org/licenses/by/4.0/


N. Prazeres, R.L.C. Costa, L. Santos et al.

learning methods in an Intrusion Detection System (IDS) for the IoT 
environment of smart cities.

The development of an AI-driven IDS for IoT environments must 
consider several aspects, like using appropriate anomaly and intrusion 
detection mechanism, IDS placement and scalability, and the use of 
representative datasets to validate proposals (Ahmad & Alsmadi, 2021, 
Thakkar & Lohiya, 2021). Also, smart cities are complex environments 
(e.g., in terms of heterogeneity, number of nodes, and accessibility to 
providers’ infrastructure) with very great volume of heterogeneous data 
and whose equipment are especially vulnerable to attacks as they are 
easily accessed in public spaces (Garcia-Font et al., 2018). These are 
some of the open issues we deal with in this paper.

Our IoT-Flow IDS operates on information and statics about traf-
fic, using traffic flows. Flow records are information about a specific 
flow observed at an observation point (Claise et al., 2013, Velan, 2018), 
which include flow keys, such as characteristic properties of a flow (e.g., 
IP addresses and port numbers), and measured properties (e.g., packet 
and byte counters). Using flows to identify network traffic anomalies 
is a more scalable and interoperable approach than analyzing packets 
payload (Santos et al., 2021). Hence, our IDS must aggregate traffic 
data into flow information before looking for anomalous traffic. Only 
then, pre-processing steps somewhat usual in the data science pipeline 
(e.g., encoding and feature selection) take place. After that, a classifier 
(i.e., machine learning model) analyzes the transformed flows looking 
for anomalous traffic.

Another open challenge is IoT IDS placement as the performance 
of an IDS depends on the network’s topology and available resources 
(Thakkar & Lohiya, 2021). IoT devices commonly have processing lim-
itations. Also, in smart cities, several services have Quality-of-Service 
requirements related to availability and integrity. Therefore, consider-
ing environment limitations and application requirements, we use a dis-
tributed solution that uses traffic segmentation and relies on Fog com-
puting. Fog computing is the extension of cloud computing towards the 
network edge to enable cloud-things service continuum (Diro & Chil-
amkurti, 2018). This paradigm reduces latency and energy consumption 
for the heterogeneous communication approaches in the smart cities ap-
plications (Singh et al., 2020). We place specialized components of our 
IoT IDS in Fog Nodes, which are network nodes with all the fog com-
puting characteristics.

In machine learning (specially in Supervised Learning), a key chal-
lenge is the availability of labeled datasets representing the analyzed 
phenomenon. Also, the performance of deep models is highly depen-
dent on data quality and training data size (Jiang et al., 2021). Although 
there are several works on using machine learning and other intrusion 
detection methods for IoT, most of the current evaluations do not use 
data on real IoT traffic. Instead, they use more general network traffic 
datasets like UNSW-NB15, NSL-KDD, and KDD99, which are not suit-
able for evaluating the performance of an IDS in IoT networks (Ashraf 
et al., 2021, Thakkar & Lohiya, 2021). In this work, we use two IoT 
traffic data datasets: the IoT-23 dataset (Garcia et al., 2020), which 
contains benign and malign traffic from real-world IoT equipment, and 
the MQTT-IoT-IDS2020 (Hindy et al., 2020b), that has data generated 
by a simulated MQTT network.

Also, many works claim the effectiveness of the features they use, 
but very few evaluate the robustness of selected features (Liu et al., 
2021). We compare the performance of the optimal set of features with 
the one achieved using the features the datasets share. It is a relevant 
evaluation for the industry, as we show that near-optimal results may 
be achieved even though we use a considerably smaller set of features, 
thus leading to lower resource consumption. To avoid overfitting while 
training our models, we use a regularization technique (i.e., dropout) 
and early stopping. We show our proposal outperforms the results from 
the literature.

On the other hand, the heterogeneity of IoT devices, increases the 
difficult of applying machine-learning to anomaly detection (Mothukuri 
2

et al., 2022). We experimentally show the lack of generalization of our 
Intelligent Systems with Applications 17 (2023) 200189

models by using the model trained with data from a dataset to identify 
anomalies in the other one. We also build a new set that combines data 
from IoT-23 and MQTT-IoT-IDS2020 and use such data to train new 
models. We show that the obtained model achieves worse performance 
than the specialized ones.

Therefore, the main contributions of this work include (i) the pro-
posal of an architecture (including components, placement, and flow-
based methods) for the machine learning-based IoT IDS for smart cities 
that considers the limitations of IoT devices and the complex environ-
ment of smart city services; (ii) an experimental evaluation using four 
scenarios; and (iii) the assessment of generalization and specialization 
of trained deep models.

In the following section, we review some background and related 
work. In Section 3, we describe the architecture of our IoT-Flow 
IDS. Then, Section 4 contains experimental results. Finally, Section 5
presents our conclusions and future works.

2. Background and related work

In the last few years, Internet of Things (IoT) devices turned into 
part of day-to-day technologies that enable a wide range of applications 
in smart environments. Currently, the use of IoT devices and cyber-
enabled resources in machine-to-machine and human-to-machine inter-
actions generate large amounts of data (Berman et al., 2019), including 
confidential, private, and high-value data. Also, in smart cities, IoT de-
vices support a myriad of interconnected services, which increases the 
risk of cyberattacks (Figueiredo et al., 2022). Cybersecurity systems can 
be used together with machine learning to take advantage of its char-
acteristics to develop increasingly robust attack detection methods and 
solutions.

2.1. Smart cities and IoT attacks

In the last decade, cities started to provide a wide range of in-
formation to their citizens based on IoT data, including car parking 
availability, transportation routes or schedules, traffic congestion. Also, 
they started to use IoT devices in critical services, like environmental 
disasters detection, energy and water supply management, and street 
surveillance, among others (Figueiredo et al., 2022). Smart cities be-
came one of the major drivers for the IoT applications (Singh et al., 
2020). All to prevent the waste of resources and provide a better qual-
ity of life to citizens in a controlled and secure environment. Smart 
cities usually share the IoT network architecture. Fig. 1 presents one 
of the most common representations of such architecture, composed of 
the perception, network, support layer, and application layers (Cui et 
al., 2018). The perception layer is the source of the data. It includes 
the sensors, the meters, and all the IoT heterogeneous hardware de-
ployed across the city to provide services. The technologies that enable 
the communication between devices and the remaining layers are in 
the network layer, like Wi-Fi, 5G, Bluetooth, RFID, and Ethernet. The 
support layer provides services to the smart city context and its appli-
cations. In this layer, the network command center can be deployed 
and perform tasks like network monitoring and anomaly detection. 
The application layer is the top one and provides the end-user in-
formation and services regarding the collected data in the perception 
layer.

The most common concerns related to IoT security include the 
identification and authentication processes, the maintenance of data 
availability, integrity, confidentiality and privacy, and trust and access 
control (Hromada et al., 2021).

Each layer of the IoT architecture has its own vulnerabilities and 
is subject to different attacks (Butun et al., 2019). Some of the most 
frequent attacks include Denial of Service (DoS), botnets, brute force 
attacks, and ransomware.

DoS is an attempt by an attacker to prevent legitimate access to web-

sites by overwhelming the amount of available bandwidth or resources 



Intelligent Systems with Applications 17 (2023) 200189N. Prazeres, R.L.C. Costa, L. Santos et al.

Fig. 1. IoT based architecture for a smart city.
of the computer system (Moustafa et al., 2019a). This type of attack 
typically evolves to a Distributed Denial of Service (DDoS) when dif-
ferent types of equipment produce this type of attack against a specific 
target.

A botnet denotes the number of hijacked computer systems remotely 
operated by one or many malicious actors which coordinate their activ-
ities by Command and Control (C&C). These botnets are responsible for 
DoS or DDoS attacks where the owner of a hijacked device isn’t aware 
of being part of an attack on a computer system, denoting only some 
slow processing of its device.

Brute force endeavors to illegally obtain pairs of user names and 
passwords by trying all predefined pairs to gain access to network ser-
vices, with automated applications often used to guess password com-
binations. When this type of attack succeeds, the attacker gains access 
to all the data processed by the device. This device can be transformed 
into a bot or perform DoS attacks on other devices or computer systems. 
Ransomware is malware that harms computer and network systems by 
encrypting computer resources and blocking access till the victim pays a 
ransom (Moustafa et al., 2019a). It may result from a brute force attack 
and compromise service and data availability.

2.2. Intrusion detection systems

An Intrusion Detection System (IDS) is a solution to detect unau-
thorized accesses and attacks in network systems. It aims to detect any 
anomaly or attack in real-time and uses the network traffic as its data 
source. These systems work with different detection methods and must 
be strategically placed in the network (Thakkar & Lohiya, 2021).

