
Runtime Protection of
Software Programs against

Control- and Data-Oriented Attacks

Munir Geden
Wolfson College

University of Oxford

A thesis submitted for the degree of
Doctor of Philosophy

Trinity 2022

Dedicated to my beloved wife, who had a similar journey,
and to our wonderful children who cheered us up.

Acknowledgements

Firstly, I would like to express my deepest appreciation to my supervisor Prof. Kasper
Rasmussen. I am grateful for his immense knowledge and our regular meetings that
kept me on track. I would also like to thank Dr. Jassim Happa for his supervision
during my first research project at Oxford. Many thanks to Prof. Andrew Martin and
Prof. Sakir Sezer for agreeing to examine this thesis; and to Prof. Andrew Simpson
for his valuable feedback during my Transfer and Confirmation examinations along
with Prof. Martin. I would also like to thank anonymous reviewers whose feedback
helped me to improve this work.

I owe a big thank you to my companion, my wife, Ayse, who also had her own
doctoral journey along the way. I could not have completed this without your
support. Another big thank you to my wonderful son, Yahya. Also, I apologise for
the times that I could not play with you because of my work. You were a very patient
and understanding boy, which made things easier for your parents. Likewise, another
well-deserved thank you to Ali, who was born like a light into the darkest times of our
world during the pandemic. Since then, you have continued to give joy to our lives
with your brother. To my mom and dad, I am grateful for all your help and efforts,
thanks a lot for coming to our aid, with the in-laws, whenever we were in need.

During my time at Oxford, I had wonderful friends. Making great friendships
was the best part of the CDT’s first year. Therefore, many thanks to fellow
CDT-16 people. I am also grateful to everyone in our research group, especially
to Room-303 dwellers, Angeliki Aktypi and Youqian Zhang. And the people of
first floor in RHB, Jack Sturgess and Kubilay Kucuk, thank you for all your help
and the conversations we had. A special appreciation belongs to the wise old
Algerian homeless friend, Salah, who kept reminding me of the things that matter
the most, although I do often forget.

I would like to acknowledge that this thesis was made possible primarily with
the financial support of the Turkish Ministry of Education. I’d like to also mention
the CDT in Cyber Security for the funding of my travel and equipment expenses.
Lastly, I would be remiss not to mention CDT Admins, David Hobbs, Maureen
York, and Janet Sadler; thank you for always trying to be helpful.

Abstract

Software programs are everywhere and continue to create value for us at an incredible
pace. But this comes at the cost of facing new risks as our well-being and the
stability of societies become strongly dependent on their correctness. Even if
the software loaded in the memory is considered legitimate or benign, this does
not mean that the code will execute as expected at runtime. Software programs,
particularly the ones developed in unsafe languages (e.g., C/C++), inevitably
contain many memory bugs. Attackers exploiting these bugs can achieve malicious
computations outside the original specification of the program by corrupting its
control and data variables in the memory.

A potential solution to such runtime attacks must either ensure the integrity of
those variables or check the validity of the values they hold. A complete version of
the former method, which requires inspection of all memory accesses, can eliminate
all the performance benefits of the language used. Alternatively, checking whether
specific variables constitute a legitimate state is a non-trivial task that needs to
handle state explosion and over-approximation issues. Regardless of the method
preferred, most runtime protections are subject to common challenges. For example,
as the scope of protection widens, such as the inclusion of data-oriented attacks
(in addition to control-oriented attacks), performance costs inevitably increase as
well. This is especially true for software-based methods that also suffer from weaker
security guarantees. On the contrary, most hardware-based techniques promise
better security and performance. But they face substantial deployment challenges
without offering any solution to existing devices already out there.

In this thesis, we aim to tackle these research challenges by delivering multiple
runtime protections in different settings. First, the thesis presents the design of
a non-invasive hardware module that can enable attesting runtime correctness on
critical embedded systems in real-time. Second, we address the performance burden
of covering data-oriented attacks, by suggesting a novel technique to distinguish
critical variables from those that are unlikely to be attacked. This is to develop a
selective protection scheme with practical performance overheads, without having
to check all data variables or corresponding memory accesses. Third, the thesis
presents a software-based solution that promises hardware-level protection for
critical variables. For this purpose, it leverages the CPU registers available in any
architecture with extra help from cryptography. Lastly, we explore the use of runtime
interactions with the operating system to identify malicious software executions.

Contents

List of Figures xiii

List of Tables xv

List of Abbreviations xvii

1 Introduction 1
1.1 Identified Gaps . 3
1.2 Contributions . 5
1.3 Structure . 7
1.4 List of Publications . 8

2 Background 9
2.1 Remote Attestation . 9

2.1.1 Protocol Phases . 10
2.1.2 Protocol Attacks . 12

2.2 Memory Attacks . 13
2.2.1 Code Attacks . 14
2.2.2 Control-Oriented Attacks . 16
2.2.3 Data-Oriented Attacks . 18

2.3 Register Allocations . 20
2.3.1 Allocation Level . 21
2.3.2 Allocation Techniques . 22

3 Related Work 25
3.1 Attestation Survey . 25

3.1.1 Software-based Techniques 26
3.1.2 Hardware-based Techniques 27
3.1.3 Hybrid Solutions . 28
3.1.4 Runtime Attestation . 30
3.1.5 Interaction Pattern . 34

3.2 Runtime Integrity . 36
3.2.1 Memory Safety . 37

ix

x Contents

3.2.2 Control-Flow Protections . 39
3.2.3 Mitigation of Data-Oriented Attacks 46

3.3 Malware Analysis . 52
3.3.1 Static Techniques . 52
3.3.2 Dynamic Techniques . 53

4 Design of a Hardware Module For Runtime Attestation 55
4.1 Introduction . 56
4.2 Problem Setting . 59

4.2.1 System Model . 60
4.2.2 Adversary Model . 61

4.3 Design of Runtime Integrity Model (RIM) 62
4.3.1 Static Model . 64
4.3.2 Dynamic Extensions . 65

4.4 Runtime Monitoring and Attack Detection 67
4.4.1 Runtime Integrity Checks by the HSM 67
4.4.2 Attacks Coverage . 71

4.5 Protocol Overview . 73
4.6 Security Analysis . 75

4.6.1 HSM Attacks . 75
4.6.2 Protocol Attacks . 76
4.6.3 A Concrete Example . 76

4.7 Performance . 77
4.8 Discussion . 79
4.9 Summary . 80

5 Identifying Critical Variables for Lightweight Runtime Protection 83
5.1 Introduction . 83
5.2 Problem Setting . 85

5.2.1 Motivation . 86
5.2.2 System and Adversary Model 87

5.3 Distinguishing Variables with Trusted Values 88
5.3.1 Trust Sources and Propagation 89
5.3.2 Static Trust Analysis . 91

5.4 Detection of Data-Oriented Attacks 93
5.4.1 Value-Based Integrity Checks 94
5.4.2 Scope . 96

5.5 Implementation . 97
5.5.1 A Concrete Example . 98
5.5.2 LLVM Passes . 99

Contents xi

5.6 Evaluation . 101
5.6.1 Performance . 101
5.6.2 Security Analysis . 103

5.7 Intel SGX Adaptation . 105
5.7.1 Program-agnostic Enclaves 106
5.7.2 Switch Overheads . 107

5.8 Summary . 107

6 Leveraging CPU Registers for Protection of Runtime Data 109
6.1 Introduction . 109
6.2 Problem Setting . 112

6.2.1 Motivation . 112
6.2.2 System and Adversary Model 114

6.3 Design . 115
6.3.1 Security-Oriented Allocations 116
6.3.2 Integrity of Saved Register Values 120
6.3.3 Security Analysis . 127

6.4 Implementation on ARM64 . 128
6.5 Evaluation . 130

6.5.1 Performance . 130
6.5.2 Security and Real-World Cases 133

6.6 Discussion . 134
6.6.1 Chained vs Independent Frames 134
6.6.2 Primitive Devices and Register Scarcity 135
6.6.3 Future CPU Architectures 136
6.6.4 Further Extensions . 137

6.7 Summary . 137

7 Using Runtime Features for Malware Identification 139
7.1 Introduction . 139
7.2 Problem Definition . 140
7.3 Methodology . 142

7.3.1 Dataset Collection . 143
7.3.2 Runtime Data Generation 144
7.3.3 Feature Selection . 146
7.3.4 Classifications . 149

7.4 Results and Discussion . 150
7.4.1 Call Traces . 151
7.4.2 Other Artefacts . 156
7.4.3 Optimal Settings and Comparison 157
7.4.4 Limitations . 157

7.5 Summary . 158

xii Contents

8 Conclusion 159
8.1 Summary of Contributions . 159
8.2 Concluding Remarks and Future Outlook 161

References 167

Appendices

A Appendix 185
A.1 Code Snippets of Real-world Vulnerabilities 185
A.2 Call Graphs of Bare-metal Examples 187
A.3 JSON Structures of Cuckoo Reports 189

List of Figures

2.1 An overview of a remote attestation scheme. 10
2.2 Illustration of different attacks on the program CFG. 15
2.3 Return- (ROP) and jump-oriented programming (JOP) attacks . . 17
2.4 Data-oriented programming (DOP) attacks. 19

3.1 Cumulative hash calculation for control-flow attestation. 32

4.1 Limitations of conventional static attestation. 58
4.2 An overview of HSM design. 60
4.3 Vulnerable code that can form a basis to different attacks. 62
4.4 RIM of the vulnerable code in Figure 4.3. 63
4.5 Call counters usage in case of a function called by multiple functions. 66
4.6 Call counters usage in case of indirect recursion. 67
4.7 Automaton of HSM modes processing RIM models. 70
4.8 Detailed flow of HSM’s monitoring logic. 72
4.9 Overview of the remote attestation protocol. 74

5.1 Coverage of different memory protection schemes. 84
5.2 Variable separation based on trustworthiness of their value agents. . 86
5.3 Identification trusted data via value origins and dependencies. . . . 89
5.4 Algorithms of program-wide static trust propagation analysis. . . . 91
5.5 Reaching-definition based and value-based DFI approaches. 94
5.6 Vulnerable program code forming the basis for different data attacks. 98
5.7 IR instrumentation illustrated on given program slices. 99
5.8 Ratio of instrumented memory instructions. 101
5.9 Runtime overheads of programs with targeted and full instrumentation.102
5.10 Compile time and runtime stages for SGX adaptation. 105
5.11 Runtime overheads of enclave-hosted instrumentation data. 106

6.1 Number of variables found per function. 113
6.2 Overview of the system components and adversary model. 114
6.3 Code under register pressure. 117
6.4 Pseudocode of security score calculations. 118

xiii

xiv List of Figures

6.5 Security-oriented register allocations under register pressure. 120
6.6 Securing saved register objects using a keyed hash. 123
6.7 Instrumentation of MAC calculations aligned with register operations.125
6.8 Runtime overheads of program-only instrumentation. 131
6.9 Runtime overheads with libc instrumentation. 133

7.1 The overview of malware identification framework. 142
7.2 A short call trace example. 144
7.3 Different feature representations of call-traces. 144
7.4 TPRs yielded by different feature models. 150
7.5 TPRs yielded by different feature selection methods. 152
7.6 ROC curves of different classifiers. 154
7.7 Family-wise distributions of extracted features. 155
7.8 Crysis-based distributions of selected features by different methods. 156

A.1 Code snippets forming basis to real world data-oriented attack scenarios.186
A.2 Call graph of bootloader image. 187
A.3 Call graph of a complex bare-metal instance. 188
A.4 JSON structure of an example process log. 189
A.5 JSON structure showing an example call trace. 189
A.6 JSON structure containing other behavioural artefacts. 190

List of Tables

3.1 Taxonomy of attestation schemes 36

4.1 Complexity metrics of runtime integrity model (RIM). 78

5.1 Ratio of loop headers identified as critical. 103

6.1 Variance of register saves during the callee function. 121
6.2 The details of calling convention used. 128

7.1 Number of malware samples used from each family. 143
7.2 Number of unique features extracted for each feature model. 147
7.3 Accuracy Results for Classifiers with Classwise NAD. 151
7.4 Comparison of different feature selection methods 153
7.5 Significance tests. 157
7.6 Comparison with related work. 158

xv

xvi

List of Abbreviations

ASLR address space layout randomisation

IR intermediate representation

LPR Loop Protection Ratio

ML machine learning

NAD normalised angular distance

TEE trusted execution environment

RIM runtime integrity model

HSM hardware security module

TPM trusted platform module

ROM read only memory

WSN wireless sensor networks

TCG Trusted Computing Group

CA Certificate Authority

DAA direct anonymous attestation

IMA integrity measurement architecture

MCU micro controller unit

MPU memory protection unit

PUF physically unclonable functions

ALU arithmetic logic unit

ROP return-oriented programming

JOP jump-oriented programming

DOP data-oriented programming

CFG control-flow graph

DFG data-flow graph

JIT just-in-time

xvii

xviii List of Abbreviations

PRNG pseudorandom number generator

DEP data execution prevention

RISC reduced instruction set computer

CFI control-flow integrity

DFI data-flow integrity

TCB trusted computing base

CPI code-pointer integrity

CPS code-pointer separation

BTS branch trace store

DIFT dynamic information flow tracking

ISA instruction set architecture

W⊕X write-xor-execute

OS operating system

API application programming interface

MAC message authentication code

PC path constraint/condition

SW Software

HW Hardware

GPR general-purpose register

FPR floating-pointer register

RTOS real-time operating system

RNG random number generator

SGX software guard extensions

FPGA field-programmable gate array

IoT Internet of Things

TOCTOU . . . time-of-check-to-time-of-use

CRA code-reuse attacks

CFA control-flow attestation

DFA data-flow attestation

MMU memory management unit

ABI Application Binary Interface

List of Abbreviations xix

DMA direct memory access

FSM finite state machine

API Application Programming Interface

TPR true positive ratio

FPR false positive ratio

SVM support vector machines

kNN k-nearest neighbours

IG Information Gain

NAD Normalised Angular Distance

CWIG Classwise Information Gain

CWNAD . . . Classwise Normalised Angular Distance

xx List of Abbreviations

“There are two methods in software design. One is to
make the program so simple, there are obviously no
errors. The other is to make it so complicated, there
are no obvious errors.”

— Tony Hoare

1
Introduction

In today’s world, we rely heavily on computing devices in almost all aspects of

our lives, including private and public spheres, business or state-related affairs.

Our civilisation has faced a radical digital transformation over the past decades,

mainly thanks to the software systems running those devices like the souls of their

hardware bodies. Software programs offer endless opportunities to create value for

humanity by using those computing resources in different ways. But at the same

time, they pose unprecedented risks to us, as our well-being and the stability of

societies have become strongly dependent on their correctness.

Software correctness consists of two properties that must hold true together.

The first is the legitimacy of program code concerning whether a device runs

the right software, i.e., neither a malicious one nor a corrupted version. Such

assurance, of course, first requires trust in the supply chain (e.g., compiler), so

the programmer’s rightful intention can be correctly disseminated to the device

memory as an executable. The legitimacy of the executable code can be inspected

in different ways. Given that most software instances do not typically change

while running, a straightforward approach would be to look at their cryptographic

checksums, as many attestation schemes suggest. A mismatch with the expected

value would imply that the original code is corrupted. If we lack the knowledge

1

2 1. Introduction

of acceptable values (i.e., a whitelist), checksums can also facilitate searching for

a match in the malware databases (i.e., a blacklist).

On the other hand, the second and more difficult part is the correctness of the

software runtime. Runtime correctness concerns whether the code in the memory is

executing in the right way as anticipated. But such assurance is a challenging task

that normally requires inspection of all the values appearing on dynamic memory

regions (e.g., stack). Otherwise, an attacker capable of modifying those values can

put the program into a state that causes the software to execute outside of its original

specifications; in other words, legitimate program code can express computations

beyond the programmer’s intention, a phenomenon known as weird machine. Unlike

code regions that constitute a single steady state, inspecting dynamic regions is

a challenging task for two main reasons. The first one is the quick explosion in

the number of states that can be observed legitimately on those regions. This

makes full coverage of the state space (or searching within it) impossible, so it

becomes impractical to decide whether an observed state is valid or not. Even

for an attempt that concerns only branching information (i.e., control data), the

number of possible paths would likely still be more than we can inspect for most

software programs. The second reason is that the program inputs provided by

external agents and hosted on those memory regions prevent us from knowing what

a genuine state is with full precision. This is inevitable because the entire purpose

of a typical software program that interacts with the external world is to perform

computations based on a set of expected inputs.

To compromise the program runtime, attackers typically exploit memory bugs

that are commonly found in programs developed via unsafe languages (e.g., C/C++),

and make the malicious input part of the runtime state beyond the source code’s

abstraction. For instance, famous buffer overflow bugs can result in corruption

of program variables next to the buffer. Depending on the setting, the attacker

can overwrite a control variable, namely a code pointer, to hijack the control

flow and make the program jump to any instruction—we refer to these scenarios

as control-oriented attacks. Alternatively, the attacker can alter a data object,

1. Introduction 3

for instance, a condition variable that decides on the execution of a privileged

branch—we refer to such cases as data-oriented attacks. Apart from those one-

shot scenarios, the adversary can systematically craft control and (non-control)

data objects in the memory to perform arbitrary code execution (i.e., Turing-

complete attack). For example, filling the call stack with the (return) addresses

of carefully chosen instructions can achieve such an attack as long as the code

provides the necessary code fragments (i.e., attack gadgets), known as return-

oriented programming (ROP) [1]. Control-flow protections that validate branch

targets [2] or ensure the integrity of code pointers [3] can reduce the number of

reachable (weird) states by the attacker. However, with a suitable vulnerability,

i.e., a bug that can compromise a loop with necessary branches and instructions, the

attacker can still perform arbitrary code execution by modifying only non-control

data objects while staying under the radar of control-flow protections.

In this thesis, the principal motivation is to address these most challenging

runtime integrity issues, both control- and data-oriented attacks in different contexts,

and to make sure that a software program executes benignly as expected at runtime.

While working towards this goal, this thesis aims to provide solutions that can be

adopted in practice, regarding both performance and deployability aspects.

1.1 Identified Gaps

Different studies in the literature have investigated runtime attacks. For example,

well-known attack mitigation strategies, such as control flow (CFI) [2] and data flow

integrity (DFI) [4] techniques, validate program executions at runtime according to

a static model (approximation) via instrumentation. In the event of a deviation

from the expected model, e.g., control-flow graph (CFG), the program is usually

terminated. Likewise, recent runtime attestation proposals [5–7] adopt a similar

understanding of the problem. But instead of performing necessary checks in

real time, they provide reports about path (control-flow) or memory (data-flow)

traces to a remote party that will perform the validation task later. In contrast

to those methods, the alternative way is to ensure the integrity of critical runtime

4 1.1. Identified Gaps

objects through other memory safety approximations such as code-pointer integrity

(CPI) [3]. Taking these and relevant solutions into account, we have identified

the following research gaps.

Runtime Attestation without Accumulation of Trace Information. Our

interest in runtime correctness originally stems from remote attestation problem of

embedded systems, where a potentially infected device (prover) tries to convince

a remote party (verifier) that the device software is in a legitimate state. Despite

many proposals for code attestation, proving runtime correctness has generally

been ignored. In recent years, the literature has proposed different control-flow

attestation (CFA) [5–8] methods for embedded systems to reveal control-oriented

attacks. In general, these methods either record path traces or digest them into a

single cumulative hash value to be sent to the verifier. The verifier is responsible

for checking whether the given trace or the hash can be generated by the program’s

CFG or not. But the former trace-based approach can suffer from costly storage

and communication overheads due to the size of execution traces. In contrast, the

latter method digesting those traces into a single hash measurement is not scalable

to many embedded software instances since the discovery of CFG paths by the

verifier might easily fail for a program containing enough nested calls and branches,

which can quickly explode the number of possible paths. Another issue is that these

schemes either instrument the software with costly switches to the trusted execution

environment (TEE) of the system (e.g., TrustZone [5]) or request disruptive changes

in the hardware architecture [6]. Therefore, they would not fit existing or legacy

systems, where modifying hardware and software might not be an option.

Lightweight Data-Flow Protection. Despite many protection schemes against

control-oriented attacks, the literature lacks a practical and deployable method to

address data-oriented attacks, in general. Suggested data-flow integrity (DFI) [4]

techniques could not be adopted in practice mainly due to their excessive in-

strumentation that inspects almost all memory accesses, inevitably resulting in

high performance overheads. On the contrary, hardware-based data flow isolation

1. Introduction 5

(HDFI) [9] not only suffers from deployment challenges but also lacks a method to

identify sensitive data in need of isolation. We consider that those drawbacks can be

addressed with a targeted approach that selectively instruments only critical program

variables while leaving others unprotected. Such a software-based approach that

avoids redundant instrumentation would enjoy better performance and adaptability.

Strong and Practical Protection for Critical Runtime Data. Regardless

of the scope, in general, runtime protection methods count on the integrity of the

critical data identified or created. For these protections to fulfil their promises,

the data must be well protected and accessible within the same address space, as

using the kernel space or a TEE domain would trigger cascading switch costs. As a

software-based solution, current techniques that hide critical data in a randomised

memory location can be bypassed by integrated attacks that disclose the location

information first [10]. Alternative methods such as software fault isolation (SFI) [11]

suffer from high overhead due to excessive checks on every memory access. On

the other hand, word- and page-level hardware-based isolations [9, 12] can address

stronger adversaries without any switch costs, but they are subject to expensive

deployment challenges and do not offer a solution to existing devices.

1.2 Contributions

This section presents the key contributions of each core chapter aiming to fill

the identified research gaps and describes what they may mean for the wider

research community.

Design of a Hardware Module for Runtime Attestation. Chapter 4 proposes

a runtime attestation scheme to report code and code-reuse attacks on critical

embedded systems. The value of this work lies in two deliverables: The first one is

a runtime integrity model (RIM) which describes legitimate executions via a static

call-graph-like model whose approximation is enhanced with a finite array of counters

that represent the depth of active calls from each function. The second is the design

6 1.2. Contributions

of a conceptual non-invasive hardware security module (HSM) that can enable a

practical attestation by performing most validation work on the prover side. The

module is considered to be connected to the prover’s bus for monitoring program

execution, and reporting its measurements when requested by the verifier. Its core

logic measures whether the runtime information available on the bus is in accordance

with the given RIM loaded into the module’s memory. Unlike previous attestation

work delivering [7, 8] or digesting [5, 6] control-flow traces, our scheme avoids the

accumulation of any trace information for a practical approach. Instead, it consumes

the trace information in real time, thanks to local checks designed to be performed

at runtime. This design choice saves us from not only potential storage and delivery

costs of execution traces but also path explosion issues, which the verifier might be

suffering from during the search of CFG space in the case of a digest-based approach.

Automated Distinction of Critical Variables. Chapter 5 offers a lightweight

data-flow protection method to address data attacks, without having to check

all memory accesses. Unlike previous attempts [13, 14] that employ programmer

annotations or type-based inferences, this work introduces a novel automated

distinction between critical and non-critical variables based on the trustworthiness of

their value origins. This work considers that variables defined by trusted agents, such

as the programmer, are more worthy of protection than those already controllable by

untrusted agents, such as users or the environment, which can be left uninstrumented

to avoid unnecessary performance costs. In addition to values defined by trusted

agents, the chapter presents a static trust propagation analysis to identify other

emerging values that can be extracted from those. Different isolation primitives

can benefit from this analysis to create a secure or trusted domain.

Register File as Reusable Trusted Storage for Critical Variables. Chapter 6

presents the first scheme that systematically uses existing CPU registers to ensure

the integrity of critical control and data variables. CPU registers are normally used

by the compiler for performance improvement. But this chapter demonstrates that

the register file can also serve as secure storage with the help of cryptography.

1. Introduction 7

This chapter has two main contributions. The first is a security-oriented register

allocation method that assigns CPU registers to program variables that are more

likely to be targeted in memory, so that those variables can be protected from

corruption while in use. The second contribution is a novel use of cryptographic

primitives (i.e., MAC) to ensure the integrity of the register file images spilled to

the memory as data at rest across function calls.

Malware Analysis Framework Based on Runtime Features. Chapter 7

presents a broad empirical comparison of system-level runtime features that can

be used to identify malicious executions. Differently from other chapters, this

chapter does not propose a defence against malicious executions of legitimate but

vulnerable software instances. Instead, it explores the execution properties of

software applications that are malicious by design and how they interact with

the host system. These runtime features can be especially meaningful to address

malware instances that do not allow any signature-based or static analysis methods,

i.e., polymorphic and metamorphic malware. This chapter assesses the value of

different feature models that can be extracted from API call traces, for machine-

learning classifiers. Also, it adapts a new feature selection technique, called

normalised angular distance (NAD), to a multiclass problem, in order to prioritise

a feature’s distinctiveness over its popularity.

1.3 Structure

The rest of the thesis is structured as follows: Chapter 2 provides the background

necessary to follow the rest of the thesis, such as possible attack scenarios targeting

program memory and a typical attestation protocol. Chapter 3 presents a review

of relevant attestation, memory protection, and attack mitigation techniques.

Following the related work, the thesis presents four main chapters on the topic.

Chapter 4 delivers a runtime attestation scheme that relies on a conceptual hardware

security module. Chapter 5 introduces a new method to identify critical variables

without programmer annotation, and suggests a targeted lightweight software-based

8 1.4. List of Publications

approach against data-oriented attacks. Chapter 6 presents a software-based method

that uses the register file as secure storage for protection of critical program data.

Before concluding, Chapter 7 presents a malware analysis framework that combines

the use of system-level runtime interactions with machine learning methods to

identify the executions of software program that are malicious by design. Lastly,

Chapter 8 summarises our contributions, discusses some of the lessons we have

learned, and considers how our work may project onto the wider community.

1.4 List of Publications

The content of Chapters 5, 7, and a different attestation scheme but using a similar

setting given in Chapter 4 have been presented and published at peer-reviewed

conferences. The actual design presented in Chapter 4 is accepted for publication in

a peer-reviewed journal, while the content of Chapter 6 is currently under review:

• Geden, M., & Happa, J. (2018, October). Classification of Malware Families

Based on Runtime Behaviour. In the 10th International Symposium on

Cyberspace Safety and Security (pp. 33-48). Springer, Cham.(Chapter 7)

• Geden, M., & Rasmussen, K. (2019, August). Hardware-assisted Remote

Runtime Attestation for Critical Embedded Systems. In 2019 17th International

Conference on Privacy, Security and Trust (PST). (Chapter 4)

• Geden, M., & Rasmussen, K. (2020, December). TRUVIN: Lightweight

Detection of Data-Oriented Attacks Through Trusted Value Integrity. In

2020 IEEE 19th International Conference on Trust, Security and Privacy in

Computing and Communications (TrustCom). (Chapter 5)

• Geden, M., & Rasmussen, K. (Accepted for publication). Hardware-assisted

Remote Attestation Design For Critical Embedded Systems. IET Information

Security. (Chapter 4)

• Geden, M., & Rasmussen, K. (Under review). RegGuard: Leveraging CPU

Registers For Mitigation of Control- and Data-Oriented Attacks. (Chapter 6)

“The only truly secure system is one that is powered
off, cast in a block of concrete and sealed in a lead-
lined room with armed guards.”

— Gene Spafford

2
Background

This chapter provides the background knowledge required to follow the rest of the

thesis. The chapter begins by giving an overview of a typical remote attestation

protocol in Section 2.1, which is necessary for Chapter 4 to deliver our attestation

scheme. Next, Section 2.2 describes possible memory corruption scenarios that can

compromise the software runtime in different ways. The attack classes covered in

this section are relevant throughout the thesis. Lastly, Section 2.3 explains the basics

of register allocations that are fundamental to the proposal presented in Chapter 6.

2.1 Remote Attestation

Remote attestation is a challenge-response protocol that typically consists of two

parties: verifier and prover. It allows verifier, as a trusted party, to challenge

a potentially infected device, prover, to provide evidence that the device is in a

good state, so the verifier can reason about the prover’s condition. A good state

can mean having the right code in the memory, and also executing that code in

the right way, depending on the scope of attestation. Therefore, the literature

makes a distinction between static and runtime (dynamic) attestation. The former

concerns with only static memory regions such as code segments, whereas the

latter group reports on dynamic memory regions that keep changing at runtime

9

10 2.1. Remote Attestation

response

Verifier

(Trusted Party)

Prover

(Potentially Infected Device)

expected contents
attestable memory

contents

challenge
generate a nonce

measurementverify response

Figure 2.1: An overview of a remote attestation scheme.

(e.g., stack). Furthermore, remote attestation paradigms can vary from a pure

software-based approach to a hardware-based approach that relies on tamper-resistant

components such as trusted platform module (TPM). In between, hybrid techniques

take advantage of more common hardware features, such as read only memory

(ROM) and memory protection unit (MPU). Chapter 3 presents a detailed review

of the schemes from each group.

Remote attestation

A challenge-response protocol between two parties, a remote trusted party, called
verifier, requires a potentially infected device, called prover, to provide integrity
evidence that the device is in a healthy state.

2.1.1 Protocol Phases

A typical remote attestation protocol consists of three main phases as depicted in Fig-

ure 2.1:

Challenge. The verifier first generates a random nonce value and sends it to

the prover as a trigger for the attestation process. The nonce is necessary to

guarantee the freshness and unpredictability of the attestation response. Some

runtime attestation schemes [6, 15] also suggest that the verifier provides the

program input to the prover at this stage.

Measurement. Upon receiving the nonce, the prover prepares a measurement to

report on its state. The measurement is typically a cryptographic checksum of

2. Background 11

attestable memory regions. Depending on the type of attestation, the measurement

process can be specific to the given nonce regardless of memory contents. For

example, software-based methods traverse memory addresses in a pseudorandom

order defined by the nonce. Otherwise, hardware-based methods, which consider

a key on the prover, sign the measurement with the nonce and respond back

to the verifier with the signature, which can be generated by a MAC or digital

signature scheme. In a conventional static attestation scheme, the measurement

process on the prover is normally triggered by the nonce. However, runtime

attestation proposals generally require continuous measurement (monitoring) to

provide evidence on past program states.

Verification. When the response is received, the verifier should first be satisfied with

the freshness, authenticity, and integrity of the response. Those guarantees are easily

obtained by a hardware-based or hybrid system that can store a secret key on the

prover to sign the measurement and nonce. In the case of a software-based approach

without a key, the verifier expects to receive the response—which should be generated

from a pseudorandom memory traversal—within an expected time frame following

the request. Otherwise, a delayed response would be considered as suspicious

(e.g., as if the program were trying to hide or reverse malicious states in the memory).

Suppose that the verifier is satisfied with the response’s timing, authenticity, and

integrity properties. In that case, the verifier reasons about the prover’s state by

checking whether the provided measurements match the expected ones.

Possible threats to a remote attestation scheme can be examined in two groups.

The first group consists of attack scenarios that compromise the prover’s state,

mainly memory. The second is the effort to prevent the verifier from being notified

about those compromised states. Regarding the former, we can expect software

attacks exploiting memory bugs to be the most common attack vector, considering

less common physical or microarchitectural attacks. We highlight that memory

attacks have also been studied outside of the attestation context. Section 2.2 visits

those attack classes and well-known mitigation techniques in the literature, which

12 2.1. Remote Attestation

Chapters 5 and 6 also aim to contribute. Regardless of how the prover’s memory

can be attacked, Section 2.1.2 reviews the scenarios targeting the protocol itself,

to prevent the verifier from receiving genuine reports.

2.1.2 Protocol Attacks

Considering the options [16, 17] that might circumvent the protocol’s premises,

a replay attack occurs when the adversary responds to a new attestation request

using a valid response eavesdropped previously. Such an attack requires weaknesses

in the challenge (nonce function), such as inadequate randomness or small value

space, to break the freshness promise.

Forgery happens if the adversary can produce a valid attestation response that

does not indicate genuine measurements of the prover’s state. A successful forgery

attack requires either a flaw in the underlying cryptography, such as the lack of

collision resistance, or a stolen key from the prover.

Precomputation can be defined as the completion of the required measurements

in the prover’s state prior to the attestation request. As it can form a basis for a

subsequent attack with the time gained, it can be combined with replay attacks

for an exhaustive search of possible nonce values.

Memory copy or hiding attacks exploit the free space in the prover’s memory to

handle malicious and original code together [18]. When an attestation request is

made, the adversary on the prover can still perform its checksum measurements

on the expected code contents, despite the prior execution of malicious code. In

case there is not sufficient space to host both original and malicious code, a data

substitution [19] approach can be employed that keeps only the record of changes

and reverts them whenever a measurement is required. For a scenario where empty

addresses are filled with noise to harden memory copy attacks, compression [20]

methods can provide extra space to host malicious and legitimate content together.

Thus, valid measurements can be provided via on-the-fly decompression.

2. Background 13

Memory copy/hiding

An attack scenario to bypass static remote attestation protocols that lack continuous
monitoring. The attacker leverages free memory to store a backup of the original
code while running malicious code. This is to provide the checksum of legitimate
code when requested.

Proxy attacks use a more resourceful device to hold the copy of the original

memory contents. The compromised prover can forward the request to the proxy

node to produce a valid measurement and impersonate the prover node.

2.2 Memory Attacks

Popular low-level languages such as C and C++ provide flexible and powerful

memory management features for the development of performance-critical software.

However, those features come at a cost, and software systems developed using

these languages inevitably host many bugs as their complexity and lines of code

(LOCs) increase. These bugs might lead to memory corruptions that result in

alteration of the program code or its execution. This section explains the types

of common memory bugs and relevant attack classes.

Memory bugs can be grouped into two: spatial and temporal, whose correspond-

ing memory safety solutions aim to eliminate those bugs in the first place as the

root cause of attacks. The most popular example of spatial bugs beyond dispute is

buffer overflow bugs, which can occur in both stack and heap regions. These bugs

allow data to be written on a memory block (e.g., array) more than it can host, and

result in corruption of adjacent memory addresses. These addresses can contain

both primitive and address variables (pointers) whose alteration can constitute a

meaningful attack. Buffer overflows are typically seen as relative-address attacks

due to the linearity and continuity of corrupted addresses. However, a pointer can

also go out of bounds in non-linear ways, such as format string bugs or modifying a

data pointer first to obtain arbitrary access capability as an absolute-address attack.

14 2.2. Memory Attacks

Buffer overflow

A software bug whose exploit violates spatial memory safety by allowing one to write
data to a buffer more than it can host, which inevitably results in the corruption of
adjacent memory addresses.

On the other hand, use-after-free and double-free bugs violate temporal memory

safety, which is to ensure that every memory access refers to an object that has

not been deallocated. These bugs can be as powerful as spatial safety bugs and

can enable an attacker to write an arbitrary value to an arbitrary location. Use-

after-free errors occur when a program continues to use a (dangling) pointer after

the corresponding object has been freed. Double-free errors occur when free() is

called more than once. Both spatial and temporal bugs can result in modification

of memory contents in unanticipated ways. Regardless of the type of bug exploited,

memory corruptions can trigger different attack scenarios [21]. An attacker able

to modify memory contents might have different options to express his attack. He

can modify the original code or inject new code as data. If these are not possible,

alternatively, the attacker can play with the code pointers to change the way the

genuine code is executed. Or he can corrupt condition variables to manipulate the

control-flow without deviating from the expected control-flow graph. Figure 2.2

depicts a brief overview of these options; the following sections explain those attack

classes and well-known mitigations in detail.

2.2.1 Code Attacks

Memory contents are either static or dynamic depending on whether they change

or not at runtime. Program code and text sections hosting constant values and

strings are typically static, whereas dynamic regions such as stack and heap contain

data that keep changing at runtime.

Code-corruption attacks occur when the program code does not have integrity

assurance, for instance, ROM or page-based access controls (i.e., write-xor-execute

(W⊕X)). These attacks modify the original code or replace it with a malicious one.

2. Background 15

code pointers

dynamic memory

static memory

program code

condition variables

loop counters

Program Memory Control-Flow Graph

code as data

modified/malicious code

injected code block

original code block

control attack

data attack

(i.e. control-flow bending)

legitimate control-flow

transfer

Figure 2.2: Illustration of different attack options on the program CFG.

For example, a critical jump-if-equal (je) instruction can be altered by a jump-if-not-

equal (jne) opcode to execute a privileged branch. Apart from small touches, the

original software can be substituted with arbitrary (malicious) code, which static

attestation schemes and anti-virus/malware scanning techniques aim to address.

Code-corruption attack

A memory corruption scenario that modifies the original program code in memory
to express the attack, such as changing jump-if-equal instruction with the jump-if-
not-equal opcode.

Code-injection attacks inject malicious code into dynamic memory regions,

i.e., data addresses, rather than modifying existing code addresses. Such an attack

first requires modifying a code pointer that will point out the injected code. For

instance, in a setting without canary protection [22], a simple stack buffer overflow

can place a malicious payload on the stack and adjust the awaiting return address

16 2.2. Memory Attacks

accordingly to make the program jump to the injected payload when the current

function returns. DEP or (W⊕X) mechanisms in supported architectures can

prevent code-injection attacks by prohibiting any execution from data addresses

(pages). Unfortunately, a typical static attestation method cannot reveal these

attacks, as data addresses are not included in the checksum measurement.

Code-injection attack

A scenario in which the attacker first injects malicious code into the memory as
data, and then takes over a code pointer to start executing it.

Both code-corruption and -injection attacks are mostly mitigated in today’s

high-end systems, thanks to the separation of code (RX) and data (RW) permissions

through memory pages. However, self-modifying code cases such as just-in-time

(JIT) compiled code and got/plt (global offset/procedure linkage table) sections

with lazy binding to dynamic libraries can demand memory pages with both write

and execute permissions (RWX). Those cases can be avoided using appropriate

countermeasures, such as letting the JIT compiler toggle page permissions (W/X)

and disabling lazy binding (-relro) features. On the other hand, embedded systems

that run bare metal or real-time operating system (RTOS) on physical addresses

generally lack these page-based permission checks, although many can still ensure

code integrity through ROM features.

W⊕X

A protection mechanism that prevents a memory page from being executable and
writable at the same time to counter code-corruption and -injection attacks. It
requires the collaboration of both CPU and OS.

2.2.2 Control-Oriented Attacks

Control-oriented attacks, namely code-reuse attacks, evolved to overcome W⊕X

protections. Unlike code-corruption and -injection scenarios, those attacks utilise

existing code segments to express a malicious computation by carefully crafting

control (code pointers) and data variables on dynamic memory. We note that

code-injection attacks also need to hijack at least one code pointer as a control-flow

2. Background 17

return address

data

return address

return address

return address

data

return address

inst ...ret

inst ...ret

inst ...ret

inst ...ret

inst ...ret

...

