

Trusted Computing Enhanced OpenID

Andreas Leicher and Andreas U. Schmidt

Novalyst IT AG

Robert-Bosch-Straße 38,

61184 Karben, Germany

Email: {andreas.schmidt,

andreas.leicher}@novalyst.de

Yogendra Shah and Inhyok Cha

InterDigital Communications, LLC

781 Third Avenue

King of Prussia, PA 19406, USA

Email: {yogendra.shah,

inhyok.cha}@interdigital.com

Abstract

Trusted Computing, used as a security

technology, can establish trust between multiple

parties. One implementation of Trusted Computing

Technology standardized by the Trusted Computing

Group is the Trusted Platform Module (TPM). We

build on the security provided by the TPM to create

a trusted variant of Identity Management Systems

based on the popular OpenID protocol. We show

that it is feasible to bind OpenID identities to the

trustworthiness of the device. Our concept and

implementation builds on previous work which

showed that Trusted Computing can be used to

create tickets. In this work, we use such tickets as a

building block to establish trust between the identity

provider and the device.

1. Introduction

Trusted Computing (TC) is generally regarded as

a protection and security technology centered on

single devices. Used as a platform-neutral security

infrastructure, TC offers ways to establish trust

between entities that are separated by technical

boundaries, e.g., different access technologies. As

some concepts of TC have similarities to Identity

management (IdM), we increase the security of a

common lightweight IdM protocol for the internet,

namely OpenID, by the use of TC technology. The

main contribution is not only to bind an OpenID

identifier to a single platform, and hence provide

protection from remote phishing attacks, but also to

provide protection from identity theft by malware or

Man-In-The-Browser attacks by enabling the use of

the Trusted OpenID identifier only after a successful

integrity verification of the client platform.

In previous work we have presented a concept to

use TC within Kerberos [1], and have also shown

that identity federation between different provider

domains can be supported by TC [2]. In this paper

we combine integrity validation of a client system’s

trustworthiness with user authentication in the

widely used OpenID protocol. We further

demonstrate that this combination can be done

efficiently in a generic demonstration environment

for TC-based applications.

1.1. Trusted Computing technology

With the growing presence of computer systems

in ubiquitous environments such as mobile phones,

machine-to-machine communication, and sensor

networks, the need for an increase in security arises.

On the other hand, the enormous increase in system

complexity inhibits a formal verification of the

whole system. As a consequence, other means have

to be established to encounter the risks and dangers

to which every single system gets exposed. In a

networked scenario, where multiple systems

communicate, TC is a core technology to determine

whether a communications partner can be trusted.

As a root of trust for the secure operation of the

system, a hardware security anchor is the key to the

protection of the system behavior. Establishment of

the trust boundary is associated to the boot cycle of

the platform and extending trust from the root to

further loaded components is a central concept of

TC. This means that components that are started later

on, are measured by a protected entity on the

platform before they are executed, for example,

digest values are generated and stored protected by

the root of trust. Specified by the Trusted Computing

Group (TCG) this process is called authenticated

boot [3]. Another embodiment called secure boot [4]

adds a local enforcement engine which denies

loading components whose measurement values do

not match trusted reference values.

To prove trustworthiness of a system to an

external party acting as a verifier, attestation

mechanisms and protocols have been envisaged.

They transport measurement values and verification

data necessary to retrace the post-boot system state

to the verifier. The trust anchor, irremovably bound

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357264899?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

to a particular platform, is represented by the Trusted

Platform Module (TPM) [5]. Together, the TPM and

its platform form a trusted platform (TP). Through

the TPM the TP gains a unique identity, a

cryptographic engine and protected storage. A more

detailed overview can be found in [1], [5]–[7].

Attestation protocols as defined by the TCG [8] rest

on 1024 bit RSA Attestation Identity Keys (AIKs)

acting as placeholders for the TPM identity. The

Remote Attestation (RA) protocol offers

pseudonymity by the use of a trusted third party, the

Privacy CA (PCA), which issues an AIK certificate

stating that the AIK is generated by a sound TPM

within a valid platform.