The IDS may rely on multiple sensors that collect information about 
the devices installed inside the network and oversee the network com-
munications. The IDS sensors placement may be host-based, network-
based, or in a hybrid approach. The host-based approach is centered 
on a device, having a real-time perception of what is happening on 
that node and of the node’s network communications. This approach 
depends highly on the device’s processing capabilities. The network-
based architecture is usually deployed in the network gateways. It has 
a broader view of the network as it converges multiple hosts, thus deal-
ing with more data. The hybrid strategy tries to take advantage of the 
best of the host and network-based approaches.

In addition to the IDS placement, it is necessary to adjust the type 
of detection that is performed. There are several detection techniques 
related to IDSs, such as signature-based, anomaly-based, specification-
based, and hybrid. The signature-based or the specification-based IDSs 
have preconceived data to look for on the network, and when a match 
occurs, it raises an alert. This strategy produces a small number of 
alerts. On the other hand, the IDS would not detect new threats or 
attacks not listed on its database. An anomaly-based IDS detects abnor-
mal behaviors or anomalies by comparing network traffic with expected 
communications or usual behavior. This strategy leads to a higher num-
ber of alerts when compared with the signature and specification-based 
approaches, but it may detect new threats and attacks on time. A hy-
brid strategy may combine more than one technique, trying to detect 
3

new attacks or threats but raising a small number of alerts.
2.3. Machine learning and performance metrics

In the last decades, Machine Learning techniques have been used 
in several contexts where there is a need to process and analyze large 
volumes of data, spotting patterns, behaviors, and anomalies inside the 
datasets. There are two types of machine learning tasks: classification 
and prediction. In this work, our models classify network traffic flows. 
In classification tasks, the model tries to identify rules from the sample 
data and predicts the belonging of new elements (objects, individuals, 
and criteria) to a given class (Hussain et al., 2020).

In Supervised Learning, the model learns from labeled data, which 
means that training data includes both the input and the desired re-
sults (Chaabouni et al., 2019). A key challenge when using Supervised 
Learning is to get large labeled datasets representing the analyzed phe-
nomenon.

Artificial neural networks (ANNs) are generic algorithms mimicking 
the biological functioning of a brain without being intended for a spe-
cific task (Chaabouni et al., 2019). A Multilayer Perceptron (MLP) is 
one of the simpler ANN. A perceptron is a device capable of computing 
all predicates which are linear in some given set 𝜙 of partial predicates 
(Minsky & Papert, 1969). In other words, it is a simple algorithm in-
tended to perform binary classification. The MLP has an input layer that 
receives data, an output layer that outputs the decision or prediction 
about the input, and between those two, an arbitrary number of percep-
trons or hidden layers that are the computational engine of the MLP. In 
Deep Learning (DL), ANN learns to represent the data as a nested hier-
archy of concepts within the layers of the neural network (Chalapathy & 
Chawla, 2019). An advantage of DL over traditional machine learning is 
its superior performance in large datasets (Al-Garadi et al., 2020). Using 
adequate metrics is of major importance when assessing model perfor-
mance. The most suitable indicator depends on the problem of interest. 
For instance, in this work, we use machine learning to classify network 
flows into normal or malicious. A binary classification problem has four 
possible outcomes. The correctly predicted negatives are the true nega-

tives (TN), and the correctly predicted positives are true positives (TP). 
The incorrectly predicted negatives are the false negatives (FN). Finally, 
the incorrectly predicted positives are called false positives (FP).

One of the commonly used metrics is precision, which measures how 
accurate the classification model is. Precision is defined on the number 
of correctly classified elements, as represented in Equation (1).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛= 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(1)

In practice, misclassifications may have different importance. For 
instance, classifying a malicious flow as a normal one may be more 
prejudicial than identifying a normal flow as a malicious flow. The TP 
rate (or recall) depends on the number of true positives and false nega-
tives is defined by Equation (2).

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃𝑅 = 𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(2)

Models with high precision and recall values are highly dependable, 
as they do not misclassify benign flows and do not wrongly leave out 
malicious flows. On the other hand, models that achieve high precision 
values but low recalls miss out on many malicious flows. Therefore, 

these models should perform critical tasks. Lastly, models with high 



N. Prazeres, R.L.C. Costa, L. Santos et al.

recall and small precision values would detect most of the malicious 
flows but also raise many false alarms, which can create entropy in the 
security system.

The F1 Score (or F-score) is useful to evaluate the performance of 
models on unbalanced datasets. It is the harmonic mean of the precision 
and recall, as defined in Equation (3).

𝐹1 𝑆𝑐𝑜𝑟𝑒= 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

(3)

2.4. Related work

There are several cybersecurity-related challenges in the IoT envi-
ronment. One of the possible solutions refers to protecting communica-
tions. In (Tewari & Gupta, 2017, 2020), authors present authentication 
methods which may be used to ensure security of IoT communica-
tions. Stergiou et al. (2020) present encryption algorithms for securing 
communications when using IoT with cloud computing in the field of 
telecommunications. Our work deals with using an AI-driven IDS to 
identify anomalous traffic in IoT networks, specially in the smart cities 
context.

Cui et al. (2018) describe the four-layered IoT-based architecture for 
smart cities and identify machine learning as a technique that would im-
prove traditional intrusion detection systems in protecting the network. 
The work does not present any actual implementation details and does 
not even discuss the implementation of the IoT IDS with machine learn-
ing. Butun et al. (2019) describe the most common vulnerabilities of 
each layer and the corresponding attacks and countermeasures.

Elrawy et al. (2018) state that many IoT applications may run in 
real-time and that network delay and latency would affect their per-
formance. The work refers to the need for robust IoT network security 
measures in environments like e-health systems, as attacks may become 
life-threatening in such environments. Authors state that the security so-
lution must at the same time protect the IoT network and its resources 
without impacting the system performance or user privacy. The work 
describes the IDS operation as a 3-stage process. The first stage is a 
monitoring phase that relies on sensors that could be network or host-
based. Then, there is the analysis phase, in which feature extraction 
or pattern identification methods are performed. The third stage is the 
detection one, in which the system detects anomalies or misuses. The 
authors also highlight the importance of choosing the adequate place-
ment for the IDS in an IoT network cause this matter would affect the 
overall IDS efficiency. There is no practical implementation. Indeed, the 
selection of features remains an open issue in the use of deep learning 
for intrusions detection (Liu et al., 2021).

Zeadally and Tsikerdekis (2020) discuss the use of traditional net-
work monitoring (like Intrusion Detection Systems) with the help of 
machine learning algorithms to give a viable alternative to existing IoT 
security solutions. They summarize the needs of host and network-based 
approaches to perform network traffic capture using machine learning 
to process the data. In this case, no option is given as optimal, highlight-
ing only the strength and limitations of the machine learning algorithms 
regarding the IoT devices’ characteristics.

Chaabouni et al. (2019) present a comprehensive survey point-
ing out the design challenges of IoT security and classification of IoT 
threats. As future research directions, the authors state that exploring 
the edge and fog computing paradigms would give the ability to push 
the intelligence and processing logic employment down near to data 
sources. Also, they identify that to train and deploy an IoT IDS based 
on machine learning, a real-world IoT-dedicated dataset is required.

Diro and Chilamkurti (2018) present a distributed attack detection 
scheme using a deep learning approach for IoT and place their IDS 
based on deep learning in the fog network. The fog nodes are respon-
sible for training models and hosting attack detection systems at the 
edge of the distributed fog network since they are closer to the IoT data 
4

layer. A central node updates the parameters of each cooperative node 
Intelligent Systems with Applications 17 (2023) 200189

and propagates the resulting update back to the worker nodes. No IoT-
based dataset was used for model training. (Ling & Hao, 2022) present 
an algorithm for feature selection based on artificial immune with co-
operative evolution of multiple operators. Authors evaluate their work 
using KDD99 and UNSW-NB15 datasets, which are not oriented for eval-
uating the performance of an IDS in IoT networks (Thakkar & Lohiya, 
2021).

Ariyaluran Habeeb et al. (2019) highlight that adopting a real-time 
architecture for the smart city would assure effective and seamless com-
munication among sensing devices within the smart city infrastructure. 
It also includes the quality of services support in the network, which 
is crucial for the real-time application for smart cities. Due to big data 
production in several environments, Habeeb et al. investigated real-time 
big data processing and machine learning with the possibility of detec-
tion anomalies. Li et al. (2022) discuss the use of machine learning to 
identify false alerts generated by IDS.