...

...

...

St ack ROP Gadget s

(a) ROP

target address

data

target address

target address

target address

...

...

target address

inst ...jmp

inst ...jmp

inst ...jmp

inst ...jmp

inst ...jmp

...

...

...

...

Di spat ch Table J OP Gadget s

Di spat cher

(b) JOP

Figure 2.3: Return- (ROP) and jump-oriented programming (JOP) attacks [26].

attack. But those differentiate from code-reuse scenarios that can systemically craft

code pointers to express the attack using only existing code segments in the memory,

which we describe as control-oriented attacks. Early variants of code-reuse attacks

emerged as return-to-libc attacks [23], where the attacker calls a libc function with

custom arguments (e.g., system() function used to execute shell commands). Due

to the changes in calling conventions of the x64 architecture that put function

arguments primarily in registers, return-to-libc attacks became less prevalent [24].

The attackers then started to use those libraries as the provider of the required code

chunks (i.e., attack gadgets) until the release of address space layout randomisation

(ASLR) [25] techniques that randomly arrange the base addresses of the libraries.

Control-oriented attack

A scenario that primarily alters code pointers, such as a return address (ROP) or
indirect jump target (JOP), to express the attack using the genuine code segments,
without being caught by W⊕X solutions.

First, Shacham et al. [1] coined the term return-oriented programming (ROP)

to describe the systematic use of these code fragments for Turing-complete attacks.

Shacham’s approach is based on ROP gadgets, which are the code fragments ending

with ret instructions. A ROP attack is typically carried out by crafting the stack as

a chain of return addresses to these gadgets, as depicted in Figure 2.3a. Similar

work by Buchanan et al. [27] has put forward the generalisability of these attacks

18 2.2. Memory Attacks

for RISC architectures. Although ASLR [25] has provided a probabilistic solution

to return-to-libc attacks by making them harder to perform, ROP attacks have

persisted in different ways as long as attackers could collect and locate the necessary

gadgets from the program code or libraries. As a response to protections that cover

only return addresses, e.g., shadow stacks, jump-oriented programming (JOP) [26,

28] exploits indirect jumps whose target addresses can be given from writable data

addresses. First, Checkoway et al. [28] proposed these attacks. Their approach looks

for a suitable update-load-branch instruction sequence that operates with the same

effect as a return instruction on the stack. They use this type of instruction sequence

as a trampoline to govern control transfers between JOP gadgets, which end with a

jump instruction indicating which target address should be the trampoline again.

Similarly, Bletsch et al. [26] have exploited indirect jumps through a designated

gadget dispatcher and a dispatch table that defines the gadget addresses to be

jumped without any requirement of the stack, as shown in Figure 2.3b. Both ROP

and JOP attacks can be addressed by control-flow integrity (CFI) [2] policies that

validate backward-edge (i.e., return) and forward-edge (i.e., indirect jump/call)

targets according to the static control-flow graph (CFG) model. Alternatively, code-

pointer integrity (CPI) [3] solutions that ensure the integrity of code pointers, rather

than target validation, can also provide a practical mitigation against these attacks.

On the other hand, control-flow attestation (CFA) [5, 6] schemes that count on path

traces to reveal control-oriented attacks are also available in remote attestation

literature. Chapter 3 discusses these and relevant protections in more detail.

Control-flow integrity (CFI)

A mitigation technique for control (code-reuse) attacks. CFI enforces branching
targets to comply with the precomputed control-flow graph (CFG).

2.2.3 Data-Oriented Attacks

Data-oriented attacks, also called non-control data attacks, are the most challenging

memory attacks today. Because they do not disturb any code or code pointers,

these attacks stay under the radar of code or control-flow protections. A typical

2. Background 19

1st i terat ion

2nd i terat ion

4th i terat ion

nth i terat ion

L oop I t er at i ons DOP Gadget s

Di spat cher
(Memory bug in a loop with

a selector)

3rd i terat ion

...

gadget-1 gadget-2 gadget-3

gadget-4 gadget-5

gadget-1 gadget-2 gadget-3

gadget-4 gadget-5

...

Figure 2.4: Data-oriented programming (DOP) attacks. Dotted gadgets represent
instructions that do not have any impact on the aimed computation.

scenario would be the execution of a privileged branch by altering the value of a

critical condition variable (e.g., admin flag). Chen et al. [29] first drew attention

to these attacks by demonstrating that many real-world applications such as FTP,

SSH, Telnet, and HTTP servers could be compromised under strong control-flow

protection. Carlini et al. [30] split these attacks into two as data-only and control-flow

bending scenarios. The former represents an attack scenario whose path (branch)

trace is distinguishable from a legitimate execution, such as modifying an argument

of an exec function. The latter control-flow bending scenarios describe attacks with

path traces that comply with the control-flow graph (CFG) but cannot belong to a

legitimate execution, e.g., an execution trace following an infeasible path.

Data-oriented attack

A malicious computation that is expressed via modification of (non-control) data
variables, without touching any code pointers, to evade control-flow protections.

Later, Hu et al. [31] introduced data-oriented programming (DOP) concept

and proved that these attacks can be Turing-complete in the case of a suitable

vulnerability. DOP allows the attacker to execute arbitrary code by altering only

(non-control) data variables, without touching any control data or a deviation

from the control-flow graph (CFG). To perform a successful DOP attack, the

program should contain a memory bug that can compromise a loop (the dispatcher)

20 2.3. Register Allocations

with the necessary branches and instructions (gadgets), as depicted in Figure 2.4.

Ispoglou et al. [32] took this a step further by automating the discovery of such a

vulnerability via block-oriented programming compiler (BOPC). This tool evaluates

the feasibility of arbitrary code execution for a vulnerable program under strong

control-flow protection. Practical mitigation of data-oriented attacks is challenging

as it requires memory safety or its close approximations, such as data-flow integrity

(DFI) [4]. However, these solutions generally introduce high performance overheads

due to the inspection of almost every memory access. Alternative software-based

solutions (e.g., WIT [33]) generally loosen the approximation precision, to reduce

performance overheads. On the other hand, runtime attestation schemes that aim

to reveal data-oriented attacks should provide information on the memory traces

to the verifier for data-flow attestation (DFA) [7].

Data-flow integrity (DFI)

A security mechanism to mitigate control and (non-control) data attacks together.
Similar to CFI, it enforces each memory write on an object to comply with the
precomputed reaching definitions analysis, namely data-flow graph (DFG).

Information leakage scenarios that reveal unauthorised memory contents are

also described by some studies as a (non-control) data attack. However, this thesis

does not consider them as a data-oriented attack unless they first corrupt a data

pointer. This is to distinguish them from pure confidentiality issues caused by

a logical flaw in the program. We remind the reader that information leakage

bugs can form the basis for integrated attacks [34] that circumvent other defence

mechanisms such as ASLR [25] or CPI [3].

2.3 Register Allocations

This section explains how compilers use CPU registers to host program variables

to improve runtime performance, as this is relevant to the scheme proposed in

Chapter 6. Given that accessing the CPU registers is much faster than accessing

the memory, the compiler usually prefers to map all program variables to the

registers. However, there is no practical constraint on the number of variables that

2. Background 21

can be defined in a program, despite the limited number of registers (i.e., usually

no more than 32 general-purpose (GPR) and 32 floating-point (FPR) registers

in modern architectures). Therefore, a register allocation scheme must decide

how to share out registers to program variables. Thankfully, not all variables

are concurrently live throughout program execution (i.e., code scope describing

a variable definition to its final use). Thus, we can use registers more efficiently

by assigning the same registers to different variables (i.e., live ranges) at different

times. If the number of live variables is greater than the available registers at any

point, this is called high register pressure. The compiler handles those situations

by spilling some register values [35] to the memory or splitting their live ranges

to create shorter scopes that could better fit both registers and memory [36, 37].

Allocation schemes usually decide which variable to be spilled using spill costs

that estimate the candidate’s number of uses and definitions at runtime, which

is weighted proportionally to its loop nesting depth [38]. This aims to maximise

the performance gain that the registers can provide.

Spill costs

A compile-time estimate of the performance burden of leaving a register-candidate
variable in the memory.

2.3.1 Allocation Level

Register allocations can happen at a basic block, function, or program level. If the

basic block is chosen as the optimisation boundary, such an allocation scheme is

called local register allocation. Since local allocations [39] have to save and restore

registers at basic block sites, they are not considered as optimal as global allocations

happening over the whole function [40]. On the other hand, interprocedural

(program-wide) allocations can only be meaningful for small programs with many

short procedures [41]. Therefore, global register allocations are generally used in

practice. Global allocators enable reusing the same register file repeatedly for each

function call. Depending on the calling convention in place, if a register is described

as a caller-saved register, its state is stored at the call site by the caller function.

22 2.3. Register Allocations

Otherwise, the function to be called is responsible for saving and restoring a callee-

saved register. These operations are mostly performed using simple push-pop

instructions as part of the callee’s prologue (save) and epilogue (restore) code.

Global register allocation

The most common register allocation strategy that shares out registers at the
function level. Global allocation allows reusing registers across function boundaries
as long as their states are preserved in the memory.

2.3.2 Allocation Techniques

Global schemes, which utilise registers at the function level, can adopt different

approaches to solve the allocation problem. Graph colouring [35, 42, 43] is the

most popular technique. It starts by building an interference graph, where the

nodes represent variables and the edges connect two simultaneously live variables.

The problem is formulated such that two adjacent (interfering) nodes (variables)

cannot be coloured with the same colour (register). Since the given problem is

NP-complete, heuristic methods are used to approximate the solution. For a node

whose degree is greater than the number of available colours (registers), meaning

register pressure, the compiler can evacuate some register values to the memory

using spill costs that estimate the performance loss based on usage of the variables.

The compiler can also iteratively transform the graph (code) in different ways for a

more optimal solution. For instance, it can split a live range of a variable, which

creates additional nodes that reduce the degree of a node. Or it can coalesce (merge)

some non-interfering nodes that represent variable-to-variable operations, the total

degree of which must still be less than the number of available colours (registers).

As an alternative to graph-colouring, linear scan [44] techniques aim for faster

compilation times. As the name implies, they generally maintain an active list

of variables that are live at the current point in the function, the intervals of

which are chronologically visited to perform register allocations. This allows

linear scan techniques to handle interferences without computing a graph. Those

techniques [45] can especially benefit from single static assignment (SSA) features

that reduce the time spent in data-flow analysis and liveness analysis, thanks

2. Background 23

to unique variables defined on each assignment. Since naive techniques do not

backtrack, they might result in less optimal allocations. However, proposals such

as second-chance binpacking [46] address this by utilising lifetime holes (e.g., a

sub-range where the value is not needed) of register values. This allows a spilled

value to be placed back on a register again (splitting).

24

“There is no wealth like knowledge, no poverty like
ignorance.”

— Ali ibn Abi Talib

3
Related Work

This chapter first presents a detailed survey of remote attestation literature using

a taxonomy that groups attestation studies based on the type of trust anchor,

attestation scope, and interaction patterns of the parties. Then, it provides a

comprehensive review of memory protections and mitigation options proposed

against control and data attacks, with inline discussions of how our proposals differ

from those. The chapter concludes with a brief review of malware studies using static

and dynamic techniques that are relevant to our framework presented in Chapter 7.

3.1 Attestation Survey

Remote attestation schemes can be categorised in different ways. The first way

is to look at the architectural features used. Software-based techniques do not

require any special hardware features, whereas hardware-based methods typically

leverage a tamper-resistant module as a root of trust, such as TPM, PUF, in

order to address more powerful adversaries. Many schemes that employ software

and hardware co-design for a more practical approach are considered as hybrid

methods. These methods do not require tamper-resistant hardware, although

they still rely on commonly available hardware primitives such as ROM. We also

make a distinction between static and dynamic attestation based on the memory

25

26 3.1. Attestation Survey

scope attested. The former group typically provides checksum measurements of

static memory regions, i.e., code segment, and attempts to prove that the device

is loaded with the right software program, not a malicious one. Rather, dynamic

attestation methods, namely runtime attestation, aim to convince the verifier that

the software is executing in the right way, by measuring or digesting the states

observed at runtime in dynamic memory regions such as stack. Lastly, remote

attestation studies can be grouped based on how the verifier and the prover node(s)

interact with each other, such as many-to-one and one-to-many as formulated by

Steiner et al. [17]. At the end of this section, Table 3.1 summarises the attestation

schemes that are reviewed based on these aspects.

3.1.1 Software-based Techniques

Spinellis et al. [47] have proposed the first software-based attestation that verifies the

integrity of program (code) memory on low-end systems, without using attestation

terminology. In this work, the software stakeholder, namely the verifier, asks

the client device, the prover, to calculate checksums of two overlapping memory

regions that cover the entire program memory together. Because the verifier sends

the last address of the first region and the beginning of the second region at the

time of the request, the prover would not be able to calculate a valid checksum

in advance. Furthermore, the prover reports the changes in the processor’s state

(e.g., clock cycles), so the verifier can reveal any efforts to hide the malware

(e.g., memory copy attacks).

Two similar schemes, SWATT [48] and Pioneer [19] attest program memory

via time-sensitive checksum measurements. These checksums are calculated via

cell-based pseudorandom (non-sequential) traversal of the prover’s memory. Because

a verifier-given nonce initiates the traversal, checksums cannot be calculated in

advance by the attacker. Therefore, memory copy attacks that relocate malicious

code to return a valid checksum should cause a noticeable delay in the response.

To prevent memory copy attacks, AbuHmed et al. [49] suggest filling empty

memory addresses with incompressible noise generated based on a seed value

3. Related Work 27

given by the verifier or the environment. The scheme proposes two block-based

traversal mechanisms using fixed [50] and dynamic block sizes for the checksum of

the memory contents, including noise. The fixed block size is determined by the

verifier, while dynamic sizes are defined by the seed value provided. The authors

suggest further adjustments depending on whether or not the network has synced

time information. This work is vulnerable to scenarios where the original code

is compressed to create usable space by the attacker.

In general, software-based attestation methods interpret any noticeable delay

in the response as efforts to hide malicious code, since they rely on checksum

measurements that cannot be performed in advance (i.e., prior to the verifier’s

request). Although relying on timing can eliminate the need for authentication of the

response (i.e., attestation keys) with many practical benefits, software-based schemes

make strong assumptions about the time-optimality of checksum calculations and

exclude scenarios such as CPU overclocking [20] or network-related delays.

3.1.2 Hardware-based Techniques

Despite their benefits, software-based solutions are very restrictive in terms of

adversary capabilities. Therefore, hardware-based methods, such as trusted plat-

form module (TPM), physically unclonable functions (PUF), use tamper-resistant

hardware modules to address stronger adversaries.

TPM is a coprocessor that serves as a strong root of trust on the prover device.

In addition to the measurement functionality, TPM provides secure storage to

host the necessary keys for attestation. TPM can help to verify the integrity of

the software stack loaded on the device using extended measurements (i.e., PCRs)

performed during the booting process, which transfers the trust from one software

component to the next by creating a chain of trust. Sailer et al. [51] has used TPM

for the attestation of complex software stacks via integrity measurement architecture

(IMA) on Linux systems. This feature makes remote attestation possible for the

whole software stack, from the BIOS to the application level. Trusted Computing

Group (TCG) [52] has standardised privacy-enhanced remote attestation for TPMs

28 3.1. Attestation Survey

in v1.1 [53] using certificate authority (privacy CA). However, this later evolved

to direct anonymous attestation (DAA) [54] in version 1.2 [54] as CAs need to be

available and involved in every transaction. In contrast, DAA initially requires a

one-time registration phase, where the TPM obtains a key from a DAA issuer to sign

the following attestation keys (AIK) generated to preserve the privacy of the prover.

On the other hand, extensions to TPMs such as Intel TXT [55], Flicker [56]

promise protected executions in addition to the measured launch of the software

stack. Those extensions provide a dynamic root of trust for measurements, thanks

to the isolation of security-sensitive processes at runtime. More recent on-chip

trusted execution environment (TEE) solutions, such as Intel SGX [57] (enclaves)

and ARM TrustZone [58] (secure world), can partition a software execution into

two and can guarantee the correct execution of an attestation protocol within the

trusted part. For instance, Intel SGX can protect both the confidentiality and

integrity of code and data within special memory regions, called enclaves, against

even privileged attackers with a compromised operating system or hypervisor.

Another hardware component used in attestation schemes is physically un-

clonable functions (PUF). For example, PUFatt [59] binds the manufacturing

characteristics of the prover device to the attestation process to avoid impersonation

attacks. This work assumes that the verifier can emulate PUFs with additional

error correction proposed for robustness. In PUFatt, the verifier makes a request

by sending a PUF and an attestation challenge. Then, the prover responds with

a measurement generated from both challenges and the memory content, used

as input to device-specific PUF—as a proof of the response’s authenticity and

software attestation algorithm.

3.1.3 Hybrid Solutions

Asking for a separate tamper-resistant module might be impractical and costly in

some settings such as IoT and wireless sensor networks. Hence, hybrid solutions

aim to take advantage of both hardware- and software-based approaches by utilising

more common hardware features such as ROM, MPU, or FPGA.

3. Related Work 29

Different lightweight architectures [60–62] have been proposed for embedded

systems to ensure the trusted execution of attestation protocols. A popular scheme,

SMART [60] suggests a solution for microcontroller units (MCU). SMART relies on

read only memory (ROM) to store the key and the attestation code with additional

access controls on the data bus through a simple memory protection unit (MPU).

ROM ensures the integrity of the attestation code and keys. Given MPU monitors

the program counter and allows only the attestation code to access the key. The

authors have performed both a static and a dynamic analysis of the attestation code,

considered part of TCB, to ensure that the code does not contain any memory bugs

or leak the key accidentally. TrustLite [61] offers a security architecture for isolating

critical tasks (e.g., attestation) in resource-constrained embedded systems. TrustLite

guarantees both the confidentiality and integrity of the code and the data located in

structures called trustlets. Thanks to the Execution-Aware Memory Protection Unit

(EA-MPU) that can be programmed in software, TrustLite provides flexible memory

allocations and allows updating the attestation code and the keys. Native TrustLite

does not support remote attestation and allows only for local attestation. However,

a similar architecture TyTAN [62] assigns a platform key, access to which is also

controlled by EA-MPU. Thus, TyTAN can achieve both local and remote attestation

using the designated root of trust for measurement (RTM) task. This task calculates

a hash of the binary code, where remote verification uses a MAC with a key.

Francillon et al. [63] have formulated the requirements for a secure attestation

process and formed the basis for the evaluation of many studies. Regarding the

attestation key, the authors define exclusive access of the attestation code to the

key with an assurance of no leakage afterwards. For the attestation code, the

study describes three properties: immutability, uninterruptibility (atomicity of its

execution), and controlled invocation (as an enforcement of a legitimate entry point).

In the extended version of the paper [64], the authors presented a security analysis of

SMART [60] showing vulnerabilities found in the scheme based on these properties.

A more recent work VRASED [65] presents a formally verified hybrid attestation

architecture. VRASED suggests extending MCUs with an on-chip hardware module

30 3.1. Attestation Survey

that extracts information from micro controller unit (MCU), similar to what our

system bus integration can obtain in Chapter 4. The proposed hardware module

takes seven inputs such as the program counter (PC), memory addresses read/written

by the CPU and the direct memory access (DMA) controller, and interrupt signals.

The only output it can send to the MCU core is a reset signal. Similar to

SMART, VRASED stores the attestation code and the key on ROM. In addition,

VRASED formally verifies security requirements—which are mostly formulated

by Francillon et al.’s work [64]—are satisfied for a sound remote attestation, with

additional support for DMA. Nunes et al. have proposed further attestation schemes

that are built on VRASED. For example, PURE [66] provides provable software

update, memory erasure, and remote system-wide reset features. APEX [67] includes

a one-bit execution flag with the attestation response in order to prove that the

software in question is successfully executed without interruption and its output

is unchanged. In order to address TOCTOU attack scenarios that can occur

between two attestation requests, RATA [68] logs the latest modification time of

the attestable (static) memory regions in a fixed memory address and includes the

content of this address in the attestation measurement.

3.1.4 Runtime Attestation

In contrast to static code regions, a plain checksum of dynamic memory regions

(e.g., stack) would not deliver much value to the verifier for two reasons: First,

the verifier cannot reason about such a measurement without access to the same

(external) program input with the same hardware and software settings. This is

because each runtime moment or the corresponding state in the dynamic memory

would be dependent on the program input given by external agents, such as

environment or the user. This would make the verification problem undecidable

from the verifier’s perspective. Second, even if all external bits are excluded from

the checksum calculation, the number of valid measurements that the verifier must

discover would be still unmanageable, due to the combinatorial explosion in the

number of states that remaining bits can constitute. The checksum returned would

3. Related Work 31

thus be inconclusive. Unfortunately, there are countless attack scenarios that

can live only in those dynamic regions, as previously given in Chapter 2. For

instance, control-oriented attacks (e.g., ROP) in general can achieve malicious

execution using the attack code.

Early runtime attestation work DynIMA [69] aims to address those attacks. This

work extends the TPM-based IMA [51] with a dynamic taint tracking mechanism.

It propagates the taint of untrusted inputs and alerts if tainted data reach a return

address or function pointer. DynIMA relies on binary instrumentation and does

not require the source code. A different approach, ReDAS [70] requires specific

constraints to be satisfied in dynamic memory regions. It defines two classes of

properties to judge the runtime integrity of a program: structural integrity and

global data integrity. Structural integrity represents the fulfilment of the structural

constraints of the binary extracted via static analysis. For instance, memory chunks

of the heap should be adjacent because of malloc, or the return addresses are

required to point to an instruction following the call instruction. On the other hand,

global data integrity checks data invariants. These can be either variable values

or relations that must hold during software execution, for example, a constant

variable whose value cannot be changed or equality invariant of a path that forces

two variables to carry the same value. The authors demonstrate the success of their

scheme by testing it with nine real-world applications against known vulnerabilities

such as stack overflow, heap overflow, and format string exploits.

Control-Flow Attestation. More recent studies have suggested control-flow

attestation (CFA) to disclose runtime attacks that alter the control flow of the

program. C-FLAT [5] and LO-FAT [6] are two pioneering schemes that implement

CFA for embedded devices. On the provider side, both schemes digest path (control-

flow) transitions in real time into a single cumulative hash measurement, which is

later sent to the verifier. As shown in Figure 3.1, the cumulative hash function H

takes the jumped node (entry address of CFG block) Ni and the preceding hash

value Hpred as the input, i.e., Hi = Hash(Hpred, Ni). This hash value represents the

32 3.1. Attestation Survey

It is clearly infeasible to record and transmit every executed in-
struction, since that would: (1) result in a very long attestation
response which Prv would have to store, and (2) require Ver to
walk through every single instruction. The same applies to another
intuitive approach that would record and transmit source and tar-
get addresses of every executed branch, since such instructions fre-
quently occur during program execution. To keep the attestation
response short and allow fast verification, we propose a cumulative
hash-based control-flow attestation scheme that builds a hash chain
of executed control-flow transitions.

4.1 C-FLAT: High-Level Description
The main idea is to extend static (hash-based) attestation of bi-
nary files to dynamic (runtime) control-flow paths. Figure 3 illus-
trates this idea based on a simple control-flow graph (CFG) already
shown in Section 2. Each CFG node contains a set of assembler
instructions, and each edge represents a node transition by means
of a branch instruction. Depending on the desired granularity, the
nodes can be (1) entire functions, (2) basic blocks (BBLs) ending
in an indirect branch, or (3) BBLs ending in any branch instruction,
e.g., direct or indirect jump, call and return. In this paper, we con-
sider the last case allowing Ver to precisely validate the executed
control-flow path of an application on Prv’s device.

N1

N2 N3

N4

N5 N6

H1=H(0,N1) H1=H(0,N1)

H3=H(H1,N3)H2=H(H1,N2)

H5=H(H2,N5) H6=H(H3,N6)

Auth =H4= H(H6,N4) OR H(H5,N4)

unprivileged path privileged path

Figure 3: C-FLAT control-flow attestation

C-FLAT depends on every executed branch instruction. It em-
ploys a measurement function H which takes as input: (1) node
ID of the source node Ni, and (2) previous measurement: Hi =
H(Hprev, Ni). At the beginning, when no previous measurement
is available, we start with Hprev = 0. As a result, there is a cumu-
lative measurement for each possible program path, e.g., the priv-
ileged path outputs H5, while the unprivileged path leads to H6

in Figure 3. Any unexpected measurement indicates to Ver that
an illegal path has been executed. Furthermore, based on the re-
ported measurement, Ver can easily determine whether the privi-
leged path has been executed.

Due to its speed and simplicity, we chose the cryptographic hash
function BLAKE-24 as H for cumulative hashing that yields Auth.
Hash-based measurements are already deployed in static attestation
and allow mapping of an input to a unique5 fixed-size result. To
generate the final attestation report r, Prv can use a public key
signature or a MAC over Ver’s challenge c and Auth. (Without
loss of generality, we use signatures in the rest of the paper.) In ei-
ther case, the secret (private) key is assumed to be protected within
the trust anchor.

Obviously, the number of valid measurements depends on the
complexity and size of the application module, particularly, the
4https://blake2.net
5With overwhelming probability.

number of indirect and conditional branches. Indirect branches
may target from 1 to n nodes, and conditional branches target 2
nodes in the CFG. Loops and recursive calls also lead to a high
number of valid measurements, depending on the number of loop
iterations, or recursive calls. In Section 4.2 we address this chal-
lenge using an approach for efficient loop and recursion handling,
allowing us to limit the number of possible (legal) measurements.

4.2 Challenges
There are several challenges in instantiating C-FLAT. First, naïvely
applying it to arbitrary code containing loops can lead to a combi-
natorial explosion of legal Auth values, since each execution in-
volving a distinct number of loop iterations would yield a different
Auth value. Furthermore, a static CFG does not capture call-return
matching, e.g., a subroutine might return to various call locations.
This would necessitate allowing too many possible Auth values
that could be exploited by Adv [16].
Loops. Figure 4 depicts a CFG and its corresponding pseudo-code
for a classic while loop, which contains an if-else statement. Note
that conditional statements (lines 2 and 3) introduce nodes (N2,
N3) with multiple outgoing edges. Hence, based on a condition
check, they follow one of these edges. The main challenge is that
the cumulative hash computed at N2 is different at each loop it-
eration, since it subsumes the cumulative hash produced after the
previous iteration. For an application that contains multiple (and
even nested) loops, the number of legal Auth values grows expo-
nentially, making control-flow attestation cumbersome.

N1

N2

N3

N4

H1=H(0,N1)

H2a=H(0,N2)

H3=H(H2a,N3)

N5

N6

H3=H(H2a,N3)

H5=H(H3,N5)H4=H(H3,N4)

N7

H6a=H(H4,N6)

H2b=H(H1,N2)

Auth = H7, <H1,{<H6a ,#H6a>

Figure 4: Loop Handling in C-FLAT

Our approach to tackling this problem is based on handling a
loop as a sub-program. We measure each loop execution separately
and merge its cumulative value with that of the previous execution,
at loop exit. Consider the example in Figure 4: first, we identify
the loop starting node by means of static analysis – N2. Second,
we initiate a new computation when the loop is entered, i.e., H2a =
H(0, N2). To avoid losing the previous value, we store H1.

Our example also has an if-else statement within the loop. It di-
verts control flow at N3 to either N4 or N5, depending on cond_2.
Consequently, each loop iteration can either output H6a (solid line)
or H6b (dashed line). Upon loop exit, it is also desirable to attest
the number of times a loop is executed. To do so, we track each

Figure 3.1: Cumulative hash calculation for control-flow attestation in C-FLAT [5].

path trace information sent to the prover. However, to make use of it, the verifier

must discover all possible hash measurements, namely the corresponding path traces

that can be produced from the control-flow graph (CFG). A measurement that is

missing within the set of the produced hashes (traces) therefore implies an a control

attack. In addition, those schemes claim that the provided hash value can disclose

control-flow bending attacks, for instance, corruption of a condition variable to

manipulate control-flow decisions. This attack can be described with an illegitimate

path trace that is still producible from CFG. However, to make such a distinction,

the verifier normally needs to have knowledge of legitimate program inputs, since

static analysis looking at infeasible path constraints can only reveal a small portion

of attack traces that comply with CFG. LO-FAT assumes that the verifier supplies

program input to the prover. But we remind the reader that in a setting where the

verifier has both the program and its input—which should typically be given by the

environment in which the prover operates——actual computation task assigned to

the prover could have been performed on the verifier as the trusted party. Another

drawback is that both schemes suffer from path explosion in the case of a relatively

complex CFG. Therefore, the verifier would not be able to complete the discovery

of all CFG paths. This would also make the provided hash value inconclusive in

3. Related Work 33

the eyes of the verifier. For the implementation, C-FLAT instruments the binary

to represent control-flow events in the cumulative hash. C-FLAT relies on ARM’s

TrustZone to secure the instrumentation (hashing) process, data and keys. In

contrast, LO-FAT proposes hardware extensions to the CPU for branch monitoring

and hash recording. Also, to ease the path explosion issue, LO-FAT avoids the

generation of a new hash for each loop iteration by separating this information.

A more recent scheme, Tiny-CFA [8] suggests secure logging of control flow

events using the proof-of-execution (PoX) feature of APEX [67] scheme built on

VRased architecture [65]. Normally, APEX binds the executed code to its output,

stored in a configurable data-memory range. The main idea of Tiny-CFA is to

instrument the code to produce append-only logs for path traces and make it

a part of the output also measured. The verifier can later check this to decide

whether it complies with CFG.

Data-Flow Attestation. Control-flow traces or their hash values can disclose

control-oriented attacks to the verifier. But they fail to reveal data-oriented attacks

generating traces that do not deviate from CFG. To address both control and data

attacks together, recent schemes promise data-flow attestation (DFA). For example,

LiteHAX [7] records every control-flow event in the form of encoded bitstream. In

parallel, it creates a hash measurement that is computed over all the executed load-

/store instructions, i.e., HDF = Hash(Load1/Store1, · · · , Loadn/Storen). While

the control flow traces provided as bitstream enable the verifier to reconstruct

the exact path executed and to attest control-flow, the hash of memory accesses

allows him to verify data-flow integrity. Path traces are provided as a bitstream,

so the verifier does not need to discover CFG paths this time. Instead, the verifier

performs a symbolic execution of the provided bitstream and checks whether the

memory accesses of the given execution produce the same hash value sent by the

prover. In case of a mismatch, the verifier concludes for a data-oriented attack.

Due to its online design, LiteHAX proposes communication overheads because

the prover needs to send bitstreams regularly as soon as they reach a certain size.

34 3.1. Attestation Survey

Another scheme, OAT [71] suggests attesting control and data flow together for

bare metal instances running on ARM TrustZone. OAT generates path traces only

for forward edges, while using fixed-length hash values for backward edges (return

addresses). This allows remote verifiers to quickly and deterministically reconstruct

the control flow without suffering from path explosions. In order to avoid large

memory traces, OAT locally verifies the integrity of the (non-control) data. For

practical overheads, similar to our proposal in Chapter 5, OAT instruments only a

small portion of program variables identified as critical, such as condition variables

and the variables annotated by the programmer. As an extension to Tiny-CFA [8],

DIALED [72] records program inputs using the append-only logging mechanism

provided by APEX [67]. The verifier can thus check the proven control flow and

the inputs logs to catch control- and data-oriented attacks together. DO-RA [15]

proposes an extended CFG model as a data-oriented control-flow graph (DO-CFG)

to generate hash measurements for DFA.

3.1.5 Interaction Pattern

In a network setting with multiple provers, such as WSN, remote attestation can

be performed differently for efficiency and robustness. For example, Yang et al. [50]

propose a distributed attestation mechanism in which the neighbour nodes of a

prover device execute the verification process collaboratively, i.e., many-to-one

interaction. This scheme first fills the empty memory addresses of the nodes in

the network with the noise generated by PRNG and node-specific seeds, i.e., the

only value needed to generate the same noise later. Later, the paper presents two

attestation designs: in the first one, the prover deletes the noise seed from its

memory after sharing the seed portions with the neighbours. During the attestation,

if more than half of the neighbours detect some abnormal behaviours, they elect a

cluster head to initiate seed recovery from neighbouring nodes. The cluster head

recovers the seed via Lagrange interpolation and verifies its correctness using the

seed’s hash. Next, it computes a memory checksum of the node via block-based

pseudorandom traversal and compares it with the prover’s response. To prevent the

3. Related Work 35

single point of failure in the case of a compromised cluster head, the authors suggest

relying on the majority votes of the neighbours. Instead of spreading the seed

among the neighbours recovered for a longer traversal, each neighbour is preloaded

with some challenge (seed) and the expected response of a shorter memory traversal

on the attested node. Although this design choice increases the communication

overhead in the network, it provides computationally cheaper traversals.

On the other hand, USAS [73] proposes an efficient software-based attestation

scheme for WSNs as an example with one-to-many interaction. USAS attest multiple

provers at once by creating dynamic attestation chains. The base station, acting

as the verifier, initialises the process by sending a traversal seed to a randomly

picked node (I-Node). The checksum of traversal becomes the next challenge

of the following nodes (F-Nodes), which constitute an attestation chain. Even

though I-Node does not send its attestation result back to the base station, the

base station can still detect the compromise, since only genuine I-Node responses

can produce valid F-node responses.

SEDA [75] targets large-scale swarm networks where nodes can only communicate

with their direct neighbours. The operator is responsible for the deployment and

initialisation of the network devices, whereas the verifier initiates the attestation

process. SEDA consists of two phases: During the first offline phase, the operator

initialises each device by signing the certificates of code checksums (cert{ci})

and their public keys (cert{pki}). When a new device wants to join the swarm

network, it runs the join protocol with its neighbours to learn their code certificates,

which will be necessary for later attestation stages. The online phase is triggered

when the verifier makes a request to an arbitrary node with a global session

identifier that is used to create a spanning tree for the session. The attestation

process is performed via a recursive protocol that returns the measurement of the

device and the attestation reports of its children nodes. SEDA is adapted to the

SMART [60] and TrustLite [61] architectures to demonstrate how the aggregated

approach reduces the cost of attesting the whole network compared to a one-

to-one approach. SEDA and subsequent schemes [77, 78] using spanning trees

36 3.2. Runtime Integrity

Table 3.1: Taxonomy of attestation schemes

Scheme Type Memory Scope Interaction

Spinellis et al. [47] software static code one-to-one
SWATT [48] software static code one-to-one
Pioneer [19] software static code one-to-one
AbuHmed et al. [49] software static code one-to-one
Yang et al. [50] software static code many-to-one
IMA [51] hardware static code one-to-one
DAA [74] hardware static code one-to-one
Flicker [56] hardware static code one-to-one
PUFatt [59] hardware static code one-to-one
SMART [60] hybrid static code one-to-one
VRased [65] hybrid static code one-to-one
ReDAS [70] hardware dynamic runtime one-to-one
DynIMA [69] hardware dynamic CFA one-to-one
C-FLAT [5] hardware dynamic CFA one-to-one
LO-FAT [6] hardware dynamic CFA one-to-one
Tiny-CFA [8] hybrid dynamic CFA one-to-one
LiteHAX [7] hardware dynamic DFA one-to-one
OAT [71] hardware dynamic DFA one-to-one
DIALED [72] hybrid dynamic DFA one-to-one
DO-RA [15] hardware dynamic DFA one-to-one
USAS [73] software static code one-to-many
SEDA [75] hybrid static code one-to-many
SALAD [76] hybrid static code one-to-many

as the communication pattern typically assume a static network whose topology

does not change. For a more dynamic swarm network, SALAD [76] employs

a broadcasting mechanism, where each node is responsible for propagating this

request to neighbouring nodes and asking for their integrity proofs. Then, collected

responses are broadcasted in the same way. The verifier can later ask any node

to receive the aggregated attestation response.

3.2 Runtime Integrity

Prior to runtime attestation work, the literature had many proposals to prevent

the exploitation of memory bugs or mitigate their consequences that compromise

the software runtime. We can group those studies based on the line of defence

where they address the problem. Suppose we ignore less common scenarios such as

3. Related Work 37

physical or micro-architectural attacks. In that case, the root cause of most runtime

integrity issues can be seen as the lack of memory safety features, which are missing

in the languages commonly used for system programming (e.g., C/C++).

3.2.1 Memory Safety

Hence, the first line of defence should attempt to add memory safety features

through runtime checks. Memory safety is typically two-fold: spatial safety and

temporal safety. Adding safety features can prevent the root cause of memory

exploits, regardless of how they could be used.

3.2.1.1 Spatial safety

Spatial memory safety is typically violated by a pointer that goes out of bounds.

The buffer overflow vulnerability is the most popular example. Bound-checking can

prevent those corruptions by ensuring that an address being accessed is within the

bounds of the variable structure intended. These methods can be grouped into three:

The first group is red-zone tripwires techniques such as Valgrind [79] and Purify [80].

Those methods use a few bits to track the validity state of each byte and place a red-

zone block of invalid memory between different objects to catch continuous overflows.

Since they instrument every memory instruction, their performance overheads are

generally too high for use in production. Instead, they are generally used as

sanitisers [81] for testing purposes, which can help detect some of the vulnerabilities.

The second group of bound-checking techniques [82–84] is object-based. Those

methods check pointer manipulations rather than dereferences. They generally

keep track of object sizes on a separate data structure and ensure that each pointer

arithmetic operation complies with the boundaries of the corresponding object.

The third and more common bound-checking mechanism is fat pointers [85–90].

These pointer-based approaches implement an additional check during each pointer

dereference. Using the pointer metadata provided (i.e., base, size), they check

whether the address being accessed is within the range of the object. Meta-

data can be stored separately. For example, Softbound [88] uses a hash table

38 3.2. Runtime Integrity

to retrieve bounds information. In contrast, Low-Fat [90] encodes boundary

metadata into ineffective bits of an address word. On the other hand, hardware-

based capability architectures such as CHERI [91] align the required metadata

with address information. Despite the alignment of pointer (capability) data and

metadata together, CHERI employs additional one-bit tags for each memory word

to distinguish pointers (capabilities) from non-pointer objects. Because these

tags are kept in a separate region, cache extensions are used to compensate for

the performance costs.