Instead of using a PCA to obtain AIK certificates,

the TCG has also defined Direct Anonymous

Attestation [5], [8]–[11] which uses the Camenisch-

Lysyanskaya signature scheme [12]. However, DAA

cannot always fulfill the promise of increased

privacy [13]–[15] and according to [11], [16] the

level of privacy provided by DAA can be even lower

than that offered by a PCA based AIK certification,

since verifiers in DAA get to know the identity of the

issuer that attested to a platform’s conformity,

whereas in the PCA scheme only the PCA’s identity

is revealed to the verifier. The method to equalise the

privacy levels proposed in [11] introduces additional

complexity and a third party, which makes practical

adoption of DAA questionable. While DAA is a

means to obtain a certificate for an AIK, RA is used

for platform integrity verification by a remote entity.

The system state is measured using the TPM to

calculate hash digest values and storing them

securely in the Platform Configuration Registers

(PCR). The Stored Measurement Log (SML) keeps a

more extensive record of the state and can be used

together with the PCR values for the validation of the

platform, where the AIK signed PCR values are used

to provide implicit integrity protection for the SML.

This technique is based on initial work by Schneier

and Kelsey for securing audit logs [17] and

implemented as Integrity Measurement Architecture

(IMA) [18].

1.2. Related work

IdM and Single Sign-On (SSO) are technologies

which can benefit from TC. A general analysis of

how TC concepts can be applied to support SSO is

discussed in [16], [19]. The concept described in [19]

implements the identity provider (IdP) on the TP of

the user, and the IdP proves its integrity to all service

providers. The scheme requires all service providers

to keep a database of known reference values for the

reported integrity measurements. Our approach is

different in that we employ integrity verification of

the user’s platform centrally by the IdP which in turn

authenticates users and can issue statements on the

platform’s trustworthiness to the service providers.

In a previous paper [1] we demonstrated how TC

technology can increase the security of a ticket

system, namely Kerberos, by binding the issued

tickets to the client device TPM and the

trustworthiness of the state of the platform to which

the TPM is bound. The paper [1] also reviews further

related work with regard to secure IdM. Kerberos,

however, has more architectural components which

makes it less efficient than other IdM solutions.

Specifically, the two interactions with Authentication

Server (AS) and Ticket Granting Server (TGS) add

to complexity. Therefore, we looked at natural

extensions of TC concepts to more compact IdM

systems such as OpenID. A specific shortcoming of

Trusted Kerberos is that verification of the Trusted

Tickets must be implemented by every service

provider, introducing changes to their applications.

While being feasible for small environments with

few services, this concept might not be feasible for

internet services which are otherwise not in a trust

relationship. Furthermore, Trusted Kerberos requires

all participants, i.e. service providers, AS and TGS to

maintain a shared key database for the encryption of

the tickets. Clients that are registered in another

realm cannot access this service provider unless the

service provider registers with multiple realms.

2. Trusted OpenID protocol

The OpenID protocol does not specify any user

authentication method to be used, and thus allows for

different methods for user authentication. To claim

an identity at the OpenID provider, several methods

can be used, where the most common is the use of

logon forms, where the user provides a password. In

our Trusted OpenID (TOID) protocol, we replace

this logon with a TPM based logon process. The user

once registers an identity that is tightly bound to

his/her specific platform and TPM. If he later decides

to login using this identity, the OpenID provider

challenges the platform to provide the correct

credentials. In this case the credentials consist of a

TPM generated ticket. This allows the user to login

without the need for a password at the OpenID

provider. A password at the user’s computer can still

be used to protect the identity from local attacks.

The logon is combined with an integrity

verification of the specific platform. Using TPM

signed system configuration values, the OpenID

provider can compare the reported system state to

previously generated reference values, allowing only

trustworthy clients to login and claim an identity.

This combined authentication and attestation allows

for a fine grained access control by not only binding

the authentication to a specific platform but also to a

trustworthy system state. This enables OpenID to be

applied to new scenarios requiring enhanced security

and detection of unauthorized changes to the system.

2.1. OpenID protocol

As an open, decentralized IdM framework,

OpenID [20] was developed to provide a SSO

experience to users across services on the Internet.