Austin (2021) used the IoT-23 dataset in his trials to answer which 
learning model that performs the best in terms of classification accu-
racy, recall, precision, F1 score and to discover which features have the 
best predictive power in the dataset. Austin (2021) described how the 
dataset was collected, the types of attacks used in the network, and how 
the learning approach helps to classify traffic in the dataset.

Mothukuri et al. (2022) use federated training rounds and gated 
recurrent units (GRUs) in anomaly detection for IoT. They focus on 
applications of industry domain and use a dataset built with Modbus to 
evaluate their proposals.

Ahmad and Alsmadi (2021) and Thakkar and Lohiya (2021) present 
recent surveys on machine learning-based security solutions and IDS 
for IoT. These works identify some open challenges, which include 
choosing the appropriate intrusion detection strategy and IDS place-
ment strategies, the lack of scalable solutions, using validation datasets 
based on IoT network data, and providing IDS solutions that deal with 
the diverse types of existing IoT technologies.

These are some of the open challenges we deal with in this work. We 
describe a realistic smart city scenario, discussing IDS components and 
placement and network segmentation to deal with distinct application 
systems. Our AI-driven IDS operates over flow information extracted 
from captured network traffic. To assess the use of learning techniques 
in such a context, we experimentally evaluate deep models over two 
IoT traffic flow datasets, assessing the performance and generalization 
of models.

3. IoT-flow: machine learning over flow data IDS for IoT

Some of the current challenges related to deploying an AI-driven IDS 
for IoT environments are the anomaly and intrusion detection mech-
anism, IDS placement and scalability, and the use of representative 
datasets to validate proposals (Ahmad & Alsmadi, 2021, Thakkar & 
Lohiya, 2021). Also, smart cities are complex environments with very 
great volume of heterogeneous data (Garcia-Font et al., 2018). This sec-
tion describes our IoT-Flow IDS that addresses the complexity of smart 
cities’ environments through a distributed architecture which is scalable 
and efficiently deals with the diverse types of IoT technologies.

Our IDS operates on traffic flow information. A flow-based IDS an-
alyzes traffic information and statistics rather than packets payload. 
Using packet flows in IDS for IoT can make these solutions more scal-
able and interoperable (Santos et al., 2021). However, this solution 
requires flow aggregation and export activities. Usually, the transforma-
tion of traffic data into flows is conducted by a process that consists of 
several steps (Sperotto et al., 2010). The first step is Packet Observation

and consists in the process of capturing packets from the line and pre-
processing them. Then, the Flow Metering & Export step is where packets 
are aggregated into flows and flow records are exported to a collector 
that receive, store and pre-process data from the flow exporters assur-
ing the Data Collection step. Finally, Data Analysis is the final step and 

there are three main areas where analyses of flow data can be applied 



Intelligent Systems with Applications 17 (2023) 200189N. Prazeres, R.L.C. Costa, L. Santos et al.

Fig. 2. Anomaly Detection Workflow Overview.
(Hofstede et al., 2014): (a) Flow analysis & reporting; (b) Threat detec-
tion; and (c) Performance monitoring.

3.1. Workflow overview

Fig. 2 presents the main steps in the flow of our solution in the model 
training and production environment. On its left side, Fig. 2 represents 
the steps related to model selection and training. In this context, mod-
els are trained and tuned using datasets representative of data flows 
with characteristics of the IoT environment of smart cities. The mod-
els with the highest combined value of precision and recall, in terms of 
performance metrics, are deployed in the production environment. On 
the right side of Fig. 2, there is the anomaly detection workflow with 
the various steps required in the production environment.

Sensors are responsible for capturing data from packets transmitted 
in the network. This is similar to the first step of the above-described 
transformation of traffic data into flows. The sensors are distributed in 
the perception layer as discussed in Section 3.2.

The next step in the transformation of traffic data into flows is the 
aggregation of packets into flows, which is represented in the Bidirec-

tional Traffic Flow step in Fig. 2. Traffic flows within the communication 
networks have a large series of statistics and characteristics, which 
may be standardized. IPFIX (Claise, 2008, Claise et al., 2008, Claise 
& Trammell, 2013) stands for IP Flow Information Export and is an 
IETF protocol that was born due to the need of having a common uni-
versal standard for exporting IP flow information from network devices 
and probes that facilitates services such measurement, accounting, and 
billing. This protocol is used to transport information elements (IE) that 
allow network administrators to have a broader view of the traffic that 
flows in and out of the network. IPFIX can be deployed across network 
elements like routers where it performs passive flow measurements 
(Zseby et al., 2006). The IEs are grouped into 12 groups according 
to their semantics and their applicability (Claise et al., 2008, Claise 
& Trammell, 2013):
5

1. Identifiers
2. Metering and Exporting Process Configuration
3. Metering and Exporting Process Statistics
4. IP Header Fields
5. Transport Header Fields
6. Sub-IP Header Fields
7. Derived Packet Properties
8. Min/Max Flow Properties
9. Flow Timestamps

10. Per-Flow Counters
11. Miscellaneous Flow Properties
12. Padding

Examples of this information include source and destination IP ad-
dresses and ports, the number and total size of transmitted packets, and 
the protocol used. With IPFIX IEs a network admin may answer ques-
tions like who is originating a network flow? Which devices are intervening 
in this communication? What application is generating this flow? Where did 
this flow take place? How do a flow is working and what are its character-

istics?

Access to IPFIX IEs can be made by using a flowmeter installed on 
the network sensors. This software generates the flows containing in-
formation about every connection of the observed traffic. Yet Another 
Flowmeter (YAF) (Inacio & Trammell, 2010) is an open-source software 
tool that can be used for this task since it captures network packages 
or reads files from network captures, transforming and exporting them 
into IPFIX flows.

After transforming traffic data into traffic flows, data pre-processing 
begins, with tasks such as encoding and filling in missing values. Cat-
egorical features (strings) are encoded with numerical values and re-
placed with zero if received as null or blanks.

The next step comprises selecting the features relevant to anomaly 
identification, which the machine learning model (classifier) performs. 
The feature selection is accomplished by identifying the features that 
have a major effect on the target attribute. In our implementation, we 
use the ExtraTreesClassifier Pedregosa et al. (2011) algorithm, as de-

scribed in Section 4.



Intelligent Systems with Applications 17 (2023) 200189N. Prazeres, R.L.C. Costa, L. Santos et al.

Fig. 3. IoT-Flow IDS architecture proposal.
The result will be the classification of flows into normal or anoma-
lous, in which case the system issues an alert. But in both cases, selected 
flows are stored in a database for future analysis, in case of an attack 
or to check for relevant changes in the patterns of network communica-
tions, and will be used as input for training new models. The flow data 
stored at the database may also be used to support other activities, like 
forensic analyses, for instance, as it may provide evidence on the source 
and timing of anomalous behavior in network communications.

3.2. IoT-flow IDS distributed architecture

To reach the full potential of an IoT IDS based on machine learn-
ing, one should look for a computational solution that guarantees the 
required resources for data processing. Such a solution should deal with 
the processing limitations of IoT devices and be aware of the require-
ments of the services they support. Our solution relies on the use of Fog 
computing. Due to its edge location, it may provide network context in-
formation to fog applications, such as local network conditions, traffic 
statistics, and client status information (Sucharitha et al., 2019). Due 
to its location awareness, fog computing allows the creation of network 
nodes (i.e., Fog Nodes) that offer local network services and resources. 
Each fog node has all the characteristics associated with fog computing.

Also, to place a cybersecurity solution in the smart city IoT environ-
ment, one must consider the layers that represent the architecture of the 
smart city and the existence of distinct requirements due to the variety 
of services. Fig. 3 presents the distributed architecture of our solution.

Starting in the perception layer, where we place the sensors, we 
segment the IoT network traffic flow, which may be based on re-
quirements and criticality of services or by the application messaging 
protocols (e.g., MQTT or CoAP). Satisfying the different needs of each 
service would be easier with network segmentation. But the segmen-
tation would also allow us to create observation points (OP) of each 
segment or service, making it simpler to perform network analysis and 
understand network behaviors. The network layer has the necessary 
technology to transport data to the support layer. Whether through 
Wi-Fi access points, Ethernet, or 4G/5G radio links. Devices’ gateways 
would be set to the support layer node that provides services before 
the data reaches the application layer. In the support layer, we assume 
that we will have an infrastructure based on fog computing, capable of 
providing all the necessary processing and storage capacity resources. 
It would be the layer through which all the traffic generated by the 
6

perception layer or originating from the application layer would pass.
Fig. 4. Fog Node with Learning-based IDS.

3.3. Specialized components

Fog nodes, like the one in Fig. 4, are the network elements respon-
sible for observing, storing, transforming, classifying, and forwarding 
the data generated by the IoT network. The network traffic will be 
transformed into standard (e.g., IPFIX) flows that go through the pre-
processing module before being delivered to the model that classifies 
the flow. Regardless of the classification result, it will be saved together 
with the flows and packets that originated it. Likewise, the flow for-
warding to or from the application layer is guaranteed since it is just a 

detection system.