3.2.1.2 Temporal safety

Temporal safety problems occur when deallocated object addresses are accessed

later by the dangling pointers of that object. A typical example is use-after-free

(UAF) vulnerabilities. After freeing a memory allocation, if the programmer does

not correctly handle the pointers to that memory object, those dangling pointers

can be dereferenced later to access a new object residing the same addresses. Such

a case, which the attacker can exploit in different ways, has the potential to trigger

data corruption, program crash, or arbitrary code execution. Temporal safety can

be achieved mostly in two ways. The first group of solutions [92–94] rely on pointer

invalidation. Those explicitly invalidate all the pointers of an object when the

object is freed. For this purpose, they maintain an object-to-pointer map. The

second way to achieve temporal safety is birthmarking [95, 96] which sets a common

identifier for each object and its pointers. During memory allocations, objects are

created with a random identifier value to bind both pointers and pointees. Hence,

a dangling pointer holding the previous identifier cannot access the new object

with a different identifier. One of the challenges of the birthmarking approach is

where to store the identifiers. Disjoint structures can introduce high overheads due

to additional memory access. ARM’s Memory Tagging Extensions (MTE) [97],

which is introduced recently, adopt a weak birthmarking approach by allocating

4-bit of tagging/colouring to every 128 bits of data. MTE leverages tagging bits

to provide probabilistic spatial and temporal safety. The use of dangling pointers

3. Related Work 39

should be caught because it is very likely that different bits will be assigned during

the deallocation and reallocation of those addresses. Similar to CHERI, MTE

extends the cache structure in order to handle the performance burden of additional

memory access to tagging bits.

3.2.2 Control-Flow Protections

Most memory safety solutions incur impractical performance overheads without

dedicated hardware support. Although they are used as sanitisers for testing

purposes, high overheads hinder those solutions from being adopted in production.

The alternative approach is selective protection of potential attack targets rather

than trying to eliminate the attack vectors (bugs) that can be exploited. Normally,

arbitrary code execution, i.e., Turing-complete attacks, is the most powerful scenario

an adversary would desire to obtain. Thanks to the write-xor-execute (W⊕X)

features, modifying the program code and injecting a custom one from data addresses

is simply not an option in most systems today. But an attacker can still achieve

arbitrary code execution by using the existing code segments through control-

oriented attacks, namely code-reuse attacks, as we explained in Chapter 2. Although

ASLR [25] shuffles existing code addresses to harden those scanarios, control-flow

protection techniques are more effective. These protections can be categorised

into two: control-flow integrity (CFI) and code-pointer integrity (CPI). The former

approach checks the validity of code pointer addresses and confirms whether a

control-flow transfer jumps to a valid destination defined by the control-flow graph

(CFG). The latter method instead focuses on the integrity of code pointers regardless

of their values and make sure they are not overwritten by the attacker. Although

each technique has different strengths and weaknesses, these are the most promising

methods used in practice today.

3.2.2.1 Control-Flow Integrity (CFI)

CFI techniques mitigate control attacks by watching for deviations from the CFG.

It has been more than a decade since Abadi et al. [2] introduced pioneering CFI

40 3.2. Runtime Integrity

enforcement, which has been followed by many proposals [98–105]. A typical CFI is

two-fold [106]. The first static analysis part extracts CFG [107] by approximating

legitimate control transfers between program blocks (e.g., functions). The second

enforcement part seeks compliance between the CFG edges and actual control

transfers, and terminates the program in the event of an mismatch. For enforcement,

CFI schemes generally use labels to bind the origin and destination sites of a

control transfer.

A typical CFI scheme concerns with two types of control transfers: backward-edge

(return) and forward-edge (call, jump) transfers. In case of code immutability, the

attacker cannot hijack a control flow transfer whose target is hard-coded (e.g., direct

call). Hence, the remaning options are modifying a return address, an indirect jump

(e.g., switch statement) or an indirect call (e.g., function pointer) whose target

address is given from a register or memory. Since a program function can be called

from different call sites, a stateless pure graph-based return address check would be

imprecise. For more precise protection, a stateful shadow stack that holds the copy

of return addresses is typically used. A drawback of the shadow stack is that its size

can also go unbounded like the call stack, in the case of the program with recursive

functions. This is an issue especially for devices with limited resources, as Chapter 4

addressed. Regarding forward-edge transfers, CFG has to over-approximate the

permissible destinations as the actual transfer can be genuinely dependent on the

external input. Depending on how precisely forward-edge CFI is enforced, CFI

schemes are categorised as coarse-grained and fine-grained. A coarse-grained policy

describes high-level constraints, for instance, an indirect call can jump only to

the beginning of a function block. In contrast, a fine-grained approach models

caller-callee relations in more detail, such that an indirect call must branch to a

function whose address is in the points-to set of the corresponding function pointer.

Additionally, CFI can be implemented both as a software-based [2, 98, 100] and

hardware-based [99, 103, 108, 109] scheme. Software-based techniques count on

instrumentation that can be performed by compiler modifications, binary rewriting,

or dynamic translations. Despite the deployment advantages, software-based

3. Related Work 41

methods incur higher performance costs. Although static metadata (e.g., branch

labels) of forward-edge CFI can be protected by the read-only memory pages,

the stateful backward-edge CFI part still relies on the integrity of shadow stack,

which can be challenging to guarantee without hardware-backed solutions. On

the contrary, hardware-based solutions address stronger adversaries. Despite their

deployment challenges, hardware-based techniques are more favourable with better

performance and stronger protection.

Software-based Approaches. Pioneering CFI proposed by Abadi et al. [2, 110]

introduces an inlined enforcement system. The scheme rewrites the binary to bind

two sides of a control-flow edge via identifier labels. After injecting label data

into the destination sites, newly added instructions compare the label ID read

from the destination address with the hard-coded one on the origin site (e.g., cmp

[DEST], ID), and raise an error in case they mismatch. The authors also suggest

using a shadow call stack to improve the precision of return integrity. MoCFI [98]

targets smartphones with ARM architecture, which allows direct manipulation

of the program counter and lacks a dedicated return instruction. MoCFI first

extracts the application CFG provided as a patch file that is part of the load-

time module, whereas CFI enforcement is handled by the runtime module. Unlike

the original CFI [2], the load-time module replaces all relevant branches with a

single dispatcher instruction which redirects all control tasks to the runtime module.

MCFI [100] offers a modular CFI [2] using a separate compilation feature that allows

the application modules to be independently instrumented and linked. Similar

to CFI [2], MCFI creates labels to represent control transfer destinations where

multiple targets of an indirect branch should fall into the same class. Differently,

the label data is located outside the code section and handled by two separate

tables stored in a runtime structure. Apart from the research studies, Microsoft’s

Control Flow Guard [111] enforces CFI by embedding CFG information at compile

time using Visual Studio features.

42 3.2. Runtime Integrity

Hardware-based Approaches. Davi et al. [108] present a hardware-based CFI for

embedded systems. The authors suggest extending instruction set architecture (ISA)

with two new instructions. The first CFIBR instruction placed at function entries

manages the active label ID to the Label State memory serving as a shadow stack.

The second post-call CFIRET instruction confirms that the returned site belongs to

the active label/function. In addition, the scheme proposes to catch JOP attacks via

some heuristics such as the count of consecutive jumps and pop/push instructions

(i.e., deciding for an attack in case of five indirect jumps in a row). Despite the lack

of a prototype, the authors share their implementation plans for Intel Siskiyou Peak

processor organised as a 32-bit Harvard architecture. A more finished version of this

work, HAFIX [103] enforces a fully precise backward-edge CFI using Label State

memory. Although HAFIX does not check indirect jumps, it guarantees that each

indirect call jumps to a function entry at least as a coarse-grained policy. In addition,

HAFIX handles recursion with a counter register that keeps track of the depth of

the recursive function without asking for an unbounded Label State memory. It

should be noted that this counter feature works only in case of a regular recursion

(i.e., a function calls itself) and do not cover indirect recursion scenarios, unlike our

solution in Chapter 4. HAFIX is implemented on both Intel (Siskiyou Peak) and

SPARC (LEON3) processors. Another promising work, HCFI [104] modifies SPARC

ISA and establishes a shadow stack for return addresses within the CPU. HCFI

promises to detect not only ROP attacks but also JOP scenarios with the help of

fine-grained forward-edge labels. Although a CPU-based shadow stack is a more

secure option compared to a memory-based alternatives, it poses some challenges in

multi-threaded environments by making context switches very costly. Apart from

these academic proposals, hardware-based CFI has also been recently deployed in

practice. For instance, Intel’s Control-Flow Enforcement Technology (CET) [109]

offers a coarse-grained forward-edge and a strong backward-edge CFI protection

with shadow stack. CET does not promise much for the indirect calls, i.e., ensure

that they can only jump to the beginning of function blocks. On the contrary, to

protect its shadow return addresses (stack), it designates memory pages accessible

3. Related Work 43

only to special memory instructions inspected by the memory management unit

(MMU). Similarly, ARM’s Branch Target Identification (BTI) [112] employs a

coarse-grained forward-edge CFI using a two-bit labelling mechanism called landing

pads. BTI avoids type confusion among different branch types. And it prevents

the attacker from using an indirect call as an indirect jump, or vice versa, in order

to reduce available JOP gadgets. Unlike our solutions, the main drawback of all

these hardware-based control-flow protections, they pose substantial deployment

challenges and do not offer any solutions to existing devices.

Probabilistic Approaches. In contrast to graph-based approaches, Zhang et al. [113]

suggest a probabilistic control-flow validation for embedded systems. The authors

introduce an anomalous path checking mechanism to detect attacks exploiting

multi-target jump instructions (i.e., conditional and indirect jumps). The study

relies on the analysis of sliding windows, where each window corresponds to a

n-jump path vector extracted from the execution traces. The proposed work first

performs training runs in a safe environment to define feasible n-path vectors using

different program inputs. Then, it implements a control mechanism in the CPU

pipeline to check whether the actual execution complies with extracted path data.

CFIMon [114] similarly performs a probabilistic validation of indirect jumps. It

uses the branch trace store (BTS) mechanism that is available as a performance

counter for modern CPUs. CFIMon consists of two phases which are offline and

online. During the offline phase, it first scans the binary to create sets for each

control transfer type, excluding direct calls and direct jumps. For validation of

return and indirect calls, the scheme uses ret_set and call_set. The former set

contains the following addresses of call instructions, whereas the latter set has the

entry addresses of program functions. For indirect jumps, they additionally apply

training runs to create a set of possible jump targets, namely train_set, where an

indirect jump branching to an address that is not within this set is described as

suspicious. As a combination of both CFG and probabilistic models, Xu et al. [115]

use a statically initialised learning model to detect stealthy attacks that might

44 3.2. Runtime Integrity

cause invalid (code-reuse attacks) or abnormal (non-control data attacks) control

flow. First, the authors extract the CFG of each function, which is represented by a

matrix containing also estimated transition probabilities. The study then aggregates

individual function matrices into a larger matrix to obtain the call transitions of the

entire program. The aggregated matrix is used to initialise the probabilistic model

of program behaviour as a hidden Markov model. The model parameters are tuned

via training runs and used to catch anomalies. Shu et al. [116] similarly present

an anomaly detection based approach that analyses program behaviours using

large-scale execution traces instead of applying short-sized windows on them. The

primary goal of the study is to detect aberrant path attacks, which do not deviate

from the CFG nor use suspicious arguments. The authors define two common

anomalous patterns for the detection of those attacks. The first one is montage

anomaly which represents the composition of multiple control flow fragments that

are incompatible in a single execution. The second is frequency anomaly, where

aberrant ratio/relations are observed between/among event-occurrence frequencies.

The authors first partition the program activities via call instructions (returns are

not excluded to avoid duplicated correlation of call-return pairs) to create two

matrices representing event co-occurrences of call routines and transition frequency

between them. The proposed model consists of two phases. The first training phase

is responsible for profiling legitimate program executions via behaviour clustering.

The second detection phase watches for the co-occurrence of events and occurrence

frequencies on the traces to detect program anomalies.

3.2.2.2 Code Pointer Integrity

Alternative to CFI schemes that validate branch targets, namely code pointer

values, code-pointer integrity (CPI) techniques can protect the control flow by

preventing attackers from modifying code pointers. The original CPI [3] scheme

splits the program memory into two with a regular region and a safe region, where

the latter region hosts sensitive pointers that can be corrupted for a control-flow

attack. Sensitive pointers are described as code pointers and data pointers that can

3. Related Work 45

be used to access the code pointers indirectly. The separation of sensitive pointers

is mainly achieved by a static analysis that is supported by a runtime mechanism,

which handles data pointers that can access both regular and safe objects. As a

relaxed variant of CPI, the authors also suggest code-pointer separation (CPS)

that only includes code pointers amd leave data pointers that may access code

pointers unprotected. For the protection of safe regions, the original CPI randomises

their locations within the same address space as a software-based approach, which

is susceptible to integrated attacks that can disclose those locations. However,

different isolation mechanisms such as HDFI [9] and IMIX [12] also port CPI as

a hardware-backed solution to address stronger adversaries.

Cryptographic Approaches. Isolating code pointers in a protected memory

region is not the only option. Similar to our proposal presented in Chapter 6, there

are recent cryptographic proposals [117–119] that leverage message authentication

code (MAC) primitives to ensure code pointer integrity. For these schemes to work

correctly, the MAC key must be kept confidential in a register that must not be

saved in the same address space. Although these schemes do not worry about the

scenarios targeting shadow or safe stacks, they need to address pointer substitute (or

replay) attacks. CCFI [117] is the first scheme that has used MAC for control flow

protection on x64 architectures. A CBC-MAC is computed and placed along with

each control object in memory. To harden replay attacks, CCFI extends each 48-bit

code pointer to a 128-bit AES block with additional parameters (e.g., frame address).

CCFI leverages Intel’s AES-NI extensions for speed-up. CCFI uses 11 out of 16

FPRs (XMM) to store round keys so that they do not cause performance overhead

due to scheduling every time. ARM’s recent pointer authentication (PAC) [112]

extension provides a hardware accelerated MAC (e.g., QARMA [120]) implemented

as a single instruction to check the integrity of code pointers (also data pointers if

needed) with practical overheads [118], i.e., around 1% overhead for code pointers

(and 20% for data pointers). PAC tags are generated from effective address (32-51)

bits and squeezed into the upper (ineffective) part (11-31 bits) of the word not

46 3.2. Runtime Integrity

required by virtual address configuration, which might make them susceptible to

brute-force scenarios depending on the available number of bits. PAC associates

return addresses with the stack pointer to harden replay (pointer substitute) attacks.

Lastly, ZipperStack [119] creates a chain of MACs for return addresses on the stack.

This study protects only return addresses and does not cover other control hijack

attacks that leverage indirect branches. Similar to PAC, ZipperStack stores MACs

in the upper (24-bit) space of the word, providing weaker protection. Apart from

their limited attack coverage, none of those cryptographic schemes leverages the

security and performance features of CPU registers together as means for protecting

control and data variables in use, as our proposal in Chapter 6.

3.2.3 Mitigation of Data-Oriented Attacks

Control-flow protections fall short of mitigating data-oriented attacks that manipu-

late program runtime without touching any code pointers, namely non-control data

attacks. For example, an attacker can corrupt a condition variable to make the

program jump to a privileged branch. To mitigate those attacks, many methods are

proposed in the literature, such as data-flow integrity (DFI) [121], write integrity

testing (WIT) [33] and more targeted approaches [14, 71]. In general, these schemes

approximate memory safety better than control-flow protections with wider coverage.

However, none of those have been deployed in practice for different reasons, such

as high performance overhead or new hardware requirements.

3.2.3.1 Data-Flow Checking

Miguel et al. [121] introduced the pioneering data-flow integrity (DFI) scheme to

address control and (non-control) data attacks together. Unlike CFI, DFI first

extracts a static data-flow graph (DFG) of the program using the reaching definitions

analysis. This is computed by combining a flow-sensitive intra-procedural analysis

and a flow- and context-insensitive inter-procedural analysis. Reaching definitions

of a memory read instruction (variable use) is formulated as the set of instructions

that can legitimately write the target address (variable definition). Following the

3. Related Work 47

DFG extraction, DFI instruments memory accesses to check the compliance between

static and runtime information. The authors maintain a runtime definitions table

(RDT) to log the identifiers of the most recent instructions that define each data

address (SETDEF). When the same address is read, the recorded identifier is checked

to confirm that the address has been previously written by an instruction in the set

of statically computed reaching definitions (CHECKDEF). DFI incurs high runtime

(104%) and memory (50%) overheads.

HDFI [9] proposes a similar but more coarse-grained hardware-based approach.

Instead of checking fine-grained instruction identifiers, HDFI separates program data

into two using one-bit tags that label each memory address as either sensitive (e.g.,

code pointers, private keys) or non-sensitive. These tags are later used to enforce

data-flow policies, such as the Biba (integrity) and Bell–LaPadula (confidentiality)

models. Tags are kept in a separate tag table supported by cache extensions. HDFI

extends ISA with three new instructions (sdset1, ldchk1, ldchk0). sdset1 is used to

set the tag when a sensitive memory object is written (e.g., code pointers, private

keys) while regular store instructions unset the tag bit. Therefore, ldchk1 aligned

with anticipated reads of a sensitive object can reveal corruption scenarios, as the

unset tag would imply that the object is overwritten by an unauthorised instruction.

On the other hand, ldchk0 can catch information leakage scenarios by forcing all

regular load instructions to read only untagged data. Unlike DFI, HDFI isolates

these domains from each other and excludes scenarios where the memory instruction

of a sensitive object accesses another sensitive object.

HardScope [122] proposes a two-fold hardware-assisted intra-program data

isolation. The first runtime enforcement component ensures that the static vari-

able/lexical scope information defining the visibility of variables to different code

blocks is maintained at runtime. The second context-specific enforcement handles

dynamically changing rules for each invocation of a code-block at runtime. For the

runtime enforcement part, HardScope modifies the compiler and ISA to implement

memory access rules. To handle context-specific dynamic rules, Hardscope employs

a data structure, called Storage Region Stack, in hardware-isolated protected

48 3.2. Runtime Integrity

regions. This region consists of frames corresponding to different execution contexts

(i.e., active instances of functions), where each frame can handle different access rules.

Taint Tracking. Taint-tracking inspects how potentially malicious input propagates

throughout the program to check whether it flows onto any sensitive object or a

potential target. Suh et al. [123] deliver a hardware-based dynamic information flow

tracking (DIFT) system to prevent the use of tainted data as code pointers. DIFT

keeps track of the untrusted (potentially malicious) data that flows through memory

addresses and registers. DIFT requires modifications of the whole architecture in

order to extend each memory word with a one-bit tag. This includes disruptive

changes in all relevant components, such as the bus and cache. DIFT propagates

the taint at the instruction level via prescribed rules for arithmetic, copy, and

address dependencies. Despite the strong protection against both control and

(non-control) data attacks, DIFT has not been deployed in practice because of

mainly its architectural challenges.

Software-based dynamic taint tracking frameworks [124–126] have also been

proposed in the literature. Those schemes are typically used for testing purposes

because their performance overheads prevent them from being adopted in production.

For instance, TaintTrace [125] offers a promising dynamic taint tracking system.

It applies additional optimisations to reduce performance overheads. The system

mainly consists of four components: configuration file containing security policies,

shadow memory structure that stores application data taint information, program

monitor responsible for tracking and checking the policies, and loader locating

these components on the memory before giving the control the program monitor.

Additionally, TaintTrace allows users to specify critical paths in their program

where control flow should not be dependent on tainted data to address some of

the non-control data attacks.

Despite being less popular, static taint analyses [127–130] aim to eliminate

runtime overhead by analysing the program at compile time. Static techniques

can recognise logical flaws, such that tainted data reaches a sensitive function

3. Related Work 49

(i.e., taint sink) without sanitisation. However, detection of scenarios that can

modify memory addresses beyond the foreseeable program semantic is a non-trivial

task. Furthermore, taint-tracking techniques may ask for intervention to define taint

sources, sanitising functions, and taint sinks. Differently, Chapter 5 presents a static

trust propagation scheme which can be considered as the negation of taint-tracking

systems. Our proposal combines both static and dynamic techniques as a more

hybrid approach. The chapter first identifies untaintable variables mostly in an

automated way. Then, it selectively instruments memory accesses to those to detect

runtime problems not foreseeable by the program semantic.

3.2.3.2 Pointer-Based Checking

Write Integrity Testing (WIT) [33] is a software-based mitigation technique that

validates critical pointer dereferences using an interprocedural version of Anderson’s

points-to analysis [131]. Unlike DFI, WIT instruments only unsafe memory writes

as the root cause of most attacks. Thanks to the memory reads and safe objects

skipped from the instrumentation, WIT provides overhead advantages compared

to other methods. Because WIT validates memory writes (pointer accesses) using

a compile-time analysis, it provides less precise protection than bound checking

mechanisms that can update their pointer metadata (bounds) at runtime. In other

words, the attacker can manipulate the pointer address to a different memory object

as long as the object is within the points-to set.

On the other hand, two relevant studies PointGuard [132] and data space

randomisation (DSR) [133] mask pointer addresses with random values and unmask

them prior to their use. Their main goal is to make pointer corruption useless

or unmanageable for an attacker who cannot know masking values. Because

pointers can legitimately access different variable addresses, those studies divide

variables into equivalence classes based on points-to sets, so they can be masked

with the same value. The number of equivalence classes depends on the precision

of the pointer analysis. Hence, both schemes are subject to similar precision

issues like WIT. In addition to PointGuard, DSR masks non-pointer variables

50 3.2. Runtime Integrity

such as integer variables. Although masking can significantly harden pointer-based

attacks (becomes harder as the address space increases), masking non-pointer

variables might not provide meaningful protection, especially considering the branch

decisions made based on boolean or value range comparisons. Apart from address

validation or masking techniques, data pointer integrity can mitigate most data

attack scenarios. If complete pointer integrity were obtained, the attack surface

would be significantly reduced without arbitrary memory write or read capabilities,

where the only attacker option would be overflowing an array to an adjacent non-

pointer target (e.g., condition variable). As mentioned earlier, ARM’s PAC [112]

extension can be leveraged to ensure the integrity of all pointer variables in return

for higher performance costs [118]. Unlike those, Chapter 6 not only guarantees

the integrity of pointer variables on the stack, but also protects integral variables

that can be leveraged for a relative-address attack.

3.2.3.3 Targeted Approaches

In contrast to control-flow protections, proposed techniques for data-oriented

attacks approximate memory safety more closely by auditing almost every memory

access. However, software-based approaches either incur high performance over-

heads (e.g., DFI [121] with 104% overhead) or loosen the approximation accuracy

with more coarse-grained checks (e.g., WIT [33] as a flow-insensitive solution)

to reduce overheads. On the contrary, it is difficult to deploy hardware-backed

solutions [9]. Alternatively, selective instrumentation of only critical program data

can be a promising approach as a software-based solution. However, as addressed

in Chapter 5, identifying critical program variables is a challenging task because

deciding on the criticality of a variable normally requires a semantic understanding

of the program, without programmer annotations.

Regarding the targeted approaches proposed in the literature, KENALI [13]

protects the Linux kernel against specific data-oriented attacks. Apart from the

control data, KENALI defends non-control data responsible for the kernel’s access

control mechanisms known as reference monitors. The proposed scheme consists

3. Related Work 51

of two phases. First, it identifies the regions that host essential data for security

checks. To achieve this, KENALI searches the kernel code for return instructions

that may return specific security error codes (i.e., -EACCESS). Then, it traces back

to the branch variables used as decision-making data for these returns, which are

identified as distinguishing regions. KENALI not only prevents non-distinguishing

data from flowing to distinguishing regions, but also provides protection within the

distinguishing regions using WIT [33]. KENALI specifically targets kernel security

and mitigates only privilege escalation scenarios as a subset of possible non-control

data attacks. Furthermore, it does not propose a generalisable automated solution

for user applications as it requires an understanding of the program. For user space

programs, Datashield [14] allows the programmer to annotate custom data types

(structs) as critical, in order to isolate the data held by those. In addition to the

impracticality of the annotations, Datashield associates the data sensitivity, which

is ideally the property of the value, with the custom data types. This type-based

approach overlooks the critical data kept on generic types (e.g., integer). OAT [71],

mentioned as a runtime attestation scheme in Section 3.1, suggests checking only

condition variables and their backtracked dependees as part of its critical variable

integrity (CVI) scheme. Similar to our work in Chapter 5, CVI confirms the integrity

of a variable def-use chain using variable values instead of instruction identifiers as

DFI [4] suggests. CVI requires the programmer to annotate other critical variables

that are used by sensitive functions without being part of any control variable

slice. We highlight that CVI would unnecessarily instrument condition variables

that are legitimately defined by the user or environment. Differently, our proposal

in Chapter 5 decides on the criticality (need for integrity assurance) of program

data based on the trustworthiness of their value agents. Our approach not only

operates on the underlying cause of being integrity-critical but also allows for a

more fine-grained and automated selection of critical data.

52 3.3. Malware Analysis

3.3 Malware Analysis

Checking the correctness of program runtime based on static control- or data-

flow models can provide effective mitigation against memory exploits. However,

the deployment challenges of those mitigations or the inevitable holes left in the

attack surface (due to over-approximation limitations issues) can eventually lead to

malware installation. In such a case, malware analysis or an anti-virus program is

required to identify the malicious software. Malware analysis is generally grouped

into two categories, static and dynamic techniques. The former static approach

typically scans the program code for specific opcode sequences or strings without

running it. On the contrary, the latter dynamic methods use features or call patterns

that are recorded at runtime by executing the suspect program in a controlled

environment, similar to our work in Chapter 7.

3.3.1 Static Techniques

Detection of malware based on static features and machine learning (ML) techniques

was proposed long time ago. Following the first shift from heuristic-based methods

to ML techniques triggered [134], Abou-Assaleh et al. [135, 136] have suggested

using ngram bytes extracted from binaries as ML features to represent benign and

malicious instances. This study has used the k-nearest neighbours (k-NN) algorithm

for the classifications. Similarly, Kolter et al. [137] have used ngram bytes to detect

malware instances on Windows systems. This work selects the most informative five

hundred 4-grams as binary features, which are ranked based on their information

gain scores [138]. The study is reported to have achieved 0.98 true positive ratio

(TPR) and 0.05 false positive ratio (FPR) using 10-fold cross-validation with the

Weka classifiers. To improve these, Reddy et al. [139, 140] have proposed two

alternative ngram/feature selection methodologies, which are class-wise document

frequency [139] and episode discovery algorithm [140]. Another study conducted by

Santos et al. [141] also uses ngrams to score the similarity of unknown instances to

known classes. Additionally, the study uses a distance parameter to tune TPR and

3. Related Work 53

FPR metrics during classifications. The authors have also performed experiments

to determine the optimal size of ngrams and k of k-NN algorithms.

3.3.2 Dynamic Techniques

As an example of dynamic malware analysis that counts on runtime features,

Salaehi et al. [142] leverage the traces of Windows API calls collected via the

WINAPIOverride32 tool. The study uses document frequencies to rank the most

representative features, where each instance is given as binary feature vectors to

the Weka classifiers. The authors have used Adaboost meta-classifier option with

10-fold cross-validation and have successfully detected malware with 98.4% accuracy.

Another work by Uppal et al. [143] also uses API calls collected by the APIMonitor

tool. Differently, this study extracts ngrams from API call logs. For feature

selection, the authors use odds ratio to decide on representative features. Similar to

the previous study, the authors train the classifiers with a 10-fold cross-validation

resulting in 98.5% accuracy for SVM and 4-grams. However, in the light of their

methodology descriptions, both studies seem to be subject to overfitting bias as the

authors apply the feature selection independently before the cross-validation phase.

Instead of (binary) detection task, MEDUSA [144] classifies metamorphic engines

using the frequencies of API calls made. The authors rely on statistical measures to

distinguish metamorphic engines with the help of signature vectors created for each.

These vectors are created on the basis of the average frequencies of selected critical

API calls for the given engine. Other studies [145, 146] achieve category and family

identification by extracting features from API calls in different ways and using other

artefacts such as DNS requests and accessed file names. Pirscoveanu et al. [145]

categorise malware samples based on types such as Trojans, Worms, Adware,

and Rootkits. The authors generate features by combining API sequences, API

frequencies, and other artefacts such as the level of DNS requests. The study reports

that the experiments have generated 0.896 TPR for the identification of categories.

Similarly, Hansen et al. [146] detects malware and distinguishes their families with

a similar feature representation, including the API arguments in the model. This

54 3.3. Malware Analysis

study achieves 0.864 TPR for five families that have different functionalities and

components, which can be suffering from category bias. Similar to Chapter 7, both

studies use the runtime reports generated by Cuckoo Sandbox [147]. They achieve

the best accuracy with Random Forest classifier.

Another Cuckoo–based work [148] proposes a dynamic analysis framework

that is supposed to be resilient against evading mechanisms of polymorphic and

metamorphic malware. They use WinAPI calls and files as features. To calculate

the similarity between the call traces of two samples, they extract Longest Common

Subsequences (LCS) from the traces to overcome junk calls, which might be a good

evasion strategy. This work takes the order of function calls and their arguments

into account, which can reveal extra information about the malicious intentions of

the software. Lastly, Canali et al. [149] adopts a systematic approach to demonstrate

how the different feature models that rely on API calls can influence the accuracy

of detection. They provide a benchmark framework and present the computational

limitations for different feature models such as ngram sequences and tuple-based

model that only cares the order of the calls regardless of the distance between them.

“People who are really serious about software should
make their own hardware.”

— Alan Kay

4
Design of a Hardware Module for Runtime

Attestation on Embedded Systems

This chapter presents a new attestation approach that can reason about software

runtime in real time without accumulating trace information, unlike previous

schemes that rely on the recording or hashing execution traces. For this purpose, it

first describes a lightweight static runtime integrity model (RIM) of the software

subject to attestation. Then, it presents the design of a conceptual hardware

security module (HSM) that can act like a trust anchor on a critical embedded

device (prover) under scrutiny. This module is designed to measure program runtime

continuously through the device bus and to validate its correctness according to

the given static model. Therefore, any mismatch between the model and the actual

runtime can be reported when the remote party (verifier) makes a request. As

the main objective, this chapter aims for a solution to avoid the main challenges

(e.g., path explosion) of existing runtime attestation schemes arising from deferring

and assigning all validation tasks to the verifier. Towards this goal, it mainly

investigates how to offload these validation tasks to a resource-constrained hardware

component, which should be already required for trace logging or hashing activities

as in existing schemes. Although the chapter suggests an off-chip FPGA-based

55

56 4.1. Introduction

approach without actual implementation, the same concept can also be instantiated

through different architectures (i.e., on-chip extensions).

4.1 Introduction

Indispensable components of many critical infrastructures such as power grids,

industrial control systems, health and transportation services, embedded devices

pose significant risks because of their monitoring and control tasks that interact

with the physical world. While their constrained nature—aiming for specific tasks—

hinders the deployment of most security solutions available to high-end systems, the

common use of unsafe languages (i.e., C/C++) for embedded software development

inherits many vulnerabilities.

As a challenge-response protocol, remote attestation is a popular mechanism for

checking the correctness of the software running on those critical systems. Remote

attestation enables a remote entity, verifier, to ask an untrusted embedded device,

prover, to provide integrity assurance about itself. In most attestation schemes,

when the verifier makes a request, the prover calculates a cryptographic checksum

of its static memory contents (i.e., code segments) and returns it to the verifier as

proof. However, there are two limitations to such an approach.

The first is that occasional measurements triggered by the verifier cannot

guarantee that the prover has always been in the proven state. Due to the lack

of continuous monitoring, an attack scenario that starts and finishes between

two attestation windows would not be caught as long as the attacker leaves the

attested memory regions in an acceptable state, i.e., time-of-check-to-time-of-use

(TOCTOU). Unfortunately, attempts to shorten these time gaps via more often

attestation requests can have a significant impact on the availability of the device

because the prover would spend most of its time on checksum calculations [68].

The second limitation of a checksum-based approach is dynamic memory regions

(e.g., stack), where many runtime attacks (e.g., ROP) can be accommodated. In

contrast to static code regions, the checksum of dynamic memory regions would not

deliver much value to the verifier for two reasons. The first one is that the verifier

4. Design of a Hardware Module For Runtime Attestation 57

cannot reason about such a measurement unless the verifier has access to the same

(external) program input with the same hardware and software settings. This is

because each execution or corresponding state at a particular time would be specific

to the external program input provided by the environment or the user. This makes

the problem undecidable from the verifier’s perspective. The second reason is that

even if all external data bits are excluded from the checksum calculation, discovery

of all acceptable checksum values would not still be possible for many programs, due

to the combinatorial explosion in the number of states that the rest can constitute.

Therefore, the returned checksum would be inconclusive again.

Many attestation schemes fail to address those issues together and ignore attacks

that can exploit time gaps or memory regions left unattested. There have been

attempts to address some of those limitations. For example, RATA [68] addresses

TOCTOU problems by including the last modification time of the attestable (static)

regions in the checksum. But this approach is not applicable to dynamic memory

regions since the verifier does not know what these regions should contain or when

they should be written. To reveal attacks that can touch dynamic memory regions,

some attestation schemes [7, 8] record path traces on the prover and deliver them

to the verifier in a lossless way, incurring storage and communication overheads.

Alternatively, many runtime attestation work [5, 6, 150] provide a single cumulative

hash to the verifier as a digest of trace information. Because the prover returns

only a single hash value representing the whole program execution, such schemes

require the verifier to discover all possible path traces and corresponding hashes

in advance, using program’s control-flow graph (CFG). However, this requirement

overlooks potential challenges on the verifier side due to the same reasons mentioned

above, which are the rapid explosion of path search space for many programs and

the undecidability of the verification problem without program input in case of

attacks complying with the CFG (i.e. control-flow bending).

To address these drawbacks in a more practical setting, this chapter proposes an

attestation scheme that can monitor the prover’s state with the help of a hardware

security module (HSM) connected to its system bus. Due to continuous monitoring

58 4.1. Introduction

_k`a

Iaiknu

Nacekjo

Peia

_goqi

-

`]p] `]p]

_k`a

rqhjan]^ha�nacekjo��

$a*c*�_k`a)naqoa

]pp]_go%

rqhjan]^ha�peia�

$e*a*�PK?PKQ�]pp]_go%�

nam

e

_goqi

.

?da_goqi)]llhe_]^ha�]``naooao

Jkj)]llhe_]^ha�]``naooao

nao

e

nam

e'-

nao

e'-

Figure 4.1: Temporal and spatial coverage limitations of conventional static attestation
schemes.

of HSM, our proposal would catch TOCTOU scenarios that can temporarily alter the

device software, even for a short time. More importantly, it substitutes trace-based

checks on the verifier side with model-based checks to be performed in real time, for

a more practical approach. Therefore, the proposed scheme does not accumulate

any trace information that would incur costly storage and communication overheads,

nor expects the verifier to discover path traces in advance, causing path explosion.

Also, thanks to the proposal of a non-invasive hardware module design, it offers

an attestation solution that can fit better into existing systems.

The rest of the chapter is organised as follows: Section 4.2 defines the problem

scope and the assumptions about the system and the adversary. While Section 4.3

describes runtime integrity model (RIM) as the model that describes legitimate

executions, Section 4.4 explains how the hardware security module (HSM) should

use this model to check the correctness of runtime in real time. Section 4.5 explains

the details of the protocol reporting on the state of the prover. Section 4.6 analyses

the security of the proposed scheme. Section 4.7 approximates the resources

required by HSM and its potential overheads. Section 4.8 discusses alternative

implementations of the given design.

4. Design of a Hardware Module For Runtime Attestation 59

4.2 Problem Setting

Threats to the runtime integrity can be categorised into three groups as code, control-

and data attacks, as explained in Chapter 2. The first group covers scenarios where

the original program code in memory is modified or replaced by malicious code

instances. Although conventional attestation schemes aim to reveal such cases, a

memory measurement triggered only by the verifier’s request can best prove that

the code regions are in a good state by the time the request is received. As depicted

in Figure 4.1, in the absence of continuous monitoring, an attacker can temporarily

compromise the prover’s software by altering or replacing it with malicious code, and

can switch it back to the expected state prior to following the attestation request

via different techniques (e.g., memory copy/hiding attacks). We refer to these

time-of-check-to-time-of-use (TOCTOU) scenarios as code attacks in this chapter.

On the other hand, the simplest type of control attacks, code-injection scenarios

use dynamic memory regions to load and execute custom code. Even if this is

not an option, the prover can still be compromised through code-reuse attacks.

An attacker crafting control data (e.g., return addresses) can maliciously reuse

the original code. With a program that provides the necessary code snippets

(i.e., attack gadgets), those code-reuse attacks can be Turing-complete, meaning

that any (arbitrary) code can be expressed, without injecting new code or altering

the existing one. For a successful code-reuse scenario, the attacker should exploit

control-flow transfer instructions, the destination addresses of which are given

from the data segments. For typical embedded software implemented using C

language, the attacker would have many options: The first one is exploiting the

return addresses on the stack [1, 27], known as return-oriented programming (ROP)

attacks. Alternatively, the attacker can take advantage of indirect jump or indirect

call transfers (e.g., function pointer) if the code contains [26, 28]. These scenarios

are also called jump- (JOP) and call-oriented programming (COP) attacks. In this

chapter, we refer to all these types as control attacks in general. Differently, the

attacker can specifically target program variables [30, 31, 151] without touching

60 4.2. Problem Setting

Ejopnq_pekj�=``naoo+��

R]ne]^ha�=``naoo

Kl_k`a)Klan]j`+�

R]ne]^ha�R]hqa

?u_ha�Oecj]h+�

Na]`)Snepa

DOI

Iaiknu��

$a*c*�NEI(��

_]hh�_kqjpano%

@]p]�>qo

Ikjepknejc�Hkce_�

$e*a*�]qpki]pkj�ej�BLC=%

N
a
c
e
o
p
a
n
o
�

$
a
*
c
*
�
^
q
o
�
r
]
h
q
a
o
%

=LE�Hkce_

=
p
p
a
o
p

N
a
l
k
n
p

=``naoo�>qo

?kjpnkh�Heja

?nupkcn]lde_�Bqj_pekjo

Figure 4.2: An overview of hardware security module (HSM) illustrating its internal
components and external interactions.

control data, such as a global flag that can result in the execution of a privileged

program path. These are also called data attacks.

4.2.1 System Model

For our scheme, we consider two entities: the verifier and the prover. As the remote

party, the verifier is trusted and can ask the prover to provide a report showing

that the prover is in a good state at will. We consider the prover is a simple

embedded device, a single-core non-pipelined MCU without any cache. The device

has single-purpose monolithic software (i.e., bare-metal). It executes instructions

directly on logic hardware with physical memory addresses. The software subject to

the attestation can contain indirect calls (e.g., function pointer), jumps (e.g., switch

statements) and recursive functions. The design given in the following sections

assumes a load-store architecture with fixed-length instructions (i.e., RISC), whose

return operations rely on link register usage.