With OpenID (see Figure 1), it is possible to sign on

to different services, with a single identity, called

OpenID identifier, eliminating the need to create

separate logins and passwords for the services the

user wants to access. OpenID is supported by major

companies, including AOL, Facebook, Google,

Microsoft, Yahoo, etc. Reports of OpenID usage [21]

count over 1 billion OpenID enabled accounts and

over 9 million websites utilizing OpenID for

registration and login. Recently, efforts were made

by the OpenID Foundation and the US government

[22] to deploy OpenID on federal websites.

The websites supporting OpenID login are

referred to as Relying Parties (RP).

Figure 1. OpenID protocol overview.

In 2007, Eugene and Vlad Tsyrklevich [23]

examined security issues of OpenID. One of the

concerns when dealing with OpenID is phishing. If

an attacker is able to trick users into giving away

their credentials to a fake OP, owned by the attacker,

he can access a broad range of RPs in the name of

the legitimate user. Since OPs host the identifiers for

multiple users they are a rewarding target for the

attacker as they can collect multiple identifiers.

Redirecting users to the fake OP can be achieved by

setting up a RP which redirects the user to the fake

OP instead of the original one without attacking the

OP directly. Other attacks include Man-in-the-

middle (MITM) attacks during the association

between the RP and the OP, replay attacks, involving

sniffing the session identifier of an authenticated

session as well as Cross-Site-Request-Forgery

(CSRF) attacks which silently log the user on to

other sites once they have logged in into another

OpenID site and perform actions in the user’s name.

Such a CSRF attack mainly relies on the fact that the

OP and not the RP decides on the user login security.

2.2. Integration of TC concepts

The integration of TC concepts into the OpenID

protocol allows countering some of the threats and

leverage of the overall security of OpenID. Four

entities are involved in the TOID authentication

process: (1) the user accessing a service, (2) the OP

supporting trust validation, (3) a PCA to certify AIKs

from the user’s TPM and (4) a RP using OpenID

authentication.

We will assume that the following requirements

hold on these entities: A PCA, chosen by the user has

to issue an AIK certificate, i.e. a X.509 certificate

with additional extensions defined by the TCG [8].

As AIKs can only be used to sign data originating

from the TPM, we use the following indirection, as

described in more detail in [1], [24] to obtain a

Certified Signing Key (CSK): The TPM generates a

new RSA key pair, whose private part is secured by

the TPM. After signing it with the AIK using the

internal operation TPM_CertifyKey, this key is

referred to as a CSK and can subsequently be used to

sign arbitrary data. The AIK certificate provides a

binding of the AIK to the platform since the PCA

checks the relevant TPM certificates during the AIK

certification and states that this AIK is generated and

stored securely in a sound TPM. The verifier, upon

receipt of the AIK certificate and AIK signed CSK,

is able to verify that the CSK is a TPM-secured key

by deriving the trust from the PCA issued AIK

certificate. After certifying an AIK at the PCA, the

user can choose an OP supporting the TOID protocol

to host his OpenID identity. In order to register the

identity, he must provide a valid AIK certificate to

the OP. It is important to note that the user does not

establish any shared credentials with the PCA during

AIK certification. The user generates the AIK locally

inside the TPM and is able to establish a local secret,

which is checked by the TPM and never shared with

an outside entity, to protect the AIK from

unauthorized use. The PCA is the only instance that

will be able to resolve the identity to a real platform.

The RP only has to enable OpenID login for his site

and has to accept assertions from this OP. Different

AIKs can be used by different users, where each AIK

is protected by the TPM. Hence, each user in a multi-

user system environment can create an own AIK and

associate his OpenID identity with this AIK in the

registration process with his Trusted OpenID enabled

OP.

The Trusted Ticket Server: We implemented

the trusted client and the enhanced OP server side of

our concept in Java, based on the OpenID4Java

project [25]. It is invoked from a JSP page and can

be used to associate a RP and to authenticate a user.

Classes and methods for integrity validation and

authentication with the Trusted Ticket Server (TTS)

component running on the client machine were

added to enable TPM based authentication. The TTS

runs as a service application on the user’s machine

and is responsible for the authentication towards a

TOID OP. It is a trusted functional entity deployed in

a Trusted Execution Environment (TEE).

