323 research outputs found

    Secure Mobile Agent for Telemedicine Based on P2P Networks

    Get PDF

    Providing security and fault tolerance in P2P connections between clouds for mHealth services

    Full text link
    [EN] The mobile health (mHealth) and electronic health (eHealth) systems are useful to maintain a correct administration of health information and services. However, it is mandatory to ensure a secure data transmission and in case of a node failure, the system should not fall down. This fact is important because several vital systems could depend on this infrastructure. On the other hand, a cloud does not have infinite computational and storage resources in its infrastructure or would not provide all type of services. For this reason, it is important to establish an interrelation between clouds using communication protocols in order to provide scalability, efficiency, higher service availability and flexibility which allow the use of services, computing and storage resources of other clouds. In this paper, we propose the architecture and its secure protocol that allows exchanging information, data, services, computing and storage resources between all interconnected mHealth clouds. The system is based on a hierarchic architecture of two layers composed by nodes with different roles. The routing algorithm used to establish the connectivity between the nodes is the shortest path first (SPF), but it can be easily changed by any other one. Our architecture is highly scalable and allows adding new nodes and mHealth clouds easily, while it tries to maintain the load of the cloud balanced. Our protocol design includes node discovery, authentication and fault tolerance. We show the protocol operation and the secure system design. Finally we provide the performance results in a controlled test bench.Lloret, J.; Sendra, S.; Jimenez, JM.; Parra-Boronat, L. (2016). Providing security and fault tolerance in P2P connections between clouds for mHealth services. Peer-to-Peer Networking and Applications. 9(5):876-893. doi:10.1007/s12083-015-0378-3S87689395The Fifty-eighth World Health Assembly, Resolutions and Decisions. Document: A58/21. Available at: http://www.who.int/healthacademy/media/WHA58-28-en.pdf . [Last access: Dec. 30, 2014]World Health organization. Topics of eHealth. In WHO website. Available at: http://www.who.int/topics/eHealth/en/ . [Last access: Dec. 30, 2014]Pickup JC, Freeman SC, Sutton AJ (2011) Glycaemic control in type 1 diabetes during real time continuous glucose monitoring compared with self monitoring of blood glucose: meta-analysis of randomised controlled trials using individual patient data. BMJ 343:d3805Promotional Material Digital health: working in partnership. Department of Health. UK. (2014) Available at: https://www.gov.uk/government/publications/digital-health-working-in-partnership/digital-health-working-in-partnerships#digital-health---harnessing-technology-for-patient-benefit . [Last access: Dec. 30, 2014]eHealth for a Healthier Europe!– opportunities for a better use of healthcare resources. Available at: https://joinup.ec.europa.eu/sites/default/files/files_epractice/sites/eHealth%20for%20a%20Healthier%20Europe %20-%20Opportunities%20for%20a%20better%20use%20of%20healthcare%20resources.pdf. [Last access: Dec. 30, 2014]Adibi S (2012) Link technologies and BlackBerry mobile health (mHealth) solutions: a review. IEEE Trans Inf Technol Biomed 16(4):586–597Chiarini G, Ray P, Akter S, Masella C, Ganz A (2013) mHealth technologies for chronic diseases and elders: a systematic review. IEEE J Sel Areas Commun 31(9):6–18Lopes IM, Silva BM, Rodrigues JJ, Lloret J, Proenca ML (2011) A mobile health monitoring solution for weight control. In proceedings of the 2011 International Conference on Wireless Communications and Signal Processing (WCSP 2011), Nanjing, pp 1–5Lopes IM, Silva