Furthermore, the prover is considered to have an off-chip memory-constrained

hardware security module (HSM) that is attached to its system bus, which provides

access to necessary runtime information between the CPU and the prover’s memory.

The HSM (as depicted in Figure 4.2) has built-in hardware implementation of

runtime monitoring logic described in Section 4.4. The HSM has limited but its

4. Design of a Hardware Module For Runtime Attestation 61

own memory resources, mainly hosting a static runtime integrity model (RIM)

of the program subject to attestation. This static model, described in detail in

Section 4.3, is provided by the verifier and loaded into the HSM at deployment time.

HSM’s memory also contains some dynamic bits to keep track of the execution

context and the number of calls made from each function. These bits collaborate

with the static part to monitor the runtime integrity of the program. While the

information on the bus provides information on how the prover’s software executes,

the HSM is considered to have a basic attestation API that reports the device’s

status to the verifier. The HSM keeps a key (sk) that never leaves its internal

memory and is used to sign the attestation responses.

4.2.2 Adversary Model

Prior to the attestation, the adversary has access to the source code, binary and

RIM. External resources are available to collect or record any protocol activity for

later use. Only software attacks targeting memory are considered, while physical

attack capabilities on both the prover device and the HSM are beyond the scope

of this chapter. The adversary has the ability to write an arbitrary value to an

arbitrary memory address. He can modify the program code and can revert it

back to the original state (i.e., code attacks). He can also manipulate the program

execution by corrupting control data (i.e., code-reuse attacks) on dynamic memory

regions, though the adversary cannot affect the HSM’s internal state and the verifier.

The ultimate goal of the adversary is malicious execution on the prover without

being noticed by the verifier. Acting on the prover, the adversary can try to

hide attack artefacts from the HSM. If this is not possible and the HSM has

already detected an attack, the adversary may attempt to prevent the genuine

reports from being received by the verifier and replace them with counterfeit

but acceptable ones. The adversary can arbitrarily call the HSM’s API to learn

about the HSM’s internal state or to generate signed attestation reports for later

use. The adversary can intercept and modify any messages on the network or

replay the responses sent earlier.

62 4.3. Design of Runtime Integrity Model (RIM)

1 struct user_info {
2 int user_id;
3 int role_id;
4 int authenticated;
5 } user = { 0, 0, 0 };
6
7 void authenticate(void∗ func_ptr){
8 char user_name[10];
9 char user_pwd[10];

10 int msg_type;
11 ...
12 /*arbitrary memory write bug*/
13 ...
14 check(user_name,user_pwd);
15 if (user.role_id==2)
16 func_ptr=&priv_session;
17 ...
18 switch(msg_type){
19 ...
20 }
21 }
22
23 void login() {
24 void (∗create_session)(int)=&unpriv_session;
25 while (!user.authenticated){
26 authenticate(func_ptr);
27 }
28 (∗create_session)(user.user_id);
29 return;
30 }

Figure 4.3: Vulnerable program code that can form a basis to different attack scenarios.

4.3 Design of Runtime Integrity Model (RIM)

Prior to deployment, the verifier extracts a runtime integrity model (RIM). This

model approximates the benign executions that the code can have. It is stored

by the HSM internally and is used as a reference model to check whether the

information captured at runtime through the system bus complies with the expected

behaviour. This is a two-layered static program model centred around the call

graph. The main control layer models legitimate control transfers amongst program

functions such as calls and returns. The second layer enables coarse-grained checks

on memory accesses, for instance, checking whether a function is allowed to access

4. Design of a Hardware Module For Runtime Attestation 63

`ena_p�_]hh

-23��

`]p]�]pp]_g��

napqnj

]qpdajpe_]pa

`ena_p�_]hh

ej`ena_p�_]hh

ej`ena_p�_]hh

na]`

?KL��

hkcej

napqnj

lner[oaooekj

napqnj

qjlner[oaooekj

hk_]h

r]ne]^hao

hk_]h

r]ne]^hao

na]`

hk_]h

r]ne]^hao

hk_]h

r]ne]^hao

chk^]h�

r]ne]^hao

snepa

napqnj

_da_g

hk_]h

r]ne]^hao

ata_

hk_]h

r]ne]^hao

iaiknu�]__aoo

_kjpnkh�pn]joban

ej`ena_p�

fqil

snepa

na]`

bbbb

523��

Figure 4.4: Runtime integrity model (RIM) of the vulnerable code in Figure 4.3 with
potential attack scenarios illustrated.

global variables or caller frames on the stack.

To explain RIM and to exemplify the possible attacks covered in Section 4.6.3,

we will use the example code in Figure 4.3. The given code assumes a vulnerable

login mechanism that can form a basis for different attack scenarios. The code

illustrates two functions login and authenticate using global user_info variable for

login status. The former function implements the core logic and creates a user

session, whereas the latter function, which checks the credentials and sets the

necessary info, contains a bug that provides an arbitrary memory write capability to

the attacker. Despite the details omitted, authenticate function has an indirect jump

(e.g., switch statement). A corresponding RIM of this code, which is elaborated

in the following sections, can be found in Figure 4.4.

64 4.3. Design of Runtime Integrity Model (RIM)

4.3.1 Static Model

The RIM has different node and edge components to guide the HSM on what

action is required for each instruction. As seen in Figure 4.4, nodes illustrated with

squares correspond to function blocks, while the solid directed edges represent control

transfers between them. These constitute the main control layer of the model. The

secondary data layer is depicted by circle-shaped nodes describing local and global

data scopes and dashed directed edges representing memory accesses to those.

4.3.1.1 Control Layer

The control layer has two components: function blocks and control transfers. Each

function block is described as an address range consisting of the beginning and end

instructions. A control transfer edge corresponds to an instruction that can change

the active function (call) block. This can be a direct call, indirect call or return

instruction, which all make the call-return graph of the program. Those edges carry

address information of target instructions as permitted destinations. Although they

already correspond to the beginning of function blocks for call transfers, return

destinations are represented by the addresses of call sites. Additionally, for a

function block that contains an indirect jump, e.g., switch statement, the RIM

considers a self-referencing edge to the same function block unless the function that

contains it is the longjmp function. This is because such instruction cannot branch

outside the function in a regular scenario. If there is a non-local jump due to the

setjmp/longjmp instance, the RIM adds an inter-procedural edge from the longjmp

function to the function blocks that calls setjmp function. For practicality, RIM

does not represent control transfers at the basic block level, such as unconditional

or conditional jumps, the destinations of which are already hard-coded. These

control instructions cannot be exploited without modifying the code, which would

be an attack scenario that our scheme promises to detect as a code attack, as

explained in Section 4.4. Although hard-coded direct calls cannot be exploited

as well without code corruption first, they are represented by the RIM to keep

track of the execution context at the function level.

4. Design of a Hardware Module For Runtime Attestation 65

4.3.1.2 Data Layer

RIM has an additional layer that describes a coarse-grained model of legitimate

memory accesses that must be observed at runtime. This data layer consists of

variable groups and memory accesses. RIM assumes that only the host function

can access its local variables (i.e., call frame) unless a variable address is shared as

a call-by-reference argument with a callee function. Second, despite the availability

of global variables to the whole program, the code can statically describe which

functions should legitimately access them.

These two layers provide a static approximation of legitimate program executions.

Therefore, an attack that deviates from the expected control flow or violates given

data access policies can be reported.

4.3.2 Dynamic Extensions

Validating program runtime according to a static model is inevitably subject to over-

approximation limitations. More specifically, for a function that can be legitimately

called from different (caller) functions, a stateless call graph does not precisely

specify the exact function that the callee must return at runtime. An attacker can

thus replace the return address of the original (caller) function with another function

that the graph permits. A shadow stack (hosting the copy of return addresses) is

typically used to differentiate such cases and achieve more precise return integrity

through comparisons of shadow and actual return addresses. However, in the case of

recursive functions, a shadow stack cannot be accommodated in a hardware module

with limited memory resources. In this work, we extend RIM with call counters

to attest return addresses with better precision without asking for unbounded

memory resources. Each function has a counter value that is set to zero by default.

This counter is incremented for a call made from and decremented for a return to

that function. Since every caller would be returned in a regular scenario, those

counters must be zero at the end of a legitimate program execution. The verifier

can check whether these counters are compliant or not, depending on the last

66 4.3. Design of Runtime Integrity Model (RIM)

^]v

^]nbkk

i]ej

YRLG�ED]��^�

����GR�VWK

`�

YRLG�EDU��^�

��ED]����

`�

YRLG�IRR��^�

��ED]����

��EDU����

`�

YRLG�PDLQ��^�

��IRR����

��EDU����

`

_kjpatp6� � i]ej�L�bkk�L�^]v�J�bkk�L�^]n�L�^]v

*

�� $-(-(-(,%

atla_p]pekj6� ^]v�J�^]n�J�bkk�J�i]ej

*

���������������������������� $,(,(,(,%

]pp]_g�$-%6� ^]v�J�bkk�J�i]ej

*

��������������������������������������� $,(,(-(,%

]pp]_g�$.%6� ^]v�J�^]n�J�i]ej

*

��������������������������������������� $,(-(,(,%

=�L�>6�bqj_�=�_]hho�bqj_�>

*

�

=�J�>6�bqj_�=�napqnjo�pk�bqj_�>

*

�

Figure 4.5: A program whose functions can be called by different callers depicts code-
reuse attack scenarios that would have remained undetected without call counters.

instruction executed. Any inconsistency would reveal attacks that could have stayed

unnoticed by a pure graph-based approach.

To illustrate how these counters would enhance the scheme, Figures 4.5 and 4.6

depict two synthetic examples with aligned call graphs. At the bottom of each,

directed arrows represent call and return instances of their crafted traces. context

traces describe the current call stack of each program execution, whereas expectation

traces show how the executions should complete. Both figures provide example

attack traces that pure call-graph based checks would miss. Specifically, Figure 4.5

illustrates scenarios that the attacker returns to a different function (e.g., baz←foo)

that is different from the expected one (e.g., baz←bar). Figure 4.6 presents a

program with indirect recursion (e.g., foo1→bar1→baz1→foo2) where the attacker

can return to a different frame context on the stack, which is depicted by the

numbers, while skipping some expected returns. Thanks to these call counters

information, most control attack executions that would be compliant with a static

call graph can be revealed.

4. Design of a Hardware Module For Runtime Attestation 67

^]v ^]n

bkk

i]ej

YRLG�ED]��^�

��IRR����

`�

YRLG�EDU��^�

��ED]����

`�

YRLG�IRR��^�

��EDU����

`�

YRLG�PDLQ��^�

��IRR����

`

_kjpatp6� � i]ej�L�bkk

-

�L�^]n

-

�L�^]v

-

�L�bkk

.

�L�^]n

.

�L�^]v

.

�L�bkk

/�

$-(.(.(.%

atla_p]pekj6� bkk

/

�J�^]v

.

�J�^]n

.

�J�bkk

.

�J�^]v

.

�J�^]n

.

�J�bkk

-

�J�i]ej� $,(,(,(,%

]pp]_g�$-%6� bkk

/

�J�i]ej� � � � � � � � � � $,(.(.(.%

]pp]_g�$.%6� bkk

/

�J�^]v

-

�J�^]n

-

�J�bkk

-

�J�i]ej� � � � � $,(-(-(-%�

=

-

�L�=

.

6�bqj_�=�na_qnoerahu�_]hho�bqj_�=�

=

.

�J�=

-

6�_]hhaa�=�napqnjo�pk�_]hhan�=�

Figure 4.6: An example program whose functions constitute an indirect recursion depicts
code-reuse attack scenarios that would have remained undetected without call counters.

4.4 Runtime Monitoring and Attack Detection

With the RIM loaded at deployment time, our hardware security module (HSM)

connected to the prover’s bus becomes ready to monitor the integrity of both program

code and execution. As depicted in Figure 4.2, address bus provides instruction

and variable addresses. The bi-directional data bus carries instruction (opcodes,

operands) and variable (value) contents from memory, while the control bit indicates

the access type. The HSM uses control and address bits to ensure that program code

is not corrupted. More importantly, the address bus informs about where control

transfers jump to and memory operations access to. On the other hand, data bus

values are used to identify what instruction is being fetched. Using bus information

as the runtime input and the RIM as a reference model, the HSM is designed to

measure and check whether both code and its execution are in a good state.

4.4.1 Runtime Integrity Checks by the HSM

In order to follow up the prover’s execution, HSM’s monitoring logic is considered

to have six different modes, each of which should complete its task in a single bus

cycle (see Figure 4.7). These modes constitute a finite automaton, where each mode

68 4.4. Runtime Monitoring and Attack Detection

corresponds to an automaton state. The HSM starts with Dispatcher as the default

mode. Depending on the instruction on the bus, this mode causes the HSM to switch

to the relevant task mode, as the name implies. These task modes are designed

to monitor the compliance of control flow transfers and memory accesses with the

RIM. If an integrity violation is detected, the HSM sets the appropriate attack

flag and stops further monitoring. The HSM has three additional persistent modes

to distinguish and report different attack scenarios. Code attack implies the code

addresses are illegitimately accessed or corrupted. Control attack means a divergence

from the expected call-return graph and Data attack indicates unexpected memory

access to either global data or higher stack addresses (i.e., callers’ frames). If the

HSM is switched to any of these attack modes, it maintains that state and waits for an

attestation request to report the attack details. The verifier needs to perform a hard

reset on the HSM to restart the process in a clean state. Figure 4.8 illustrates the

bus-cycle based logic of each mode, of which detailed explanations are given below:

Dispatcher. This mode first identifies the range of every address seen on the bus.

For an address pointing data regions, this mode does not take any action and waits

for the next bus cycle. In the case of a code address, it first confirms that the

control line has a read signal as write access would mean the corruption of program

code. For read access, this mode identifies the instruction type fetched. If the

instruction is one of the control transfer instructions or a store/load operation that

needs special treatment, it switches to the appropriate task mode. Otherwise, it

maintains the same mode and waits for the next cycle.

If a call is made to a hard-coded address, the HSM switches to Direct Call

mode. In case of an indirect call instruction, whose callee address is given by a

register, HSM mode changes to Indirect Call. In contrast, when the instruction

is a return instruction as a backward-edge control transfer, the HSM switches

to Return mode. If the instruction is an indirect jump, the target of which is

not hard-coded, the mode changes to Indirect Jump. The HSM does not have

a special treatment for direct jumps or any conditional jump instructions since

4. Design of a Hardware Module For Runtime Attestation 69

exploiting them requires the code to be altered first. Lastly, if a memory instruction

is encountered, the HSM switches to Store/Load mode.

Direct Call. This mode is responsible for keeping track of the execution context

on the RIM graph. Following a call instruction, the address in the next bus cycle

should be an entry address of a function block known by the RIM (edges). This

mode gets the call address on the bus and locates it on the RIM to update the

active function node. But prior to the update, it increments the call counter of the

function. In addition, this mode handles setjmp and longjmp calls with special care

if the target address belongs to any of these. It stores a copy of the call counters

in an array structure within the HSM for a setjmp call. Later, this array of call

counters are used to update the original counters if a longjmp call is encountered.

Indirect Call. This mode works very similar to the previous mode. Differently, it

ensures that an indirect call such as a function pointer used is to call a permissible

function target, not an arbitrary instruction or a function in the code. It first

increments the call counter. Then, it checks whether the address on the bus is a

defined edge by the RIM, which is also the first instruction of a permitted function.

This is because we cannot allow an indirect call target to be an arbitrary instruction

of the target function. Otherwise, the HSM sets the control attack flag if the

model does not recognise the destination address.

Return. The HSM employs this mode to check the integrity of return addresses.

When a return instruction is on the bus, this mode checks whether the target

address in the next cycle belongs to one of caller sites (i.e., return edges) defined

by the RIM. If not, it sets the control attack flag. Otherwise, it changes the active

function context and decrements its call counter.

The call counters mentioned in Section 4.3.2 are managed by these three modes to

achieve more precise return address checks. Since a stateless graph-based approach

would not notice the attacker that returns to a different function, these counters aim

70 4.4. Runtime Monitoring and Attack Detection

iaiknu�

]__aoo

snepa�]__aoo�

_]hh��]^o

@eol]p_dan

qj`a|ja`��

^u�pda�cn]ld

Napqnj

kqpoe`a��

bqj_pekj�n]jca

Ej`ena_p�Fqil

qj`a|ja`�

^u�pda�NEI�

Ej`ena_p�?]hh

_]hh�nac

fil�nac

nap

@ena_p�?]hh

_k`a�

n]jca�

qj`a|ja`��

^u�pda�NEI

Opkna+Hk]`

�

�

�

@]p]�

=pp]_g

?k`a�

=pp]_g

?kjpnkh�

=pp]_g

Figure 4.7: Bus-cycle based process automaton of HSM using RIM.

to approximate the shadow stack precision that would normally require unbounded

memory resources in the presence of different recursive function patterns.

Indirect Jump. The HSM uses this mode to check indirect jumps (e.g., switch

statement) that do not link a return. In a regular scenario, we expect jump targets

to remain within the existing function. An exception to this would be indirect

jumps made by the longjmp function. If the active context belongs to the longjmp

function, it checks whether the target address is one of the setjmp sites defined

by the RIM. Otherwise, it sets the control attack flag.

We remind the reader that direct jump instructions, both conditional and

unconditional, are not monitored, as their targets are given from the code and

cannot be exploited without touching the code, which is also attested by the HSM.

Store/Load. This mode performs scope-based checks to report arbitrary memory

access attempts. It defines constraints on the address range in which a memory

instruction can operate. First, it ensures that the program code does not write

address range given by the verifier itself, which is necessary to catch code corruption

scenarios. We note that legitimate self-mutating code instances are not considered.

Therefore, the HSM sets the code attack flag if the operand address of a memory

4. Design of a Hardware Module For Runtime Attestation 71

instruction falls within the code range specified at deployment time. Apart from

this, the mode follows up two coarse-grained policies defined by the RIM for each

function block. It seeks two requirements that must be fulfilled: The first one is that

a function without any global/heap variable use should not access non-stack address

ranges at runtime. If such function illegitimately overwrites/reads global addresses,

the HSM sets the data attack flag. Second, for a function that does not accept

any call-by-reference arguments, all stack accesses must stay within the current

call frame, more precisely, accesses above the current frame are described as a data

attack during the execution of such a function. To perform this check, the HSM uses

the active frame pointer address, which is also extracted by the mode. Because the

frame pointer is also saved and restored by a store (push) and load (pop) instruction

at function prologue and epilogues, this mode also keeps the copy of the frame

pointer within the HSM. For this update, the mode uses the data address accessed

during the frame pointer push and the data value read during the pop operation.

Although the details can vary depending on the architecture and calling convention

in use, it takes the offset of any non-register arguments into account.

4.4.2 Attacks Coverage

The HSM’s monitoring logic is designed to reveal different attack classes: The first

class is the attacks that corrupt the original program code. Thanks to Dispatcher

and Store/Load modes, the HSM describes any overwrite of the given code address

range via a memory instruction from that range as a code attack. This provides

strong code integrity attestation for embedded systems that lack architectural

support for code and data separation, i.e., write-xor-execute (W⊕X). In addition,

thanks to continuous monitoring, it promises to capture TOCTOU attacks that

would normally have remained unnoticed between two attestation windows.

The second attack class covered is control attacks such as code-reuse and less

sophisticated code-injection scenarios, where the primary target of the attacker

is control data, such as code pointers. The HSM confirms that any instruction

updating the program counter with a potentially corrupted value sets the counter

72 4.4. Runtime Monitoring and Attack Detection

Figure 4.8: Detailed process flow of HSM’s runtime monitoring logic that check RIM
compliance at each bus cycle.

4. Design of a Hardware Module For Runtime Attestation 73

to a permissible instruction defined by the RIM. This includes both backward-

edge return addresses (ROP) and forward-edge targets such as indirect call (COP)

addresses. We do not worry about direct conditional and unconditional jumps since

their destination addresses are hard-coded and cannot be altered without a code

attack first. To start executing an injected code from non-code address range or

to reuse already existing instructions, the attacker must take over at least a single

code pointer. This should eventually cause a divergence from the RIM and will

be captured by the HSM as a control attack. For a better reduction of the attack

surface, call counters reveal side cases where the attacker crafts return addresses

with options that do not diverge from the call-return graph. Despite not being as

precise as shadow stacks that preserve the order of calls, call counters significantly

reduce the options for the attacker that would be given by a stateless graph. The

HSM also checks the constraints described by the RIM for both intraprocedural

and interprocedural indirect jumps to reduce usable attack gadgets.

In addition, our scheme considers data attacks that reuse the code without

altering code pointers. We remind the reader that complete coverage of data

attacks normally requires either memory safety or expensive fine-grained data-

flow integrity checks, which is a non-trivial task to perform with HSM’s limited

resources. Therefore, the HSM offers only coarse-grained checks. These checks

aim to catch accesses to global data by a function without any expected use or

accesses to the callers’ frames by a function that does not take any reference/pointer

arguments. Memory accesses that do not comply with those constraints would

thus be reported as a data attack.

4.5 Protocol Overview

This section presents a protocol design that assures the verifier receives a genuine

report through an infected device and untrusted network. We consider that, at

any moment, the verifier can make a request to learn about the prover’s internal

state. As seen in Figure 4.9, when the prover receives an attestation request

containing a fresh nonce value N generated by the verifier, the prover calls the

74 4.5. Protocol Overview

V
Verifier

P
Prover

N ← Nonce()
N

(FCode, FCtrl, FData, D, ACC , T) = Attest(N)
where
T = MACsk(FCode∥FCtrl∥FData∥D∥ACC∥N)

FCode, FCtrl, FData, D, ACC , T

Verify(T)

Figure 4.9: Overview of the remote attestation protocol reporting any attack flags and
auxiliary information to the verifier.

Attest(N) provided by the HSM’s API. Then, the prover needs to send back its

output as the attestation response to the verifier. The response consists of code

FCode, control FCtrl, data FData attack flags, diagnosis information D about the

state prior to the attack, which consists of two registers holding the last executed

instruction address and the destination address attempted by a control or memory

instruction and the array of call counters ACC . We remind the reader that HSM

stops further monitoring in case of an attack flag is set. Therefore, the response

provides information to the verifier to reason about the instruction exploited and

the intended target. Additionally, each response contains a tag T of which all the

information and the sent nonce are signed with a MAC scheme. Upon receiving the

attestation response, the verifier verifies the tag using the shared key with the HSM.

While the key (sk) ensures the authenticity of the message, the tag—digesting

nonce N , flags and counters—guarantees the freshness and integrity of the response.

The verifier can then check flags and counters to decide about the existence of

an attack. FCode flag means a code attack. FCtrl and FData flags imply a runtime

attack scenario, where the former states a control hijack while the latter tells us

there is a data access that violates the policies stated by the RIM. Only if all

4. Design of a Hardware Module For Runtime Attestation 75

flags are negative and call counters are zero/compliant as expected, the verifier

can conclude the prover is in a healthy state.

4.6 Security Analysis

To successfully compromise the prover without being detected by the verifier,

the adversary must either hide the attack artefacts from the HSM or forge a

valid attestation response when queried by the verifier. This section analyses

these possibilities, with an evaluation of the attacks captured by the RIM on

a concrete example.

4.6.1 HSM Attacks

Due to the bus integration, every instruction executed and data transferred from/to

memory will be monitored. Because physical attacks (e.g., probing) are excluded, any

attack has to go through the bus and will be accessible by the HSM. The adversary

should modify either the code or its control flow for an attack. Alternatively, the

attacker can attempt to find a flaw in HSM’s monitoring logic.

Regarding the first option, if the adversary uses a memory instruction from

the given range to modify the code itself, HSM will report those as code attacks

thanks to Store/Load mode. Hijacking control flow as a code-injection or -reuse

attack is also not practical since the attacker’s execution must comply with the

RIM. But RIM put constraints on all control instructions, the target addresses of

which might reside on dynamic memory regions. Indirect Call, Return and Indirect

Jump modes guarantee that the program counter is always set to an instruction

address described by the static model. Additional call counters cover scenarios

that might exploit the imperfections of the static return edges. Considering the

constraints defined by Store/Load mode, the attacker’s ability to manipulate control

flow via data attacks is also reduced. As a result, the HSM would catch the attacker

for a scenario that does not comply with the RIM.

Regardless of the compliance with the RIM, for an attack targeting HSM’s

monitoring logic, the adversary must find a bug/flaw that can alter the RIM or

76 4.6. Security Analysis

dynamic states within the HSM. However, this is unlikely because the monitoring

logic implemented as hardware would be free from software vulnerabilities providing

too much scope to the attacker with arbitrary read/write capabilities.

4.6.2 Protocol Attacks

When altering the HSM states is not possible, the only option left to the adversary

is to prevent the verifier from seeing the genuine violation flags. To accomplish

this, the adversary has to return a valid response to the verifier’s request. If the

prover does not respond, the verifier will conclude the prover is compromised.

Therefore, the adversary cannot simply block a message or remain silent after

compromising the prover. There are only two ways an adversary can send a valid

response: either replay a previously captured response or craft one from scratch.

We look at each of these in turn.

MAC provided with the response (Figure 4.9) contains a nonce picked by the

verifier. Thus, to replay the response message, the adversary would either have

to force the verifier to use the same nonce twice or predict what nonce is going

to be used and query the prover ahead of time before compromising the prover

to obtain a clean response. This is only possible with negligible probability since

we do not allow the adversary to compromise the verifier, and the nonce is chosen

securely (i.e., uniformly from a large domain).

Thus, to return a valid message, the adversary must create it from scratch.

However, the message must be authenticated using a key kept in the HSM, which

the adversary cannot obtain by assumption. Therefore, to forge the message, the

attacker has to break the existential unforgeability property of the underlying MAC

scheme, which can be done only with negligible probability.

4.6.3 A Concrete Example

This section discusses the effectiveness and limitations of our scheme against attack

scenarios that could be performed using the code in Figure 4.3. A powerful attacker

exploiting the arbitrary memory write primitive given in line 12 would have different

4. Design of a Hardware Module For Runtime Attestation 77

options: For example, as a control attack, he can replace the awaiting return address

on the stack, which should normally point to the call site at line 26, with the address

of a different function ❶ such as priv_session. Or he can alter the target address of

the indirect jump generated by the switch statement in lines 18-20 to perform a

jump to any instruction, such as line 28 or the priv_session function ❷ as a desired

outcome. Alternatively, he can corrupt the function pointer defined at line 24 with

the address of a critical system function ❸ (e.g., exec). Also, he can modify global

user_info elements defined at lines 5 as a data attack example ❹ that would help to

create a privileged session without any legitimate authentication. For any of these

scenarios, the HSM would set the corresponding attack flag, as they all constitute

a deviation from the RIM graph depicted in Figure 4.4.

In terms of limitations, we note that RIM cannot approximate all legitimate

executions with full precision, like any static model. For example, if the attacker

replaces the address of unpriv_session with the address of priv_session, the HSM

would have to give a pass to such a scenario, as both are valid targets according

to the model. Or our scheme does not have much to do if the attacker performs

a meaningful attack by exploiting the indirect jump of authenticate while staying

within the range of the function. Identifying such attack scenarios is not possible

without the knowledge of program input, which is a known limitation for any static

approach. For completeness, we also highlight that our coarse-grained checks on

memory accesses leave room for a data attack scenario targeting stack variables at

higher frames from a function that has at least a single call-by-reference argument

or an attack targeting another local variable within a function. Detection of such

data attacks requires more fine-grained checks such as DFI [4], which cannot be

accommodated in a hardware module with very limited resources.

4.7 Performance

The HSM is designed to operate in real time while the prover keeps running.

We remind the reader that the prover has a general-purpose CPU and enough

memory resources to host call frames of recursive functions. In contrast, the

78 4.7. Performance

Table 4.1: Relevant metrics extracted from different bare-metal examples for the
approximation of size and search complexities of runtime integrity models (RIM).

Instructions Functions Highlights Per Function

Count Call[%] Ret[%] Count Avg-Call Avg-Ret Max-Call Max-Ret

jtag 165 12.1 1.8 5 0.8 3.3 3 10
bootldr 554 12.8 2.7 17 1.3 3.4 6 8
zlib 9068 2.6 1.3 57 1.4 2.7 8 19

HSM has limited memory and serves a specific purpose, for which its hardware

is tailored. For a practical attestation scheme, both the memory usage and the

complexity of the HSM tasks should comply with its resource constraints without

degrading security guarantees.

In terms of memory requirements, the HSM must provide enough space to host

the RIM and call counters. The size of the RIM can be defined as O
(
n + e

)
, where

n is the number of nodes and e is the number of edges in the model. The former

corresponds to the number of functions, whereas the latter is mainly defined by the

number of call edges from a caller function to distinct functions and the number of

return edges to different call sites. We note that both (intraprocedural) indirect

jump and memory access edges illustrated in Figure 4.4 do not scale up per function

nor increase the complexity of the RIM since their checks are not address-specific.

Hence, the number of functions and call-return relations between them represent

the main cost of the static model. For the dynamic part, the space required by

call counters is also defined by the number of program functions, regardless of

the depth or recursiveness the call stack might have at runtime. Despite being

program-specific, we can approximate the memory requirement of a RIM as a

function of the program size. To provide insight into such an evaluation, we have

analysed three bare-metal examples of different sizes. Those binaries are JTAG,

bootloader and compression library implementations with components including

UART, Adler, CRC32 checksums and memory allocators. Table 4.1 summarises

the number of instructions and key RIM components found in those instances. We

highlight that RIM, centred around the program’s call-return graph, provides a

4. Design of a Hardware Module For Runtime Attestation 79

more succinct representation of the binaries with smaller sizes. For instance, zlib,

as the most complex example consisting of more than 9K instructions, is modelled

using a far less number of components with 57 function blocks (address ranges) and

an average of 1.4 call and 2.8 return (address) edges per function. With an average

of 14% model size to binary size ratio, RIM requires reasonable memory resources.

Regarding the complexity of HSM tasks, each depicted mode has a different

process flow. Many modes such as Dispatcher, Indirect Jump, and Store/Load fulfil

their tasks within constant time. On the other hand, Direct Call, Indirect Call and

Return modes perform a linear search task whose cost is normally defined by the

degree of active function node in the RIM. However, those searches are expected to

be bounded in practice due to the limited number of functions. For instance, zlib,

as the most complex bare-metal instance examined, does not include any function

block with more than eight call edges and less than 19 backward edges, as shown

in Figure A.3. Similar to previous attestation proposals [6, 150], those searches

can be parallelised using a content-addressable memory (CAM) buffer that would

host the data of the active function block and complete the search in constant time.

We highlight that each mode aim to complete its task within the same bus cycle.

To perform these tasks in real time, we consider a non-generic hardware-based

implementation such as FPGA for the monitoring logic described in Figure 4.8.

Implementing the monitoring logic at a lower abstraction layer would allow HSM

to process much faster. The entire process of each mode could be completed in a

single tick of the FPGA’s clock, as there is no data dependency that would block

the completion of given HSM tasks (modes) within that bus cycle.

4.8 Discussion

Despite the off-chip proposal in this chapter, we highlight that our monitoring logic,

as the core contribution, can be instantiated through different architectures. For

example, recent VRased architecture [65, 67, 68] extend OpenMSP430 with an

on-chip hardware module (HW-Mod) for attestation purposes. This module extracts

similar information directly from the MCU core instead of the device bus, and

80 4.9. Summary

generates control-flow traces for the verifier [8]. Extending VRased to implement our

monitoring logic instead of a trace-based approach would be an interesting direction

to explore. Alternatively, similar to the recent work DExIE [152] that suggests

enforcing control flow integrity as part of pipelining, our monitoring logic can be

adapted to the core. Or customisable microcontroller platforms (e.g., discontinued

AT91CAP7 series) that can provide native MCU-and-FPGA integration via metal

programmable cell fabric [153] and faster FPGA interfaces [154] can be considered

as other options to instantiate our runtime monitoring logic. Due to economies of

scale, such devices with more promising costs (e.g., $6-13 [155]) in large quantities

could be used to target even non-critical domains, where the additional cost of

a module might be more difficult to justify.

Although each approach has different use cases, validating the compliance

of runtime based on a static model using minimum resources and hardware-

implemented logic poses similar research challenges, which makes this chapter

and its contributions relevant to different architectural adaptations.

4.9 Summary

This chapter presented a novel attestation approach to report attack scenarios that

can violate the code and execution integrity of critical embedded systems. This

approach is based on a conceptual hardware module (HSM) loaded with a static

lightweight model (RIM) of the program. Unlike conventional attestation schemes,

our approach can capture TOCTOU scenarios that exploit temporal gaps between

two verifier-triggered measurements for code replacement and corruption.

In addition to code attestation, our scheme offers an attestation mechanism

that measures how the legitimate code is executed according to the reference

model (RIM). Therefore, without having to accumulate runtime traces, which incur

significant storage and communication overheads, or without having to digest them

into a single hash, which makes the verifier subject to path explosion problem,

our approach can reveal both code and code-reuse attacks to the verifier. As the

main components of the scheme, both runtime integrity model and the monitoring

4. Design of a Hardware Module For Runtime Attestation 81

logic are designed in a way that the attestation can be achieved using a memory-

constrained hardware module.

82

“Trust dies but mistrust blossoms.”

— Sophocles

5
Identifying Critical Variables for
Lightweight Runtime Protection

With a focus on control flow, the previous chapter suggested only coarse-grained

checks against data attacks, as it is difficult to provide complete assurance (i.e., data-

flow integrity) against those attacks using a resource-constrained hardware module.

This chapter explores this issue further in a non-attestation context and presents

a lightweight approach that can address data-oriented attacks with less resources

and overheads. For this purpose, it describes a novel method to identify and check

data variables that are critical to runtime correctness. Instead of inspecting every

variable or memory access, our method is concerned only with the ones whose values

are defined by trusted agents (e.g., the programmer), and ignores other non-critical

variables that are unlikely to be targeted by the attacker.

5.1 Introduction

Despite more than three decades of effort, memory bugs are still unsolved and

stay as the mother of all evils for computer security. Applications developed in

unsafe system programming languages such as C and C++ inevitably host many

of these bugs as their complexity and lines of code (LOCs) increase. High-level

languages (e.g., Java) aim to solve the issue by assuring memory safety at runtime.

83

84 5.1. Introduction

all program data

W⊕X

control data

TRUVIN

Memory Safety

critical program data

DFI

CFI

Figure 5.1: Coverage of different memory protection schemes.

However, they are not able to fully replace those unsafe programming languages

due to their performance penalties and inevitable dependencies on systems that

are also developed in unsafe languages (e.g., operating systems, JVM). Even if

there are attempts to make those languages safer, such as bounds checking [83,

156], they are often subject to similar performance costs.

Memory bugs (e.g., buffer overflow) can form a basis for control- or data-oriented

exploits. A control attack hijacks the program’s control-flow by taking over a code

pointer such as a return or an indirect jump address. Control-flow protections [2, 3]

(e.g., CFI), provided as a feature by modern compilers today, can effectively mitigate

control attacks. Despite their reasonable overheads (ca. 15%), these protection

methods do not cover data-oriented attacks, where the adversary corrupts (non-

control) program data without touching any code pointers. Data attacks can enable

the adversary to reach his goal in a different way, for example, by altering condition

variables that decide on the branch decisions.

A potential solution to data attacks needs a better approximation of memory

safety, as pictured in Figure 5.1. Such an approximation typically needs to

check the compliance of memory accesses with static data (flow) features of

5. Identifying Critical Variables for Lightweight Runtime Protection 85

the program, i.e., DFI [4]. Unfortunately, a software-based scheme can incur

impractical performance overheads (c.a. 104%) due to the checks on almost every

memory operation, while hardware-based schemes (HDFI [9]) suffer from substantial

deployment costs. For a lightweight and practical solution, we need targeted

approach that protects only program data critical to the runtime integrity. However,

this is a nontrivial task; because deciding on the criticality of a variable needs a

semantic understanding of the program source code, when not annotated by the

programmer. Oversimplifying the problem as protection of all condition variables [71]

would be incomplete, since there might be other variables directly used by sensitive

functions. In addition, some condition variables can be legitimately defined by

the user or environment, where integrity checks would be unnecessary. Despite

some targeted DFI proposals that use domain-specific knowledge (e.g., kernel error

codes [13]) or programmer annotations [14], there is a lack of a generic approach

for user programs. This chapter aims to address this problem by suggesting

a new approach to identify critical program variables, without having to fully

understand the program semantic.

This chapter presents TRUVIN, a lightweight software-based scheme to identify

critical program variables and to enable their protection selectively against the

exploits of memory bugs found in C-like programs. In principle, our scheme describes

program variables with values originating from trusted agents (e.g., the programmer)

as critical, in order to avoid redundant instrumentation or checks of non-critical

ones which are already controllable by agents that are potentially malicious.

The rest of the chapter is organised as follows. Section 5.2 explains our motiva-

tion, system and threat models. Sections 5.3 and 5.4 present the design of TRUVIN.

Section 5.5 provides details of proof-of-concept implementation on a concrete

example, whereas Section 5.6 discusses performance gains and security promises.

5.2 Problem Setting

Software-based data-flow integrity (DFI) [4] protections could not be widely adopted,

mainly due to high performance overheads. In contrast, hardware-assisted solu-

86 5.2. Problem Setting

non-critical var iable addresses with
untrusted values (e.g., values data
dependent on user /enviroment)

user input

Dat a M emor y

critical var iable addresses with
trusted values (e.g., values defined
by the programmer)

at tack
targets

Figure 5.2: Separation of variables as critical and non-critical based on trustworthiness
of their value agents.

tions [9] require expensive CPU changes despite their low overheads. Therefore, a

targeted software-based technique would be practical if instrumentation overheads

had been reduced. However, choosing the program data in need of primary protection

is a challenging task, which this chapter aims to address.

5.2.1 Motivation

For a DFI scheme [4] relying on reaching definitions analysis, performance overhead

is mainly defined by two factors. The first major one is instrumented memory

operations, most of which correspond to variable definitions or uses, and can be

roughly approximated from the number of program variables. The second minor

factor is the cardinality of reaching definitions sets that determines the search

cost for each memory read. In order to minimise the cost arising from both

factors, this chapter adopts a novel targeted approach that addresses data-oriented

attacks with far less overhead.