Figure 2. Overview of the protocol flow for TOID.

The TEE provides an isolated, integrity protected

and secured execution environment for the TTS. In

general, we can assume that such a TEE is available,

provided mainly by the TPM and OS functions.

Another approach, based on virtualization is

presented by Gajek et. al. [26]. Our protocol consists

of the following general steps, shown in Figure 2.

1) Initial Connection to the RP: The user

accesses the website of the service provider

(index.jsp). If the user wants to login using his

OpenID URI, the consumer_redirect.jsp page at the

RP connects to the given URI and thus retrieves the

address of the OP hosting the claimed identity.

2) Association of Service Provider to OpenID

Provider: According to the OpenID protocol, the RP

associates with the OP. This includes a secure

exchange of the request, the claimed identity and a

return URL to which the client will be redirected by

the OP if authentication is successful. These steps are

performed on the server provider side using

consumer_redirect.jsp and on the OpenID provider

side using provider.jsp. After the association is

established, the client is redirected to the webpage of

the OP. The page checks if the user is already logged

in, and if not redirects the user’s browser to the OP

login page provider_authorization.jsp, as retrieved

from the user supplied identifier.

3) Authentication of the Client: The

provider_authorization.jsp page of the OP, requests

authentication and user authorization to log in to the

RP. After the user accepts the login request, a new

background thread starts which challenges the TTS

on the client side. The provider_authorization.jsp

redirects the user back to the provider.jsp page,

which waits for the thread to finish and evaluates the

result of the challenge.

4) Redirection to the Service Provider: The OP

(provider.jsp) redirects the user to the

consumer_returnurl.jsp page at the RP which checks

that the redirect comes from the associated OP and

grants access to the user.

In our implementation, the TTS must be trusted to

handle AIK certificates and CSKs properly, protect

the creation process of the tickets and collect and

report platform validation data to the OP. Upon

receipt of an authentication challenge, containing the

user’s OpenID identity and the service request he

issued at the RP, the user is asked to explicitly allow

the challenge which is shown to the user along with

the transaction details in the TTS screen. In the

current proof of concept implementation the user can

visually compare the challenges shown in the

browser window and in the TTS screen. This

separate, secure user interface (UI) can protect the

user from input phishing on the client side, e.g. by

using the rudimentary feature of a color-coding for

the secure UI as described in [27]. Another option is

that the OP calculates a one time password (OTP)

after successful integrity verification which is then

cryptographically bound to the integrity state using

the TPM sealing functions. The TTS then decrypts

the OTP and shows it to the user who provides it to

the OP. In principle it is possible to implement

additional protection methods, such as OP

authentication performed by the TTS, which could

be done by the use of TLS/SSL certificates. Denial

of Service (DOS) attacks against the TTS could be

prevented by integrating the TTS functionality as a

browser extension, which is able to communicate

with the browser such that the TTS only accepts

incoming requests if an authentication session is

currently taking place. Depending on the desired

level of security, such a trusted browser extension

could also store the user decision per session, to

further increase the SSO experience. If the challenge

is accepted, the user is prompted to enter the

password for the AIK corresponding to the given

identity and to authenticate for TPM usage by giving

the SRK password. The TTS then tries to retrieve a

previously acquired certificate for this identity from

the local certificate storage. If no certificate can be

found in the local database, the user can decide to

perform an AIK certification process and obtain a

certificate for the AIK. Therefore, he must supply the

correct owner password of the TPM. This prevents

creation of rogue identities by other persons than the

owner of the TPM. Especially in corporate

environments, where the owner of the TPM is not the

user, this allows to control the enrollment process for

new OpenID identifiers in the corporate network.

Figure 3. Detailed protocol flow for TTS - OP communication.

The TTS receives a random nonce from the

challenger. An AIK-signed quote, including the

nonce is retrieved from the TPM, providing a

statement about the system’s state. Next, the TTS

creates a signed ticket which involves the creation of

a CSK that can be used to sign the request and the

identity. The information needed to verify the

signatures is included in the ticket, so that the

receiving party can easily verify the ticket. Together

with the SML the ticket is sent back to the

challenger. Figure 3 shows the authentication flow

between the TTS and the OP.