BM, Rodrigues JJPC, Lloret J (2012) Performance evaluation of cooperation mechanisms for m-health applications. In proceedings of the 2012 I.E. Global Communications Conference (GLOBECOM 2012), AnaheimKyriacou EC, Pattichis CS, Pattichis MS (2009) An overview of recent health care support systems for eEmergency and mHealth applications. In proceedings of the 31st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC 2009), Hilton Minneapolis, pp 1246–1249Nkosi MT, Mekuria F (2010) Cloud computing for enhanced mobile health applications. In proceedings of the 2010 I.E. Second International Conference on Cloud Computing Technology and Science (CloudCom 2010), Indianapolis, pp 629–633Sultan N (2014) Making use of cloud computing for healthcare provision: opportunities and challenges. Int J Inf Manag 34(2):177–184Pandey S, Voorsluys W, Niu S, Khandoker A, Buyya R (2012) An autonomic cloud environment for hosting ECG data analysis services. Futur Gener Comput Syst 28(1):147–154Xia H, Asif I, Zhao X (2013) Cloud-ECG for real time ECG monitoring and analysis. Comput Methods Prog Biomed 110(3):253–259Bourouis A, Feham M, Bouchachia A (2012) A new architecture of a ubiquitous health monitoring system: a prototype of cloud mobile health monitoring system. arXiv preprint. Reference: arXiv:1205.6910Chen KR, Lin YL, Huang MS (2011) A mobile biomedical device by novel antenna technology for cloud computing resource toward pervasive healthcare. In proceedings of the 11th International Conference on Bioinformatics and Bioengineering (BIBE 2011), Taichung, pp 133–136Lacuesta R, Lloret J, Sendra S, Peñalver L (2014), Spontaneous ad hoc mobile cloud computing network. Sci World J (Article ID 232419): 1–19Ghafoor KZ, Bakar KA, Mohammed MA, Lloret J (2013) Vehicular cloud computing: trends and challenges (Chapter 14). In Mobile Networks and Cloud computing Convergence for Progressive Services and Applications. IGI Global. pp. 262–274. DOI: 10.4018/978-1-4666-4781-7.ch014Wan J, Zhang D, Zhao S, Yang LT, Lloret J (2014) Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges and solutions. IEEE Commun Mag 52(8):106–113. doi: 10.1109/MCOM.2014.6871677Rodrigues JJPC, Zhou L, Mendes LDP, Lin K, Lloret J (2012) Distributed media-aware flow scheduling in cloud computing environment. Comput Commun 35(15):1819–1827Dutta R, Annappa B (2014) Protection of data in unsecured public cloud environment with open, vulnerable networks using threshold-based secret sharing. Netw Protoc Algoritm 6(1):58–75Modares H, Lloret J, Moravejosharieh A, Salleh R (2013) Security in mobile cloud computing (Chapter 5). In Mobile Networks and Cloud computing Convergence for Progressive Services and Applications. IGI Global. pp. 79–91Mehmood A, Song H, Lloret J (2014) Multi-agent based framework for secure and reliable communication among open clouds. Netw Protoc Algoritm 6(4):60–76Mendes LDP, Rodrigues JJPC, Lloret J, Sendra S (2014) Cross-layer dynamic admission control for cloud-based multimedia sensor networks. IEEE Syst J 8(1):235–246Xiong J, Li F, Ma J, Liu X, Yao Z, Chen PS (2014) A full lifecycle privacy protection scheme for sensitive data in cloud computing. Peer-to-Peer Netw Appl 1–13Yang H, Kim H, Mtonga K (2014) An efficient privacy-preserving authentication scheme with adaptive key evolution in remote health monitoring system. Peer-to-Peer Netw Appl 1–11Silva BM, Rodrigues JJ, Canelo F, Lopes IM, Lloret J (2014) Towards a cooperative security system for mobile-health applications. Electron Commer Re 1–27Flynn D, Gregory P, Makki H, Gabbay M (2009) Expectations and experiences of eHealth in primary care: a qualitative practice-based investigation. Int J Med Inform 78(9):588–604Thampi SM (2010) Survey of search and replication schemes in unstructured P2P networks. Netw Protoc Algoritm 2(1):93–131Khan SM, Mallesh N, Nambiar A, Wright M (2010) The dynamics of salsa: a robust structured P2P system. Netw Protoc Algoritm 2(4):40–60Garcia M, Hammoumi M, Canovas A, Lloret J (2011) Controlling P2P file-sharing networks’ traffic. Netw Protoc Algoritm 3(4):54–92Lloret J, Garcia M, Tomas J, Rodrigues JJPC (2014) Architecture and protocol for InterCloud communication. Inf Sci 258:434–451Chowdhury CR (2014) A survey of cloud based health care system. Int J Innov Res Comput Commun Eng 2(8):5477–5481Ghosh R, Papapanagiotou I, Boloor KA (2014) Survey on research initiatives for healthcare clouds. Cloud Computing Applications for Quality Health Care Delivery. IGI Global 1–18Donahue S (2010) Can cloud computing help fix health care? Cloudbook J 1(6):1–6Deng M, Petkovic M, Nalin M, Baroni IA (2011) Home healthcare system in the cloud--addressing security and privacy challenges. In proceedings of the 2011 I.E. International Conference on Cloud Computing (CLOUD 2011), Washington, pp 549–556Wang X, Gui Q, Liu B, Chen Y, Jin Z (2013) Leveraging mobile cloud for telemedicine: a performance study in medical monitoring. In proceedings of the 39th Annual Northeast Bioengineering Conference (NEBEC 2013), Syracuse, pp 49–50Alamri A (2012) Cloud-based e-health multimedia framework for heterogeneous network. In proceedings of the 2012 I.E. International Conference on Multimedia and Expo Workshops (ICMEW 2012), Melbourne, pp 447–452Constantinescu L, Kim J, Feng DD (2012) Sparkmed: a framework for dynamic integration of multimedia medical data into distributed m-health systems. IEEE Trans Inf Technol Biomed 16(1):40–52Botts N, Thoms B, Noamani A, Horan TA (2010) Cloud computing architectures for the underserved: public health cyberinfrastructures through a network of healthatms. In proceedings of the 43rd Hawaii International Conference on System Sciences (HICSS 2010), Honolulu, pp 1–10Fan L, Buchanan W, Thummler C, Lo O, Khedim A, Uthmani O, Lawson A, Bell D (2011) DACAR platform for eHealth services cloud. In proceedings of the 2011 I.E. International Conference on Cloud Computing (CLOUD 2011), Washington, pp 219–226Ruiz-Zafra A, Benghazi K, Noguera M, Garrido JL (2013) Zappa: An Open Mobile Platform to Build Cloud-Based m-Health Systems. In proceedings of the 4th International Symposium on Ambient Intelligence (ISAmI 2013), Salamanca, pp 87–94Nijon S, Dickerson RF, Asare P, Li Q, Hong D, Stankovic JA, Hu P, Shen G, Jiang X (2013) Auditeur: a mobile-cloud service platform for acoustic event detection on smartphones. In Proceeding of the 11th annual international conference on Mobile systems, applications, and services. ACM, Taipei, pp 403–416Lloret J, Diaz JR, Boronat F, Jiménez JM (2006) A fault-tolerant P2P-based protocol for logical networks interconnection. In proceedings of the International Conference on Networking and Services (ICNS’06), Silicon ValleyLloret J, Palau C, Boronat F, Tomas J (2008) Improving networks using group-based topologies. Comput Commun 31(14):3438–3450Lloret J, Boronat Segui F, Palau C, Esteve M (2005) Two levels SPF-based system to interconnect partially decentralized P2P file sharing networks. In proceedings of the Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services.(ICAS-ICNS 2005), Papeete, p 39Cramer C, Kutzner K, Fuhrmann T (2004) Bootstrapping locality-aware P2P networkS. In proceedings of the 12th IEEE International Conference on Networks (ICON 2004), Singapore, pp 357–361FIPS 180-1 - Secure Hash Standard, SHA-1. National Institute of Standards and Technology. http://www.itl.nist.gov/fipspubs/fip180-1.htm [Last access: Dec. 30, 2014]Eastlake D., Jones P., US Secure Hash Algorithm 1 (SHA1),(2001). In IETF website, Available at: http://www.ietf.org/rfc/rfc3174.txt [Last access: March 20, 2015]Lacuesta R, Lloret J, Garcia M, Peñalver L (2011) Two secure and energy-saving spontaneous Ad-Hoc protocol for wireless mesh client networks. J Netw Comput Appl 3(2):492–50

