37 research outputs found

    Trusted computing enhanced openid

    Get PDF
    Abstrac

    Re-thinking Grid Security Architecture

    Get PDF

    Trusted Energy-Efficient Cloud-based Services Brokerage Platform

    Get PDF
    The use of cloud computing can increase service efficiency and service level agreements for cloud users, by linking them to an appropriate cloud service provider, using the cloud services brokerage paradigm. Cloud service brokerage represents a promising new layer which is to be added to the cloud computing network, which manages the use, performance and delivery of cloud services, and negotiates relationships between cloud service providers and cloud service consumers. The work presented in this paper studies the research related to cloud service brokerage systems along with the weaknesses and vulnerabilities associated with each of these systems, with a particular focus on the multicloud-based services environment. In addition, the paper will conclude with a proposed multi-cloud framework that overcomes the weaknesses of other listed cloud brokers. The new framework aims to find the appropriate data centre in terms of energy efficiency, QoS and SLA. Moreover, it presents a security model aims to protect the proposed multicloud framework and highlights the key features that must be available in multi-cloud-based brokerage systems

    New Waves of IoT Technologies Research – Transcending Intelligence and Senses at the Edge to Create Multi Experience Environments

    Get PDF
    The next wave of Internet of Things (IoT) and Industrial Internet of Things (IIoT) brings new technological developments that incorporate radical advances in Artificial Intelligence (AI), edge computing processing, new sensing capabilities, more security protection and autonomous functions accelerating progress towards the ability for IoT systems to self-develop, self-maintain and self-optimise. The emergence of hyper autonomous IoT applications with enhanced sensing, distributed intelligence, edge processing and connectivity, combined with human augmentation, has the potential to power the transformation and optimisation of industrial sectors and to change the innovation landscape. This chapter is reviewing the most recent advances in the next wave of the IoT by looking not only at the technology enabling the IoT but also at the platforms and smart data aspects that will bring intelligence, sustainability, dependability, autonomy, and will support human-centric solutions.acceptedVersio

    Architecture de sécurité de bout en bout et mécanismes d'autoprotection pour les environnements Cloud

    Get PDF
    Since several years the virtualization of infrastructures became one of the major research challenges, consuming less energy while delivering new services. However, many attacks hinder the global adoption of Cloud computing. Self-protection has recently raised growing interest as possible element of answer to the cloud computing infrastructure protection challenge. Yet, previous solutions fall at the last hurdle as they overlook key features of the cloud, by lack of flexible security policies, cross-layered defense, multiple control granularities, and open security architectures. This thesis presents VESPA, a self-protection architecture for cloud infrastructures. Flexible coordination between self-protection loops allows enforcing a rich spectrum of security strategies. A multi-plane extensible architecture also enables simple integration of commodity security components.Recently, some of the most powerful attacks against cloud computing infrastructures target the Virtual Machine Monitor (VMM). In many case, the main attack vector is a poorly confined device driver. Current architectures offer no protection against such attacks. This thesis proposes an altogether different approach by presenting KungFuVisor, derived from VESPA, a framework to build self-defending hypervisors. The result is a very flexible self-protection architecture, enabling to enforce dynamically a rich spectrum of remediation actions over different parts of the VMM, also facilitating defense strategy administration. We showed the application to three different protection scheme: virus infection, mobile clouds and hypervisor drivers. Indeed VESPA can enhance cloud infrastructure securityLa virtualisation des infrastructures est devenue un des enjeux majeurs dans la recherche, qui fournissent des consommations d'Ă©nergie moindres et des nouvelles opportunitĂ©s. Face Ă  de multiples menaces et des mĂ©canismes de dĂ©fense hĂ©tĂ©rogĂšnes, l'approche autonomique propose une gestion simplifiĂ©e, robuste et plus efficace de la sĂ©curitĂ© du cloud. Aujourd'hui, les solutions existantes s'adaptent difficilement. Il manque des politiques de sĂ©curitĂ© flexibles, une dĂ©fense multi-niveaux, des contrĂŽles Ă  granularitĂ© variable, ou encore une architecture de sĂ©curitĂ© ouverte. Ce mĂ©moire prĂ©sente VESPA, une architecture d'autoprotection pour les infrastructures cloud. VESPA est construit autour de politiques qui peuvent rĂ©guler la sĂ©curitĂ© Ă  plusieurs niveaux. La coordination flexible entre les boucles d'autoprotection rĂ©alise un large spectre de stratĂ©gies de sĂ©curitĂ© comme des dĂ©tections et des rĂ©actions sur plusieurs niveaux. Une architecture extensible multi plans permet d'intĂ©grer simplement des Ă©lĂ©ments dĂ©jĂ  prĂ©sents. Depuis peu, les attaques les plus critiques contre les infrastructures cloud visent la brique la plus sensible: l'hyperviseur. Le vecteur d'attaque principal est un pilote de pĂ©riphĂ©rique mal confinĂ©. Les mĂ©canismes de dĂ©fense mis en jeu sont statiques et difficile Ă  gĂ©rer. Nous proposons une approche diffĂ©rente avec KungFuVisor, un canevas logiciel pour crĂ©er des hyperviseurs autoprotĂ©gĂ©s spĂ©cialisant l'architecture VESPA. Nous avons montrĂ© son application Ă  trois types de protection diffĂ©rents : les attaques virales, la gestion hĂ©tĂ©rogĂšne multi-domaines et l'hyperviseur. Ainsi la sĂ©curitĂ© des infrastructures cloud peut ĂȘtre amĂ©liorĂ©e grĂące Ă  VESP