In order to develop and implement our concepts

for TOID, we set up a Trusted Demonstration

Environment called ethemba [28]. The goal was to

design a system in which it is possible, without the

need of a physical TPM, to access all desired TPM

functions. We used the TPM emulator [29] as base

and to simulate a complete system we established a

connection between the TPM emulator and QEMU, a

virtualization emulation environment, enabling our

virtual machines to execute TPM applications. Our

virtual machine uses a patched kernel to support

IMA [18], enabling measurement and logging of

every component the kernel loads. The ethemba

framework also includes a PCA implementation and

support for the TCG remote attestation protocols, as

described in [1]. We extended it with the

implementation of all necessary OpenID functions

on both client and server sides. Figure 4 shows

screenshots of our OP and the TTS.

2.3. Device authentication and validation by

the OP

During the TOID protocol, the OP receives the

following information from the TTS: (1) the signed

quote from the TPM, including the nonce as anti-

replay protection, (2) the plaintext measurement file

and (3) the ticket, including the signed identity and

request string, the public key portion of the CSK, the

AIK signature on the CSK and the AIK certificate

issued by the PCA. In order to authenticate the client,

the challenger first checks the validity of the AIK

certificate. This validation includes the verification

of the PCA signature on the AIK certificate. The

challenger then has to verify the ticket, i.e. the

credential chain incorporated into it. Therefore, the

AIK signature on the CSK public key hash in the

ticket and the CSK signature on the service request

and identity in the ticket are validated. To validate

the trustworthiness of the system, the challenger then

checks the entries in the received SML against a

database of known good values. This step is

accompanied by recalculating the expected PCR

value which is, in the final step, compared to the

reported signed PCR value. If at any step in this

process verification fails, the client will not be

authenticated. In this protocol, the OP receives the

platform configuration in order to verify the platform

integrity. Therefore the OP must be trusted by the

user not to reveal this configuration to unauthorized

third parties. Since the user in OpenID already trusts

the OP not to misuse his OpenID identifier, this is an

additional requirement on an entity the user already

has an established trust relationship with. If the RP

should however get some information about the

authentication mechanism, e.g. TPM based vs. non-

TPM based or additional assurance of the platform

integrity, additional mechanisms can apply. The OP

might be offering this authentication as additional

service and guarantees integrity checking for RPs by

contractual agreements, and hence does explicitly

disclose a platform’s properties to any RP. In

security demanding applications however, it can be

desirable to signal the outcome of the integrity

verification to RPs, which can be achieved by

including this information in the OP-signed assertion

message to the RP. Such information could for

example include details on the platform, the type of

integrity checks performed, or along the lines of a

Property-based attestation [30], by reporting the

platform conformance to a certain set of properties.

TOID achieves user authentication and device

trust attestation at the same time. User authentication

is achieved because the user must already have pre-

registered the certificates for the AIK with the OP,

and the device will send data that is signed with the

AIK and the CSK, which is verified by the OP.

Device trust attestation is achieved because the OP

can verify the signed PCR values, the SML, and the

part of the ticket (identifier and request) which are all

signed using the verified AIK/CSK. If both match,

then the OP verifies that the client used to send the

OpenID request is in fact trustworthy. If only the

verification of the user and the request is achieved

but the comparison of the PCR values and the

measurement logs fail, then the OP knows that the

device may be compromised and is in a different

configuration state than expected.

2.4. Analysis of Trusted OpenID

Our solution does not require any changes to the

OpenID protocol standards. The OpenID

specifications do not foresee a single method for user

authentication. We therefore developed an enhanced

authentication concept which basically would allow

OPs to differentiate amongst themselves, with one

function being the assertion of enhanced security

features. Such assertions are interesting for the users

since they can be assured, that their OpenID identity

is well protected, especially if it is HW-bound and

even more important, such OPs enable RPs to rely on

the information received from them, e.g. enabling

banks, government and other security-demanding

services to use OpenID with a whitelist of ’security-

aware and certified’ OPs.