Intelligent Systems with Applications 17 (2023) 200189N. Prazeres, R.L.C. Costa, L. Santos et al.

Fig. 5. Support layer Training/Maintenance Module.
When using supervised learning, one must train the learning module 
to distinguish the usual behavior of the network from anomalous be-
havior. Model training may use datasets built and labeled in controlled 
laboratory environments or through pre-production networks that use 
protocols or equipment similar to those in the smart city. Hence, our ar-
chitecture comprises the Training and Maintenance module described in 
Fig. 5, which has a close working process with the IDS fog node.

In this module, the machine learning models with the best per-
formance are identified and later implemented in the production IDS 
module. In the production environment, a database stores the captured 
network traffic (PCAP files), their flow representation (e.g., in IPFIX), 
and the classification of the flows. The Training and Maintenance mod-
ule contains a replica of the production database and uses it in model 
training. Hence, the training module feeds the production IDS (with 
newly trained models), and production IDS nodes feedback the training 
module with real-world (and labeled) data. Such real-world labelled 
data may be obtained from historical data, and the traffic previously 
identified as malicious may be validated as result from network audit-
ing and forensic analysis.

4. Experimental evaluation

To experimentally evaluate our proposals, we use two datasets with 
IoT network flows, namely IoT-23 (Garcia et al., 2020) and MQTT-
IoT-IDS2020 (Hindy et al., 2020b). We used Python (Van Rossum & 
Drake, 2009), Jupyter Notebooks (Kluyver et al., 2016), and Tensorflow 
to train and test several deep models. We evaluated three architec-
tures, i.e., our IoT-Flow IDS with segmented traffic flow information, 
a merged flow architecture, and a federated learning approach.

4.1. Evaluated scenarios

We evaluated four scenarios on the use of flow data for anomaly 
detection: IoT-Flow IDS, Cross-flow, Merged flow and Flow-based fed-
erated learning.

IoT-Flow IDS - the first scenario simulates our proposals with net-
7

work traffic segmentation. We used the IoT-23 and MQTT-IoT-IDS2020 
datasets to evaluate our proposals. Each dataset represents an appli-
cation system. We applied separate IDS training for each dataset and 
assessed the IDS performance using test data from the corresponding 
system. Fig. 6 represents the evaluation scenario.

Cross-flow - in this scenario, we applied separate IDS training for each 
dataset and assessed the IDS performance using test data from other 
dataset, thus representing the use of the models to detect attacks in sys-
tems other than the ones on which they were trained. Fig. 7 represents 
the Cross-flow evaluation scenario.

Merged flow - this scenario considers the merge of flows from dis-
tinct systems and its use for training of a single IDS, as represented in 
Fig. 8. Such system would be used to identify anomalous traffic over 
the merged traffic data.

Flow-based federated learning - we also considered a federated learn-
ing approach, on which each client’s model is trained considering dis-
tinct datasets. Then, a new server model is built by the combination 
(average) of the parameters of trained client models, as represented in 
Fig. 9. Test data of both datasets is used to evaluate the server model.

4.2. Datasets description

Both used datasets contain IoT network traffic data. But they have a 
distinct set of features.

IoT-23 - The IoT-23 dataset results from the Malware Capture Facility 
Project from the Czech Technical University ATG Group and contains 
normal and malicious traffic. Real hardware (not simulated), including 
a smart door lock (Somfy), a smart LED lamp (Philips), and a home 
intelligent personal assistant (from Amazon), is used to produce be-
nign traffic. Network attacks are mainly based on known botnets like 
Mirai and in trojan software that helps the malicious actors take over 
the equipment remotely. A passive open-source network traffic analyzer 
called Zeek captured the flows, whose main data structure is a connec-
tion that follows typical flow identification mechanisms that correlate 
with IPFIX. IoT-23 contains 23 features of binary flows, including ori-
gin and destination addresses and ports, protocol and service type, and 
counts of bytes from source and destination. Table 1 presents the dataset 

features and the corresponding IPFIX elements.



Intelligent Systems with Applications 17 (2023) 200189N. Prazeres, R.L.C. Costa, L. Santos et al.

Fig. 6. IoT-Flow evaluation architecture.

Fig. 7. Cross-flow evaluation architecture.
Fig. 8. Evaluation architecture for merged flow data.

Originally, traffic flows were split into log files accordingly to the 
malware type. To build a sample dataset representing the various types 
of network attacks produced in the lab, we took samples from several 
log files. Our final dataset has 1,244,220 flows, with the total number 
of malicious flows close to the number of normal flows. The not benign 
flows include horizontal port scans (to gather information to perform 
further attacks), Okiru malware, DDoS (Distributed Denial of Service) 
attack, and command and control attacks (C&C).

MQTT-IoT-IDS2020 - The MQTT-IoT-IDS2020 dataset contains data 
generated by a simulated MQTT network. Dataset contains raw pcap 
files, and unidirecional and bidirecional flow features. Data include 
8

normal operation traffic, aggressive and UDP scan traffic, Sparta SSH 
Table 1

IoT23 features - Zeek flow features vs IPFIX.

IoT23 / Zeek field IPFIX

conn.log file ID Name

ts 22 flowStartSysUpTime
uid 148 flowId
id.orig_h 8 sourceIPv4Address
id.orig_p 7 sourceTransportPort
id.resp_h 12 destinationIPv4Address
id.resp_p 11 destinationTransportPort
proto 4 protocolIdentifier
service 5 ipClassOfService
duration 161 flowDurationMilliseconds
orig_bytes 231 initiatorOctets
resp_bytes 232 responderOctets
conn_state 136, 218, 

219, 220, 
221, 222, 
223

flowEndReason, tcpSynTotalCount, 
tcpFinTotalCount, tcpRstTotalCount, 
tcpPshTotalCount, tcpAckTotalCount, 
tcpUrgTotalCount

local_orig 149 observationDomainId
local_resp 149 observationDomainId
missed_bytes 165 ignoredOctetTotalCount
history 6 tcpControlBits
orig_pkts 298 initiatorPackets
orig_ip_bytes 1 octetDeltaCount
resp_pkts 299 responderPackets
resp_ip_bytes 1 octetDeltaCount
tunnel_parents 148 flowId
label (not a Zeek field) n.a. n.a.
detailed-label (not a Zeek field) n.a. n.a.

brute-force attack, and MQTT brute-force attack. The dataset contains 
distinct sets of features for pcaps, unidirecional flows and bidirecional 
flows. For bidirecional flows, it contains 32 features, including ad-
dresses and ports, protocol, packet length statics and flags. We merged 
the files containing bidirecional flow data, creating a dataset with al-

most 180 thousand flows.



Intelligent Systems with Applications 17 (2023) 200189N. Prazeres, R.L.C. Costa, L. Santos et al.

Fig. 9. Federated learning based on specialized flow data.
Fig. 10. Model representation.

4.3. Model configuration, and training, validation and testing strategies

We created a deep model composed of fully connected hidden layers, 
as represented in Fig. 10. Hyperparameters like the number of neurons 
in each hidden layer, the activation functions, and the output layer 
were manually set through experimentation. In the evaluation of the 
proposed IoT-Flow IDS architecture to process the IoT-23 dataset, we 
achieved the best results using three hidden layers with 64, 32, and 16 
neurons, respectively. For all the other considered scenarios and data, 
we got the best results using two hidden layers with 50 and 25 neurons, 
respectively. Each hidden layer uses ReLu as the activation function. 
The output layer uses Softmax. We used Keras to build our model, the 
Adam optimizer, and a Dropout layer with 20% between the last hid-
den layer and the output one. Other hyperparameters remained in their 
default values.

We split each dataset into training (80%) and testing (20%) data. 
Validation data corresponds to 20% of the training data. We used Early 
Stopping with a patience of 10.

4.4. Feature selection and pre-processing

Reducing the number of features can lead to better and faster train-
9

ing. Our IoT-Flow IDS architecture does not require all the datasets to 
have the same features. On the other hand, the other three considered 
architectures require the flows to have compatible features.