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas

    Next Generation Internet of Things – Distributed Intelligence at the Edge and Human-Machine Interactions

    Get PDF
    This book provides an overview of the next generation Internet of Things (IoT), ranging from research, innovation, development priorities, to enabling technologies in a global context. It is intended as a standalone in a series covering the activities of the Internet of Things European Research Cluster (IERC), including research, technological innovation, validation, and deployment.The following chapters build on the ideas put forward by the European Research Cluster, the IoT European Platform Initiative (IoT–EPI), the IoT European Large-Scale Pilots Programme and the IoT European Security and Privacy Projects, presenting global views and state-of-the-art results regarding the next generation of IoT research, innovation, development, and deployment.The IoT and Industrial Internet of Things (IIoT) are evolving towards the next generation of Tactile IoT/IIoT, bringing together hyperconnectivity (5G and beyond), edge computing, Distributed Ledger Technologies (DLTs), virtual/ andaugmented reality (VR/AR), and artificial intelligence (AI) transformation.Following the wider adoption of consumer IoT, the next generation of IoT/IIoT innovation for business is driven by industries, addressing interoperability issues and providing new end-to-end security solutions to face continuous treats.The advances of AI technology in vision, speech recognition, natural language processing and dialog are enabling the development of end-to-end intelligent systems encapsulating multiple technologies, delivering services in real-time using limited resources. These developments are focusing on designing and delivering embedded and hierarchical AI solutions in IoT/IIoT, edge computing, using distributed architectures, DLTs platforms and distributed end-to-end security, which provide real-time decisions using less data and computational resources, while accessing each type of resource in a way that enhances the accuracy and performance of models in the various IoT/IIoT applications.The convergence and combination of IoT, AI and other related technologies to derive insights, decisions and revenue from sensor data provide new business models and sources of monetization. Meanwhile, scalable, IoT-enabled applications have become part of larger business objectives, enabling digital transformation with a focus on new services and applications.Serving the next generation of Tactile IoT/IIoT real-time use cases over 5G and Network Slicing technology is essential for consumer and industrial applications and support reducing operational costs, increasing efficiency and leveraging additional capabilities for real-time autonomous systems.New IoT distributed architectures, combined with system-level architectures for edge/fog computing, are evolving IoT platforms, including AI and DLTs, with embedded intelligence into the hyperconnectivity infrastructure.The next generation of IoT/IIoT technologies are highly transformational, enabling innovation at scale, and autonomous decision-making in various application domains such as healthcare, smart homes, smart buildings, smart cities, energy, agriculture, transportation and autonomous vehicles, the military, logistics and supply chain, retail and wholesale, manufacturing, mining and oil and gas
    corecore