Since the overhead is assumed to be proportional to the number of memory

operations, our approach selectively checks the integrity of only variable values,

which are expected to be the primary attack objectives while avoiding redundant

instrumentation on others. To achieve this, at a broad level, our scheme classifies

variables into two groups as critical and non-critical based on the trustworthiness of

agents contributing to their values (see Figure 5.2). We formulate critical variables

as addresses hosting trusted values that originate from reliable agents such as

the programmer, for the given program point in a flow-sensitive setting. On the

other hand, non-critical variables are described as addresses containing untrusted

5. Identifying Critical Variables for Lightweight Runtime Protection 87

values that are directly or indirectly (i.e., data dependencies) defined by potentially

malicious agents such as users or the environment.

Because non-critical targets can be controlled even by legitimate users, the

adversary cannot benefit much from corrupting their values. For a typical data-

oriented attack, the adversary needs to overwrite some critical variable value

in a way that the legitimate program semantic (i.e., the programmer) does not

anticipate. Accordingly, untrusted agents (e.g., users) as potentially malicious

agents must not overwrite critical values directly or through data dependencies,

and must not have an impact on those beyond the legitimate semantic, i.e., control

dependencies only. Based on these insights into program variables, to minimise

the instrumentation overhead, we can avoid checking the integrity of untrusted

values hosted by non-critical variables, which are expected to be only preliminary

objectives, but not the ultimate attack targets.

5.2.2 System and Adversary Model

We consider the system to have code integrity, data execution prevention (W⊕X),

and control-flow [2, 3] protection. The system secures the instrumentation data

(i.e., shadow memory) through randomisation or other means such as (e.g., TEE).

We do not make any assumptions about how this is achieved. Although the program

code can contain memory bugs, the programmer’s intentions are correct, which

means the program is free of logical or semantic flaws. We assume that the program

enables us to precisely identify its variables via their corresponding instructions

(i.e., address operands, alias sets), and consider a flow-sensitive pointer analysis

that can accompany our approach. Orthogonal research problems such as inevitable

limitations of static approximations or other precision issues due to imperfections

of points-to analyses are not within the scope of this chapter.

The adversary’s goal is to modify any critical variable, i.e., a variable that holds

a trusted value, typically given by the programmer at compile-time. Trusted values

do not directly depend on any input that is potentially malicious, but are instead

mostly controlled by the program semantic to reflect changes in the internal state. In

88 5.3. Distinguishing Variables with Trusted Values

practice, an attacker could, for example, modify such a variable value by overflowing

non-critical variable addresses in the same stack frame. But we do not make any

assumptions about how corruption is achieved. The adversary has full control over

the value of all non-critical variables of the program. However, the adversary cannot

interfere with the instrumentation process, meaning that he cannot modify the

instrumented binary and shadow memory allocated to host the instrumentation data.

The attacker will also fail if any control data is disturbed, given that the system

assumes a perfect control-flow protection in place. The program does not provide

a pure information leakage scenario, where only confidentiality is compromised

without harming the data integrity.

This model captures data-oriented attacks extensively, including those corrupting

only a specific variable or more sophisticated Turing-complete DOP attacks. It

helps us not only to focus on lightweight mitigation of those attacks but also lets

other orthogonal problems’ solutions (e.g., isolation) be adaptable to our scheme.

5.3 Distinguishing Variables with Trusted Values

Program data should be derived from either external agents or through internal

program semantic. The semantic can bring two types of dependencies on external

data. The first true dependency is data dependency, where the outcome of an

operation is directly dependent on the operands of that instruction, e.g., the result

of an arithmetic operation is dependent on the operands. The second is control

dependency, which can be described as a situation where the execution of an

operation is conditional on the features of dependee data, e.g., a control structure

that compares a dependee variable against some value.

Therefore, our targeted approach in this chapter leverages the fact that program

data is control or data dependent on each other, the value origins of which have

to be either trusted or untrusted, while describing control dependencies as the only

legitimate interface to reflect trusted values from untrusted input. Figure 5.3 depicts

this core insight, which our work counts on. By identifying critical variables based

on the trustworthiness their value origins, this chapter first enables separation

5. Identifying Critical Variables for Lightweight Runtime Protection 89

program data

trusted origins

(e.g. programmer,

compiler)

untrusted origins

(e.g. user, environment)

data

 dependencies

control

dependencies

data

 dependencies

data

dependencies

Figure 5.3: Identification and propagation of trusted (critical) program data based on
value origins and program dependencies.

(isolation) of critical data from non-critical data. Then, it places fine-grained

integrity checks among the critical variables. For this distinction, we first perform a

novel static analysis on the program to identify critical variables that host trusted

values, which can be only control dependent on untrusted values.

5.3.1 Trust Sources and Propagation

Analysing the trustworthiness of variable values is two-fold: trust sources and trust

propagation. We formulate trust sources as origins that hold integrity guarantees

and assign their values via trustworthy processes such as variable (re)definitions

by the programmer. Because of the immutability of the code (where programmer

values/constants are stored) and basic assignment operation (undoubtedly free

of bugs), programmer-defined values introduce trust to the system. The analysis

module also allows one to define other trust sources. For example, the analyst

can define external trust sources (e.g., library functions), which are not part of

the program code. Also, the assignments from specific database or configuration

90 5.3. Distinguishing Variables with Trusted Values

files—considered to have integrity properties—and custom functions placed for

sanitisation can be stated by the analyst.

Apart from the sources that introduce trust, the analysis also propagates trust

through program statements to discover other emerging trusted variables, or the

ones of which trust vanishes. Propagation rules are defined conservatively for

different statement types as below:

• Assignment: If a trusted value is copied to another variable, the assigned

variable value is also trusted (e.g., t2 = t1).

• Unary Operation: If the operand of a unary operation is trusted, the result is

also trusted (e.g., t2 = −t1).

• Binary Operation: If both operands of a binary operation are trusted, the

result is also trusted (e.g., t3 = t1 + t2).

• Compare: If at least one of the comparison operands is trusted, the result

is also trusted (e.g., t3 = (u1 < t2)). (i.e., this exceptional rule enables

the programmer to use control dependencies as the interface/sanitisation

mechanism to reflect trust from untrusted values.)

• Call: If the function is a trust source, the function output (arguments/return)

is also trusted (e.g., t1 = f()).

If the function is a sanitising one, specified output is trusted (e.g. t2 = f(u1)).

If the function is a trust propagating one, based on the fulfilment of the

argument of the propagation rule, the specified output is trusted (e.g., a

function returning trusted value in case the first argument is trusted: t3 =

f(t1, u2)).

While being untrusted corresponds to the negation of all above; we deduce the

following from the given formulations and rules in a flow-sensitive setting:

1. a variable whose value is defined from the code-segment (i.e., programmer-

given) is trusted unless it is overwritten or poisoned by untrusted values.

5. Identifying Critical Variables for Lightweight Runtime Protection 91

Function analyseFunction(F)
Result: in, out sets
CFG←getTopoSort(F);
worklist← {CFG[0]};
while worklist ̸= ∅ do

n← worklist.pop();
out′ ← out[n];
foreach p ∈ pred[n] do

in[n]←
⋂

out[p];
end
visitInstNodeAndUpdateSets(n);

out[n]← gen[n]∪(in[n]−kill[n]);

if out’ ̸= out[n] then
foreach s ∈ succ[n] do

if s ̸∈ worklist then
worklist.push(s);

end
end

end
end

(a) Function-wise trust propagation.

Function analyseProgram(P)
Result: trust sources, prop rules
CallGraph← getRevTopoSort(P);
foreach F ∈ CallGraph do

analyseFunction(F);
if F always returns trusted then

addAsTrustSource(F);
end
foreach arg in F do

in[entry][arg]← trusted;
analyseFunction(F);
if F always returns trusted

then
addPropagationRule(F ,arg);

end
end

end

(b) Extraction of call-based propagation rules.

Figure 5.4: Algorithms responsible for program-wide static trust propagation analysis.

2. a variable whose value is defined by a trusted function (i.e., a function always

returning programmer-given values or stated as trusted/sanitising) is trusted

unless it is overwritten or poisoned by untrusted values.

3. a variable whose value is defined by a propagating function and has a trusted

argument complying with one of the propagation rules is trusted unless it is

overwritten or poisoned by untrusted values.

4. a variable of which all data dependencies are on trusted values is also trusted

unless it is overwritten or poisoned by untrusted values.

5.3.2 Static Trust Analysis

To identify critical variables hosting trusted values according to the rules above,

we adopt a static flow-sensitive approach that uses the iterative data-flow analysis

framework [157], which is widely used to solve instances of data-flow problems.

The iterative framework first sets up data-flow equations for the control flow graph

92 5.3. Distinguishing Variables with Trusted Values

(CFG) nodes to represent their entry (in) and exit (out) states. Then, it solves them

at compile-time by repeatedly performing the abstract interpretation of program

statements until the whole system converges (stabilises). Abstract interpretation is

often defined by three parameters. The first is transfer function which simulates

the execution of the instruction(s) of each CFG node n. The second parameter is

the direction of the analysis (i.e., forward or backward). And the last one is join

operator, which can be either union (may) or intersection (must), stating how to

combine the property flowing from predecessor or successor nodes.

Since our protection requires fine-grained information about the memory op-

erations to be instrumented, for our analysis, each CFG node n corresponds to

a single instruction rather than using basic blocks. We formulate our transfer

function as follows:

f(n) = gen[n] ∪ (in[n]− kill[n]) (5.1)

where;

gen[n] is the set of introduced trusted values by the instruction in node n,

kill[n] is the set of values whose trust vanished by the instruction in node n,

in[n] is the set of trusted values at the entry of node n,

Because the trust originates from earlier statements (e.g., trust sources), it is a

property that flows forward, which gives the direction of our analysis. We choose

intersection as the join operator due to the exclusive definition of trust which is

inherently conservative. As a forward must analysis, our data flow equations become:

in[n] =
⋂

p∈pred[n]
out[p] (5.2)

out[n] = f(n) (5.3)

where;

5. Identifying Critical Variables for Lightweight Runtime Protection 93

out[n] is the set of trusted values at the exit of node n (p means predecessor).

For the outcomes of Equations (5.2) and (5.3) to be converged, we have used function-

wise worklist algorithm given in Figure 5.4a to solve the equations at function level.

For a program-wide analysis, this algorithm is applied to each function in the

reverse topological order of the call graph (i.e., bottom-up traversal). Therefore,

a caller function can use the result of the analysis of the called function for a

scalable interprocedural trust analysis. Functions with arguments run this algorithm

multiple times to evaluate the trust propagation of each argument to the function

output separately (assuming that the argument of interest holds a trusted value).

Based on discovered patterns on the function output such as the return values

and arguments called by reference, propagation rules are continuously created

during the bottom-up traversal of the call-graph. These rules describe which

function arguments can propagate its trust or whether the function can act as

a trust source even if none of the argument values is trusted. The created rules

enable the abstract interpretation of call statements for an interprocedural analysis.

as seen in Figure 5.4b. Upon completion of the bottom-up traversal of the call

graph, the program-wide analysis provides stable entry (in) and exit (out) states

for each program instruction. These sets inform us about the trustworthiness of

variable values on the given instruction/node. This information already encloses

memory instructions that must operate with trusted values, which corresponds

to the critical variable instructions.

Despite its interprocedural approach, the analysis is deliberately designed as

context-insensitive. Because the instrumentation code of a function should not

differentiate for different calling contexts, we have not considered a context-sensitive

trust propagation that would not benefit the transformation phase.

5.4 Detection of Data-Oriented Attacks

After instructions operating with trusted values are identified as critical, the program

is transformed in such a way that attacks modifying those can be detected.

94 5.4. Detection of Data-Oriented Attacks

1: def a;
2: def b;
3: whi le (condit ion x){
4: def a;
5: use a;
6: }
7: i f (condit ion y) {
8: def a;
9: def *p;
10: }
11: use a;

(a) example defs/uses.

inst5:use(a)

inst1:def(a) inst4:def(a) inst8:def(a)

inst11:use(a)

inst2:def(b)inst9:def(*p)

(b) DFI via reaching definitions.

addr(a):
addr(b):

memor y

cel l(*p):
cel l (a):

shadow cel l s

inst5:use(a)

inst1:def(a)

inst4:def(a)

inst8:def(a)

inst11:use(a)

inst2:def(b)

inst9:def(*p)

(c) value integrity via shadow cells.

Figure 5.5: Comparison of DFI relying on reaching definitions and the value integrity
scheme using shadow cells.

5.4.1 Value-Based Integrity Checks

DFI scheme proposed by Miguel et al. [4] is a pioneering technique to mitigate data-

oriented attacks. But this naive approach is not suitable for targeted protection only

specific variables because it has to record all memory writes first, regardless of their

legitimacy, to check whether runtime definitions comply with statically computed

reaching definition sets. Otherwise, corruption cannot be detected if the adversary

leverages a write instruction not recorded in the runtime definitions table (RDT).

For this reason, we adopt a different approach to make targeted instrumentation

possible. Instead of recording every write instruction, we check the value integrity

of selected variables by allocating a shadow cell to each. Shadow cells are designed

to store runtime values defined by legitimate instructions only. When a critical

variable is legitimately defined, the instrumentation updates its corresponding

shadow cell with the actual value written. When the same variable is used, the

instrumentation checks whether the actual value read matches the shadow value

recorded in the corresponding cell. If the values do not match, we can conclude

that there is an attack because the variable should have been overwritten by an

illegitimate instruction that is not statically computed. This approach substitutes

instruction-based DFI checks with implicit def-use pair (reaching definition) checks

bonded with variable values. Only one hypothetical scenario that would remain

undetected (compared to the instruction-based approach) would be overwriting a

variable value using the same existing value. However, the adversary cannot benefit

from such a scenario, as he obviously needs a different value to perform the attack.

5. Identifying Critical Variables for Lightweight Runtime Protection 95

Thanks to this value-based approach that allows for targeted instrumentation, our

proposal can thus avoid the overhead of checking non-critical variables. Besides, the

value-based integrity replaces the cost of searching on instruction sets (i.e., reaching

definitions) by a single value comparison. The only exception is pointers whose

dereferences may define the same variable of interest. We suggest allocating separate

shadow cells for data pointers to address such cases. In the event of a variable

definition via legitimate pointer dereference, the instrumentation records the actual

value written to the allocated pointer cell. Then, suppose there is a native use of

a critical variable. In that case, the instrumentation checks both native variable

and pointer cells for a matching shadow value. The search cost (i.e., the number

of shadow cells checked) in such a scenario cannot be more than the number of

pointers that may point to the given variable for the given program point. In

contrast, searching for reaching definitions has to consider both pointer-based and

native definitions that may reach from different control flow paths.

To explain how our value-based approach detects attacks and to discuss its

equivalence to a naive DFI, we will often refer to Figure 5.5 in the following section.

The first part (a) of this figure presents a fabricated code with different definitions

and uses of imaginary program variables a, b. The code has three direct definitions

(lines 1, 4 and 8) and two uses (lines 5 and 11) of a variable a. Also, it contains a

potential indirect definition of variable a via pointer p (line 9), and a vulnerable

instruction/function (line 2), which is supposed to define some other variable b, but

used to corrupt variable a as an exploit of some memory bug.

The second part (b) depicts legitimate reaching definitions for each use of

variable a (shown by black arrows) whereas a data attack scenario represents the

corruption of variable a via defining instruction of variable b (an attack highlighted

in red). The size of reaching definitions set also determines the search cost on

each use (e.g., use of variable a at line 10 requires four compares as worst-case

whereas the variable use at line 4 has only one).

In contrast, as illustrated in the third section (c) of the figure, our scheme

indirectly checks reaching definitions using shadow cells. Instead of maintaining

96 5.4. Detection of Data-Oriented Attacks

an RDT, for a legitimate variable definition (lines 1, 4, 8), the scheme additionally

creates a shadow value for the allocated cell of the variable (i.e., dotted outgoing

arrows from definitions). In case of a variable use (lines 5, 11), our scheme checks

whether the actual value loaded from the address matches the value previously

stored on shadow cells (i.e., dotted incoming arrows to uses). If these values do not

match, we conclude for a data-oriented attack since it means that an unexpected

(non-reaching) instruction—not statically computed—should overwrite the actual

variable address. For instance, if the adversary overwrites the variable a via

exploitable def b instruction (line 2), because the shadow value will not be updated

(due to the lack of instrumentation on def b or the instrumentation placed to update

a different shadow cell), unmatched values will reveal the attack at the time of use

of variable a (line 5 or line 10). Regarding value definitions via pointer dereferences,

the value integrity scheme holds separate shadow cells for them. For example,

def *p instruction (line 9) can legitimately define the value to be used by use a

instruction at line 11. The instrumentation of defining instruction at line 9 creates

a shadow copy for the allocated pointer cell, and the instrumentation of variable

use at line 11 compares for both cells of variable a and pointer ∗p regardless of

the actual memory address holding value.

Since the proposed technique relies on shadow values to detect attacks, one

concern may be the space requirements of composite variables such as arrays or

strings. Although we have not identified those structures entirely as critical during

our benchmark experiments, in such a case, we suggest using checksums to digest

consecutive elements of composite variables similar to our proposal in Chapter 4.

5.4.2 Scope

Our approach recognises the overwriting of a trusted (critical variable) value by a

non-critical variable instruction as an attack. Still, it deliberately ignores cases such

that a non-critical variable instruction corrupts some other non-critical variable

(e.g., modification of the user or environment input with the attacker payload).

While this design choice forms a basis to the desired performance gain, it can

5. Identifying Critical Variables for Lightweight Runtime Protection 97

lead to the corruption of non-critical variables with values that do not satisfy

path (semantic) constraints. However, the use of such occurrences for an attack

is unlikely due to the following. First, for branch decisions dependent on the

value or range checks of untrusted input, the control outcome would be already

transferred to another variable as a trusted value, before the corruption point.

Second, leveraging such state for the manipulation of control flow requires the

program to have semantically redundant control structures (e.g., duplicate check

within a nested control or loop structures). Otherwise, the program must have a

direct use (e.g., exec argument) of the corruptible variable, which ideally should

be hosting a legitimate user input, and a timely bug that can overwrite it between

its check and its use—which would be a rare scenario.

Considering the lack of an established benchmark to evaluate effectiveness

against data-oriented attacks, we evaluate the security promises of our approach

based on the hardening of DOP attacks. In response to BOPC [32] automating

DOP [31] attacks, we propose Loop Protection Ratio (LPR) as a metric of the

reduced loop attack surface. Since powerful Turing-complete DOP attacks require

the adversary to compromise at least a loop structure (i.e., gadget dispatcher) for

arbitrary execution, the LPR metric, as a fraction of loop headers with instrumented

condition variables, aims to assess the hardening of these attacks under our scheme.

5.5 Implementation

We have implemented a proof-of-concept of the design explained in Sections 5.3

and 5.4 to evaluate its performance promises primarily. Two LLVM passes1 are

implemented to analyse and transform the intermediate representation (IR) of C

programs. Because LLVM IR is a language-agnostic representation, the analysis

and transformation can also be adapted to the IR outputs of other unsafe languages

that allow for managing its own application memory, therefore increases security

problems. These passes selectively inject runtime checks. Hence, attacks targeting

critical program variables can be detected.
1https://github.com/msgeden/truvin

98 5.5. Implementation

1 void login(){
2 int authenticated=0;/*trusted value*/
3 int role_id;/*untrusted value*/
4 int login_attempt=0;/*trusted value*/
5 char pwd[STR_SIZE];/*untrusted values*/
6 char user[STR_SIZE];/*untrusted values*/
7 read(user,"Please enter username:");/*vulnerable*/
8 if (is_user_locked(user))
9 exit(ERROR_USER_LOCKED);

10 role_id=get_role_id(user); /*trusted value*/
11 while (authenticated==0 && login_attempt<=MAX){
12 read(pwd,"Please enter password:");/*vulnerable*/
13 if (check_credentials(user,pwd))
14 authenticated=1;/*trusted value*/
15 login_attempt++;/*trusted value*/
16 }
17 if (authenticated==0 && login_attempt>MAX){
18 lock_user(user);
19 exit(ERROR_USER_LOCKED);
20 }
21 if (authenticated){
22 if (role_id<=SYSTEM_ADMIN)
23 generate_privileged_session(user);
24 else
25 generate_unprivileged_session(user);
26 }
27 return;
28 }

Figure 5.6: Vulnerable program code that forms the basis for different data attack
scenarios.

5.5.1 A Concrete Example

To illustrate how those passes work, we use a vulnerable C program that represents

a typical login system, as seen in Figure 5.6. This program contains five variables

out of which two pwd and user arrays host the login credentials. Other authenticated,

role_id and login_attempt variables are used by control and loop structures. The

program loads untrusted user credentials to the memory through a vulnerable read

function. The attacker can exploit this function to bypass the credential check

(i.e., authenticated) or he can reset login_attempt to perform brute-force attacks for

password discovery. Also, he can modify role_id for privilege escalation.

5. Identifying Critical Variables for Lightweight Runtime Protection 99

line 4: int login_attempt=0
store i32 0, i32* %4, align 4
.......................................
line 10: role_id=get_role_id(user)
%14 = call i32 @get_role_id(i8* %13)
call void @vi_def_32(i32 %14, i16 2)
store i32 %14, i32* %3, align 4
.......................................
line 11: while(..login_attempt<=MAX)
%19 = load i32, i32* %4, align 4
call void @vi_use_32(i32 %19, i16 3)
%20 = icmp sle i32 %19, 5
.......................................
line 15: login_attempt++
%31 = load i32, i32* %4, align 4
call void @vi_use_32(i32 %31, i16 3)
%32 = add nsw i32 %31, 1
call void @vi_def_32(i32 %32, i16 3)
store i32 %32, i32* %4, align 4
.......................................
line 17: if(..login_attempt>MAX)
%37 = load i32, i32* %4, align 4
call void @vi_use_32(i32 %37, i16 3)
%38 = icmp sgt i32 %37, 5
br i1 %38, label %39, label %41
.......................................
line 22: if (role_id<=SYSTEM_ADMIN)
%45 = load i32, i32* %3, align 4
call void @vi_use_32(i32 %45, i16 2)
%46 = icmp slt i32 %45, 2
br i1 %46, label %47, label %49

Figure 5.7: IR instrumentation on the slices of role_id and login_attempt variables.

5.5.2 LLVM Passes

LLVM compiler enables developers to analyse, optimise and transform their pro-

grams. As the core strength, it uses a language- and target-independent intermediate

representation (IR). LLVM IR is a high-level strongly-typed assembly language with

RISC-like instructions, many of which are in three-address code. It uses partial

static single assignment (SSA) with an infinite virtual register set and assumes two

kinds of variables which are top-level and address-taken variables.

100 5.5. Implementation

5.5.2.1 Trust Propagation

Our first pass analyses how the trust propagates throughout the program, as

explained in Section 5.3. Although it allows the analyst to define additional trust

sources (e.g., database reads), we have used programmer-defined values as the main

trust source during our benchmark experiments. This pass propagates the trust

through all top-level and address-taken IR variables. However, only address-taken

variable operations are instrumented. Fig. 5.7 illustrates the trust propagation

on the IR slice of role_id and login_attempt variables in Fig. 5.6. Operands

highlighted in different colours represent pre- and post-instruction states of trust.

Differently from other variables, role_id starts hosting a trusted value upon return

of get_role_id(user) function. Since this function returns only programmer-defined

constants (due to the limited number of roles), it is discovered as a trust source by

the analysis pass as it should. This pass provides the information of trusted values

available on the entry and the exit of each IR instruction within a flow-sensitive

setting. It thus determines which def-use pairs (store-load) operate with trusted

values and must be instrumented by the following transform pass.

5.5.2.2 Value Integrity Checks

Our second pass transforms the program IR by injecting function calls to check

the value integrity of identified variables. As explained in Section 5.4.1, these

calls either store shadow values for variable definitions or load existing shadow

values to check whether they match with the actual ones during variable uses. As

an example, Figure 5.7 demonstrates injections placed as shadow operations of

role_id and login_attempt. These functions wrap the necessary instrumentation,

which is inlined during compilation. Depending on the type of access, injected calls

are placed before the store instruction (vi_def_xx) or after the load instruction

(vi_use_xx). Both function groups accept two kinds of parameters. The first

argument holds the exact copy of the variables (e.g., value operand of store and

the result operand of load). The second one is the variable identifier(s) that help

to locate the corresponding shadow cell(s).

5. Identifying Critical Variables for Lightweight Runtime Protection 101

basicmath
bitcount

susan
jpeg

lame
dijkstra
patricia

stringsearch
blowfısh
rijndael

sha
CRC32

FFT
gsm

ratios of instrumented / non-instrumented operations

0% 25% 50% 75% 100%

Trusted (Instrumented) Loads Untrusted Loads
Trusted (Instrumented) Stores Untrusted Stores

Figure 5.8: Ratio of instrumented memory instructions.

5.6 Evaluation

This section first evaluates the performance gains regarding runtime and space

overheads. Next, it analyses the security guarantees provided.

5.6.1 Performance

For performance evaluation, we have experimented with MiBench [158], which

is the most popular open source uni-processor benchmark suite. To contrast

the performance of targeted instrumentation with a naive approach, we have

compared our approach against fully instrumented benchmark programs. The full

instrumentation places injections for all memory operations. It is considered as

a performance approximation of the naive DFI scheme, while not making any

security promises.

Regarding the instrumentation avoided, Figure 5.8 presents the ratios of memory

instructions that operate with trusted and untrusted values. Although the metrics

vary depending on the program and the operation, only 22% of the memory

operations require instrumentation for the entire benchmark. This corresponds to

102 5.6. Evaluation

basicmath
bitcount

susan
jpeg

lame
dijkstra
patricia

stringsearch
blowfısh
rijndael

sha
CRC32

FFT
gsm

runtime overheads in times slower (baseline->1x)

0 0.5 1 1.5 2 2.5 3 3.5 4

Targeted Instrumentation Full Instrumentation

Figure 5.9: Runtime overheads of benchmark programs with targeted and full
instrumentation.

12849 out of 56694 (load: 7508/40864 and store: 5950/15830), which implies that

the great majority of operations can be left non-instrumented.

Although performance gain arises from operations left non-instrumented, the

number of executions of instrumented ones determine the actual overheads. For the

benchmark suite, our scheme has produced only 28% runtime overhead. In contrast,

the full instrumentation has incurred 121% overhead, which is a close approximation

of the naive DFI scheme [4] reporting 104% overhead for a different set of benchmark

programs. Figure 5.9 presents detailed runtime overheads of each transformed

benchmark program to compare our scheme against fully instrumented programs.

Performance gains vary from 1.4x to 44x depending on the benchmark program.

Regardless of variance, the selective instrumentation provides 4.3x performance gain

for the whole benchmark suite. Regarding the space overheads, shadow memory

that hosts only critical variables, requires 8x less memory than the allocation

made for full instrumentation. Moreover, selectively instrumented binary sizes

with inlined calls are only 40%, whereas fully instrumented binaries are 134%

greater than non-instrumented binaries.

5. Identifying Critical Variables for Lightweight Runtime Protection 103

Program Trusted Untrusted LPR

basicmath 17 1 94.4%
bitcount 6 0 100%
susan 47 0 100%
jpeg 398 61 86.7%
lame 348 18 95.1%
dijkstra 7 0 100%
patricia 9 1 90%
stringsearch 19 2 90.4%
blowfısh 36 0 100%
rijndael 10 0 100%
sha 10 0 100%
CRC32 3 0 100%
FFT 12 0 100%
gsm 62 2 96.8%

TOTAL 984 85 92.1%

Table 5.1: Loop headers with instrumented (trusted) and non-instrumented condition
variable operations. LPR: Reduced loop attack surface for DOP attack elimination.

5.6.2 Security Analysis

For a successful attack, the adversary must overwrite a trusted value of critical

variable by exploiting an illegitimate instruction that belongs to either a non-critical

variable or another critical variable. The first scenario, an illegitimate data flow from

untrusted agents to the critical variable addresses (trusted domain), will be caught

due to an outdated shadow cell of the variable of interest. The second scenario,

an illegitimate data flow among the critical addresses, will also be revealed due to

unmatched shadow values, since the instrumentation of the exploited instruction

would update only its corresponding shadow cell.

5.6.2.1 DOP Attacks

Table 5.1 demonstrates the number of loop headers (i.e., program statement that

decides on the loop iteration) whose condition variables are identified as trusted

(critical). The ratio of variables with trusted values to all variables corresponds to

the LPR metric explained in Section 5.4.2. Because variable instructions operating

with trusted values are instrumented, DOP attacks in need of a gadget dispatcher

utilising these loops (variables) will be caught. For the entire suite, our scheme

104 5.6. Evaluation

promises to reduce the loop attack surface by 92.1% as it defends all the loop

headers for 8 out of 14 benchmark programs (100% LPR). The remaining loop

variables with untrusted values could genuinely be part of or dependent on user

inputs. Or some of them might be defined via external functions that need to be

stated as the trust source by the analyst. However, in either case, it provides strong

evidence that our scheme successfully identifies variables critical to the program

flow and catches data attacks without any programmer intervention.

5.6.2.2 Real-world Scenarios

Although there is no established benchmark to measure the effectiveness of our

scheme, we discuss its potential based on some real-world exploits (see Appendix A.1

for their code snippets) introduced in related papers [31, 151, 159, 160]. The first is

a integer overflow vulnerability found in many SSH implementations [161], which

enables overwriting the authenticated flag to bypass the authentication process.

Similarly, a Chrome bug [162] in the renderer process can be exploited to overwrite

the critical m_universalAccess flag of security monitors to bypass the SOP (same-

origin policy) enforcement. Our scheme can detect both attacks as they overwrite

decision-making variables defined by the programmer.

Two examples wu-ftpd [163] and sudo [164] suffer from format string vulnerabili-

ties. These vulnerabilities allow the attacker to modify variables hosting user ID of

calling processes, whose corruption would result in privilege escalation. Both cases

would be caught as long as getuid() system call is defined as an external trust source.

Furthermore, Null httpd server bugs [165] can corrupt the path string of CGI-

BIN directory, which makes remote executions possible. Another heap corruption

vulnerability in telnet daemons [166] can be exploited to modify the configuration

string loginprg that states the path of an executable responsible for the user

authentication. An extended design that can digest string array similar to what

we have proposed in Chapter 4 would be able to detect those scenarios.

As a rare scenario that would stay undetected, ghttpd [167] web server holds a

stack buffer overflow bug in between the check and the use of a URL string. An

5. Identifying Critical Variables for Lightweight Runtime Protection 105

clang

IR of program
and VI skeleton

(.bc)
Program

source (.c)

 I nst rumented
program IR

with injected
VI cal ls (.bc)

opt (Passes)

clang
IR of VI

skeleton (.bc)
Inst rumented
program object

code (.o)

Program
agnost ic VI

skeleton cal l ing
enclaves (.c)

cc

Executable
program with

VI checks

Dynamic
l ibrary

containing
enclave

funct ions (.so)

ECALL
OCALL

llc

Program
agnost ic
enclave

funct ions (.c)
cc + l ink
+ signer

Compi le-t i me Run t i me

li
n

k

Figure 5.10: Compile time and runtime stages for SGX adaptation.

attacker that overwrite the URL string would make its prior sanity check useless.

This would result in remote shell execution. This is the only exceptional case that

would be missed as discussed in Section 5.4.2. But our scheme can still eliminate

Turing-complete capabilities (i.e., LPR), and most of the real-world (6 out of 7)

exploits as non-arbitrary attack examples.

5.7 Intel SGX Adaptation

An adversary can also try to disclose and modify the shadow values generated by

the instrumentation process itself. For such scenarios, a hardware-based trusted

execution environment (TEE) such as Intel SGX can provide strong isolation against

even bugs exploitable from higher privileges (e.g., kernel).

Intel SGX provides special memory regions, called enclaves, for the isolation

of selected program code and data. A program with SGX features consists of two

parts that are application (untrusted) and enclave (trusted) components. Switches

between the two are performed by special interfaces such as ECalls and OCalls.

Enclaves can mitigate control-oriented attacks on the code running in those regions

106 5.7. Intel SGX Adaptation

basicmath
bitcount

susan
jpeg

dijkstra
patricia

stringsearch
blowfısh
rijndael

sha
CRC32

FFT

runtime overheads in time slower with log-scale
(baseline ->1.0x)

1 10 100 1000

Targeted Instrumentation Full Instrumentation

Figure 5.11: Runtime overheads of enclave-hosted shadow data (-O1 with x64).

by encrypting the code and code pointers. However, they cannot eliminate a

data-oriented attack performed as a relative address corruption since the layout

of variables within the enclave would not be different.

5.7.1 Program-agnostic Enclaves

Normally, the programmer decides on which part of the code and the data should be

in the enclave. Our adaptation (see Figure 5.10) enables the use of enclaves for any

program in an automated way without the programmer intervention. To achieve

this, we have first implemented an instrumentation skeleton containing the functions

wrapping enclave calls (ECalls). This part is statically linked to the program IR,

which is later used by the passes. In the final stage, the transformed program IR is

compiled into object code and translated into an executable program. On the enclave

side, program-agnostic functions are compiled and signed as usual, the final output

of which is a dynamic library loaded by the instrumented program executable.

5. Identifying Critical Variables for Lightweight Runtime Protection 107

5.7.2 Switch Overheads

Enclaves provide strong security guarantees. However, this level of security does

not come free and brings huge performance penalties due to the switches between

enclaves and outside memory. Hence, a scheme simply using enclaves to allocate

shadow memory for all program variables would not be very convenient due to

costs triggered by every memory access. Our targeted approach aims to make

TEE-based isolation possible for a limited number of decision-making variables

left after additional register allocations.

Even though unoptimised binaries (-O0) using enclaves have demonstrated that

targeted instrumentation of critical variables can provide performance gains up to

29x, programs that heavily iterate loops via address-taken counter variables increase

the switch overheads unnecessarily. To address this issue, we have explored the use

of register allocations as means for cutting those switch overheads, by substituting

possible address-taken loop iterators with registers. We highlight that those register-

hosted variables do not downgrade security guarantees as long as their values are

not spilled to the memory. Our experiments have shown that these allocations

can significantly reduce switch costs for a more realistic compilation setting (-O1).

Compared to the scenario where all memory operations are instrumented, relative

performance gains vary from 1.6x to 5556x (see Figure 5.11) depending on the

program, with a total 5.3x reduction rate for the whole suite (excluding lame and

gsm programs due to the library conflicts of SGX and the program).

5.8 Summary

This chapter presented a novel runtime protection mechanism to address data-

oriented attacks exploiting memory bugs in C/C++ programs, without having to

instrument every memory operation. Our proposal focuses on program variables that

are only critical to program semantic, and avoids redundant checks on preliminary

or intermediary targets not enough to perform an attack. This means that we only

108 5.8. Summary

need to instrument a fraction of the variables, thereby saving both CPU time and

memory, while retaining similar security guarantees.

To make this idea work, this chapter introduced a novel method to identify

critical program variables based on the trustworthiness of their value agents, i.e., the

programmer as a trusted or the user as an untrusted agent. In addition to the

variables whose values are directly defined by trusted agents, we have proposed a

static flow-sensitive trust propagation analysis to discover other emerging variables

still dependent on those (as depicted in Figure 5.3). Based on the information

extracted, the scheme transforms a (potentially) vulnerable program by selectively

injecting runtime checks on the instructions that must operate with trusted values.

This ensures that if a trusted value of a critical variable is corrupted, our scheme

will detect it, but without the overhead of checking every variable address in the

program. Benchmark experiments show that such a targeted approach can provide

a performance gain of around 4.3x.

Similar to many runtime protections, the instrumentation data must be well-

protected within the same address space for this scheme to fulfil its security promises.

However, without hardware- or TEE-based isolation, we have to count on weaker

hiding (randomisation) [3] or performance-costly SFI [11] methods. On the other

hand, hardware-based TEEs such as Intel SGX or ARM TrustZone can provide

special regions protected even from OS bugs. But using those primitives is not very

promising for many programs due to their switch costs triggered by each shadow

operation, as discussed in Section 5.7. This issue has led us to consider using

other hardware but faster components (i.e., CPU registers) as trusted storage for

protection of integrity-critical data. The following chapter takes this idea forward

and proposes a practical runtime protection scheme that relies on the idea of

keeping critical variables safe in CPU registers.

“Simplicity is a great virtue but it requires hard work
to achieve it and education to appreciate it. And to
make matters worse: complexity sells better.”

— Edsger Wybe Dijkstra

6
Leveraging CPU Registers for Protection

of Runtime Data on the Stack

CPU registers are not addressable in the same way that memory is, which also

makes them immune to memory attacks and manipulation by other means. In

this chapter, we take advantage of this to protect critical program variables from

corruption, without asking for a memory isolation primitive. The scheme presented

in this chapter can effectively address control- and data-oriented attacks targeting

the stack, even by adversaries with the full knowledge of program memory. While

the primary design focus in this chapter is security, performance is also important

for a runtime protection to be adopted in practice. The solution given in this

chapter still benefits from the performance gain that is normally associated with

register allocations, and it provides a practical protection.

6.1 Introduction

Memory bugs continue to be one of the root causes of software security problems,

especially in applications developed using unsafe languages, such as C and C++,

which are commonly used in systems programming and performance-critical ap-

plications. Since there is no built-in memory safety in those languages to prevent

unintended access to critical program data, an attacker exploiting a memory bug

109

110 6.1. Introduction

in the program (e.g. stack buffer overflow) can overwrite control and data objects

beyond the abstraction given in the source code.

Several schemes have been proposed to mitigate the consequences of these

memory bugs. The majority of these focus on control-oriented attacks in which

code pointers are targeted. For example, stack canaries [168] place random values

on the stack to detect overflows onto return addresses. But these canaries fail to

catch well-targeted corruptions, e.g., format string attacks, that can access certain

addresses and leave the canary untouched. More powerful control-flow protections,

which do not make assumptions about how memory corruption happens, exist such

as CFI [2] and CPI/CPS [3]. Those either use a shadow stack to detect corruptions

of (shadowed) control data or a safe stack to protect them from being altered.

These control-flow protections do not cover data-oriented attacks that selectively

target non-control data, for example, a function argument or a condition variable

deciding on the execution of a privileged branch. Proposed defences against those

attacks, e.g., data-flow integrity (DFI) [121], generally require a more thorough

check of all stack accesses in addition to code pointers, and in the process they

introduce high performance overheads.

