492 research outputs found

    Security at the Edge for Resource-Limited IoT Devices

    Get PDF
    The Internet of Things (IoT) is rapidly growing, with an estimated 14.4 billion active endpoints in 2022 and a forecast of approximately 30 billion connected devices by 2027. This proliferation of IoT devices has come with significant security challenges, including intrinsic security vulnerabilities, limited computing power, and the absence of timely security updates. Attacks leveraging such shortcomings could lead to severe consequences, including data breaches and potential disruptions to critical infrastructures. In response to these challenges, this research paper presents the IoT Proxy, a modular component designed to create a more resilient and secure IoT environment, especially in resource-limited scenarios. The core idea behind the IoT Proxy is to externalize security-related aspects of IoT devices by channeling their traffic through a secure network gateway equipped with different Virtual Network Security Functions (VNSFs). Our solution includes a Virtual Private Network (VPN) terminator and an Intrusion Prevention System (IPS) that uses a machine learning-based technique called oblivious authentication to identify connected devices. The IoT Proxy’s modular, scalable, and externalized security approach creates a more resilient and secure IoT environment, especially for resource-limited IoT devices. The promising experimental results from laboratory testing demonstrate the suitability of IoT Proxy to secure real-world IoT ecosystems

    Sociotechnical Imaginaries, the Future and the Third Offset Strategy

    Get PDF

    Adversarial Deep Learning and Security with a Hardware Perspective

    Get PDF
    Adversarial deep learning is the field of study which analyzes deep learning in the presence of adversarial entities. This entails understanding the capabilities, objectives, and attack scenarios available to the adversary to develop defensive mechanisms and avenues of robustness available to the benign parties. Understanding this facet of deep learning helps us improve the safety of the deep learning systems against external threats from adversaries. However, of equal importance, this perspective also helps the industry understand and respond to critical failures in the technology. The expectation of future success has driven significant interest in developing this technology broadly. Adversarial deep learning stands as a balancing force to ensure these developments remain grounded in the real-world and proceed along a responsible trajectory. Recently, the growth of deep learning has begun intersecting with the computer hardware domain to improve performance and efficiency for resource constrained application domains. The works investigated in this dissertation constitute our pioneering efforts in migrating adversarial deep learning into the hardware domain alongside its parent field of research

    Next Generation Business Ecosystems: Engineering Decentralized Markets, Self-Sovereign Identities and Tokenization

    Get PDF
    Digital transformation research increasingly shifts from studying information systems within organizations towards adopting an ecosystem perspective, where multiple actors co-create value. While digital platforms have become a ubiquitous phenomenon in consumer-facing industries, organizations remain cautious about fully embracing the ecosystem concept and sharing data with external partners. Concerns about the market power of platform orchestrators and ongoing discussions on privacy, individual empowerment, and digital sovereignty further complicate the widespread adoption of business ecosystems, particularly in the European Union. In this context, technological innovations in Web3, including blockchain and other distributed ledger technologies, have emerged as potential catalysts for disrupting centralized gatekeepers and enabling a strategic shift towards user-centric, privacy-oriented next-generation business ecosystems. However, existing research efforts focus on decentralizing interactions through distributed network topologies and open protocols lack theoretical convergence, resulting in a fragmented and complex landscape that inadequately addresses the challenges organizations face when transitioning to an ecosystem strategy that harnesses the potential of disintermediation. To address these gaps and successfully engineer next-generation business ecosystems, a comprehensive approach is needed that encompasses the technical design, economic models, and socio-technical dynamics. This dissertation aims to contribute to this endeavor by exploring the implications of Web3 technologies on digital innovation and transformation paths. Drawing on a combination of qualitative and quantitative research, it makes three overarching contributions: First, a conceptual perspective on \u27tokenization\u27 in markets clarifies its ambiguity and provides a unified understanding of the role in ecosystems. This perspective includes frameworks on: (a) technological; (b) economic; and (c) governance aspects of tokenization. Second, a design perspective on \u27decentralized marketplaces\u27 highlights the need for an integrated understanding of micro-structures, business structures, and IT infrastructures in blockchain-enabled marketplaces. This perspective includes: (a) an explorative literature review on design factors; (b) case studies and insights from practitioners to develop requirements and design principles; and (c) a design science project with an interface design prototype of blockchain-enabled marketplaces. Third, an economic perspective on \u27self-sovereign identities\u27 (SSI) as micro-structural elements of decentralized markets. This perspective includes: (a) value creation mechanisms and business aspects of strategic alliances governing SSI ecosystems; (b) business model characteristics adopted by organizations leveraging SSI; and (c) business model archetypes and a framework for SSI ecosystem engineering efforts. The dissertation concludes by discussing limitations as well as outlining potential avenues for future research. These include, amongst others, exploring the challenges of ecosystem bootstrapping in the absence of intermediaries, examining the make-or-join decision in ecosystem emergence, addressing the multidimensional complexity of Web3-enabled ecosystems, investigating incentive mechanisms for inter-organizational collaboration, understanding the role of trust in decentralized environments, and exploring varying degrees of decentralization with potential transition pathways