IoT-23 - The first phase of our feature selection strategy was to re-
move the columns that always have the same value (i.e., local_orig and 
local_resp) and the columns whose values are all distinct (i.e., ts and 
UID). We also removed the tunnel-parents column as it is related to the 
removed UID column. The detailed-label represents the type of attack 
which we do not consider in these experiments. Thus, the detailed-label

column was also removed.
Then, we preprocessed the remaining features and selected features 

using automatic methods. We transformed the features from categor-
ical (strings) to numerical values and normalized numerical values. 
We used the LabelEncoder and the SimpleImputer (Pedregosa et al., 
2011) to transform strings into values, and the StandardScaler (Pe-
dregosa et al., 2011) algorithm for normalization. Then, we used the 
ExtraTreesClassifier (Pedregosa et al., 2011) algorithm to verify which 
features have a bigger contribution to flow classification inside our sam-
ple. The algorithm identified four columns as having a contribution over 
0.05, namely the proto (Protocol), Id.resp_p (Destination port), and the 
Id.orig_p (Source port) and history. The latter is related to the TCP con-
trol bits. Since TCP is one of the drivers for malicious flows in this 
network, the history feature is a relevant feature for classification in our 
sample data.

Hence, we evaluated our IoT-Flow IDS architecture considering the 
four features identified by the ExtraTreesClassifier.

MQTT-IoT-IDS2020 - We merged the file with bidirectional flow data 
for normal traffic with four files with attack traffic flows data. Then, 
we removed the ip_src (IP address for traffic source), ip_dst (IP address 
for traffic destination) proto columns (the latter for comparison with 
(Hindy et al., 2020b)). We also removed the columns that store empty 
or single values.

In each numeric column, we replaced missing values with the me-
dian of the column’s values and applied normalization using a Z-Score. 
The resulting feature set was used to evaluate the IoT-Flow IDS archi-

tecture.



N. Prazeres, R.L.C. Costa, L. Santos et al.

Table 2

Source and destination port number 
transformation to categories.

Source/Destination 
Port Number

Category

<5,000 1
>= 5,000 & <10,000 2
>= 10,000 & <15,000 3
>= 15,000 & <20,000 4
>= 20,000 & <25,000 5
>= 25,000 & <30,000 6
>= 30,000 & <35,000 7
>= 35,000 & <40,000 8
>= 40,000 & <45,000 9
>= 45,000 & <50,000 10
>= 50,000 & <55,000 11
>= 55,000 & <60,000 12
>= 60,000 13

Additional operations to build the compatible datasets - After mak-
ing the above described operations over the IoT23 and the MQTT-IoT-
IDS2020 datasets, we had to make additional preprocessing operations 
to make them compatible, and thus enable their use to evaluate the 
Cross-flow, Merged flow and Flow-based federated learning scenarios.

Therefore, we selected the set of features they share, namely origin 
port number, destination port number, protocol, count of bytes gener-
ated by the source, and count of bytes generated by destination. We also 
had an attribute that identifies the traffic as normal or suspicious/ma-
lign.

Hence, besides the specific proprocessing operations for each dataset 
we described above, we applied the following transformations:

• Protocol - In IoT-23, we replaced the protocol described by the 
corresponding number. Then, for both datasets, we applied One-
hot Encoding on the protocol value.

• Origin and destination port number - For port numbers (origin and 
destination), we created 13 classes. If a port number is below 5,000 
then it is class 1. Port number between 5,000 and 9,999 is of class 
2, and so on. All port numbers over 60,000 are from class 13. Ta-
ble 2 presents the specified category for each port number. After 
transforming the origin and destination ports of each dataset into 
classes, we applied One-hot Encoding.

• Count of bytes generated by origin and destination - Missing values 
in the counts of generated bytes were transformed into zero. Then, 
we applied normalization using a Z-Score.

We also verified that both sets have the same attributes after the ex-
ecuted transformations (missing attributes were created and filled with 
a standard value). Finally, each of the pre-processed datasets had 31 
attributes, i.e., three for protocol, two for transferred bytes, one for 
benign/malicious traffic identification, and the remaining containing 
information on the origin and destination port classes.

4.5. Experimental results

Each dataset was split into training, validation and testing data as 
described in the previous section. First, we evaluated the performance 
of models using training and testing data from the same dataset (i.e., 
IoT23 or MQTT-IoT-IDS2020). Then, we assessed models with training 
and testing data from distinct origins. Finally, we evaluated using a 
dataset composed of data merged from IoT23 and MQTT-IoT-IDS2020.

4.5.1. IoT-flow IDS evaluation

Table 3 presents the confusion matrix for the proposed IoT-Flow IDS.

IoT23 - The evaluated network achieved high true positive and negative 
values over IoT23, with only 0.2% of false positives and 0.1% of false 
10

negatives, as represented in the confusion matrix of Table 3a.
Intelligent Systems with Applications 17 (2023) 200189

Table 3

Confusion matrices - Training and testing data selected from the same dataset.

A
ct

u
al
 va

lu
e

Prediction outcome

0 50.0% 0.2%

1 0.1% 49.6%

0 1

(a) IoT23

A
ct

u
al
 va

lu
e

Prediction outcome

0 72.5% 0%

1 0% 27.5%

0 1

(b) MQTT-IoT-IDS2020

Table 4

IoT23 Dataset - Performance evaluation.

Metric IoT-Flow IDS
Austin (2021)

Random Forest Naive Bayes

Precision 0.996 0.999 0.997
Recall 0.997 0.949 0.898
F1-Score 0.996 - -

Table 5

MQTT-IoT-IDS2020 - Performance evaluation.

Metric IoT-Flow IDS
Hindy et al. (2020a)

Linear Regression Decision Trees

Precision 0.999 0.983 0.996
Recall 0.999 0.982 0.999
F1-Score 0.999 0.981 0.996

Table 4 presents the Precision, Recall, and F1-Score metrics obtained 
when using the data from the IoT23 dataset and compare the results 
with other work from the literature.

The proposed architecture achieved a precision compatible with the 
ones of other works, and clearly outperforms than in terms of recall, 
which is a key performance metric in the considered context, where 
having false negatives may be considered worse than having false posi-
tives.

MQTT-IoT-IDS2020 - Table 3b presents the confusion matrix obtained 
when evaluating the model using the MQTT-IoT-IDS2020 dataset. The 
network correctly classified almost all flows. Table 5 presents the com-
puted metrics using the IoT-Flows IDS and the results obtained by 
(Hindy et al., 2020a). The table confirms our results outperforms the 
ones from the literature.

4.5.2. Closs-flow scenario

Table 6a presents the confusion matrix obtained when we evalu-
ated the performance of a model trained with the IoT23 dataset when 
identifying anomalous traffic on the MQTT-IoT-IDS2020. The model 
misclassified most of the flows (more the 66% were false positives) and 
only achieved about 6% of true negatives.

Table 6b represents the confusion matrix obtained when using a 
model trained with data from MQTT-IoT-IDS2020 to identify anomalous 
traffic on the IoT23 dataset. The results were slightly better than the 
ones represented in Table 6a. Still, the model misclassified almost 63% 
of the flows.

Table 7 presents the values of Precision, Recall, and F1-Score. It is 
possible to confirm that the models didn’t achieve acceptable general-
ization levels, as the metrics computed when using training and testing 
data from distinct datasets were below 50%.

Table 7 also presents the performance achieved when training mod-
els using only the features shared by both datasets to identify anomalies 

in the same dataset they were trained on.



N. Prazeres, R.L.C. Costa, L. Santos et al.

Table 6

Confusion matrices - Training and testing data selected from distinct datasets.

A
ct

u
al
 va

lu
e

Prediction outcome

0 6.1% 66.4%

1 10.4% 17.1%

0 1

(a) Model trained with IoT23 -
MQTT-IoT-IDS2020-based test data

A
ct

u
al
 va

lu
e

Prediction outcome

0 14.7% 35.4%

1 28.5% 21.4%

0 1

(b) Model trained with MQTT-IoT-
IDS2020 - IoT23-based test data

Table 7

Performance evaluation - Cross-flow scenario.

Training data origin Metric
Testing data origin

IoT-23 MQTT-IoT-IDS2020

IoT-23
(shared set of features)

Precision 0.979 0.326
Recall 0.979 0.232
F1-Score 0.979 0.185

MQTT-IoT-IDS2020
(shared set of features)

Precision 0.355 0.849
Recall 0.358 0.836
F1-Score 0.355 0.815

Table 8

Performance evaluation - Merged dataset.

Training data origin Metric
Testing data origin

IoT-23 MQTT-IoT-IDS2020

Merged dataset
Precision 0.887 0.528
Recall 0.860 0.300
F1-Score 0.860 0.219

4.5.3. Merged flow scenario

We also built a dataset composed of the training data from IoT-
23 and MQTT-IoT-IDS2020. We used 20% for such data for validation 
while training a new model. Then, we evaluated such a model on the 
testing sets we built for IoT-23 and MQTT-IoT-IDS2020. Achieved per-
formance values are summarized in Table 8. Results show that the use of 
specialized models (i.e., the IoT-Flow IDS) achieves better performance 
than a single model for distinct types of network traffic.