Some of the mentioned vulnerabilities of the

standard OpenID protocol are addressed by the

OpenID Security Best Practices [31]. Phishing

however remains one of the best known attacks and

is a main problem for the OpenID protocol. Since the

identifier is used with all RPs, the security of this

identifier should be of special concern. Replacing

multiple insecure passwords or a single password

which is used across multiple RPs with a strongly

authenticated identity reduces the spread of secret

data, which is especially important if the same

password is used across all RPs. Recent attacks,

gathering credentials from social networks have

shown that proliferation of credentials is an

important security issue. Centralisation of credentials

at a trustworthy OP also allows the user to control

the spread of personal information in a privacy

protecting way. With the use of a single point of

authentication, namely the OP, it is easier and

cheaper to build strong, e.g. multifactor,

authentication between the user and the OP, which

then translates to a strong authentication between the

user and all RPs that he uses. We follow this

direction with the TPM providing a secure storage

for the credentials, paired with a local authentication

where no credentials are released directly to the OP,

and binding the authentication to the platform the

user initially registered the identifier with. No

password or username is sent to the OP in our

approach, which in turn renders phishing attacks as

described in section 2.1 on the OP side useless. The

phishing attacker’s target is to steal the user’s

credentials using a fake OP and then re-use the login

credentials with the real OP later on. In TOID an

attacker would not be able to retrieve re-usable

credentials with a fake OP. The attacker’s fake OP is

assumed to use another website than the legitimate

OP, and hence cannot impersonate the legitimate

user at a RP even if the user is tricked into approving

a challenge from the fake OP, since the user’s

OpenID identifier is hosted at the web address

specified in the OpenID identifier, which is the real

OP. Hence the attacker would have to perform an

online attack in which he is able to trick the user into

approving the challenge and at the same time control

the URL of the real OP, to be able to establish

associations between his fake OP and arbitrary RPs.

Such an online attack is possible with the normal

OpenID protocol as well. The attacker is required to

control the OP to RP communication channel as well

as the OP to user communication channel at the same

time, resulting in a very limited and targeted attack

scenario. TOID can increase the security even in this

scenario if security demanding RPs are requesting

signed platform integrity information from the OP

which cannot be provided by the fake OP. Replaying

fake challenge responses to the real OP is not

possible since the OpenID protocol uses a nonce for

every session. Faking challenge responses would

require the attacker to gain access to the TPM

protected AIK and CSK respectively for the creation

of the response signature. By the inclusion of a

replay protection inside the ticket, the problem of a

phishing OP is mitigated. Additionally, a MITM

attack, where the attacker is able to sit between the

TTS and OP, can be prevented by a mutual

authentication between OP and TTS, in which the

TTS securely stores and verifies the OP certificates.

To support multiuser environments we are able to

establish multiple identities, represented by AIKs

stored in the TPM, on a single platform and are able

to protect them with a local password, secured by the

TPM. Each user creates a new unique AIK and

performs the AIK certification protocol. AIK

certification is integrated in the AIK creation

process, can be done before running an OpenID

authentication session and is needed only once per

AIK.

Figure 3. Screenshots showing: (a) the OP login page, (b) the TTS after receiving the challenge

from the OP prompting the user for the local passwords.

Compared to simple TLS authentication with a

TPM protected key, TOpenID combines attestation

and authentication, whereas TLS alone only provides

authentication. Using TLS extensions with integrity

attestation is an option to integrate platform

information. However, using TLS every RP will

have to support the verification of the TLS

credentials as well as the integrity verification of the

reported measurement values which is highly

impractical. Hence using an established and widely

adopted lightweight IdM solution such as OpenID

and bridging it with additional security and trust

information bears an increased benefit, since a secure

web-SSO can be provided to a large variety of RPs

without any modifications to the existing OpenID

authentication mechanisms implemented at the RPs.