    Efficient Security Protocols for Constrained Devices

    Get PDF
    During the last decades, more and more devices have been connected to the Internet.Today, there are more devices connected to the Internet than humans.An increasingly more common type of devices are cyber-physical devices.A device that interacts with its environment is called a cyber-physical device.Sensors that measure their environment and actuators that alter the physical environment are both cyber-physical devices.Devices connected to the Internet risk being compromised by threat actors such as hackers.Cyber-physical devices have become a preferred target for threat actors since the consequence of an intrusion disrupting or destroying a cyber-physical system can be severe.Cyber attacks against power and energy infrastructure have caused significant disruptions in recent years.Many cyber-physical devices are categorized as constrained devices.A constrained device is characterized by one or more of the following limitations: limited memory, a less powerful CPU, or a limited communication interface.Many constrained devices are also powered by a battery or energy harvesting, which limits the available energy budget.Devices must be efficient to make the most of the limited resources.Mitigating cyber attacks is a complex task, requiring technical and organizational measures.Constrained cyber-physical devices require efficient security mechanisms to avoid overloading the systems limited resources.In this thesis, we present research on efficient security protocols for constrained cyber-physical devices.We have implemented and evaluated two state-of-the-art protocols, OSCORE and Group OSCORE.These protocols allow end-to-end protection of CoAP messages in the presence of untrusted proxies.Next, we have performed a formal protocol verification of WirelessHART, a protocol for communications in an industrial control systems setting.In our work, we present a novel attack against the protocol.We have developed a novel architecture for industrial control systems utilizing the Digital Twin concept.Using a state synchronization protocol, we propagate state changes between the digital and physical twins.The Digital Twin can then monitor and manage devices.We have also designed a protocol for secure ownership transfer of constrained wireless devices. Our protocol allows the owner of a wireless sensor network to transfer control of the devices to a new owner.With a formal protocol verification, we can guarantee the security of both the old and new owners.Lastly, we have developed an efficient Private Stream Aggregation (PSA) protocol.PSA allows devices to send encrypted measurements to an aggregator.The aggregator can combine the encrypted measurements and calculate the decrypted sum of the measurements.No party will learn the measurement except the device that generated it

    HasTEE: Programming Trusted Execution Environments with Haskell

    Get PDF
    Trusted Execution Environments (TEEs) are hardware-enforced memory isolation units, emerging as a pivotal security solution for security-critical applications. TEEs, like Intel SGX and ARM TrustZone, allow the isolation of confidential code and data within an untrusted host environment, such as the cloud and IoT. Despite strong security guarantees, TEE adoption has been hindered by an awkward programming model. This model requires manual application partitioning and the use of error-prone, memory-unsafe, and potentially information-leaking low-level C/C++ libraries. We address the above with \textit{HasTEE}, a domain-specific language (DSL) embedded in Haskell for programming TEE applications. HasTEE includes a port of the GHC runtime for the Intel-SGX TEE. HasTEE uses Haskell's type system to automatically partition an application and to enforce \textit{Information Flow Control} on confidential data. The DSL, being embedded in Haskell, allows for the usage of higher-order functions, monads, and a restricted set of I/O operations to write any standard Haskell application. Contrary to previous work, HasTEE is lightweight, simple, and is provided as a \emph{simple security library}; thus avoiding any GHC modifications. We show the applicability of HasTEE by implementing case studies on federated learning, an encrypted password wallet, and a differentially-private data clean room.Comment: To appear in Haskell Symposium 202

    Blockchain and Internet of Things in smart cities and drug supply management: Open issues, opportunities, and future directions