4.5.4. Flow-based federated learning scenarios

We also evaluated the use of a federated learning approach. We 
trained a model with IoT23 data and another with MQTT-IoT-IDS2020. 
Then, the parameters of trained models were combined (averaged) and 
loaded into a new (server) model. We evaluated the performance of 
such server model using test data from both datasets.

Table 9a represents the confusion matrix obtained when using a 
model trained with data from MQTT-IoT-IDS2020 to identify anoma-
lous traffic on the IoT23 dataset. The results were significantly better 
than the ones represented in Table 9b.

Table 10 presents the values of Precision, Recall, and F1-Score. It 
is possible to confirm that the server model didn’t achieve acceptable 
generalization level, as the metrics computed when using testing data 
from MQTT-IoT-IDS2020 were far below 50%.

4.6. Discussion

Our IoT-Flow IDS proposal outperformed the results from the liter-
ature considered in Section 4.5.1. It achieved the best results from all 
11

the considered scenarios as summarized in Tables 11 and 12. Indeed, 
Intelligent Systems with Applications 17 (2023) 200189

Table 9

Confusion matrices - Flow-based federated learning.

A
ct

u
al
 va

lu
e

Prediction outcome

0 46.9% 3.2%

1 0.1% 49.7%

0 1

(a) IoT23 test data

A
ct

u
al
 va

lu
e

Prediction outcome

0 6.1% 66.4%

1 9.6% 17.9%

0 1

(b) MQTT-IoT-IDS2020 test data

Table 10

Performance evaluation - Federated learn-
ing.

Metric
Testing data origin

IoT-23 MQTT-IoT-IDS2020

Precision 0.968 0.342
Recall 0.967 0.241
F1-Score 0.967 0.189

results of the Cross-flow and Federated learning scenarios confirm that 
evaluated models achieved reasonable performance when identifying 
attacks on the same sets they were trained on, but also that such mod-
els have poor generalization performance, as they were not capable of 
identifying anomalous traffic on data from another dataset.

Also, the performance became significantly worse when training the 
model with the merged dataset than when using models specialized to 
each flow dataset, which indicates that maintaining distinct IDS sys-
tems for individual application systems in smart cities is a promising 
approach.

By comparing the results of Table 7 achieved when using the shared 
set of features (in the Cross-folder scenario) to test data from the same 
origin of training data with the performance achieved using our IoT-
Flow IDS, it is possible to conclude that the use of the deep model over 
the small set of features is a reasonable choice for the IoT23 dataset, 
as the performance was only slightly worse to one of the models that 
use a larger set of features. On the other hand, the results obtained 
when using data from the shared set of features of MQTT-IoT-IDS2020 
were significantly worse than the ones of obtained with the full set 
of features, which confirms the need for the execution of the feature 
selection strategy for each dataset and, then, the need for the proposed 
segmented architecture.

5. Conclusions and future work

The large-scale use of IoT devices enabled the implementation of 
several intelligent services and boosted the creation of smart cities. In 
this context, devices collect and share a large amount of data. It is an 
attractive environment for potential attackers. Thus, it must have cyber 
protection measures, such as a specialized flow-based IDS. In this work, 
we describe a machine learning-based distributed IDS for smart cities’ 
IoT environments that considers the usual limitations of IoT devices and 
the distinct classes of services and requirements in such context.

Our proposal captures IoT traffic data, aggregates communication 
packages into flows, applies pre-processing techniques and feature se-
lection on the generated flows, and uses machine learning models to 
classify them. We describe a general architecture named IoT-Flow IDS, 
the specialized elements required for executing the workflow steps and 
their positioning considering segmented networks and fog nodes. We 
also discuss training and assessing new models over real-world data for 

continuous improvement.



Intelligent Systems with Applications 17 (2023) 200189N. Prazeres, R.L.C. Costa, L. Santos et al.

Table 11

Performance metrics comparison - Models trained using IoT23 data.

Metric IoT-Flow IDS -
our proposal -
(IoT23 test data)

Cross-Flow 
(MQTT-IoT-IDS2020 
test data)

Merged Data Set 
(IoT23 test data)

Federated learning 
(IoT23 test data)

Precision 0.996 0.326 0.887 0.968
Recall 0.997 0.232 0.860 0.967
F1-Score 0.996 0.185 0.860 0.967

Table 12

Performance metrics comparison - Models trained using MQTT-IoT-IDS2020 data.

Metric IoT-Flow IDS
- our proposal -
(MQTT-IoT-IDS2020 
test data)

Cross-Flow 
(IoT23
test data)

Merged Data Set 
(MQTT-IoT-IDS2020 
test data)

Federated learning 
(MQTT-IoT-IDS2020 
test data)

Precision 0.999 0.355 0.528 0.342
Recall 0.999 0.358 0.300 0.241
F1-Score 0.999 0.355 0.219 0.189
We experimentally evaluated deep models to identify anomalous 
traffic in IoT traffic flows of two datasets. We use deep models in four 
distinct scenarios. The results from Cross-flow and Federated learning 
scenarios show that the models are not generalizable, even though we 
use techniques to avoid overfitting. We built a new set that combines 
data from two datasets. The results obtained by the combined dataset 
are considerably worse than the ones we got by specialized models.

In future work, we intend to expand the analysis of deep models with 
new datasets and evaluate the resilience of our solution to adversarial 
machine learning.

CRediT authorship contribution statement

Nuno Prazeres: Conceptualization, Data curation, Investigation, 
Methodology, Software, Validation, Visualization, Writing – original 
draft, Writing – review & editing. Rogério Luís de C. Costa: Conceptu-
alization, Investigation, Project administration, Methodology, Software, 
Supervision, Visualization, Writing – original draft, Writing – review & 
editing. Leonel Santos: Conceptualization, Project administration, Su-
pervision, Writing – original draft, Writing – review & editing. Carlos 
Rabadão: Conceptualization, Project administration, Supervision, Writ-
ing – original draft, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work is funded by national funds through FCT – Fundação para 
a Ciência e a Tecnologia, I.P., under the Scientific Employment Stimulus 
- Institutional Call - CEECINST/00051/2018 and in the context of the 
project UIDB/04524/2020.

References

Ahmad, R., & Alsmadi, I. (2021). Machine learning approaches to iot security: A system-
atic literature review. Internet of Things, 14, Article 100365.

Al-Garadi, M. A., Mohamed, A., Al-Ali, A. K., Du, X., Ali, I., & Guizani, M. (2020). A 
survey of machine and deep learning methods for Internet of things (IoT) security. 
IEEE Communications Surveys and Tutorials, 22, 1646–1685. https://doi .org /10 .1109 /
12

COMST .2020 .2988293. arXiv :1807 .11023.
Ariyaluran Habeeb, R. A., Nasaruddin, F., Gani, A., Targio Hashem, I. A., Ahmed, E., & 
Imran, M. (2019). Real-time big data processing for anomaly detection: A survey. In-

ternational Journal of Information Management, 45, 289–307. https://doi .org /10 .1016 /
j .ijinfomgt .2018 .08 .006.

Ashraf, J., Keshk, M., Moustafa, N., Abdel-Basset, M., Khurshid, H., Bakhshi, A. D., & 
Mostafa, R. R. (2021). Iotbot-ids: A novel statistical learning-enabled botnet detection 
framework for protecting networks of smart cities. Sustainable Cities and Society, 72, 
Article 103041.

Austin, M. (2021). IoT malicious traffic classification using machine learning IoT mali-
cious traffic classification using machine learning. Master’s thesis, Statler College of 
Engineering and Mineral Resources - West Virginia University.

Berman, D. S., Buczak, A. L., Chavis, J. S., & Corbett, C. L. (2019). A survey of deep 
learning methods for cyber security. Information (Switzerland), 10. https://doi .org /
10 .3390 /info10040122.

Butun, I., Österberg, P., & Song, H. (2019). Security of the Internet of things: Vulnera-
bilities, attacks, and countermeasures. IEEE Communications Surveys and Tutorials, 22, 
616–644.

Chaabouni, N., Mosbah, M., Zemmari, A., Sauvignac, C., & Faruki, P. (2019). Network 
intrusion detection for IoT security based on learning techniques. IEEE Communica-

tions Surveys and Tutorials, 21, 2671–2701. https://doi .org /10 .1109 /COMST .2019 .
2896380.

Chalapathy, R., & Chawla, S. (2019). Deep learning for anomaly detection: A survey. 
Preprint (pp. 1–50). arXiv :1901 .03407.

Claise, B. (2008). Specification of the IP flow information export (IPFIX) protocol for the 
exchange of IP traffic flow information. RFC 5101. https://rfc -editor .org /rfc /rfc5101 .
txt. https://doi .org /10 .17487 /RFC5101.