    An architecture for distributed ledger-based M2M auditing for Electric Autonomous Vehicles

    Get PDF
    Electric Autonomous Vehicles (EAVs) promise to be an effective way to solve transportation issues such as accidents, emissions and congestion, and aim at establishing the foundation of Machine-to-Machine (M2M) economy. For this to be possible, the market should be able to offer appropriate charging services without involving humans. The state-of-the-art mechanisms of charging and billing do not meet this requirement, and often impose service fees for value transactions that may also endanger users and their location privacy. This paper aims at filling this gap and envisions a new charging architecture and a billing framework for EAV which would enable M2M transactions via the use of Distributed Ledger Technology (DLT)

    Device agent assisted blockchain leveraged framework for Internet of Things

    Get PDF
    Blockchain (BC) is a burgeoning technology that has emerged as a promising solution to peer-to-peer communication security and privacy challenges. As a revolutionary technology, blockchain has drawn the attention of academics and researchers. Cryptocurrencies have already effectively utilized BC technology. Many researchers have sought to implement this technique in different sectors, including the Internet of Things. To store and manage IoT data, we present in this paper a lightweight BC-based architecture with a modified raft algorithm-based consensus protocol. We designed a Device Agent that executes a novel registration procedure to connect IoT devices to the blockchain. We implemented the framework on Docker using the Go programming language. We have simulated the framework on a Linux environment hosted in the cloud. We have conducted a detailed performance analysis using a variety of measures. The results demonstrate that our suggested solution is suitable for facilitating the management of IoT data with increased security and privacy. In terms of throughput and block generation time, the results indicate that our solution might be 40% to 45% faster than the existing blockchain. © 2013 IEEE

    Network virtualization as an integrated solution for emergency communication

    Get PDF
    In this paper the Virtual Private Ad Hoc Networking (VPAN) platform is introduced as an integrated networking solution for many applications that require secure transparent continuous connectivity using heterogeneous devices and network technologies. This is done by creating a virtual logical self-organizing network on top of existing network technologies reducing complexity and maintaining session continuity right from the start. One of the most interesting applications relies in the field of emergency communication with its specific needs which will be discussed in this paper and matched in detail against the architecture and features of the VPAN platform. The concept and dynamics are demonstrated and evaluated with measurements done on real hardware

    The technological growth in eHealth services

    Get PDF
    The infusion of information communication technology (ICT) into health services is emerging as an active area of research. It has several advantages but perhaps the most important one is providing medical benefits to one and all irrespective of geographic boundaries in a cost effective manner, providing global expertise and holistic services, in a time bound manner. This paper provides a systematic review of technological growth in eHealth services. The present study reviews and analyzes the role of four important technologies, namely, satellite, internet, mobile, and cloud for providing health services.Web of Scienceart. no. 89417

    Towards fog-driven IoT eHealth:Promises and challenges of IoT in medicine and healthcare

    Get PDF
    Internet of Things (IoT) offers a seamless platform to connect people and objects to one another for enriching and making our lives easier. This vision carries us from compute-based centralized schemes to a more distributed environment offering a vast amount of applications such as smart wearables, smart home, smart mobility, and smart cities. In this paper we discuss applicability of IoT in healthcare and medicine by presenting a holistic architecture of IoT eHealth ecosystem. Healthcare is becoming increasingly difficult to manage due to insufficient and less effective healthcare services to meet the increasing demands of rising aging population with chronic diseases. We propose that this requires a transition from the clinic-centric treatment to patient-centric healthcare where each agent such as hospital, patient, and services are seamlessly connected to each other. This patient-centric IoT eHealth ecosystem needs a multi-layer architecture: (1) device, (2) fog computing and (3) cloud to empower handling of complex data in terms of its variety, speed, and latency. This fog-driven IoT architecture is followed by various case examples of services and applications that are implemented on those layers. Those examples range from mobile health, assisted living, e-medicine, implants, early warning systems, to population monitoring in smart cities. We then finally address the challenges of IoT eHealth such as data management, scalability, regulations, interoperability, device–network–human interfaces, security, and privacy

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems
    • …
    corecore