The presented scheme binds the use of an OpenID

identifier to a specific TPM and hence a platform and

the platform’s integrity. By this binding an increased

level of security can be achieved, as well as the use

of OpenID for security demanding applications could

be enabled. The goal of the current contribution is to

enhance the security and bind identity authentication

to a single platform. This effectively blocks attackers

from transferring authentication credentials to a

different machine, as it is done in typical phishing

attacks. This contribution does not yet address the

issue of identifier migration, e.g. using the same

identifier with different devices, such as a laptop,

smartphone and PC. Several mechanisms for

migration are discussed in the context of

virtualisation architectures [32] and could be applied

to the presented solution.

3. Conclusions

OpenID is a lightweight protocol for federated

identity management and is rapidly being adopted by

the industry. We have shown that by incorporating

Trusted Computing technology into the protocol, it is

possible to create a more robust and secure OpenID

implementation, which subsequently enables the

protocol to be used for secure transactions such as

financial payments etc. We have shown that by

binding OpenID identities to the trustworthiness of

the device, assured by the device’s TPM, and then

relaying the trust information to the OpenID

provider, we can establish trust between the OpenID

provider and the device. We have also implemented

our concepts on a virtualization environment,

faithfully implementing all functions required of the

TPM, the device, and the OpenID provider in order

to implement the TOID protocol. Many laptops and

desktops now incorporate a TPM and trusted

software stacks, facilitating the introduction of this

improved OpenID protocol.

4. Acknowledgements

This work was funded by InterDigital, Inc.

Special thanks go to Lawrence Case, Bob DiFazio

David Greiner, Louis Guccione, Dolores Howry, and

Michael V. Meyerstein, for many useful discussions

and comments.

5. References

[1] A. Leicher, N. Kuntze, and A. U. Schmidt,

“Implementation of a Trusted Ticket System,” in Proc.

IFIP SEC 2009, Pafos, Cyprus, May 18-20, 2009.

Springer-Verlag, 2009, pp. 152–163.

[2] B. Fichtinger, E. Herrmann, N. Kuntze, and A. U.

Schmidt, “Trusted Infrastructures for Identities,” in Virtual

Goods. Proc. 5th Intl. Workshop for Technical, Economic

and Legal Aspects of Business Models for Virtual Goods,

Koblenz, October 11-13, 2007. Nova Publishers, 2008.

[3] Trusted Computing Group, “TCG PC Client Specific

Implementation Specification for Conventional BIOS,” v.

1.20 rev. 1.00, July 2005.

[4] Trusted Computing Group, “TCG Mobile Reference

Architecture,” v. 1.0 rev. 5.

[5] Trusted Computing Group, “TPM Main,” Specification

Version 1.2 Level 2 rev. 103.

[6] E. Gallery, Trusted Computing. IEE, London, 2005, ch.

An overview of trusted computing technology, pp. 29–114.

[7] N. Kuntze and A. U. Schmidt, “Trusted Ticket Systems

and Applications,” in Proc. IFIP SEC 2007. May 14-16,

2007, Sandton, South Africa. Springer-Verlag, 2007, pp.

49–60.

[8] Trusted Computing Group, “TCG Infrastructure

Working Group Reference Architecture for

Interoperability (Part I),” Specification Version 1.0

Revision 1

[9] E. Brickell, J. Camenisch, and L. Chen, Trusted

Computing. IEE, London, 2005, ch. The DAA scheme in

context, pp. 143–174.

[10] E. Brickell, J. Camenisch, and L. Chen, “Direct

anonymous attestation,” in Proceedings of the 11th ACM

conference on Computer and communications security.

ACM, 2004, pp. 132–145.

[11] J. Camenisch, “Better privacy for trusted computing

platforms,” Proc. ESORICS 2004, pp. 73–88.

[12] J. Camenisch and A. Lysyanskaya, “A signature

scheme with efficient protocols,” Security and

communication networks, pp. 268–289, 2003.

[13] B. Smyth, M. Ryan, and L. Chen, “Direct Anonymous

Attestation (DAA): Ensuring Privacy with Corrupt

Administrators,” Security and Privacy in Ad-hoc and

Sensor Networks, vol. 4572/2007, pp. 218–231,

2007.

[14] C. Rudolph, “Covert Identity Information in Direct

Anonymous Attestation,”. in Proc. IFIP SEC 2007. May

14-16, 2007, Sandton, South Africa. Springer-Verlag,

2007, pp. 443–448.