    Get PDF
    Blockchain-based drug supply management (DSM) requires powerful security and privacy procedures for high-level authentication, interoperability, and medical record sharing. Researchers have shown a surprising interest in Internet of Things (IoT)-based smart cities in recent years. By providing a variety of intelligent applications, such as intelligent transportation, industry 4.0, and smart financing, smart cities (SC) can improve the quality of life for their residents. Blockchain technology (BCT) can allow SC to offer a higher standard of security by keeping track of transactions in an immutable, secure, decentralized, and transparent distributed ledger. The goal of this study is to systematically explore the current state of research surrounding cutting-edge technologies, particularly the deployment of BCT and the IoT in DSM and SC. In this study, the defined keywords “blockchain”, “IoT”, drug supply management”, “healthcare”, and “smart cities” as well as their variations were used to conduct a systematic search of all relevant research articles that were collected from several databases such as Science Direct, JStor, Taylor & Francis, Sage, Emerald insight, IEEE, INFORMS, MDPI, ACM, Web of Science, and Google Scholar. The final collection of papers on the use of BCT and IoT in DSM and SC is organized into three categories. The first category contains articles about the development and design of DSM and SC applications that incorporate BCT and IoT, such as new architecture, system designs, frameworks, models, and algorithms. Studies that investigated the use of BCT and IoT in the DSM and SC make up the second category of research. The third category is comprised of review articles regarding the incorporation of BCT and IoT into DSM and SC-based applications. Furthermore, this paper identifies various motives for using BCT and IoT in DSM and SC, as well as open problems and makes recommendations. The current study contributes to the existing body of knowledge by offering a complete review of potential alternatives and finding areas where further research is needed. As a consequence of this, researchers are presented with intriguing potential to further create decentralized DSM and SC apps as a result of a comprehensive discussion of the relevance of BCT and its implementation.© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    A Survey and Evaluation of Android-Based Malware Evasion Techniques and Detection Frameworks

    Get PDF
    Android platform security is an active area of research where malware detection techniques continuously evolve to identify novel malware and improve the timely and accurate detection of existing malware. Adversaries are constantly in charge of employing innovative techniques to avoid or prolong malware detection effectively. Past studies have shown that malware detection systems are susceptible to evasion attacks where adversaries can successfully bypass the existing security defenses and deliver the malware to the target system without being detected. The evolution of escape-resistant systems is an open research problem. This paper presents a detailed taxonomy and evaluation of Android-based malware evasion techniques deployed to circumvent malware detection. The study characterizes such evasion techniques into two broad categories, polymorphism and metamorphism, and analyses techniques used for stealth malware detection based on the malware’s unique characteristics. Furthermore, the article also presents a qualitative and systematic comparison of evasion detection frameworks and their detection methodologies for Android-based malware. Finally, the survey discusses open-ended questions and potential future directions for continued research in mobile malware detection

    A Generic Approach for the Automated Notarization of Cloud Configurations Using Blockchain-Based Trust.

    Get PDF
    Debido a su escalabilidad, las aplicaciones en la nube tienen una importante ventaja de costes para las empresas. En consecuencia, las empresas quieren tanto externalizar sus datos como obtener servicios de la nube. Sin embargo, dado que la mayoría de las empresas tienen políticas internas y requisitos de cumplimiento para operar y utilizar aplicaciones de software, el uso de aplicaciones en la nube crea un nuevo desafío para las empresas. La inclusión de aplicaciones en la nube equivale a la subcontratación de servicios en el sentido de que las empresas deben confiar en que el proveedor de aplicaciones en la nube aplicará los requisitos de cumplimiento interno en las aplicaciones adoptadas. La investigación ha demostrado que la confianza y el riesgo están estrechamente relacionados y son factores clave que influyen en la utilización de aplicaciones en la nube. Esta tesis pretende desarrollar una arquitectura en la nube que aborde este reto, trasladando la confianza en las configuraciones de cumplimiento del proveedor de aplicaciones en la nube a la cadena de bloques. Así, este trabajo pretende reducir el riesgo de adopción de las aplicaciones en la nube debido a los requisitos de cumplimiento. En esta tesis, la investigación de la ciencia del diseño se utiliza para crear la arquitectura para trasladar la confianza mencionada a la cadena de bloques. Un grupo de discusión determinó el alcance del trabajo. La base de conocimientos de este trabajo se construyó utilizando inteligencia artificial y una revisión sistemática de la literatura, y la arquitectura presentada se desarrolló y prototipó utilizando el método de desarrollo rápido de aplicaciones. Se utilizaron entrevistas guiadas semiestructuradas de método mixto para evaluar el enfoque de la arquitectura presentada y valorar las cualidades de reducción del riesgo de adopción. La tesis demostró que la arquitectura de software desarrollada podía trasladar la confianza del proveedor de la nube a la cadena de bloques. La evaluación de la arquitectura de software propuesta demostró además que el riesgo de adopción debido a las configuraciones de la nube basadas en el cumplimiento podía reducirse de "alto" a "bajo" utilizando la tecnología blockchain. Esta tesis presenta una arquitectura que desplaza la confianza para la implementación de configuraciones basadas en el cumplimiento de la normativa desde el proveedor de la nube a la cadena de bloques. Además, muestra que el cambio de confianza puede reducir significativamente el riesgo de adopción de las aplicaciones en la nube.Administración y Dirección de Empresa
    corecore