Claise, B., Quittek, J., Meyer, J., Bryant, S., & Aitken, P. (2008). Information model for 
IP flow information export. RFC 5102. https://rfc -editor .org /rfc /rfc5102 .txt. https://
doi .org /10 .17487 /RFC5102.

Claise, B., & Trammell, B. (2013). Information model for IP flow information export 
(IPFIX). RFC 7012. https://rfc -editor .org /rfc /rfc7012 .txt. https://doi .org /10 .17487 /
RFC7012.

Claise, B., Trammell, B., & Aitken, P. (2013). Specification of the IP flow information 
export (IPFIX) protocol for the exchange of flow information. Technical Report.

Cui, L., Xie, G., Qu, Y., Gao, L., & Yang, Y. (2018). Security and privacy in smart 
cities: Challenges and opportunities. IEEE Access, 6, 46134–46145. https://doi .org /
10 .1109 /ACCESS .2018 .2853985.

Diro, A. A., & Chilamkurti, N. (2018). Distributed attack detection scheme using deep 
learning approach for Internet of things. Future Generations Computer Systems, 82, 
761–768. https://doi .org /10 .1016 /j .future .2017 .08 .043.

Elrawy, M. F., Awad, A. I., & Hamed, H. F. (2018). Intrusion detection systems for IoT-
based smart environments: A survey. Journal of Cloud Computing, 7, 1–20. https://
doi .org /10 .1186 /s13677 -018 -0123 -6.

Figueiredo, B. J., Costa, R. L. d. C., Santos, L., & Rabadão, C. (2022). Cybersecurity and 
privacy in smart cities for citizen welfare. In Smart cities, citizen welfare, and the im-

plementation of sustainable development goals (pp. 197–221). IGI Global.
Garcia, S., Parmisano, A., & Erquiaga, M. J. (2020). IoT-23: A labeled dataset with mali-

cious and benign IoT network traffic. https://doi .org /10 .5281 /zenodo .4743746.
Garcia-Font, V., Garrigues, C., & Rifà-Pous, H. (2018). Difficulties and challenges of 

anomaly detection in smart cities: A laboratory analysis. Sensors, 18, 3198.
Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis, C., & Bellekens, X. (2020a). 

Machine learning based iot intrusion detection system: An mqtt case study (mqtt-iot-
ids2020 dataset). In International networking conference (pp. 73–84). Springer.

Hindy, H., Tachtatzis, C., Atkinson, R., Bayne, E., & Bellekens, X. (2020b). Mqtt-iot-
ids2020: Mqtt Internet of things intrusion detection dataset. https://dx .doi .org /10 .

21227 /bhxy -ep04.

http://refhub.elsevier.com/S2667-3053(23)00014-5/bibD940126B23509B896A3E8475C9A44191s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibD940126B23509B896A3E8475C9A44191s1
https://doi.org/10.1109/COMST.2020.2988293
https://doi.org/10.1109/COMST.2020.2988293
https://doi.org/10.1016/j.ijinfomgt.2018.08.006
https://doi.org/10.1016/j.ijinfomgt.2018.08.006
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib5DEAC208C0D916607840569F365E1FDEs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib5DEAC208C0D916607840569F365E1FDEs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib5DEAC208C0D916607840569F365E1FDEs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib5DEAC208C0D916607840569F365E1FDEs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib054647430166B24FB19EA20EF8DBB6FBs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib054647430166B24FB19EA20EF8DBB6FBs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib054647430166B24FB19EA20EF8DBB6FBs1
https://doi.org/10.3390/info10040122
https://doi.org/10.3390/info10040122
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib025D6790D91DEEF197EE36E83669924Bs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib025D6790D91DEEF197EE36E83669924Bs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib025D6790D91DEEF197EE36E83669924Bs1
https://doi.org/10.1109/COMST.2019.2896380
https://doi.org/10.1109/COMST.2019.2896380
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4BEBA54707A0DA7DAF382257A138154Fs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4BEBA54707A0DA7DAF382257A138154Fs1
https://rfc-editor.org/rfc/rfc5101.txt
https://rfc-editor.org/rfc/rfc5101.txt
https://doi.org/10.17487/RFC5101
https://rfc-editor.org/rfc/rfc5102.txt
https://doi.org/10.17487/RFC5102
https://doi.org/10.17487/RFC5102
https://rfc-editor.org/rfc/rfc7012.txt
https://doi.org/10.17487/RFC7012
https://doi.org/10.17487/RFC7012
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4BD32F0ABF50EF2614AC7D1E0D44D1E7s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4BD32F0ABF50EF2614AC7D1E0D44D1E7s1
https://doi.org/10.1109/ACCESS.2018.2853985
https://doi.org/10.1109/ACCESS.2018.2853985
https://doi.org/10.1016/j.future.2017.08.043
https://doi.org/10.1186/s13677-018-0123-6
https://doi.org/10.1186/s13677-018-0123-6
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib2EEBE481C21F1816AD236965A93EF319s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib2EEBE481C21F1816AD236965A93EF319s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib2EEBE481C21F1816AD236965A93EF319s1
https://doi.org/10.5281/zenodo.4743746
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4BE166F925A3C5B8779E4C15DF656862s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4BE166F925A3C5B8779E4C15DF656862s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib58EB4D60AED84A4A4C4357F4E898E253s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib58EB4D60AED84A4A4C4357F4E898E253s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib58EB4D60AED84A4A4C4357F4E898E253s1
https://doi.org/10.21227/bhxy-ep04
https://doi.org/10.21227/bhxy-ep04


Intelligent Systems with Applications 17 (2023) 200189N. Prazeres, R.L.C. Costa, L. Santos et al.

Hofstede, R., Čeleda, P., Trammell, B., Drago, I., Sadre, R., Sperotto, A., & Pras, A. (2014). 
Flow monitoring explained: From packet capture to data analysis with netflow and 
ipfix. IEEE Communications Surveys and Tutorials, 16, 2037–2064.

Hromada, D., Costa, R. L. d. C., Santos, L., & Rabadão, C. (2021). Security aspects of the 
Internet of things. In IoT protocols and applications for improving industry, environment 
and society (pp. 207–233). IGI Global.

Hussain, F., Hussain, R., Hassan, S. A., & Hossain, E. (2020). Machine learning in IoT 
security: Current solutions and future challenges. IEEE Communications Surveys and 
Tutorials, 22, 1686–1721. https://doi .org /10 .1109 /COMST .2020 .2986444.

Inacio, C. M., & Trammell, B. (2010). {YAF}: Yet another flowmeter. In 24th large instal-

lation system administration conference (LISA 10).
Jiang, B., Li, J., Yue, G., & Song, H. (2021). Differential privacy for industrial Internet of 

things: Opportunities, applications, and challenges. IEEE Internet of Things Journal, 8, 
10430–10451.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., Kelley, 
K., Hamrick, J., Grout, J., Corlay, S., Ivanov, P., Avila, D., Abdalla, S., & Willing, 
C. (2016). Jupyter notebooks – a publishing format for reproducible computational 
workflows. In F. Loizides, & B. Schmidt (Eds.), Positioning and power in academic pub-

lishing: Players, agents and agendas (pp. 87–90). IOS Press.
Li, S., Qin, D., Wu, X., Li, J., Li, B., & Han, W. (2022). False alert detection based on deep 

learning and machine learning. International Journal on Semantic Web and Information 
Systems, 18, 1–21.

Ling, Z., & Hao, Z. J. (2022). An intrusion detection system based on normalized mutual 
information antibodies feature selection and adaptive quantum artificial immune sys-
tem. International Journal on Semantic Web and Information Systems, 18, 1–25.

Liu, Y., Wang, J., Li, J., Niu, S., & Song, H. (2021). Machine learning for the detection and 
identification of Internet of things devices: A survey. IEEE Internet of Things Journal, 
9, 298–320.

Minsky, M. L., & Papert, S. (1969). Perceptrons, expanded edition an introduction to compu-

tational geometry. MIT Press.
Mothukuri, V., Khare, P., Parizi, R. M., Pouriyeh, S., Dehghantanha, A., & Srivastava, G. 

(2022). Federated-learning-based anomaly detection for iot security attacks. IEEE In-

ternet of Things Journal, 9, 2545–2554. https://doi .org /10 .1109 /JIOT .2021 .3077803.
Moustafa, N., Hu, J., & Slay, J. (2019a). A holistic review of network anomaly detection 

systems: A comprehensive survey. Journal of Network and Computer Applications, 128, 
33–55. https://doi .org /10 .1016 /j .jnca .2018 .12 .006.