[15] A. Leung, L. Chen, and C. J. Mitchell, “On a Possible

Privacy Flaw in Direct Anonymous Attestation (DAA),” in

Proc. TRUST 2008, Villach, Austria, March 11-12, 2008

Springer, 2008, pp. 179–190.

[16] A. Pashalidis and C. J. Mitchell, Trusted Computing.

IEE, London, 2005, ch. Single Sign-On using TCG-

conformant platforms, pp. 175–193.

[17] B. Schneier and J. Kelsey, “Secure audit logs to

support computer forensics,” ACM Trans. Inf. Syst. Secur.,

vol. 2, no. 2, pp. 159–176, 1999.

[18] R. Sailer, X. Zhang, T. Jaeger, and L. Van Doorn,

“Design and implementation of a TCG-based integrity

measurement architecture,” in Proc. 13th USENIX

Security Symposium, 2004, pp. 223–238.

[19] A. Pashalidis and C. J. Mitchell, “Single sign-on using

trusted platforms,” in Proc. ISC 2003. Springer-Verlag,

2003, pp. 54–68.

[20] OpenID.net, “OpenID Specifications.” Available:

http://openid.net/developers/specs/. Access date: 18

August 2010.

[21] OpenID.net, “OpenID - Year 2009 in Review.”

Available: http://openid.net/2009/12/16/openid-2009-year-

in-review//. Access date: 18 August 2010.

[22] OpenID Foundation (OIDF), “Open Trust

Frameworks for Open Government” Available:

http://openid.net/docs/Open_Trust_Frameworks_for_Govt

s.pdf. /. Access date: 18 August 2010.

[23] E. Tsyrklevich and V. Tsyrklevich, “Single Sign-On

for the Internet: A Security Story,” BlackHat Conference

Las Vegas 2007, 2007.

[24] N. Kuntze, D. Mähler, and A. U. Schmidt,

“Employing trusted computing for the forward pricing of

pseudonyms in reputation systems,” in Axmedis 2006 :

Proc. 2nd Intl. Conference on automated production of

cross media content for multi-channel distribution. Firenze

University Press, 2006, pp. 145–149.

[25] OpenID4Java. Available: http://code.google.com/p/

openid4java//. Access date: 18 August 2010.

[26] S. Gajek, A.-R. Sadeghi, and M. Winandy,

“TruWallet: Trustworthy and Migratable Wallet-Based

Web Authentication,” in Prco. 4th ACM workshop on

Scalable Trusted Computing. ACM, 2009, pp. 19–28.

[27] S. Gajek, A. Sadeghi, C. Stuble, and M. Winandy,

“Compartmented security for browsers-or how to thwart a

phisher with trusted computing,” in Proc. Availability,

Reliability and Security, 2007. IEEE, 2007, pp. 120–127.

 [28] A. Leicher and A. Brett, “Ethemba, a Trusted

Computing Demonstration and Experimentation

Environment.” Available: http://ethemba.novalyst.de.

Acess date: 18 August 2010.

[29] M. Strasser, “A Software-based TPM Emulator for

Linux,” Available: http://www.infsec.ethz.ch/people/

psevinc/TPMEmulatorReport.pdf. Access date: 18 August

2010.

[30] A. Sadeghi and C. Stüble, “Property-based attestation

for computing platforms: caring about properties, not

mechanisms,” in Proc. Workshop on New security

paradigms. New York, NY, USA, 2004. ACM, pp. 67–77.

[31] OpenID.net, “OpenID security best practices.”

Available: http://wiki.openid.net/OpenID-Security-Best-

Practices. Access date: 18 August 2010.

[32] D. Plaquin, S. Cabuk, C. Dalton, D. Kuhlmann, P.

Grete, C. Weinhold, A. Böttcher, D. Murray, T. Hong, and

M. Winandy. (2009, 5) TPM Virtualisation Architecture

document. IST-027635 / D04.7 FINAL 1.0_Update.

Available: http://www.opentc.net/deliverables2008_2009/

OpenTC_04.7_TPM_Virtualisation_Architecture_docume

nt_v2_M42.pdf. Access date: 18 August 2010.