Regardless of their limitations, current proposals for control- and data-oriented

attacks face three common challenges in general. The first is the performance

overhead due to the instrumentation required for memory operations, which worsens

as the coverage expands (i.e., non-control data) as we have tried to address in

Chapter 5. The second challenge is that their success is dependent on how well the

instrumentation data (e.g., shadow stack) or segregated data (e.g., safe stack) is

protected within the same program space. Current techniques hide the location of

those through randomisation or implement some access policies for them. However,

integrated attacks that reveal or search the location of instrumentation data

can break the schemes’ promises [10, 34]. The final third issue is the lack of

deployability by different device types and architectures. For strong assurance,

many proposals require modifications to ISA [9, 104, 122, 169] or require features

provided by a specific architecture (e.g., Intel MPX [170]), which makes them

6. Leveraging CPU Registers for Protection of Runtime Data 111

deployable only for future devices or for a small portion of existing systems. Also,

the majority of defences are designed for high-end devices with a reliable operating

system, whereas primitive architectures and embedded systems (e.g., bare-metal)

are generally ignored.

This chapter presents RegGuard, a new runtime protection scheme to harden

C/C++ programs against stack-based corruptions. It leverages CPU registers

to protect critical variables in use, with further integrity assurance even if their

states are saved to the stack. Our scheme successfully addresses all three challenges

mentioned above and differs from previous proposals by providing practical and

robust protection against both control- and data-oriented attacks. It is practical

because our scheme is designed as a software-only solution that does not require any

new hardware. Besides, replacing memory accesses with registers still compensates

for most of the overhead. It is robust because CPU registers, as unaddressable

storage units, provide a strong hardware root of trust for the storage of critical

data in use. Thanks to our cryptographic assurance that covers register data at

rest on the stack, we do not need to worry about integrated attack scenarios, as it

does not generate any instrumentation data that must be hidden or protected in

program memory. Lastly, because our scheme is built on one of the fundamental

building blocks of computers (i.e., CPU registers), it can be adapted to different

device types and CPU architectures, including both modern and legacy systems,

with trivial changes to the software stack.

To verify that the integrity checks introduced by RegGuard do not make the

performance of the resulting binary unusable, we have implemented a proof-of-

concept using LLVM compiler for the ARM64. ARM has been one of the most

dominant architectures of mobile phones and microcomputers for a while, which

makes it a good platform for testing performance. Our experiments have shown

that register allocations can improve both the security and performance together

with a surplus within the range of 13% to 23% on average compared to purely

performance-based optimisations, whereas almost all have had better performance

than non-optimised versions.

112 6.2. Problem Setting

The rest of the chapter is organised as follows: Section 6.2 explains our

motivation, system and threat models. Section 6.3 presents the design of our

scheme. Section 6.4 provides the details of proof-of-concept implementation, whereas

Section 6.5 provides an evaluation based on this implementation. Lastly, Section 6.6

discusses certain design decisions and further extensions that can be taken forward.

6.2 Problem Setting

Separation of memory into (read-only) code and (non-executable) data addresses

through W⊕X in most systems has made it harder to perform simple code-corruption

and -injection attacks. In response, more sophisticated code-reuse scenarios such

as ROP have become more prevalent. Although control-flow protections [2, 3]

mitigate attacks on control data (i.e. code pointers), they fail to capture more

challenging cases where non-control data objects (e.g. condition variables) are

targeted. Addressing those attacks has proven difficult in practice as they either

introduce heavy instrumentation costs [4] provisioning each memory (data) access

or require expensive hardware changes [9]. Furthermore, software-based approaches

must secure their instrumentation data within the same address space. However,

commonly used techniques such as hiding can be circumvented when the location

of the data is revealed through an integrated attack [10]. This chapter takes those

drawbacks into account while mitigating both attack classes.

6.2.1 Motivation

In order to modify a stack object, the attacker must either overflow some buffer

onto the target object (i.e. relative address attack) or take over a data pointer first

to overwrite it (i.e. absolute address attack). CPU registers are immune from such

attacks since they cannot be addressed in the same way we address memory.

However, to use CPU registers as a protection mechanism, we have to solve

a couple of challenges. First, we must use them for security while still allowing

them to serve their primary purpose, namely as a fast storage mechanism for data

in use to reduce execution time. Second, we have to find a way to leverage the

6. Leveraging CPU Registers for Protection of Runtime Data 113

D
en

si
ty

 o
f f

un
ct

io
ns

0.03

0.06

0.09

0.12

0.15

Number of variables defıned in a function

5 10 15 20 25 30 35 40

Figure 6.1: Probability distributions of variable counts per function.

limited capacity of the registers to protect all the relevant variables. Simply using

CPU registers as program-wide (interprocedural) storage would put a hard limit

on the number of variables allocated, whereas register states that are saved to

the stack during function calls void their immunity against potential corruptions.

Therefore, we need a global (function-level) allocation scheme that can employ

the same registers for each call without undermining security. With such integrity

assurance, CPU registers can provide enough storage to secure critical control

and data objects on the entire stack.

To provide insight into the coverage that such a protection scheme can provide,

Figure 6.1 shows the number of variables found per function in a large representative

set of benchmark programs provided us with more than a thousand functions in total.

We have used the same set of programs for our performance evaluation in Section 6.5.

We remind the reader that as the program size gets bigger, its functions should tend

to get smaller due to the challenges of managing complexity by the programmer.

As seen, 93% of the functions have less than 16 variables, and 99% have less than

32 variables. Considering the average number of variables (6.9) and arguments (2.6)

found per function, most modern CPUs provide enough registers (with 16/32 GPRs

and 32 FPRs) to secure those objects as potential attack targets. Note also that

these counts represent all reference and primitive variables found in a function at any

point, and do not take the live ranges into account, so the number of concurrently

114 6.2. Problem Setting

registers

Pr ogr am M emor y

program stack program code
(RX)

CPU

arbit rary
wr i te

r1

arbit rary
read

bu
s

r2 rn

r key

Figure 6.2: Overview of the system components and adversary model.

live ones would be smaller. In Section 6.3.1, we show how it is still possible to deal

with the rare event that this number exceeds the number of available registers.

6.2.2 System and Adversary Model

In our model, the CPU is trusted and provides limited but secure register storage.

Regarding program memory, the system (see Figure 6.2) ensures code integrity

through non-writable (RX) addresses, which can be provided by a flash memory

or page-level (e.g., W⊕X) protections, depending on the device setting. The CPU

has n registers available (r1-rn) for the scheme. The system dedicates a specific

register (rkey) to store the key, for instance, a single FPR that is never saved in

the program memory. We deliberately avoid making assumptions about the type

of device and its architecture. It can be a single-threaded bare-metal environment

as well as a multi-threaded one with an operating system, the kernel space of

which is trusted by the user processes. As long as the system has the necessary

CPU registers and ensures the integrity of program code, our scheme is applicable

to different architecture and software/firmware instances. We assume that the

software stack running on the device can be recompiled and modified as required,

without asking for any change in hardware.

6. Leveraging CPU Registers for Protection of Runtime Data 115

The adversary’s goal is to manipulate the program runtime by modifying critical

control and data objects on the stack, although program termination does not

constitute a successful attack. For instance, he can target a code pointer such

as a return address or a function pointer to hijack the program’s control flow.

Alternatively, he can overwrite a non-control data object, for example, a condition

variable to manipulate the control flow indirectly. We assume a powerful adversary

that has full read access to any part of memory at all times (including the stack),

as well as write access to any address on the program stack. We are not going to

explore how such read and write capabilities can be achieved in practice; we just

grant the adversary this power. We do assume that the adversary cannot intervene

in the compilation process and cannot modify program code in the non-writable

code segment, which includes our instrumentation as part of it.

This model extensively captures control- and data-oriented attacks. It addresses

both code-reuse attacks bypassing DEP, and more challenging data-oriented attacks

that can otherwise circumvent control-flow protections (e.g., CFI). This model

also covers a wide range of scenarios on how the adversary can interact with the

program memory. In contrast to protections relying on random values (e.g., stack

canary [168]) or random addresses (e.g., safe stack [3], ASLR [25]), this model covers

integrated attacks [10] that exploit memory disclosure bugs first.

6.3 Design

During the compilation process from source code down to machine code, the compiler

has to map variable objects to either memory addresses or CPU registers. Since

registers are safe from memory corruption and can be accessed very fast, we would

prefer to put all variables in registers. However, this is not always possible as

there can be more (simultaneously live) variables than available registers (i.e., high

register pressure), especially for CPU architectures suffering from register scarcity.

Therefore, we must first ensure that the compiler prioritises a variable that is more

likely to be targeted by the attacker for register allocation. Second, even if all

variables of a function are assigned to registers, their values will be saved to the

116 6.3. Design

program stack during a function call, to make the registers available to the new

function. Because these saved values can be overwritten on the stack, we must

do something to guarantee their integrity.

6.3.1 Security-Oriented Allocations

Similar to the conventional spill cost that estimates the performance burden of a

variable left in memory, we assign a security score to each variable to ensure that a

register is primarily allocated to a variable that is more likely to be attacked. In

contrast, a security score is a compile-time estimate of how critical a function variable

is to the runtime integrity. Variables with higher security scores are thus prioritised

for register allocation and are included in the integrity checks designated for register

values saved in the stack during a function call, as explained in detail in Section 6.3.2.

6.3.1.1 Security Scores

Our scheme considers the variables listed below as primary attack targets that

must be prioritised during register allocations. It assigns a security score to each

according to the given order (i.e., the first in the list has a higher score).

1. code pointers, e.g., function pointers,

2. data pointers, i.e., variable addresses,

3. programmer-defined variables, e.g., is_admin=1,

4. condition variables, e.g., if(authenticated).

Pointers have the highest scores as they are the most common attack vector for

powerful attacks. If not caught, the corruption of a code pointer such as an indirect

branch or a call target can result in arbitrary execution, while a data pointer can be

used to access or modify other data objects on the memory (i.e., absolute-address

attack). Next comes the variables whose values are set from the code and condition

variables used for branch decisions. We remind the reader that programmer-defined

variables are different from the constants evaluated and eliminated at compile time

6. Leveraging CPU Registers for Protection of Runtime Data 117

1 . . . high register pressure. . .
2 int (*func_ptr)(const char ∗,...) = &printf; /∗function pointer∗/
3 int is_valid=0; /∗decides on control flow∗/
4 int drop_stats=0; /∗no critical use∗/;
5 int max_trial=read(); /∗user defined data∗/
6 char data[SIZE]; /∗buffer hosting untrusted environment data∗/
7 /∗the user has a legitimate control over the loop iterations∗/
8 while (−−max_trial>=0){
9 /∗vulnerable function∗/

10 read_buffer(data);
11 if (check(data){
12 is_valid=1;
13 break;
14 }
15 drop_stats++;
16 }
17 if (is_valid==1) /∗decides on control flow∗/
18 do_process(data); /∗critical task∗/
19 (*func_ptr)("trials of %s is %d", data,drop_stats); /∗print stats∗/
20 . . . high register pressure. . .

Figure 6.3: Code under register pressure for the given scope. For security, registers are
allocated to func_ptr and is_valid first instead of less critical max_trial and drop_stats.

by the optimisations. A programmer-defined variable whose all possible values

are hard-coded actually represents the programmer’s intention. Although those

are generally used as condition variables, they allocated first compared to ones

defined from unknown origins. This is because an attacker would not benefit

from corrupting a data object that is already controlled or defined by the user or

environment as we have discussed in Chapter 5. Return addresses, return values,

and function arguments are also assigned to registers. But they are excluded

from this scoring and selection process because the calling convention in place

already dedicates registers for them.

Figure 6.3 exemplifies how our security scores differ from conventional spills

costs. This code depicts a high register pressure for the given scope. Normally, a

conventional scheme would allocate registers to drop_stats or max_trial variables

first for better execution times as they will be accessed by each loop iteration.

However, from the security point of view, RegGuard considers that func_ptr and

is_valid should be given registers primarily. Alteration of func_ptr as a code

118 6.3. Design

Function securityScore(var)
var.score← 1;
if var.type is a pointer type then

var.score← var.score + 4;
if var.uselist has a branch instance then

var.score← var.score + 1;
end

else if var.type is an integral type then
if var.deflist has an immediate assignment then

var.score← var.score + 2;
end
if var.uselist has a comparison instance then

var.score← var.score + 1;
end

Figure 6.4: Pseudocode of security score calculations.

pointer can result in illegitimate execution of sensitive system functions, whereas

modifying is_valid flag, which is both a programmer-defined and a condition variable,

would manipulate branch decisions as a data-oriented attack. On the other hand,

max_trial which is defined externally (e.g., the user) or drop_stats that does not

affect control-flow of the function are not identified as critical.

In contrast to spill costs given based on the use densities of variables, security

scores that represent the likelihood of a register candidate to be attacked are

designed as a fast intraprocedural static approximation considering the type of a

variable, its value agents and use purposes. Therefore, a security score must be

uniformly associated with different live ranges of a variable. In other words, the

scores should not be localised for different ranges. Algorithm 6.4 shows how those

security scores are calculated to rank register candidates in an order that would

maximise security by taking those properties into account.

6.3.1.2 Allocation Process

As a global register allocation scheme, our scheme works at the function level to

reuse the same register file repeatedly for each call and accommodate more critical

data objects in the registers. The allocation technique to be used (see Chapter 2

for different options) should be chosen according to the features of the compiler.

6. Leveraging CPU Registers for Protection of Runtime Data 119

For instance, the compilers using single static assignment (SSA) form, such as

LLVM, generally implement custom linear techniques with faster compilation times,

whereas other compilers can provide graph-colouring as the default option. We

highlight that the choice of allocation method, which some compilers provide as

a configurable option, is a separate issue from the problem our scheme addresses.

And it does not have any impact on the applicability of our scheme as long as

conventional spill costs are replaced by the security scores proposed. Any global

allocation technique provided by the compiler can thus be preferred.

We recall that registers are actually allocated to the live ranges of variables.

A live range describes the instruction or basic blocks scope ranging from a value

definition to its all uses for the same definition. Live range definitions allow us

to reuse a register for different variables whose ranges do not interfere with each

other. A variable can have multiple live ranges with potential gaps in between,

where each starts with a new definition. The variable does not have to occupy a

register during these gaps. Therefore, allocation schemes generally use them for

more optimal allocations. Such cases also benefit our scheme without undermining

its security promises, since the attacker cannot benefit from overwriting a variable

value that will be later redefined before its use. The attack surface thus gets

smaller as the registers are utilised better. This can be meaningful for architectures

suffering from register scarcity.

Figure 6.5 depicts how RegGuard should allocate available registers to the

variables using security scores; so decides which variables to be protected. This

example considers a scope under high register pressure with two available registers

reg1 and reg2, and three variables, the live ranges of which interfere as shown. The

security scores are represented by colour tones, var3 is the most critical target,

followed by var2, whereas var1 has the lowest score. Using security scores, the

scheme priorities two registers to var3 and var2 and spills var1 when required.

However, the allocation method can still utilise gaps (i.e., instructions that var3

and var2 do not interfere), where a register become temporarily available for var1.

Those splits not only enhance the performance but also provide a better reduction

120 6.3. Design

r eg1 r eg2 mem

var1A

var1

var2

var3

var1Bvar2

var3 var1C

l i ve r anges

Al locat i on

secur i t y scor es: var3 > var2 > var1

ex
ec

u
ti

on

Assign var1 to reg1
Assign var2 to reg2
Spill var1 to mem
Assign var3 to reg1
Assign var1 to reg2

call2

call1

Figure 6.5: Security-oriented register allocations under register pressure.

of the attack surface. For instance, regardless of its criticality, var1 in the example

can thus enjoy both performance and security promises, even if for a short time.

And it will be safe during the execution of function calls, call1, call2 depicted as

potential attack vectors. Suppose such a case occurs while a critical variable range

is left in the memory. In that case, the compiler displays a warning message to

guide the programmer to review the code.

6.3.2 Integrity of Saved Register Values

The program can save a register value to the stack for one of two reasons. The

first is to free up a register for a more critical variable within the same function.

These register spills can happen only under high register pressure, and the decision

of evicting a register in use for another variable is guided by the security scores

described in Section 6.3.1. The second more common reason, which should take

care of, is a new function call that triggers the eviction of registers for the callee

function. Those register states that belong to the caller’s execution are saved to the

stack either by the caller at call sites or by the callee as part of its prologue code.

The decision of which registers must be saved/restored by the caller and the callee is

mainly described by the calling convention. Regardless of the calling convention in

use, any register state saved to the stack becomes vulnerable to memory corruption.

6. Leveraging CPU Registers for Protection of Runtime Data 121

Table 6.1: Variance of register saves during the callee function.

Target Type Variance

Variables (Not Addressed) Static
Variables (Locally Addressed) Static
Variables (Called by Reference) Dynamic
Temporaries Static
Arguments Static
Return Addresses Static
Frame Pointers Static
Return Values Static

Therefore, RegGuard implements integrity checks on those to ensure that they are

restored back to the registers without any corruption on return.

6.3.2.1 Invariance of Saved States

The integrity assurance covers saved register states that must not change during the

execution of a callee function. Table 6.1 presents an overview of those as potential

targets. The only exception is the values that can be legitimately modified by

the callee, usually an updateable value passed as a call-by-reference argument.

Otherwise, RegGuard protects local variables, return addresses, frame pointers,

temporaries, function arguments, and return values that can be leveraged for an

attack. With a fine-grained (e.g., flow-sensitive) pointer analysis [171, 172] that

distinguishes pointers with only local accesses from call-by-reference arguments,

where the latter must be destroyed following the call instruction, RegGuard can also

ensure the integrity of locally addressed variables whose values must not change

during the callee’s execution. Because pointer analysis is a separate research problem

that is orthogonal to the focus of this chapter, we will not discuss this issue further.

6.3.2.2 Integrity Checks

We recall that the data in use on registers are already safe from attacks, and the

only attack surface left is register values saved to the stack. Therefore, RegGuard

employs a cryptographic keyed hash (MAC) to guarantee that those saved register

values have not been modified while at rest on the stack. Prior to the execution of

122 6.3. Design

a function body, our scheme computes a reference tag from register objects being

saved to the stack. This tag value is also kept in a specific register unless the callee

function makes another call. Upon completion of the function body, a new tag is

generated from the actual objects that are being restored to the registers. This tag

is compared against the reference tag previously generated from saved objects, any

corruptions on those can thus be revealed. For a function call consisting of both

caller- and callee-saved registers, this is a two-step process connected. The first

tag generation/verification of caller-saved registers is managed at the tails of call

sites, whereas the following tag digesting callee-saved registers is created/checked

by the function prologues/epilogues.

Function-wise, RegGuard digests each call frame using a single tag value.

Program-wide, because we save the tag register to the stack with other registers

and include it in the next tag calculation, our scheme actually creates a chain of

tags that provides (almost) a complete stack image on a single register. Although

we still rely on the key for integrity checks, this chain prevents the attacker from

replaying a (standalone) call frame and its corresponding tag for a different call

context. Thanks to the control over the compilation process of the software stack, we

remind the reader that the key register is never saved to the same program/process

memory, which is adequate to authenticate any tag restored from the memory

that serves as the integrity proof of restored objects. With a single key kept

secret on a dedicated register and MAC calculations that are part of non-writable

program code, RegGuard enables the use of register file as an integrity-guaranteed

storage for each function call.

Figure 6.6 depicts an overview of a call stack tied with tags. RegGuard creates

a tag for each callee- and caller-saved region, where the tag of a caller-saved region

also contains the previous tag of a callee-saved region or vice versa. This helps

us to bind frames to each other for a tight representation of the whole program

stack. Equations (6.1) and (6.2) below express what each tag created for caller-

and callee-saved regions contains.

6. Leveraging CPU Registers for Protection of Runtime Data 123

MACi -2 of caller-saved states

return address

S
ta

ck
 G

ro
w

th

tag

return address

var iable

var iable

........non-cr i t ical/dynamic.......

temporary

temporary

...............data...............

..............................

var iable

Pr ogr am St ack

.......other var iables.......

base pointer

(cal ler 's) argument

base pointer

var iable

.......other var iables.......

.....other temporar ies.....

MACi of caller-saved states

MACi+1 of callee-saved states

(cal ler 's) argument

.....other saves.....

tag

tag

tag

MACi -1 of callee-saved states

Regi st er

Figure 6.6: Securing saved register objects using a keyed hash.

tagi = MACsk(tagi-1 ∥ arg1i−1 ∥ ... ∥ argni−1 ∥ ... ∥ tmpni−1) (6.1)

tagi+1 = MACsk(tagi ∥ reti ∥ bpi ∥ var1i ∥ ... ∥ varni) (6.2)

Although the details can vary depending on the calling convention and the

architecture, we consider the caller is responsible for saving and restoring its

arguments (arg) and temporaries (tmp) at call sites while its return address (ret),

base/frame pointer (bp) and local variables (var) on registers saved by the callee.

Even if the architecture (e.g., x86) does not use a link (return) register and stores

the return address directly on the stack, it is still included in the tag generated for

callee-saved regions as an object that must not be used until the return.

To reveal the corruption of a saved object, RegGuard injects two groups of

instructions. The first group generates a reference tag for register values being saved

124 6.3. Design

at function prologues and call sites. The second group checks whether this reference

tag matches the one calculated from restored values. Both tag calculations directly

align with existing register operations to avoid additional memory accesses. With a

few scratch registers, RegGuard can compute tags from directly register values. In

order to make this possible, the compiler rearranges register restores in the same

order they are pushed, instead of pop instructions working in the reverse order.

6.3.2.3 Bootstrapping and Key Management

Regarding the bootstrapping of the system, the tag generation starts with the first

call made by the software in question. For a simple setting with no process or

privilege separation, such as a bare-metal or a RTOS environment, a single key

to be shared by all tasks is generated at boot time using software or hardware

RNGs available on the system. This key is assigned to an FPR dedicated as the

key register. We note that this register is not saved to the memory by the scheduler

or interrupt handler, thanks to the control over the software stack. If there is a

hardware context switching in use, those instances also usually do not save FPRs.

Otherwise, in the case of a general-purpose OS, a fresh key is generated at each

process start. Only the kernel can save the key register to its own memory space,

which is trusted by the user processes. User-managed threads share the same key

and do not save the key register during a context switch.

6.3.2.4 Choice of MAC

The MAC function to be used should be chosen based on the available features of the

CPU architecture. If the ISA provides relevant vector and cryptographic extensions,

we recommend using HMAC-SHA256 with hardware acceleration. Otherwise, we

suggest using SipHash [173] as an architecture-agnostic option for CPUs that lack

cryptographic instructions. SipHash is a keyed hash primarily designed to be fast,

even for short inputs, with a performance that can compete with non-cryptographic

functions used by hash tables. Thanks to its performance benefits, SipHash is

highly practical and deployable on different architectures.

6. Leveraging CPU Registers for Protection of Runtime Data 125

read_buffer: #callee function
........................prologue: register saves...
INIT(key) #initialise states (v1-4) with rkey
store rtag, [sp]
COMPRESS(m1) #m1=rtag
store rret, [sp-8]
COMPRESS(m1,m2) #m2=rret
store rbp, [sp-16]
COMPRESS(m2,m3) #m3=rbp
store rvar1, [sp-24]
COMPRESS(m3,m4) #m4=rvar1
store rvar2, [sp-32]
COMPRESS(m4,m5) #m5=rvar2
rtag = FINALIZE(m5)
sub sp, 40
........................body instructions...
..
........................epilogue: register restores...
mov rtmp1, rtag #copy reference tag to a scratch register
INIT(key) #initialise states (v1-4) with rkey
load rtag, [sp+32]
COMPRESS(m1) #m1=rtag
load rret, [sp+24]
COMPRESS(m1,m2) #m2=rret
load rbp, [sp+16]
COMPRESS(m2,m3) #m3=rbp
load rvar1, [sp+8]
COMPRESS(m3,m4) #m4=rvar1
load rvar2, [sp]
COMPRESS(m4,m5) #m5=rvar2
rtmp2 = FINALIZE(m6)
CHECK(rtmp1,rtmp2) #check whether the checksums match
add sp, 40
ret

example(): #code in Figure 6.5
........................instructions..
mov rvar1, &printf #int (*func_ptr)...; line 2
mov rvar2, 0 #int is_valid=0; line 3
........................instructions..
call read_buffer
........................instructions..
mov rvar2, 1 #is_valid=1; line 12
........................instructions..
cmp rvar2, 1 #if (is_valid==1) line 17
........................instructions..
call rvar1 #(*func_ptr)(...); line 19
........................instructions..

Figure 6.7: MAC calculations aligned with register operations for the slice of func_ptr
and is_valid variables.

126 6.3. Design

Figure 6.7 sketches how our scheme aligns its MAC calculations with register

operations at function prologues and epilogues using SipHash. Both sections start

by initialising internal states (on scratch registers) generated from the key and

constants. Next, it applies compression rounds on those with message blocks (values)

already on registers. Lastly, it completes tag generation with the final message block

(register). The reference tag is not pushed to the stack unless the function calls

another function. Prior to the epilogue, this reference value is moved to a scratch

register; the epilogue can thus restore the previous tag to the dedicated register as a

part of the restoring process. The reference tag moved to a temporary register will

be later compared against the actual tag generated from restored registers at the end

before return. Any mismatch of two tags implies an attack because saved register

objects cannot be changed unless the control is returned back to the caller function.

6.3.2.5 Attack Coverage

ROP attacks that exploit return addresses are prevented by RegGuard, regardless

of whether the architecture has a link register or not as in x86. In contrast to other

variable objects, return addresses are always static and must have a single definition

(call) and single use (return) located at our instrumentation sites, so they are always

included in the MACs and protected. Further JOP scenarios that alter forward-edge

code pointers on the stack such as function pointers and switch statements are

also mitigated as those are either securely updated (e.g. pointer arithmetic) within

the CPU or checked against any corruptions before they are restored back from

the stack. Thanks to the integrity guarantees on data pointers, absolute-address

(non-linear) attacks that can use them to access/corrupt other memory sections are

also avoided. In addition, our scheme mitigates relative-address (linear) attacks

such that a stack array is overflown onto an adjacent condition variable as a DOP

attack. We exclude scenarios that might alter composite data values such as strings

for practicality. However, those strings typically host untrusted inputs and their

corruption can be only meaningful as a data-only attack in case the given string

has a critical use in bulk following a sanitisation check, with a timely bug located

6. Leveraging CPU Registers for Protection of Runtime Data 127

between the sanitation and critical use. Otherwise, the sanitisation (comparison)

outcome of those inputs that affects the control flow would be already transferred to

a condition variable that will be safe on a register (i.e., control-flow bending attacks).

6.3.3 Security Analysis

As previously described, the adversary’s goal is to manipulate the program runtime

by corrupting control and data variables on the stack. We remind the reader

that a critical variable is already safe from memory corruption while on registers.

Therefore, the attacker can overwrite such a variable only if its register state is

saved to the the memory because of another function call. For such corruption to

stay undetected, the adversary has to either skip the MAC-based integrity checks

or make those checks pass. We will look at each of these options in turn.

In order to skip checks, the adversary must modify the binary or its execution

to void the instrumentation. The former is not possible in our model because the

code segment is non-writable. The latter, which requires altering code pointers, is

also infeasible as the scheme protects those in the first place. For the adversary

to pass integrity checks, he has to forge a valid tag or reuse a previously recorded

one. Forging a valid keyed hash for an attack state either requires finding the

second preimage of the legitimate state or access to the key. Since the key is

protected on a register that is never saved to the same address space (including user-

managed context switches and setjmp/longjmp instances), and therefore unavailable

to the attacker, if the MAC-function is secure (i.e. existentially unforgable, and

second preimage resistant), forging a valid tag without the key is only possible with

negligible probability. We remind the reader that our system model assumes that

the software code executing within the same process/program space, including user

libraries, are recompiled or modified through binary-level replacements to guarantee

that no instruction operates on the register (i.e., FPR) reserved for the key, except

bootstrapping code responsible for key generation and placement. This is required to

ensure the confidentiality of the key even under the presence of a powerful attacker

that has arbitrary access primitives to the same program memory. Otherwise, in

128 6.4. Implementation on ARM64

Table 6.2: The details of calling convention used.

Register Type Purpose

x0-x7 Caller-saved Arguments
x9-x15 Caller/e-saved Temporaries
x19 Callee-saved Tag
x20-28 Callee-saved Local variables
x29 Callee-saved Frame/base pointers
x30 Callee-saved Link/return addresses
q31 (FPR) Reserved/not saved MAC key

the case of a multi-threaded environment, the key register is allowed to be managed

(i.e., context switches) by only trusted software components, such as the kernel.

The adversary might attempt to replay a seen tag for a different call of the

same or a different function. However, even with the same variable and argument

values, replaying will not work. This is because each tag containing return address,

base pointer and more importantly former tags (representing previous call frames)

provides a very tight representation of the whole stack, where the (most recent) tag

digesting all context is also safe on a register. Besides, replaying a tag for a different

process in rich OS environments or a different execution time in the embedded

systems is not an option since a fresh key is generated at each process or device start.

6.4 Implementation on ARM64

We have implemented a proof-of-concept1 of RegGuard on ARM64 (AArch64) to

evaluate its performance impact. RegGuard can be adapted to different architectures

such as x86, SPARC, MIPS, PowerPC and RISC-V (preferably 64-bit versions). But

we have chosen ARM64 for demonstration purposes due to the following reasons:

ARM has been the dominant architecture of the mobile and embedded landscape

for a long time. Thanks to Apple’s recently started transition to ARM-based

processors and the embrace of Microsoft Windows, it is now projected that ARM

will surpass Intel in the PC market in less than a decade [174]. Apart from promising

market share, ARM64, with 31 GPRs (64-bit) and 32 FPRs (128-bit), has more
1https://github.com/msgeden/llvm-project

6. Leveraging CPU Registers for Protection of Runtime Data 129

registers than x64 (i.e., 16 GPRs and 16/32 FPRs). Hence, even without having to

modify the standard calling convention (ABI) of underlying software components,

ARM64 provides enough registers to secure more variables than expected to be found

per function (see Figure 6.1). For instance, the standard ABI dedicates 10 callee-

saved registers compared to 6.9 variables found on average. Furthermore, registers

reserved for arguments and temporaries not only help to secure other potential

targets but also avoid register pressure in general. It also enables to use a FPR as

two GPRs via vector form indexes. Besides, the ISA equipped with cryptographic

extensions allows us to evaluate the hardware-accelerated HMAC-SHA256 option.

For the implementation, which consists of two parts, we have used the LLVM

compiler, which is configured to dedicate a single FPR (128-bit) for the key and a

GPR (64-bit) for tag values. For the first part, we have modified the basic register

allocation pass provided as a custom technique using priority queues to eliminate

strict visits in linear order. Since the benchmark programs have not encountered with

register pressure, our allocation pass simply ensures that registers given to variables

are not spilled for performance reasons. For the second phase, we have mainly

worked on the part responsible for target-specific prologue and epilogue code. For

the proof-of-concept, integrity checks are placed for only callee-saved registers that

are primarily assigned to local variables by the allocator. But the registers known as

caller-saved can also be included in tag calculations using the same instrumentation,

thanks to the compilation flags available (e.g., -fcall-saved-x9). Table 6.2 summarises

the highlights of the calling convention used during our experiments.

For simplicity, we have encapsulated MAC calculations with two functions added

to the C library in use2. The first one (__register_mac) is injected to the end of the

prologue and generates a reference tag from saved register values. The second one

(__register_check), which is placed at the beginning of the epilogue, creates another

tag from the values to be restored and compares it against the reference value. In

the case of unmatched values, which means an attack, it terminates the program.

Both wrapper functions take the start address and the size of the region where
2https://github.com/msgeden/musl

130 6.5. Evaluation

registers are pushed as their arguments. The latter function additionally requires

the reference tag for comparison. The instrumentation also handles the preservation

of original arguments required by the actual callee function and the return values

upon its completion at call sites of the wrapper functions. For optimisation purposes,

we have avoided injecting these functions to the leaf functions of the program as

their frames cannot be modified in practice without another function call.

Differently from the ideal design proposed in Section 6.3.2, those wrapper

functions calculate MACs from register values awaiting on the stack instead of

directly using values already on registers. We remind the reader that as a proof-of-

concept implementation avoiding the complexity, these wrapper functions introduce

additional cache hits. Hence, our performance discussion should be seen as an over-

approximation, whereas a production-ready implementation based on the proposed

design would have less performance overhead.

For MAC, we have implemented two options. The first option is HMAC-SHA256,

backed by hardware acceleration. The second one is SipHash-2-4 producing a 64-bit

tag, as a fast, practical, and deployable option for different architectures lacking

advanced vector and cryptographic extensions.

6.5 Evaluation

This section first approximates the performance overhead of RegGuard using our

proof-of-concept (PoC) implementation. Then, it examines its security promises

against real-world vulnerabilities.

6.5.1 Performance

For performance evaluation, we have used cBench [175] , a popular open-source

uniprocessor benchmark suite that is based on earlier MiBench [158] suite. The

experiments were performed with a collection of 14 C programs from various

categories that aim a realistic benchmarking and research. We have run those

programs on a Linux system running on an Apple M1 chip that is equipped with

the ISA features we need, such as SHA extensions. We have instrumented not

6. Leveraging CPU Registers for Protection of Runtime Data 131

ru
nt

im
e

ov
er

he
ad

s
in

 ti
m

es
 s

lo
w

er

0.2

0.4

0.6

0.8

1

1.2

1.4

bitcount

qsort1

bzip2e

jpeg_d

lam
e

tifm
edian

dijkstra

patricia

stringsearch1
blowfısh_e
rijndael_e
sha

adpcm
_c

CRC32

-O0

SHA256 with acceleration (ARMv8-A) SipHash-2-4 Basic Allocation (-O2)

Figure 6.8: Runtime overheads of program-only instrumentation.

only benchmark executables but also the C library interacting with the kernel

to have a better understanding of performance costs in the case of extended

guarantees. The full instrumentation of the C library aims to mitigate scenarios

where the libc vulnerabilities can be exploited to corrupt the program’s stack

objects. We have experimented with both SHA256 (using ISA acceleration) and

SipHash-2-4 for integrity checks.

6.5.1.1 Program-only Instrumentation

In the case that only the program binaries are instrumented, both MAC implemen-

tations promise better execution times compared to unoptimised binaries (-O0),

where no register allocation takes place. As seen in Figure 6.8, only two benchmark

programs with SipHash have produced slower execution times than unoptimised

versions. Considering a comparison between the basic register allocation without

any instrumentation and our scheme compiled with the same optimisation level

(-O2), SHA256 backed by native ARMv8-A instructions has produced only 13%,

whereas SipHash yields 23% overhead.

132 6.5. Evaluation

6.5.1.2 With C Library Instrumentation

We have observed higher performance costs for programs linked to an instrumented

C library as expected. Compared to the naive scenario where both benchmark

programs and libc are neither instrumented nor optimised, our implementation has

still produced better execution times on average for the suite. Only three programs

using HMAC-SHA256 and four programs with SipHash out of 14 benchmark

executables have had slower execution times than non-optimised versions. In

contrast to the basic register allocation bundled with -O2 optimisations, SHA256

and SipHash instrumentation have introduced 33% and 59% runtime overheads,

respectively. Considering the binary sizes, instrumented C library with wrapper

functions is only 14% higher than the non-instrumented library file.

Because the optimisation configurations do not allow us to measure the perfor-

mance impact of register allocations in isolation, we have used -O2 as the default

optimisation level. Comparisons with basic register allocation create a baseline

scenario to understand the standalone costs of additional integrity checks. On

the other hand, experiments with unoptimised and non-instrumented programs

aim to measure the compensation level by the register allocations of our scheme.

We note that there are other optimisations included contributing to the overhead

compensation. For instance, inlining some functions not only avoids branching costs

but also reduces tag calculations. This is due to the fact that the caller can aggregate

register operations of the inlined function. Overall, SipHash, with its reasonable

overheads, proves to be a practical option for different CPU architectures without

asking for any hardware change or acceleration. If available, similar to ARMv8.3-A,

using native SHA instructions that provide around 7x speed-up would be a faster

and more convenient option. Depending on the CPU features, both options can thus

be practically used to ensure the integrity of register data on the stack since the

overheads are within very small fractions of optimised times (-O2) for most programs.

6. Leveraging CPU Registers for Protection of Runtime Data 133

ru
nt

im
e

ov
er

he
ad

s
in

 ti
m

es
 s

lo
w

er

0.25
0.5

0.75
1

1.25
1.5

1.75
2

2.25
2.5

bitcount
qsort1

bzip2e

jpeg_d

lam
e

tifm
edian

dijkstra

patricia

stringsearch1
blowfısh_e
rijndael_e
sha

adpcm
_c

CRC32

-O0

SHA256 with acceleration (ARMv8-A) SipHash-2-4 Basic Allocation (-O2)

Figure 6.9: Runtime overheads with libc instrumentation.

6.5.2 Security and Real-World Cases

Our PoC implementation in ARM64 accommodates the local variables of tested

programs in callee-saved GPRs, where the architecture provides plenty of, therefore,

ensures that those variables are safe from corruption while in registers during the

execution of a function. Whenever those variables are saved to the stack because

of another function call, PoC instrumentation checks whether those variables,

return addresses (in the link register), and frame pointers are restored to the

registers without any modification. Unlike mitigations whose verification data

must be isolated in the same memory space, our cryptographic approach also

provides protections against corruptions that can be achieved through different

means, e.g., rowhammer attacks, as long as the key(s) are kept confidential. In

such cases, the attacker gains only a brute-force attempt to target the underlying

MAC primitive.

We have tested our PoC implementation using buffer overflow cases extracted

from open source model programs (e.g. BIND, Sendmail, WU-FTP) made available

as a SARD test suite (88) by NIST. For a sound evaluation, we have first attempted

to compile available 14 cases with clang and -O2 flag instead of the default gcc

and -O0 configurations given by the suite. Due to the optimisations changing

134 6.6. Discussion

the memory layouts and architectural differences, solely 6 cases have remained

compiled and exploitable. From those, our implementation has successfully captured

5 out of 6 cases (1285/CVE-1999-0368, 1287/CVE-1999-0878, 1289/CA-2001-01,

1299/CVE-1999-0131, 1303/CVE-1999-0047). Only one case (1307/CVE-2001-

0653) that exploits a sign-cast bug to underflow a global array with negative

index values has been undetected. Although such scenarios are not within the

scope of this work, Section 6.6 discusses how our MAC checks can be extended

to mitigate similar corruptions.

6.6 Discussion

In this section, we present a discussion of certain design decisions of RegGuard,

including further extensions and future CPU design features that would com-

plement our scheme.