Moustafa, N., Hu, J., & Slay, J. (2019b). A holistic review of network anomaly detection 
systems: A comprehensive survey. Journal of Network and Computer Applications, 128, 
33–55.

Neisse, R., Steri, G., Baldini, G., Tragos, E., Fovino, I. N., & Botterman, M. (2014). Dy-
namic context-aware scalable and trust-based iot security, privacy framework. In
Internet of things applications-from research and innovation to market deployment. IERC 
Cluster Book.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, 
M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, 
D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning 
in python. Journal of Machine Learning Research, 12, 2825–2830.

Santos, L., Gonçalves, R., Rabadão, C., & Martins, J. (2021). A flow-based intrusion de-
tection framework for Internet of things networks. Cluster Computing, 1–21. https://
doi .org /10 .1007 /s10586 -021 -03238 -y.

Singh, P., Nayyar, A., Kaur, A., & Ghosh, U. (2020). Blockchain and fog based architecture 
for Internet of everything in smart cities. Future Internet, 12, 1–12. https://doi .org /
10 .3390 /FI12040061.

Sperotto, A., Schaffrath, G., Sadre, R., Morariu, C., Pras, A., & Stiller, B. (2010). An 
overview of ip flow-based intrusion detection. IEEE Communications Surveys and Tu-

torials, 12, 343–356.
Stergiou, C. L., Plageras, A. P., Psannis, K. E., & Gupta, B. B. (2020). Secure machine 

learning scenario from big data in cloud computing via Internet of things network. In
Handbook of computer networks and cyber security (pp. 525–554). Springer.

Sucharitha, V., Prakash, P., & Iyer, G. N. (2019). Agrifog-a fog computing based IoT 
for smart agriculture. International Journal of Recent Technology and Engineering, 7, 
210–217.

Tewari, A., & Gupta, B. B. (2017). A lightweight mutual authentication protocol based 
on elliptic curve cryptography for iot devices. International Journal of Advanced Intel-

ligence Paradigms, 9, 111–121.
Tewari, A., & Gupta, B. B. (2020). Secure timestamp-based mutual authentication protocol 

for iot devices using rfid tags. International Journal on Semantic Web and Information 
Systems, 16, 20–34.

Thakkar, A., & Lohiya, R. (2021). A review on machine learning and deep learning per-
spectives of ids for iot: Recent updates, security issues, and challenges. Archives of 
Computational Methods in Engineering, 28, 3211–3243.

Tsimenidis, S., Lagkas, T., & Rantos, K. (2022). Deep learning in iot intrusion detection. 
Journal of Network and Systems Management, 30, 1–40.

Van Rossum, G., & Drake, F. L. (2009). Python 3 reference manual. Scotts Valley, CA: 
CreateSpace.

Velan, P. (2018). Improving network flow definition: Formalization and applicability. In
NOMS 2018-2018 IEEE/IFIP network operations and management symposium (pp. 1–5). 
IEEE.

Zeadally, S., & Tsikerdekis, M. (2020). Securing Internet of things (IoT) with machine 
learning. International Journal of Communication Systems, 33, Article e4169. https://
doi .org /10 .1002 /dac .4169.

Zseby, T., Boschi, E., Hirsch, T., & Mark, L. (2006). Ipfix/psamp: What future standards 
can offer to network security. Proceedings FloCon, 2006.
13

http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA2FD6F757C6343403D3461B844748B61s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA2FD6F757C6343403D3461B844748B61s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA2FD6F757C6343403D3461B844748B61s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4EB5343B24D9B4DE6A4A0533DEB7EF5Cs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4EB5343B24D9B4DE6A4A0533DEB7EF5Cs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4EB5343B24D9B4DE6A4A0533DEB7EF5Cs1
https://doi.org/10.1109/COMST.2020.2986444
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib5C39E86C57421BA60868973AA630E530s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib5C39E86C57421BA60868973AA630E530s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib1721CEDB07154F015F80421A3E2E8AF9s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib1721CEDB07154F015F80421A3E2E8AF9s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib1721CEDB07154F015F80421A3E2E8AF9s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib29F9142C63FC0FE39A50F5FD485A3F69s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib29F9142C63FC0FE39A50F5FD485A3F69s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib29F9142C63FC0FE39A50F5FD485A3F69s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib29F9142C63FC0FE39A50F5FD485A3F69s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib29F9142C63FC0FE39A50F5FD485A3F69s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4A58FA38164DBB94335FF6EF4D7F8C98s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4A58FA38164DBB94335FF6EF4D7F8C98s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4A58FA38164DBB94335FF6EF4D7F8C98s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA9BE4549711EC7D6EA4AB7392ADE0D66s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA9BE4549711EC7D6EA4AB7392ADE0D66s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA9BE4549711EC7D6EA4AB7392ADE0D66s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibB5AFC526A905DFF0A1D0C7EC40770D82s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibB5AFC526A905DFF0A1D0C7EC40770D82s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibB5AFC526A905DFF0A1D0C7EC40770D82s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC2184CC118D1F8DCEEF589E33CED84BCs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC2184CC118D1F8DCEEF589E33CED84BCs1
https://doi.org/10.1109/JIOT.2021.3077803
https://doi.org/10.1016/j.jnca.2018.12.006
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC1963AB81F1F1E68FF199C542C8294E0s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC1963AB81F1F1E68FF199C542C8294E0s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC1963AB81F1F1E68FF199C542C8294E0s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC6E0C1B502CBBD52CB4E24E1B0467174s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC6E0C1B502CBBD52CB4E24E1B0467174s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC6E0C1B502CBBD52CB4E24E1B0467174s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibC6E0C1B502CBBD52CB4E24E1B0467174s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib3483FF058DEDA3DAD41FA7925FAB2DACs1
https://doi.org/10.1007/s10586-021-03238-y
https://doi.org/10.1007/s10586-021-03238-y
https://doi.org/10.3390/FI12040061
https://doi.org/10.3390/FI12040061
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibE14A3EB985E039D6D529B17A88B0363Fs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibE14A3EB985E039D6D529B17A88B0363Fs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibE14A3EB985E039D6D529B17A88B0363Fs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib6DB9021116A08BE64B4781F8474F97CBs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib6DB9021116A08BE64B4781F8474F97CBs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib6DB9021116A08BE64B4781F8474F97CBs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib40E26A1E0C1EB303B030EA9326A8BE7Es1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib40E26A1E0C1EB303B030EA9326A8BE7Es1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib40E26A1E0C1EB303B030EA9326A8BE7Es1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA4764C257E140A122066332397A93998s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA4764C257E140A122066332397A93998s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bibA4764C257E140A122066332397A93998s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib31396CDE841B157A259DF6256619FF22s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib31396CDE841B157A259DF6256619FF22s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib31396CDE841B157A259DF6256619FF22s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib23775DF6BFCDDBCC8CF8480942ECB3E9s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib23775DF6BFCDDBCC8CF8480942ECB3E9s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib23775DF6BFCDDBCC8CF8480942ECB3E9s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib0B4640480490D99D9D12E8F4255AFF74s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib0B4640480490D99D9D12E8F4255AFF74s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib88BF1D57351ABE55709D9F6BFC2CB2F4s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib88BF1D57351ABE55709D9F6BFC2CB2F4s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4528AED46E9775F48CDA6C5BDDEAE34Bs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4528AED46E9775F48CDA6C5BDDEAE34Bs1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib4528AED46E9775F48CDA6C5BDDEAE34Bs1
https://doi.org/10.1002/dac.4169
https://doi.org/10.1002/dac.4169
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib53EE97E5540D13999A7EBE30F2D214F2s1
http://refhub.elsevier.com/S2667-3053(23)00014-5/bib53EE97E5540D13999A7EBE30F2D214F2s1

	Engineering the application of machine learning in an IDS based on IoT traffic flow
	1 Introduction
	2 Background and related work
	2.1 Smart cities and IoT attacks
	2.2 Intrusion detection systems
	2.3 Machine learning and performance metrics
	2.4 Related work

	3 IoT-flow: machine learning over flow data IDS for IoT
	3.1 Workflow overview
	3.2 IoT-flow IDS distributed architecture
	3.3 Specialized components

	4 Experimental evaluation
	4.1 Evaluated scenarios
	4.2 Datasets description
	4.3 Model configuration, and training, validation and testing strategies
	4.4 Feature selection and pre-processing
	4.5 Experimental results
	4.5.1 IoT-flow IDS evaluation
	4.5.2 Closs-flow scenario
	4.5.3 Merged flow scenario
	4.5.4 Flow-based federated learning scenarios

	4.6 Discussion

	5 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