6.6.1 Chained vs Independent Frames

Given that our scheme uses a keyed hash, it is not a strict requirement to include

the previous tag in the tag of the next frame. In other words, we could have chosen

to independently secure each call frame, rather than chaining them together. This

section will briefly look at the reasons for and against this design desertion.

For a program with a call stack strictly following LIFO, we could have relied

solely on a single (unkeyed) hash for the stack integrity by chaining frames. This

is because such a program can ensure that any CPU state restored from the stack

complies with the hash register first. However, there are many legitimate cases where

the register hosting the head of the chain has to be saved to/restored from program

memory without our instrumentation, for example, setjmp/longjmp, exception

handling and user-managed threading instances. They all oblige us to rely on

the MAC key instead of a single hash.

Despite its redundancy for integrity assurance, we have chosen the chained

approach over independent frames to prevent replay attack scenarios. With

independent frames, the attacker can simply replay a call frame (and its aligned

6. Leveraging CPU Registers for Protection of Runtime Data 135

tag) for a different function call or context. However, with a chained approach,

replaying for a different call context will not work since the tag register provides

a very tight representation of the execution context, including all functions calls

waiting to be returned. Even though setjmp/longjmp and user-managed thread

instances might still provide a small window, it is very unlikely for the attacker

to find a useful tag he can replay. This is because he needs a more coarse-grained

stack-size image this time. Also, he will have fewer options; for example, he can

exploit only setjmp/longjmp instances instead of function prologues/epilogues.

The only downside of a chained approach is occupying an additional register,

which has to be excluded from allocations. This might be an issue for some legacy

or primitive architectures that suffer from register scarcity. In such cases, the

independent frame approach can be preferred to avoid the use of an extra (tag)

register. To harden replay attacks without chained frames, we suggest including the

stack pointer and a static function identifier or a nonce generated by the compiler

as an immediate value in tag calculations. These two parameters provide a good

approximation of the context by describing the current stack depth and returning

function. The attacker cannot modify the function identifier, thanks to the code

integrity. Also, the stack pointer would be safe by default on a register that can

be saved to memory for the same reasons as the tag register.

6.6.2 Primitive Devices and Register Scarcity

Our proposal uses security scores to distinguish critical variables and prioritise them

for available registers under register pressure scenarios. However, it is difficult to

observe such use cases with a modern CPU core providing a register file consisting

of 48-64 (16/32 GPRs and 32 FPRs) registers with sizes up to 2kB. Hence, our

selection process actually serves more primitive architectures suffering from register

scarcity (e.g., 6-8 GPRs with no FPRs). In such a case, our security scores aim

to accommodate at least all critical objects in the registers. But if there is still a

critical object (e.g., condition variable) left in the memory, the compiler can display

a warning; so the programmer would review the code. Despite being ignored by

136 6.6. Discussion

some compilers, the programmer can use the register keyword in C to annotate

which variables to protect. A different approach for CPUs with register scarcity

can be to adapt RegGuard as a local register allocation scheme. Such a scheme

would mitigate the register pressure problem by enabling the reuse of registers at

a smaller (basic block) level in return for higher overhead.

We have designed RegGuard as an architecture-agnostic solution to make it

applicable to a wide range of systems, even with the most resource-constrained

devices in mind; for example, a 16/32-bit MCU with no security at all, but might

still be prevalent in critical systems. By relying solely on flash program memory

and a few GPRs, we can significantly reduce the attack surface with shorter keys

and checksums against less strong adversaries.

6.6.3 Future CPU Architectures

Although RegGuard is designed to fit existing CPU architectures, we would like to see

CPU manufacturers incorporate some of these ideas into their designs in the future.

If the next generation of CPUs were to include the necessary registers and

maybe even hardware acceleration of a suitable MAC function, RegGuard could

be implemented at the hardware level through a single instruction. A bit vector-

like operand can be given to describe which registers to include in the MAC,

and the new instruction can then run all the necessary calculations within the

CPU. Such instruction would enable us to create a standalone tag for each spilled

value due to register pressure within the same function, without having to worry

about performance overheads.

Furthermore, similar to the Itanium (IA-64) architecture providing 128 GPRs

and 128 FPRs, CPU manufacturers can consider expanding their register files as

trusted storage and adopting register windows to zero out the performance costs in

return for space overhead within the CPU. Register windows, which are designed

to avoid the cost of spilled registers on each call by making only a portion of

registers visible to the program, can actually benefit our scheme more than its

original purpose by eliminating cryptographic calculations. For example, with a

6. Leveraging CPU Registers for Protection of Runtime Data 137

window size of 32 (from 128 registers), RegGuard would not incur any overheads

for a program that has no call down deeper than four calls.

6.6.4 Further Extensions

RegGuard covers attack scenarios that require modifying a stack object in the first

place. Due to the integrity assurance of pointers on the stack, most illegitimate

accesses to other memory sections outside the stack would also be mitigated.

However, there might still be some options for the attacker not addressed by the

protection of stack pointers, such as overflowing a global array or a heap buffer to

target an adjacent variable whose modification can result in a successful attack. But

thanks to the key register and MAC properties, we can extend our scheme to ensure

the integrity of these objects. For example, we can allocate a tag address next to each

global variable or composite data that will host a digest of them. We can update

this tag at each legitimate (re)definition of those variables and verify when used.

6.7 Summary

This chapter presented a novel and practical runtime protection scheme, called

RegGuard, which leverages CPU registers to mitigate stack-based control- and data-

oriented attacks, which exploit memory vulnerabilities commonly found programs

developed by C-like unsafe languages. Our proposal relies on the immunity of

registers from memory corruptions as unaddressable storage units. Despite their

heavy use by compiler optimisations, CPU registers have not been systemically used

as secure storage because of their limited capacity and voided immunity of saved

values on the stack. This chapter addresses these issues with a two-step proposal.

First, during register allocations, it suggests favouring variables that are more likely

to be targeted; so they stay safe while in use. Second, when those registers are saved

to the stack because of a new function call, our scheme computes a keyed hash

to ensure that they are restored back to registers without any corruption. These

integrity checks enable the reuse of the register file as secure storage repeatedly for

each function call, without having to occupy registers across function boundaries.

138 6.7. Summary

Although the solution given in this chapter is designed as a software-based

approach to be practical, it makes strong security promises using a very basic

hardware primitive, i.e., CPU registers. This makes our approach applicable to a very

broad range of devices, from high-end to low-end, without asking for special hardware

features. Our experiments on ARM64 showed that register allocations can improve

both security and performance together with a surplus within the range of 13% (with

SHA extensions) to 23% (SipHash) on average compared to purely performance-

based optimisations. The chapter proposed the first systematic use of general-

purpose CPU registers for security purposes. It presented a runtime protection

scheme relying on building blocks that are available in most computers, such as code

integrity, registers, and MAC calculations that can be expressed by any CPU ISA.

“I think computer viruses should count as life...I think
it says something about human nature that the only
form of life we have created so far is purely destructive.
We’ve created life in our own image.”

— Stephen Hawking

.

7
Using Runtime Features for Identification

of Malicious Software

Even if the solutions delivered in previous chapters can ensure the runtime integrity

of vulnerable software programs and can reduce their attack surfaces meaningfully,

there would still be many ways to compromise a target system. For instance, a device

owner or an operator can be tricked to install malware on a system, as a consequence

of a phishing or social engineering. This chapter considers such a setting where the

host system is already infected by sophisticated malware. Therefore, it presents a

malware analysis framework for the evaluation of system-level runtime features that

can be used to identify malware executions. Unlike previous chapters that focus on

the protection against malicious executions of legitimate but vulnerable software

instances, this chapter investigates the runtime of programs that are malicious

by design, and whose code or static analysis might not be an option due to the

evasion means in place (e.g., polymorphic malware).

7.1 Introduction

Malware mostly refers to a software instance or executable that is designed to gain

unauthorised access, steal data, or demand a ransom. Malware can exploit software

vulnerabilities, which we aimed to mitigate in previous chapters, as the entry point

139

140 7.2. Problem Definition

to infect host systems. Depending on the purpose and propagation mechanism, they

can be categorised as virus, trojan, worm or ransomware. Despite the widespread

use of antivirus (AV) solutions for a long time, new malware variants continue rising

to take control of our computers, smartphones, and IoT systems.

On the other hand, malware detection and classification are generally considered

as a feature or signature extraction problem, from known (labelled) malware

samples to seek similarity with the unknown (non-labelled) ones based on selected

features. There have been many proposals that rely on static methods, such as

extracting opcode [137] or CFG-based [176] signatures from the binaries. Despite

their advantages in code coverage, static methods can suffer from evasion techniques

that obfuscate or encrypt the malicious code (i.e., polymorphic malware [177]).

Fortunately, dynamic methods using runtime features can overcome most of these

evasion strategies, as most malware instances eventually execute on the target

system. Although there are many studies proposing various runtime features, there

is a lack of comprehensive work that evaluates the value of choosing a feature

model over others. Therefore, this chapter presents an experimental exploration of

different runtime features, in order to contextualise and evaluate existing knowledge.

For this purpose, it implements a malware analysis framework that combines ML

and sandbox methods to distinguish malware families from the same category (i.e.,

ransomware), which is chosen as a more challenging task, compared to simpler

detection or category-based classifications.

The rest of the chapter is organised as follows. Section 7.2 defines the research

questions that we intend to address through this work. Section 7.3 describes

the design of the framework. Finally, Section 7.4 evaluates and discusses the

results of the experiments.

7.2 Problem Definition

This chapter aims to evaluate and contextualise existing knowledge on the use of

runtime features for malware identification. Briefly, we have collected malware

samples from different ransomware families and have used an open-source automated

7. Using Runtime Features for Malware Identification 141

malware analysis environment, called Cuckoo sandbox, to record their runtime

interactions with the host system. This is to investigate the use of different feature

representations that are extracted from recorded call traces, such as bag-of-words,

ngrams, and wildcard based search patterns; and other forensic type features such

as files accessed and registry keys available in the generated runtime reports. This

chapter aims to answer the following research questions:

• RQ1: Can API (and system) call traces be leveraged to classify

malware families from the same category? (Ransomware). This work

uses API and system call traces as the main runtime feature source for the

classification of malware families from the same category. During the sample

collection, we picked only ransomware instances, in order to minimise potential

biases that might arise from different categories. This aims to create sound

experiments because we should still expect all the ransomware instances to

behave similarly at high level, such as encryption of the files and displaying

payment instructions for the ransom.

• RQ2: Which feature models extracted from API and system calls

perform better for malware classification? By experimenting with

different feature representations of call traces, such as bag-of-words, ngrams,

wildcard search models, we explore the drawbacks and advantages of each,

regarding accuracy, scalability, and potential resiliency to evading techniques.

• RQ3: To what extent can other runtime artefacts on the system be

used to identify malware families? Apart from call traces, the framework

also explores other runtime artefacts available in the Cuckoo reports, such

as the files accessed, registry keys obtained, mutexes created and DLL files

loaded. Although the call traces provide the same information as part of

the function arguments, we intend to understand the value of those artefacts

without the noise of other calls or arguments.

142 7.3. Methodology

Sample Col l ect i on

Quer y and dow n load
fr om Vi r usTot al

L abel samples
w i t h AVClass

Ext r act
feat u r es

Feat u r e Ext r act i on

Classi f i cat i on

Submi t samples
 t o t he Cuckoo

Select r epr esen t at i ve
feat u r es

Bu i l d bi nar y
feat u r e vect or s

Send t o
Wek a classi f i er s

Gener at e
r un t i me r epor t s

Figure 7.1: The overview of malware identification framework.

• RQ4: Which techniques yield better results in terms of feature

selection and classifier algorithm? Since some extractions generate

more features than the classifiers can handle, we should employ only the

most important ones. This requires a feature selection method, which is an

important factor that can affect classifier outcomes. Additionally, different

classifier algorithms can produce dissimilar results. Using heuristics, we aim

to understand optimal settings that provide better results.

7.3 Methodology

As shown in Figure 7.1, our experimental framework1 consists of three main stages:

1-Sample Collection, 2-Feature Extraction and 3-Classification. The framework

first collects labelled samples from different ransome families. Then, it generates

runtime report for each using Cuckoo sandbox and extracts different features from

these reports. After the feature selection phase, malware samples are represented

as binary feature vectors that are sent to Weka [178] classifiers.
1https://github.com/msgeden/familyclassifier

7. Using Runtime Features for Malware Identification 143

Table 7.1: Number of malware samples used from each ransomware family in training
and test portions.

Family Training Test

Cerber 48 24
Crysis 47 23
HydraCrypt 24 11
WannaCry 39 19

Total 159 77

7.3.1 Dataset Collection

The samples are selected from four different popular ransomware families cerber,

crysis, hydracrypt and wannacry, which we have found the highest number of

labelled samples compared to the other options [179]. We queried VirusTotal [180]

for portable executable (exe) files using those family names as query keywords. Our

queries were also filtered by the conditions of being detected by at least five antivirus

engines and having a sample size of less than 5MB. Despite queries based on family

keywords, each antivirus vendor can still label a given sample with a different

family name. Since VirusTotal returns any sample that is labelled by at least one

of the 82 AV engines with the keyword, the query results do not provide a strong

indication of family belongings. To address this problem, there are solutions [181,

182] that extract the most popular family name from AV labels in VirusTotal reports.

Therefore, we eliminated misleading samples whose labels are different from queried

keywords by using the AVClass tool [182]. In other words, we only used the samples

if the label given by this tool matches with the family name queried.

Following the sample collection, we split the dataset into training and test

portions with a 2:1 ratio, as the most common ratio used in ML-based malware

detections. We used separate training and test portions instead of cross-validation

methods. This is because integration of the feature selection phase with cross-

validation requires extra effort to avoid overfitting bias during classifications [183].

The number of samples used in each portion can be seen in Table 7.1.

144 7.3. Methodology

GetFileType(0) /*Assigned ID:A1*/
NtClose(0xb0) /*Assigned ID:B2*/
RegCloseKey(0xa4) /*Assigned ID:C3*/
NtTerminateProcess(0,0,1) /*Assigned ID:D4*/

Figure 7.2: A short call trace example.

GetFileType,NtClose.. /*API calls*/
GetFileType(0),NtClose(0xb0).. /*API calls with args*/
GetFileTypeNtClose,NtCloseRegCloseKey.. /*API calls 2-grams*/
A1[0-9A-Z-]0,12B2,B2[0-9A-Z-]0,12C3.. *API wildcards (2/4-junk calls)*/
NtClose,NtTerminateProcess.. /*System calls*/
NtClose(0xb0),NtTerminateProcess(0,0,1).. /*System calls with arg*/
NtCloseNtTerminateProcess.. /*System calls 2-grams*/
B2[0-9A-Z-]0,12D4.. /*System wildcards (2/4-junk calls)*/

Figure 7.3: Different feature representations that are extracted from the sample call
trace given in Figure 7.2.

7.3.2 Runtime Data Generation

After the collection and labelling phase, we ran the samples within the Cuckoo

sandbox analysis environment. Cuckoo collects runtime reports from running VM

guests. It allows monitoring API and system calls, the files accessed, registry keys

and mutexes used by the submitted sample, and collects network traffic for further

analysis. Using Windows XP-SP3 as the target system, we ran each malware

sample for 120 seconds. For each submission, Cuckoo generated a JSON report

that contains the runtime artefacts used for our feature extractions. The detailed

structure of these reports can be found in Figures A.5, A.4 and A.6 in the Appendix.

7.3.2.1 Feature Models

We have used call traces, the file names accessed, registry keys and mutexes as

runtime features. We put special effort into raw call traces by extracting different

representation models. The list of experimented feature models with the number

of unique features extracted from each can be found in Table 7.2.

7. Using Runtime Features for Malware Identification 145

Call Traces. Windows’s API and its subset system calls can be used in different

ways to identify malware samples. This chapter compares the accuracy and

scalability of these options using different representations of API and system calls.

The simplest feature model that we have derived from both API calls and system

calls is the bag-of-words representation without function arguments. On the other

hand, the bag-of-words with arguments option generates the highest number of

unique features (see Table 7.2). Those arguments provide detailed information

about the intention of the call made. Unlike bags-of-words, ngram-based models

should give more meaningful features that can have a better corresponding to

the malicious behaviour. Although ngram models with function arguments are

not computationally feasible due to the huge feature space, we have successfully

generated naive 2-grams and 3-grams of both API calls and system calls.

Since malware with sophisticated evasion mechanisms can defeat ngram models

by injecting junk calls that break the expected sequence, this chapter also explores

the use of wildcard-based search models on the traces. These search patterns intend

to capture the corresponding malicious action, where the order of calls can be more

indicative, regardless of the ngram sequence. For an efficient implementation of this

model, which adds an extra layer of complexity, we first assigned base-36 ID numbers

to each function name to minimise the search cost on the traces. Then, we created

regular expressions as the features to be searched for all possible permutations of

the required size (2-calls, 3-calls) with an adjustable distance buffer by using the

function IDs and wildcard characters. We set the distance buffer as four junk calls

since larger distances can result in false positives with unnecessary search costs.

We extracted ngrams and wildcard patterns for 2-calls, 3-calls without arguments.

Function arguments are only used with the bag-of-words model. To illustrate all

these call trace-based models, a short fabricated call trace and the feature models

extracted from this trace are given in Figures 7.2 and 7.3.

146 7.3. Methodology

Files. A forensic type feature, the files accessed during a malware execution can be

an indicator of its family. In addition to opening and reading, malware samples

can also create new files or write to existing ones. This framework explores the

names of files accessed as a usable feature to identity malware families.

Registry Keys. In Windows systems, malware execution can leave important

footprints in the registry database. Although there is not much research on a

registry-based malware, it is known that are instances [184] in the wild that reside

only in the registry without causing any file artefacts, which can be challenging

for antivirus programs.

Mutexes. Mutex objects in operating systems represent the synchronization objects

that manage the shared resources by different threads. Since a malware program

can also use shared resources, this work explores the use of mutex objects as a

runtime feature as well [185].

Dynamic-Link Libraries (DLL). Another feature type investigated is DLL files

loaded during malware executions. Although this information can give a hint about

the API functions called, we have experimented with DLL names, to understand

to what extent those coarse-grained features are usable.

7.3.3 Feature Selection

We hav explored different feature selection techniques to eliminate non-informative

features for classifiers as some models (e.g., API calls with function arguments)

extract more features than the classifiers can handle (see Table 7.2). Most mal-

ware studies use Information Gain [137, 142, 186], whereas Document Frequency

Threshold [139] or Fisher Score and Chi-Square scores [187, 188] are other popular

options used to decide on the features to be used.

In addition to our experiments using Information Gain, we adapted a new

feature selection method that was previously used for binary malware detection

problems to our multiclass family identification problem. This method is called

7. Using Runtime Features for Malware Identification 147

Table 7.2: Number of unique features extracted from dataset for each feature model.

Feature Model # of Features

API Calls 210
API Calls 2-grams 2690
API Calls 3-grams 10823
API Calls with args 1907098
API Calls wildcard 2-calls 6635 / 45769
System calls 35
System calls 2-grams 321
System calls 3-grams 1396
System calls with args 958474
Sys calls w.card 2-calls 651 / 1369
System calls wildcard 3-calls 6748 / 50653
Files accessed 55581
Dll loaded 166
Registry keys 4785
Mutexes 101
Note: Wildcards models (A/B) represent the features

found (A) and permutations generated (B).

Normalised Angular Distance [189]. Because these selection methods can result

in feature sets dominated by specific families, the framework also offers classwise

adaptations to obtain a fair representation of each family in the selected feature set.

7.3.3.1 Information Gain

Information gain method (also called average mutual information by Yang et al. [138])

was first used by Kolter et al. [137] for the selection of ngram bytes. To calculate

the information gain score of a feature f by using Equation 7.1:

IG(f) =
∑

X∈{f,f̄}

∑
Ci

P (X, Ci) log P (X, Ci)
P (X)P (Ci)

(7.1)

the term Ci represents the class of families, while the terms f and f̄ represent

the existence or absence of the given feature. Thus, P (X, Ci) can be expressed

as the proportion of existence or absence of the feature f for the given family Ci,

while P (X) represents the proportion of samples in the whole set that contains or

does not contain feature f , and P (Ci) is the proportion of samples that belongs

to the given class Ci in the whole collection set.

148 7.3. Methodology

7.3.3.2 Normalised Angular Distance (NAD)

A new feature selection technique [189], NAD leverages the representation of features

in a vector space where each dimension corresponds to the class likelihoods of the

features expressed as P (f |Ci) and defined as the proportion of samples that contain

the feature f for the given family class Ci.

This method relies on the assumption that feature vectors that have equal class

likelihoods for each class are not distinguishing and should not be selected. As

the distinguishing power of feature increases, the ratio of the difference between

class likelihoods should increase as well, where our approach measures it via

angular distance between the feature vector and reference vector that has equal

class-likelihoods.

After representing all features as vectors in the probability space, using Equa-

tion 7.2, the method first calculates α the angular distance (in radians) between

the feature vector f⃗ and any reference vector that has equal likelihoods for all

classes such as r⃗ = (1, 1, 1, 1).

α = cos−1 f⃗ · r⃗
||f⃗ || · ||r⃗||

(7.2)

However, regardless of the vector magnitudes, this angle will be the same for the

features that have the same likelihood ratios such as f⃗1 = (0.1, 0.2, 0.3, 0.4) and f⃗2 =

(0.01, 0.02, 0.03, 0.04) which can result in the selection of noisy and sparse features.

In order to manage this trade-off between being more common and more

distinctive, NAD takes the magnitude of vector into account, as the normalisation

factor, with a degree parameter k that can adjust the importance of the magnitude,

for the final score. During our experiments, we set k = 2, which could have been

experimented within a range of [1.5, 4].

NAD(f) = α× ||f⃗ ||
1/k (7.3)

7. Using Runtime Features for Malware Identification 149

7.3.3.3 Classwise Selections

To prevent the feature sets from being dominated by specific families, and to provide

a fair representation of each class, we have modified the scores of Information Gain

and Normalised Angular Distance in a class-wise fashion.

Although previous studies [139, 190] propose classwise feature selection in

different ways to solve the issue, we offer a more practical solution. We first create

separate ranked lists for each family class using Equations 7.4 and 7.5 that score

only the features that have the highest class likelihoods for the given class of the list.

We then build our final set with the features ranked in each class list by ensuring

that for every n number of features there will be n/|C| features from each family

class to create an equally distributed feature set for the classifiers.

CWIG(f, C) =
{

IG(f), if C = argmaxCiP (f |Ci)
0, otherwise

(7.4)

CWNAD(f, C) =
{

NAD(f), if C = argmaxCiP (f |Ci)
0, otherwise

(7.5)

7.3.4 Classifications

Following the extraction of different feature representations from Cuckoo reports,

we applied a feature selection phase for models that produce more than a thousand

unique items (see Table 7.2). Then, we created binary feature vectors with a length

of 1000 for each sample where the ones represent the existence of a feature for the

given sample and the zeros describe the absence of that feature. Those sample

vectors, which constitute matrices for each training and test portion, were later sent

to the Weka [178] classifiers. For classifications, we experimented with k-Nearest

Neighbour (k=3), Support Vector Machines (with SMO functions and poly kernel),

Random Forests (# of trees=100) and Neural Networks (with default settings of

Multilayer Perceptron provided by the beta package).

150 7.4. Results and Discussion

11%

22%

33%

44%

56%

67%

78%

89%

100%
API Calls

API Calls 2grams

API Calls 3grams

API Calls w.card 2calls

API Calls with args

Sys Calls

Sys Calls 2grams

Sys Calls 3grams Sys Calls w.card 2calls

Sys Calls w.card 3calls

Sys Calls with args

Dlls loaded

Files accessed

Mutexes

Registry Keys
K-NN

Random Forest

SVM

Neural Networks

Figure 7.4: Weighted TPRs of all feature models for different classifiers (Classwise NAD
used).

7.4 Results and Discussion

We experimented with 16 different feature models, 4 feature selection techniques,

and 4 classifier algorithms on a dataset consisting of 236 samples. Our experiments

yielded promising results. Although we consider correct classification ratio as

the key performance metric for our discussion, we will evaluate the scalability

of different feature models. Correct classification ratios can also be defined as

classification accuracy or weighted true positive ratio (TPR) of all classes as the

terms that we will use interchangeably.

Because of many combinations caused by different experiment settings, such as

feature models, selection techniques and classifier algorithms, we will discuss the

results with the settings that yield better results on average, which are Classwise

NAD (selection technique) and Neural Networks (classifier) (see Tables 7.3 and 7.4).

7. Using Runtime Features for Malware Identification 151

Table 7.3: Accuracy Results for Classifiers with Classwise NAD.

Feature Model K-NN RF SVM NN Average

API Calls 85.53% 93.42% 93.42% 93.42% 91.45%
API Calls 2grams 89.47% 94.74% 93.42% 93.42% 92.76%
API Calls w.card 2calls 90.79% 96.05% 96.05% 96.05% 94.74%
API Calls 3grams 86.84% 89.47% 86.84% 90.79% 88.49%
API Calls with args 86.84% 93.42% 92.11% 94.74% 91.78%
Sys. Calls 88.16% 88.16% 85.53% 92.11% 88.49%
Sys Calls 2grams 94.74% 93.42% 92.11% 94.74% 93.75%
Sys Calls w.card 2calls 86.84% 94.74% 94.74% 96.05% 93.09%
Sys Calls 3grams 92.11% 92.11% 93.42% 90.79% 92.11%
Sys Calls w.card 3calls 88.16% 90.79% 88.16% 88.16% 88.82%
Sys Calls with args 85.53% 90.79% 90.79% 92.11% 89.81%
DLLs loaded 85.53% 92.11% 88.16% 92.11% 89.48%
Files accessed 73.68% 78.95% 77.63% 75.00% 76.32%
Mutexes 55.26% 59.21% 59.21% 55.26% 57.24%
Registry Keys 88.16% 88.16% 86.84% 89.47% 88.16%

Average 87.89% 93.42% 92.37% 93.68%

7.4.1 Call Traces

Although we aimed to challenge classifiers by collecting all instances from the

same malware category (ransomware), whose samples should perform similar

behaviours (e.g., files encryption), all the feature representations of call traces

yielded promising results with an accuracy ranging from 88.16% to 96.05%. Despite

the small variations caused by the different classifiers as seen in Figure 7.4, we

can conclude that any feature model using call traces can be used as features

to distinguish malware families (RQ1).

Considering the difference between the use of API and system calls, we can

comment that models using API calls perform better on average. But the system

calls have scalability advantages with a fewer number of features.

7.4.1.1 Bag-of-words Model

The simplest model extracted from call traces is the bag-of-words model without

function arguments. Only 210 API functions and 35 system call functions are

found. Despite the information loss due to lack of arguments and the order

152 7.4. Results and Discussion

11%

22%

33%

44%

56%

67%

78%

89%

100%
API Calls 2grams

API Calls 3grams

API Calls w.card 2calls

API Calls with args

Sys Calls 3grams Sys Calls w.card 3calls

Sys Calls with args

Files accessed

Registry Keys

IG

NAD

CW-IG

CW-NAD

Figure 7.5: Weighted TPRs of feature models for different feature selection techniques
(Neural Networks used).

between calls, the model run on API calls has yielded 93.42% accuracy, followed

by system calls with 92.11%.

7.4.1.2 With Arguments

On the other hand, call traces with function arguments generated the highest

number of features. As seen in Table 7.2, these models gave unique 1.9M API

and 958K system calls, which make them infeasible to be adapted as ngrams

(API Calls=1.9x106n and System calls=9.58x105n). Regarding accuracy, API calls

(94.74%) have performed slightly better than system calls (92.11%) with Neural

Networks and Classwise NAD settings. One important benefit of using function

arguments is having more insight into the called functions, whereas the function

name without arguments does not reveal as much information about the intention.

Another point is that these models provide a good demonstration of how feature

selection techniques can easily suffer from unfair representation without classwise

7. Using Runtime Features for Malware Identification 153

Table 7.4: Accuracy results of different feature selection methods used.

Features IG NAD CWIG CWNAD

API Calls 2grams 93.42% 94.74% 93.42% 93.42%
API Calls 3grams 67.11% 52.63% 92.11% 90.79%
API Calls w.cards 2calls 90.79% 90.79% 96.05% 96.05%
API Calls with args 52.63% 52.63% 90.79% 94.74%
Sys Calls 3grams 90.79% 92.11% 89.47% 90.79%
Sys Calls w.card 3calls 88.16% 88.16% 88.16% 88.16%
Sys Calls with args 51.32% 51.32% 92.11% 92.11%
Files accessed 52.63% 47.37% 73.68% 75.00%
Registry Keys 88.16% 88.16% 86.84% 89.47%

Average 78.13% 76.65% 90.96% 91.94%

adaptations. Since the features extracted from these models have unbalanced

distributions (see Figure 7.7), naive versions of Information Gain and Normalised

Angular Distance inevitably favour one class for the selected feature sets. Figure 7.8

illustrates that how the selection can differ for naive and classwise techniques on

the basis of Crysis family. Moreover, Figure 7.5 and Table 7.4 show how the

selection bias of naive techniques causes classifiers to underperform compared

to the classwise selections.

7.4.1.3 Ngrams

Another feature model used is the ngram representation of call traces. Based on

the average of different classifier results, 2-grams (93.75%) and 3-grams (92.11%) of

system calls produce better results than the bag-of-words model (88.49%). 2-grams

(92.76%) of API calls also perform better than the corresponding bag-of-words

model (91.45%) as well, while 3-grams (88.49%) perform the worst among these

three models. Because of the limited number of sequences that can be found on

traces, ngram models are more scalable than feature models with arguments or

wildcard models for which we generate all possible permutations.

7.4.1.4 Wildcard Searches

Our wildcard models are designed to be resistant to evading mechanisms such as

the insertion of junk API calls. The wildcard model running on API calls for 2-calls

154 7.4. Results and Discussion

Fig. 7: ROC curves of di↵erent classifiers for API Calls wildcard model with 2-
calls

that the wildcard model for API calls with 2-calls yields the best accuracy of
the experiments, while 2-grams and 3-grams of system calls perform slightly
better than the others. Although the wildcard models show resilience against
possible junk API calls, system call results can be implying that insertion of
junk system calls are not practised by the malware developers, whereas the
other possibility is the larger bu↵er distances (due to elimination of non-system
calls at the beginning) and small feature space of the system calls cause false
positives.

5.2 Other Artefacts

Other feature models relying on registry keys and DLLs loaded have also pro-
duced promising results whereas the files accessed and mutexes have performed
poorly than the expected. DLLs and registry keys used the during analyses have
yielded 89.45% and 88.16% accuracy on average respectively. The files accessed
has produced 76.32% correct classification ratio, while the mutex names repre-
sents the worst performing model with a 57.24% (RQ3).

5.3 Optimum Settings and Comparison

As a response to our RQ4, in terms of classifier algorithms, Neural Networks and
Random Forest have performed quite well with classwise selection techniques,
though Neural Networks has performed worse than Random Forest for naive

Figure 7.6: ROC curves of different classifiers for API Calls wildcard model with 2-calls

with a distance buffer of 4-calls yielded the best results of all experiments with

an accuracy of 96.05% for Neural Networks, SVM and Random Forest, of which

the ROC curves can be seen in Figure 7.6. When we compare the results with

2-grams of API calls, we can assume that some samples might be inserting junk

calls and might be caught by our wildcard model.

On the system calls side, wildcard model performed slightly worse than their

ngrams correspondents (see Table 7.3). The first plausible explanation can be that,

due to the small feature space, wildcards on system call traces cause false-positive

findings that actually do not represent any malicious behaviours. Second, as shown

in the short trace examples (1), (2), due to the elimination of non-system calls

from the feature space, the distance buffer that we set corresponds to the wider

distances, which can be another reason for false positives.

Regarding scalability, we normally used hash tables to store all feature models.

7. Using Runtime Features for Malware Identification 155

Fig. 5: Family distributions of extracted features from API Calls with args (1.9M
features extracted)

els have unbalanced distributions (e.g., feature distributions of API Calls with
arguments can be seen in Figure 5), naive versions of Information Gain and
Normalised Angular Distance inevitably favour one class for the selected feature
sets. Figure 6 illustrates that how the selection can di↵er for naive and classwise
techniques on the basis of Crysis family. Moreover, Figure 4 shows that how the
selection bias of naive techniques causes classifiers to under-perform compared
to the classwise selections.

Ngrams Another feature model extracted from call traces is the ngram se-
quences which we expect to represent the malicious intentions better than the
bag-of-words model. While this expectation is valid for most cases, only 3-grams
of API traces has performed worse than the bag-of-words model. Based on the
average results of classifications (see Table 3), both 2-grams (93.75%) and 3-
grams (92.11%) of system calls have produced better results than the 2-grams
(92.76%) and 3-grams (88.49%) of API traces, which concludes that malicious
characteristics are identified better via system calls due to possible existence of
noisy and junk calls on API traces. In terms of scalability, limited number of
unique sequences that can be found on traces makes ngram models more scalable
than the feature models with arguments or wildcard models (see Table 2).

Wildcard Searches Our wildcard models are designed to have resiliency against
the evading mechanisms such as the insertion of junk API calls. The wildcard
model running on API calls with a length of 2-calls and the distance bu↵er of

Figure 7.7: Family-wise distributions of the features extracted from API Calls with args
(1.9M features extracted).

This enabled us to count and analyse all the features for the given trace (N) with a

O(N) complexity in total. However, in order to analyse the existence or absence

of a wildcard feature on a given call trace, we ran regular expressions for each

feature that brings an additional O(N) complexity multiplied by the number of

wildcard permutations for one sample trace. Moreover, since we had to generate

all the possible permutations as wildcard features in advance, P (n, r) becomes

infeasible with r > 3 and n for a cardinality of hundreds where the Windows has

more than 300 system calls, though we only found 35 in our dataset. For RQ2,

we can conclude that the wildcard model for API calls with 2-calls yields the best

accuracy of the experiments, while 2-grams and 3-grams perform better than the

other models extracted from system calls. Although there are signs of resilience

against junk API calls by wildcard models, those that run on system calls suffer

156 7.4. Results and Discussion

Fig. 6: Crysis-based distributions of selected features by di↵erent selection tech-
niques for API Calls with args (10K features selected)

4-calls has yielded the best results of all experiments with an accuracy of 96.05%
for Neural Networks, SVM and Random Forest, of which ROC curves can be
seen in Figure 7. If the results are compared with the 2-grams model of API
calls, it is logical to presume that there are some samples in our dataset in-
serting junk API calls which are caught by the wildcard model. On the other
hand, when we analyse the system calls, wildcard models seem to have slightly
worse performance than their ngrams correspondents (see Table 3). This result
is reasonable due to following issues. Firstly, as shown in the short trace exam-
ples (1), (2), the distance bu↵er that we set (4-calls) corresponds to the much
wider distances for system calls due to elimination of non-system calls at the
beginning. Secondly, the application of wildcard models on such a small feature
space (35 unique system calls in total) can be the other reason that causes many
false positives, which actually do not represent any malicious behaviours.

In term of scalability, we normally use hash tables to store all feature models
that enables us to count and analyse all the features for the given trace (N) with
a O(N) complexity in total. However, for the wildcard models: to analyse the
existence or absence of generated wildcard features for the given call trace, we run
regular expressions for each feature which means an additional O(N) complexity
layer that needs be to multiplied by the number of wildcard permutations for
one sample trace. Moreover, since we generate all the possible permutations
as wildcard features at the beginning, P (n, r) becomes infeasible with r > 3
and n for a cardinality of hundreds where the Windows has more than 300
system calls, though we only found 35 in our dataset. For RQ2, we can conclude

Figure 7.8: Crysis-based distributions of selected features by different selection
techniques for API Calls with args (10K features selected).

from false positives, possibly due to the small size of the feature space.

7.4.2 Other Artefacts

In addition to the models extracted from call traces, other feature models based

on registry keys and DLLs loaded also produced promising results whereas the files

accessed and mutexes performed poorly than expected.

DLLs and registry keys used during the analyses yielded 89.45% and 88.16%

accuracy on average, respectively. The names of the files accessed produced 76.32%

correct classification ratio, while mutex names was the worst performing model

with a 57.24% (RQ3).

7. Using Runtime Features for Malware Identification 157

Table 7.5: Significance test results (α = 0.05) to evaluate feature selection methods and
classifiers

Selection NN=RF Classifier IG=NAD Naive=CW

IG reject KNN do not reject reject
NAD reject RF do not reject reject
CW-IG do not reject SVM do not reject reject
CW-NAD do not reject NN do not reject reject

7.4.3 Optimal Settings and Comparison

As a response to our RQ4, in terms of classifier algorithms, Neural Networks

and Random Forest performed quite well with classwise selection techniques,

though Neural Networks performed worse than Random Forest for naive ones

(see Table 7.3 and 7.5).

On the other hand, our experiment results highlight that unfair representation

of classes by the selected feature sets is an important issue that needs to be

addressed by selection techniques. Although naive selection methods suffer from

poor classification results for large feature spaces without any significant difference

between naive Information Gain and Normalised Angular Distance, our classwise

adaptations produce significantly more accurate results (see Table 7.4 and 7.5).

With Neural Networks and Classwise NAD settings, the wildcard model of

API calls for 2-calls became the best performing feature model of our experiments,

whose detailed performance metrics can be seen in Table 7.6. Although our study

had to use a dataset consists of fewer samples for a sound approach that is free

category based biases, it outperformed most similar studies performing family

classification [146] and categorisation [145].

7.4.4 Limitations

Despite the focus of the chapter on the performance comparison of different feature

models and selection techniques, there are some factors defining the success over

which we did not have much control. For example, even though the queries made

by family names returned too many files, filtering them with a labelling tool [182]

158 7.5. Summary

Table 7.6: Class-based performance metrics and comparison with related work.

TPR FPR Prec. Recall F-M ROC

Hansen et al [146] 0.864 0.035 0.872 N/A 0.864 0.978

Pirscoveanu et al [145] 0.896 0.049 0.907 N/A 0.898 0.980

cerber 0.957 0.019 0.957 0.957 0.957 0.993
crysis 1 0.038 0.92 1 0.958 0.995
hydracrypt 0.909 0 1 0.909 0.952 0.996
wannacry 0.947 0 1 0.947 0.973 0.999

Weighted 0.961 0.017 0.963 0.961 0.961 0.995

reduced the number of usable samples significantly. Because we applied supervised-

learning and our classifiers used the most popular AV labels for training, the

performance of the classifiers was dependent on the way how these AV engines

analyse and label these samples.

The work here also relied on analysis reports generated by Cuckoo sandbox.

Although Cuckoo integrates some mechanisms to avoid the detection of the analysis

environment by samples, there may be samples hiding their malicious behaviour

and acting like legitimate software within the sandbox.

7.5 Summary

This chapter presented an ML-based malware analysis framework to explore the

use of system-level runtime features for the identification of malware families. The

framework mainly looked at different feature types extracted from API call traces,

representing malware’s interactions with the host operating system. Although all the

feature models extracted from these yielded promising results, the wildcard patterns

outperformed the other models. Furthermore, the chapter investigated different

feature selection methods, i.e., a new method that can outweigh the distinctiveness

of a feature over its popularity, and their classwise adaptations to address biases

caused by imbalanced feature distributions.

“Science is the great antidote to the poison of enthusi-
asm and superstition.”

— Adam Smith

8
Conclusion

This thesis offered multiple runtime protections for software programs, the execution

of which can be compromised via memory corruptions. The focus was on sophisti-

cated runtime attacks that carefully craft control and (non-control) data variables,

instead of simpler attack scenarios that alter the original code or inject new code.

During the design of these protections, we deliberately avoided asking for intrusive

hardware changes, such as ISA modifications, which would not fit the majority of

existing and legacy systems. Instead, we have aimed for both practical and strong

security that can be bought externally or adapted through only software changes.

8.1 Summary of Contributions

This thesis started by providing background information for readers who may

not be familiar with the potential threats to software runtime and attestation

protocols. Also, a comprehensive review of relevant memory protection and

attestation literature was given in Chapter 3, which can be used to confirm the

research gaps and challenges we have identified.

To address these gaps, Chapter 4 first proposed a conceptual hardware module

(HSM) that can act like a trust anchor for runtime attestation on critical embedded

systems. Unlike previous attestation schemes that record execution traces or digest

159

160 8.1. Summary of Contributions

them into a hash value, our approach suggests performing the necessary checks

in real time without accumulating any trace information. Therefore, it avoids

not only storage and communication overheads but also asking the verifier to

discover all acceptable hash values (e.g., CFG paths), so any potential state or

path explosion issues. To reason about the correctness of runtime, our approach

relies on a lightweight static model (RIM) of the software subject to attestation,

i.e., a call-graph like model loaded into the memory of hardware module. For better

precision on return address checks, the scheme also employs call counters to handle

unbounded stack layouts that recursive functions would generate. With an external

hardware component that only needs bus integration, the chapter aims to offer

an attestation solution that can fit to existing systems.

Second, Chapter 5 introduced a novel and automated way to identify critical

program variables whose modification can result in a meaningful data-oriented

attack. The proposed distinction is based on the trustworthiness of agents con-

tributing variable values, as we consider the variables defined by trusted agents

(e.g., programmer) must be primarily protected compared to variables that are

already controllable by untrusted agents (e.g., users). The chapter described a

static analysis method that identifies the propagation of trust among program

variables by examining their control and data dependencies. This method not only

helps to implement a lightweight targeted protection scheme against data attacks

but also provides guidance for any isolation mechanism that lacks knowledge of

what to isolate without the help of the programmer.

Chapter 6 offered a compiler-based scheme that systematically utilises CPU

registers to provide strong integrity protection on critical variables in use. In contrast

to conventional performance-oriented register allocations that favour variables with

higher use densities, the chapter first described a security-oriented allocation strategy

that favours variables that are more likely to be targeted for a successful attack.

This approach can be especially meaningful for CPU architectures with register

scarcity to reduce the attack surface in the best possible way. Second, the chapter

leveraged cryptographic primitives to ensure the integrity of register data (spills)

8. Conclusion 161

at rest across function calls. This assurance enables us to repeatedly use the

register file as secure storage for each function call, which is typically enough to

accommodate all the variables of a single function.

Lastly, Chapter 7 presented a machine-learning based malware analysis frame-

work for the evaluation of system-level runtime features that can be used to identify

malicious software executions. This framework does not offer a solution against

exploit-based attacks, unlike previous chapters. Instead, it targets a system setting

that is already infected with a malicious program whose static analysis might not

be an option due to sophisticated evading mechanisms (e.g., polymorphism). The

framework uses call traces collected at the system level and explores how their

different representations can enhance classifier results.

8.2 Concluding Remarks and Future Outlook

This thesis represents an important step towards obtaining stronger security

guarantees from devices that are vulnerable to software attacks. The thesis made

it possible for a remote party to ask for integrity assurance beyond the load-time

software correctness. A control-oriented (e.g., code-reuse) attack scenario, which

would normally go unnoticed by a static attestation method, can be revealed using

the methods proposed in this thesis. Furthermore, it demonstrated how to extend

current runtime protections usable in practice (i.e., control-flow), in a way that they

can also address data-oriented attacks without causing a big leap in performance

overheads. Lastly, in this thesis, we enabled a simple computing device, which

lacks any special hardware security feature, to minimise its memory attack surface

against both control and data attacks, using a very fundamental building block

of any computer architecture, i.e., CPU registers. In addition to these practical

consequences, the following sections share insights and lessons on how the community

can adopt more practical solutions to these problems in the future.

162 8.2. Concluding Remarks and Future Outlook

Runtime Attestation. Two separate branches have emerged in the literature

to address runtime integrity problems: The first group of mitigation methods

(e.g., CFI [2]) typically validates runtime correctness according to a static model

(e.g., CFG) in real time and terminates execution in the event of a violation. On the

contrary, the second group of runtime attestation schemes (e.g., CFA [5, 6]) defers

this task and offloads it to the verifier by sending information about past runtime

states (traces) without terminating the execution. Although both parties have

substantial overlap considering the formulation of attacks, attestation studies pose

many challenges that prevent them from being adopted in practice. For instance,

the schemes digesting runtime traces [5, 6] require the verifier to discover all valid

measurements, using the reference model (e.g., CFG). But this discovery process

may not halt even for a moderate program due to the combinatorial explosion in the

number of acceptable paths by the static model. For the schemes [7, 8] reporting

traces to the verifier in a lossless way, the main challenge becomes network overheads

and other difficulties of storing large amount of traces on the prover’s memory. Lastly,

some attestation proposals [6, 15] also consider that the program input is provided

by the verifier. Unfortunately, this is an unrealistic assumption as the program input

is typically given by the prover’s context. Otherwise, as a trusted party, the verifier

could perform the computation task itself without any need for a prover device.

Therefore, we believe that prospective attestation studies should also aim for

runtime checks on the prover side in real-time, using appropriate trust anchors

and static program models. Such an approach would help to formulate remote

runtime attestation as more like a reporting task without program termination.

We remind the reader that these static graph models, which can serve as a FSM,

already correspond to the set of acceptable runtime traces, (i.e., the corresponding

regular language). Hence, with a real-time approach, there would not be any need

for accumulation or transfer of the trace information to the verifier. Otherwise, in a

setting where program termination is permissible, static attestation (e.g., measured

boot) of the program code equipped with attack mitigation techniques such as

CFI would suffice to establish trust in a system.

8. Conclusion 163

Practical Mitigation of Data-Oriented Attacks. In order to address control-

oriented attacks, the literature provides many practical solutions such as CFI [2]

and CPS [3]. Thanks to their targeted approach, focusing only on control variables

(i.e., code pointers), these schemes enjoy lightweight performance costs and better

data separability at compile time, making them usable in practice. However,

control variables constitute only a minor portion compared to the rest of the

program data, whose complete protection hinders the practicality and adaptability

of proposed schemes, such as DFI [4].

Therefore, we assume that there is research value to work towards practical

mitigation of data-orientated attacks. Chapter 5 and recent papers such as

DataShield [14], CVI (OAT) [71] can be considered as examples of such efforts that

avoid the inspection of every memory access, by focusing on critical (non-control)

data given at compile time. These solutions can also be used by in-process isolation

primitives [9, 12] lacking an automated method to identify the data in need of

isolation for integrity purposes. As an orthogonal but relevant problem, we remind

the reader that the efforts on improving pointer analysis techniques can also directly

contribute to the quality of those schemes by providing better data separability. A

pointer analysis that is both scalable and precise (i.e., flow-sensitive) would enhance

any runtime protection relying on a static approximation. Otherwise, dynamic

methods such as DIFT [123] are required for precision, which generally requires

disruptive changes in the architecture and in the data paths.

Memory Safety. The alternative way to avoid both control- and data-oriented

attacks is memory safety that can eliminate bugs and their exploits as the root

cause. However, memory safety solutions implemented via software-based runtime

mechanisms (e.g., bound-checking) are generally costly to be adopted in practice. In

this regard, as a safe language by design, Rust [191] is a strong candidate that can

replace C-like system-programming languages in the long term, without sacrificing

the performance, thanks to its safety properties enforced primarily at compile-time.

But the impracticality of rewriting existing software stacks in a new language and

164 8.2. Concluding Remarks and Future Outlook

the steep learning curve awaiting Rust developers might slow down the adaptation

of this language. Therefore, to solve memory safety issues problems of existing

vulnerable software stacks with small touches on the code, CHERI [91] as a capability

architecture represents a hardware-based solution that is likely to be adopted in

practice in the future, with strong industrial interest and support. CHERI suggests

changing integer-like language pointers with architectural fat pointers (capabilities)

where each dereference is audited based on the bounds information available. Thanks

to being a ISA-based hardware solution, CHERI makes bound checking possible

with reasonable runtime overheads. We can expect both Rust and CHERI to be

the game changers that can finally solve long-standing memory safety problems.

Hardware and Legacy Systems. In general, hardware-based protections can

address more powerful adversaries with better performance, whereas software-based

methods are subject to higher overhead costs and are easier to bypass. Despite

their benefits, the biggest issue with hardware-based approaches is deployability

challenges. Even if these new designs are put into production by manufacturers and

trigger changes in future architectures, existing devices will remain vulnerable, and

are unlikely to be replaced for years, maybe decades. Considering the billions of

embedded devices already out there, such as sensor systems and IoT, the security of

existing devices is a critical problem that the research community should invest in

more. Hence, we believe future work should seek ways to protect existing systems

through software-only solutions or non-invasive solutions where the security can be

externally provided. Chapters 4 and 6 can be seen as positive steps towards this goal.

Cryptographic Approaches. The correctness of a runtime protection method

is typically dependent on the integrity of the instrumentation or verification data

(e.g., shadow stack) generated. Due to practical reasons such as switch costs, those

data need to be located within the same address space, which requires practical in-

process isolation techniques. Previous software- (e.g., SFI [11]) and hardware-based

(e.g., HDFI [9]) isolations have different strengths and weaknesses. Alternative to

those, cryptographic methods, such as encryption to mask critical data or MAC

8. Conclusion 165

to check their integrity, can avoid generation of additional instrumentation data

and can eliminate the need for an isolation mechanism. Hence, the problem can be

reduced to the confidentiality of the keys that CPU registers can easily secure as we

suggested in Chapter 6. Thanks to recent ISA advancements that can significantly

accelerate cryptographic operations within the CPU (e.g., PAC), we can anticipate

more studies in this direction to protect runtime.

166

References

[1] Hovav Shacham. “The geometry of innocent flesh on the bone: Return-into-libc
without Function Calls (on the x86)”. In: Proceedings of the 14th ACM conference
on Computer and communications security - CCS ’07. New York, New York, USA:
ACM Press, 2007, p. 552. doi: 10.1145/1315245.1315313.

[2] Martín Abadi et al. “Control-flow integrity”. In: Proceedings of the 12th ACM
conference on Computer and communications security - CCS ’05. New York, New
York, USA: ACM Press, 2005, p. 340. doi: 10.1145/1102120.1102165.

[3] Volodymyr Kuznetsov, László Szekeres, and Mathias Payer. “Code-pointer
integrity”. In: Proceedings of the 11th USENIX Symposium on Operating Systems
Design and Implementation. October. 2014, pp. 147–163.

[4] Castro Miguel, Manuel Costa, and Tim Harris. “Securing Software by Enforcing
Data-flow Integrity”. In: Proceedings of the 7th symposium on Operating systems
design and implementation - USENIX Association. USENIX Association, 2006,
pp. 147–160.

[5] Tigist Abera et al. “C-FLAT: Control-Flow Attestation for Embedded Systems
Software”. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. New York, NY, USA: ACM, Oct. 2016,
pp. 743–754. doi: 10.1145/2976749.2978358.

[6] Ghada Dessouky et al. “LO-FAT: Low-Overhead Control Flow ATtestation in
Hardware”. In: Proceedings of the 54th Annual Design Automation Conference
2017. New York, NY, USA: ACM, June 2017, pp. 1–6. doi:
10.1145/3061639.3062276.

[7] Ghada Dessouky et al. “LiteHAX: Lightweight Hardware-Assisted Attestation of
Program Execution”. In: Proceedings of the International Conference on
Computer-Aided Design. New York, NY, USA: ACM, Nov. 2018, pp. 1–8. doi:
10.1145/3240765.3240821.

[8] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. “Tiny-CFA:
Minimalistic Control-Flow Attestation Using Verified Proofs of Execution”. In:
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE).
Vol. 2021-Febru. IEEE, Feb. 2021, pp. 641–646. doi:
10.23919/DATE51398.2021.9474029.

[9] Chengyu Song et al. “HDFI: Hardware-Assisted Data-Flow Isolation”. In: 2016
IEEE Symposium on Security and Privacy (SP). IEEE, May 2016, pp. 1–17. doi:
10.1109/SP.2016.9.

[10] Enes Göktaş et al. Bypassing clang’s SafeStack for Fun and Profit. 2016. url:
https://www.blackhat.com/docs/eu-16/materials/eu-16-Goktas-
Bypassing-Clangs-SafeStack.pdf.

167

https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1145/1102120.1102165
https://doi.org/10.1145/2976749.2978358
https://doi.org/10.1145/3061639.3062276
https://doi.org/10.1145/3240765.3240821
https://doi.org/10.23919/DATE51398.2021.9474029
https://doi.org/10.1109/SP.2016.9
https://www.blackhat.com/docs/eu-16/materials/eu-16-Goktas-Bypassing-Clangs-SafeStack.pdf
https://www.blackhat.com/docs/eu-16/materials/eu-16-Goktas-Bypassing-Clangs-SafeStack.pdf

168 References

[11] Stephen McCamant and Greg Morrisett. “Evaluating SFI for a CISC
architecture”. In: 15th USENIX Security Symposium. 2006, pp. 209–224.

[12] Tommaso Frassetto et al. “IMIX: Hardware-Enforced In-Process Memory
Isolation”. In: Proceedings of the 27th USENIX Security Symposium - USENIX
Security ’18. 2018, pp. 83–97.

[13] Chengyu Song et al. “Enforcing Kernel Security Invariants with Data Flow
Integrity”. In: Proceedings 2016 Network and Distributed System Security
Symposium. February. Reston, VA: Internet Society, 2016, pp. 21–24. doi:
10.14722/ndss.2016.23218.

[14] Scott A. Carr and Mathias Payer. “DataShield: Configurable data confidentiality
and integrity”. In: Proceedings of the 2017 ACM on Asia Conference on Computer
and Communications Security. New York, NY, USA: ACM, Apr. 2017,
pp. 193–204. doi: 10.1145/3052973.3052983.

[15] Boyu Kuang et al. “DO-RA: Data-oriented runtime attestation for IoT devices”.
In: Computers & Security 97 (Oct. 2020), p. 101945. doi:
10.1016/j.cose.2020.101945.

[16] Frederik Armknecht et al. “A security framework for the analysis and design of
software attestation”. In: Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security - CCS ’13. New York, New York, USA:
ACM Press, 2013, pp. 1–12. doi: 10.1145/2508859.2516650.

[17] Rodrigo Vieira Steiner and Emil Lupu. “Attestation in Wireless Sensor Networks”.
In: ACM Computing Surveys 49.3 (Dec. 2016), pp. 1–31. doi: 10.1145/2988546.

[18] Glenn Wurster, P.C. van Oorschot, and Anil Somayaji. “A Generic Attack on
Checksumming-Based Software Tamper Resistance”. In: 2005 IEEE Symposium
on Security and Privacy (S&P’05). IEEE, 2005, pp. 127–138. doi:
10.1109/SP.2005.2.

[19] Arvind Seshadri et al. “Pioneer: Verifying Code Integrity and Enforcing
Untampered Code Execution on Legacy Systems”. In: Proceedings of the twentieth
ACM symposium on Operating systems principles - SOSP ’05. Vol. 39. 5. New
York, New York, USA: ACM Press, 2005, p. 1. doi: 10.1145/1095810.1095812.

[20] Claude Castelluccia et al. “On the difficulty of software-based attestation of
embedded devices”. In: Proceedings of the 16th ACM conference on Computer and
communications security - CCS ’09. New York, New York, USA: ACM Press,
2009, p. 400. doi: 10.1145/1653662.1653711.

[21] László Szekeres et al. “SoK: Eternal War in Memory”. In: 2013 IEEE Symposium
on Security and Privacy. IEEE, May 2013, pp. 48–62. doi: 10.1109/SP.2013.13.

[22] Crispan Cowan et al. “StackGuard : Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks”. In: Proceedings of the 7th USENIX
Security Symposium. San Antonio, TX: USENIX Association, 1998, pp. 63–78.

[23] Alexander Peslyak. Bugtraq: Getting around non-executable stack (and fix). 1997.
url: http://seclists.org/bugtraq/1997/Aug/63.

[24] Sebastian Krahmer. X86-64 Buffer Overflow Exploits and the Borrowed Code
Chunks Exploitation Technique. 2005. url:
http://users.suse.com/~krahmer/no-nx.pdf.

https://doi.org/10.14722/ndss.2016.23218
https://doi.org/10.1145/3052973.3052983
https://doi.org/10.1016/j.cose.2020.101945
https://doi.org/10.1145/2508859.2516650
https://doi.org/10.1145/2988546
https://doi.org/10.1109/SP.2005.2
https://doi.org/10.1145/1095810.1095812
https://doi.org/10.1145/1653662.1653711
https://doi.org/10.1109/SP.2013.13
http://seclists.org/bugtraq/1997/Aug/63
http://users.suse.com/~krahmer/no-nx.pdf

References 169

[25] PaX Team. PaX address space layout randomization (ASLR). 2003. url:
https://pax.grsecurity.net/docs/aslr.txt.

[26] Tyler Bletsch et al. “Jump-oriented programming: A New Class of Code-Reuse
Attack”. In: Proceedings of the 6th ACM Symposium on Information, Computer
and Communications Security - ASIACCS ’11. New York, New York, USA: ACM
Press, 2011, p. 30. doi: 10.1145/1966913.1966919.

[27] Erik Buchanan et al. “When good instructions go bad: Generalizing
Return-Oriented Programming to RISC”. In: Proceedings of the 15th ACM
conference on Computer and communications security - CCS ’08. New York, New
York, USA: ACM Press, 2008, p. 27. doi: 10.1145/1455770.1455776.

[28] Stephen Checkoway et al. “Return-oriented programming without returns”. In:
Proceedings of the 17th ACM conference on Computer and communications
security - CCS ’10. New York, New York, USA: ACM Press, 2010, p. 559. doi:
10.1145/1866307.1866370.

[29] Shuo Chen et al. “Non-control-data attacks are realistic threats”. In: USENIX
Security Symposium. Vol. 5. 2005.

[30] Nicholas Carlini et al. “Control-Flow Bending: On the Effectiveness of
Control-Flow Integrity”. In: USENIX Security Symposium. 2015, pp. 161–176.

[31] Hong Hu et al. “Data-Oriented Programming: On the Expressiveness of
Non-control Data Attacks”. In: 2016 IEEE Symposium on Security and Privacy
(SP). IEEE, May 2016, pp. 969–986. doi: 10.1109/SP.2016.62.

[32] Kyriakos K. Ispoglou et al. “Block Oriented Programming: Automating
Data-Only Attacks”. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. New York, NY, USA: ACM, Oct. 2018,
pp. 1868–1882. doi: 10.1145/3243734.3243739.

[33] Periklis Akritidis et al. “Preventing Memory Error Exploits with WIT”. In: 2008
IEEE Symposium on Security and Privacy (sp 2008). IEEE, May 2008,
pp. 263–277. doi: 10.1109/SP.2008.30.

[34] Isaac Evans et al. “Missing the Point(er): On the Effectiveness of Code Pointer
Integrity”. In: 2015 IEEE Symposium on Security and Privacy. IEEE, May 2015,
pp. 781–796. doi: 10.1109/SP.2015.53.

[35] Gregory J. Chaitin et al. “Register allocation via coloring”. In: Computer
Languages 6.1 (1981), pp. 47–57. doi: 10.1016/0096-0551(81)90048-5.

[36] Keith D. Cooper and L. Taylor Simpson. “Live range splitting in a graph coloring
register allocator”. In: Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics).
Vol. 1383. 1998, pp. 174–187. doi: 10.1007/BFb0026430.

[37] Christian Wimmer and Hanspeter Mössenböck. “Optimized interval splitting in a
linear scan register allocator”. In: Proceedings of the 1st ACM/USENIX
international conference on Virtual execution environments - VEE ’05. New York,
New York, USA: ACM Press, 2005, p. 132. doi: 10.1145/1064979.1064998.

[38] G. J. Chaitin. “Register allocation and spilling via graph coloring”. In: ACM
SIGPLAN Notices 17.6 (June 1982), pp. 98–101. doi: 10.1145/872726.806984.

https://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1145/1966913.1966919
https://doi.org/10.1145/1455770.1455776
https://doi.org/10.1145/1866307.1866370
https://doi.org/10.1109/SP.2016.62
https://doi.org/10.1145/3243734.3243739
https://doi.org/10.1109/SP.2008.30
https://doi.org/10.1109/SP.2015.53
https://doi.org/10.1016/0096-0551(81)90048-5
https://doi.org/10.1007/BFb0026430
https://doi.org/10.1145/1064979.1064998
https://doi.org/10.1145/872726.806984

170 References

[39] L. P. Horwitz et al. “Index Register Allocation”. In: Journal of the Association for
Computing Machinery 13.1 (1966), pp. 43–61.

[40] Frederick Chow and John Hcnnessy. “Register allocation by priority-based
coloring”. In: Proceedings of the 1984 SIGPLAN Symposium on Compiler
Construction, SIGPLAN 1984 19.6 (1984), pp. 222–232. doi:
10.1145/502874.502896.

[41] Vatsa Santhanam and Daryl Odnert. “Register allocation across procedure and
module boundaries”. In: Proceedings of the ACM SIGPLAN 1990 conference on
Programming language design and implementation - PLDI ’90. Vol. 25. 6. New
York, New York, USA: ACM Press, 1990, pp. 28–39. doi: 10.1145/93542.93551.

[42] Fred C. Chow and John L. Hennessy. “The priority-based coloring approach to
register allocation”. In: ACM Transactions on Programming Languages and
Systems 12.4 (Oct. 1990), pp. 501–536. doi: 10.1145/88616.88621.

[43] Preston Briggs, Keith D. Cooper, and Linda Torczon. “Improvements to graph
coloring register allocation”. In: ACM Transactions on Programming Languages
and Systems 16.3 (May 1994), pp. 428–455. doi: 10.1145/177492.177575.

[44] Massimiliano Poletto and Vivek Sarkar. “Linear scan register allocation”. In:
ACM Transactions on Programming Languages and Systems 21.5 (Sept. 1999),
pp. 895–913. doi: 10.1145/330249.330250.

[45] Christian Wimmer and Michael Franz. “Linear scan register allocation on SSA
form”. In: Proceedings of the 8th annual IEEE/ ACM international symposium on
Code generation and optimization - CGO ’10. New York, New York, USA: ACM
Press, 2010, p. 170. doi: 10.1145/1772954.1772979.

[46] Omri Traub, Glenn Holloway, and Michael D. Smith. “Quality and Speed in
Linear-scan Register Allocation”. In: SIGPLAN Notices (ACM Special Interest
Group on Programming Languages) 33.5 (1998), pp. 142–151.

[47] Diomidis Spinellis. “Reflection as a mechanism for software integrity verification”.
In: ACM Transactions on Information and System Security 3.1 (Feb. 2000),
pp. 51–62. doi: 10.1145/353323.353383.

[48] Arvind Seshadri et al. “SWATT: software-based attestation for embedded
devices”. In: IEEE Symposium on Security and Privacy, 2004. Proceedings. 2004.
IEEE, 2004, pp. 272–282. doi: 10.1109/SECPRI.2004.1301329.

[49] Tamer AbuHmed, Nandinbold Nyamaa, and DaeHun Nyang. “Software-Based
Remote Code Attestation in Wireless Sensor Network”. In: GLOBECOM 2009 -
2009 IEEE Global Telecommunications Conference. IEEE, Nov. 2009, pp. 1–8.
doi: 10.1109/GLOCOM.2009.5425280.

[50] Yi Yang et al. “Distributed Software-based Attestation for Node Compromise
Detection in Sensor Networks”. In: 2007 26th IEEE International Symposium on
Reliable Distributed Systems (SRDS 2007). IEEE, Oct. 2007, pp. 219–230. doi:
10.1109/SRDS.2007.4365698.

[51] Reiner Sailer et al. “Design and Implementation of a TCG-based Integrity
Measurement Architecture”. In: USENIX Security Symposium. Vol. 13. 2004,
pp. 223–238. doi: 10.1109/MSP.2010.92.

https://doi.org/10.1145/502874.502896
https://doi.org/10.1145/93542.93551
https://doi.org/10.1145/88616.88621
https://doi.org/10.1145/177492.177575
https://doi.org/10.1145/330249.330250
https://doi.org/10.1145/1772954.1772979
https://doi.org/10.1145/353323.353383
https://doi.org/10.1109/SECPRI.2004.1301329
https://doi.org/10.1109/GLOCOM.2009.5425280
https://doi.org/10.1109/SRDS.2007.4365698
https://doi.org/10.1109/MSP.2010.92

References 171

[52] TPM Library Specification | Trusted Computing Group. url: https:
//trustedcomputinggroup.org/resource/tpm-library-specification/.

[53] Trusted Computing Group. TCPA Specification Version 1.1b. url:
https://trustedcomputinggroup.org/wp-
content/uploads/TCPA_Main_TCG_Architecture_v1_1b.pdf.

[54] Trusted Computing Group. TCG TPM Main Part 1 Design Principles Version
1.2. url: https://trustedcomputinggroup.org/wp-content/uploads/tpmwg-
mainrev62_Part1_Design_Principles.pdf.

[55] Intel Corporation. Intel® Software Guard Extensions - Developer Guide. 2016.
url: https://download.01.org/intel-sgx/linux-
1.7/docs/Intel_SGX_Developer_Guide.pdf.

[56] Jonathan M. McCune et al. “Flicker: An Execution Infrastructure for TCB
Minimization”. In: ACM SIGOPS Operating Systems Review 42.4 (Apr. 2008),
pp. 315–328. doi: 10.1145/1357010.1352625.

[57] Intel Corporation. Intel® Trusted Execution Technology - Software Development
Guide. 2017. url: https://www.intel.com/content/dam/www/public/us/en/
documents/guides/intel-txt-software-development-guide.pdf.

[58] ARM. ARM Security Technology: Building a Secure System using TrustZone
Technology. 2009. url: https://bit.ly/1g6dOxn.

[59] Joonho Kong et al. “PUFatt: Embedded Platform Attestation Based on Novel
Processor-Based PUFs”. In: Proceedings of the The 51st Annual Design
Automation Conference on Design Automation Conference - DAC ’14. New York,
New York, USA: ACM Press, 2014, pp. 1–6. doi: 10.1145/2593069.2593192.

[60] Karim El Defrawy et al. “SMART: Secure and Minimal Architecture for
(Establishing Dynamic) Root of Trust.” In: Ndss. Vol. 12. 2012, pp. 1–15.

[61] Patrick Koeberl et al. “TrustLite: A Security Architecture for Tiny Embedded
Devices”. In: Proceedings of the Ninth European Conference on Computer Systems
- EuroSys ’14. New York, New York, USA: ACM Press, 2014, pp. 1–14. doi:
10.1145/2592798.2592824.

[62] Ferdinand Brasser et al. “TyTAN: Tiny trust anchor for tiny devices”. In:
Proceedings of the 52nd Annual Design Automation Conference. New York, NY,
USA: ACM, June 2015, pp. 1–6. doi: 10.1145/2744769.2744922.

[63] Aurelien Francillon et al. “A minimalist approach to Remote Attestation”. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014.
New Jersey: IEEE Conference Publications, 2014, pp. 1–6. doi:
10.7873/DATE.2014.257.

[64] Aurelien Francillon et al. “Systematic Treatment of Remote Attestation”. In:
IACR Cryptology ePrint Archive. 2012, p. 713.

[65] Ivan De Oliveira Nunes et al. “VRased: A verified hardware/software co-design for
remote attestation”. In: Proceedings of the 28th USENIX Security Symposium.
2019, pp. 1429–1446.

https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/resource/tpm-library-specification/
https://trustedcomputinggroup.org/wp-content/uploads/TCPA_Main_TCG_Architecture_v1_1b.pdf
https://trustedcomputinggroup.org/wp-content/uploads/TCPA_Main_TCG_Architecture_v1_1b.pdf
https://trustedcomputinggroup.org/wp-content/uploads/tpmwg-mainrev62_Part1_Design_Principles.pdf
https://trustedcomputinggroup.org/wp-content/uploads/tpmwg-mainrev62_Part1_Design_Principles.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://download.01.org/intel-sgx/linux-1.7/docs/Intel_SGX_Developer_Guide.pdf
https://doi.org/10.1145/1357010.1352625
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://bit.ly/1g6dOxn
https://doi.org/10.1145/2593069.2593192
https://doi.org/10.1145/2592798.2592824
https://doi.org/10.1145/2744769.2744922
https://doi.org/10.7873/DATE.2014.257

172 References

[66] Ivan de Oliveira Nunes et al. “PURE: Using Verified Remote Attestation to
Obtain Proofs of Update, Reset and Erasure in low-End Embedded Systems”. In:
2019 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).
Vol. 2019-Novem. IEEE, Nov. 2019, pp. 1–8. doi:
10.1109/ICCAD45719.2019.8942118.

[67] Ivan De Oliveira Nunes et al. “APEX: A verified architecture for proofs of
execution on remote devices under full software compromise”. In: Proceedings of
the 29th USENIX Security Symposium. USENIX Association, 2020, pp. 771–788.

[68] Ivan De Oliveira Nunes et al. “On the TOCTOU Problem in Remote Attestation”.
In: Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security. New York, NY, USA: ACM, Nov. 2021, pp. 2921–2936.
doi: 10.1145/3460120.3484532.

[69] Lucas Davi, Ahmad-Reza Sadeghi, and Marcel Winandy. “Dynamic integrity
measurement and attestation: Towards Defense Against Return-Oriented
Programming Attacks”. In: Proceedings of the 2009 ACM workshop on Scalable
trusted computing - STC ’09. New York, New York, USA: ACM Press, 2009, p. 49.
doi: 10.1145/1655108.1655117.

[70] Chongkyung Kil et al. “Remote attestation to dynamic system properties:
Towards providing complete system integrity evidence”. In: 2009 IEEE/IFIP
International Conference on Dependable Systems & Networks. IEEE, June 2009,
pp. 115–124. doi: 10.1109/DSN.2009.5270348.

[71] Zhichuang Sun et al. “OAT: Attesting Operation Integrity of Embedded Devices”.
In: 2020 IEEE Symposium on Security and Privacy (SP). Vol. 2020-May. IEEE,
May 2020, pp. 1433–1449. doi: 10.1109/SP40000.2020.00042.

[72] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. “DIALED:
Data Integrity Attestation for Low-end Embedded Devices”. In: 2021 58th
ACM/IEEE Design Automation Conference (DAC). Vol. 2021-Decem. IEEE, Dec.
2021, pp. 313–318. doi: 10.1109/DAC18074.2021.9586180.

[73] Xinyu Jin et al. “Unpredictable Software-based Attestation Solution for node
compromise detection in mobile WSN”. In: 2010 IEEE Globecom Workshops.
IEEE, Dec. 2010, pp. 2059–2064. doi: 10.1109/GLOCOMW.2010.5700307.

[74] Ernie Brickell, Jan Camenisch, and Liqun Chen. “Direct anonymous attestation”.
In: Proceedings of the 11th ACM conference on Computer and communications
security - CCS ’04. New York, New York, USA: ACM Press, 2004, p. 132. doi:
10.1145/1030083.1030103.

[75] N. Asokan et al. “SEDA: Scalable Embedded Device Attestation”. In: Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. New York, NY, USA: ACM, Oct. 2015, pp. 964–975. doi:
10.1145/2810103.2813670.

[76] Florian Kohnhäuser, Niklas Büscher, and Stefan Katzenbeisser. “SALAD: Secure
and lightweight attestation of highly dynamic and disruptive networks”. In:
ASIACCS 2018 - Proceedings of the 2018 ACM Asia Conference on Computer and
Communications Security (2018), pp. 329–342. doi: 10.1145/3196494.3196544.

https://doi.org/10.1109/ICCAD45719.2019.8942118
https://doi.org/10.1145/3460120.3484532
https://doi.org/10.1145/1655108.1655117
https://doi.org/10.1109/DSN.2009.5270348
https://doi.org/10.1109/SP40000.2020.00042
https://doi.org/10.1109/DAC18074.2021.9586180
https://doi.org/10.1109/GLOCOMW.2010.5700307
https://doi.org/10.1145/1030083.1030103
https://doi.org/10.1145/2810103.2813670
https://doi.org/10.1145/3196494.3196544

References 173

[77] Xavier Carpent et al. “Lightweight swarm attestation: A tale of two LISA-s”. In:
ASIA CCS 2017 - Proceedings of the 2017 ACM Asia Conference on Computer
and Communications Security (2017), pp. 86–100. doi:
10.1145/3052973.3053010.

[78] Ahmad Ibrahim, Ahmad Reza Sadeghi, and Shaza Zeitouni. “SeED: Secure
non-interactive attestation for embedded devices”. In: Proceedings of the 10th
ACM Conference on Security and Privacy in Wireless and Mobile Networks,
WiSec 2017 (2017), pp. 64–74. doi: 10.1145/3098243.3098260.

[79] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for Heavyweight
Dynamic Binary Instrumentation”. In: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation - PLDI ’07. New
York, New York, USA: ACM Press, 2007, p. 89. doi: 10.1145/1250734.1250746.

[80] Reed Hastings. “Purify: Fast detection of memory leaks and access errors”. In:
Proc. 1992 Winter USENIX Conference. 1992, pp. 125–136.

[81] Konstantin Serebryany and Derek Bruening. “AddressSanitizer: a fast address
sanity checker”. In: USENIX Annual Technical Conference. 2012, pp. 309–318.
url: https://www.usenix.org/system/files/conference/atc12/atc12-
final39.pdf.

[82] Richard W M Jones and Paul H J Kelly. “Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs.” In: Third International
Workshop on Automated Debugging. Citeseer. 1997.

[83] Olatunji Ruwase and Monica S Lam. “A Practical Dynamic Buffer Overflow
Detector”. In: NDSS. 2004, pp. 159–169.

[84] Periklis Akritidis et al. “Baggy Bounds Checking: An Efficient and
Backwards-Compatible Defense against Out-of-Bounds Errors.” In: USENIX
Security Symposium. 2009, pp. 51–66.

[85] George C. Necula, Scott McPeak, and Westley Weimer. “CCured: Type-Safe
Retrofitting of Legacy Code”. In: Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages - POPL
’02. New York, New York, USA: ACM Press, 2002, pp. 128–139. doi:
10.1145/503272.503286.

[86] Dan Grossman et al. “Cyclone: A Safe Dialect of C”. In: USENIX 2002 Annual
Technical Conference. 2002, pp. 275–288. url:
http://shootout.alioth.debian.org/..

[87] Joe Devietti et al. “HardBound: Architectural Support for Spatial Safety of the C
Programming Language”. In: Proceedings of the 13th international conference on
Architectural support for programming languages and operating systems - ASPLOS
XIII. Vol. 36. 1. New York, New York, USA: ACM Press, 2008, p. 103. doi:
10.1145/1346281.1346295.

[88] Santosh Nagarakatte et al. “SoftBound: Highly Compatible and Complete Spatial
Memory Safety for C”. In: Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation - PLDI ’09. Vol. 44. 6. New
York, New York, USA: ACM Press, 2009, p. 245. doi:
10.1145/1542476.1542504.

https://doi.org/10.1145/3052973.3053010
https://doi.org/10.1145/3098243.3098260
https://doi.org/10.1145/1250734.1250746
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://www.usenix.org/system/files/conference/atc12/atc12-final39.pdf
https://doi.org/10.1145/503272.503286
http://shootout.alioth.debian.org/.
https://doi.org/10.1145/1346281.1346295
https://doi.org/10.1145/1542476.1542504

174 References

[89] Intel Corporation. Support for Intel® Memory Protection Extensions (Intel®
MPX)... url: https://www.intel.com/content/www/us/en/support/
articles/000059823/processors.html.

[90] Albert Kwon et al. “Low-fat pointers: Compact Encoding and Efficient Gate-Level
Implementation of Fat Pointers for Spatial Safety and Capability-based Security”.
In: Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security - CCS ’13. New York, New York, USA: ACM Press,
2013, pp. 721–732. doi: 10.1145/2508859.2516713.

[91] Jonathan Woodruff et al. “The CHERI capability model: Revisiting RISC in an
age of risk”. In: Proceedings - International Symposium on Computer Architecture
(2014), pp. 457–468. doi: 10.1109/ISCA.2014.6853201.

[92] Byoungyoung Lee et al. “Preventing Use-after-free with Dangling Pointers
Nullification”. In: Proceedings 2015 Network and Distributed System Security
Symposium. Reston, VA: Internet Society, Feb. 2015. doi:
10.14722/ndss.2015.23238.

[93] Erik van der Kouwe, Vinod Nigade, and Cristiano Giuffrida. “DangSan: Scalable
Use-after-free Detection”. In: Proceedings of the Twelfth European Conference on
Computer Systems. New York, NY, USA: ACM, Apr. 2017, pp. 405–419. doi:
10.1145/3064176.3064211.

[94] Daiping Liu, Mingwei Zhang, and Haining Wang. “A Robust and Efficient
Defense against Use-after-Free Exploits via Concurrent Pointer Sweeping”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security (2018). doi: 10.1145/3243734.

[95] Santosh Nagarakatte et al. “CETS: Compiler-Enforced Temporal Safety for C”.
In: Proceedings of the 2010 international symposium on Memory management -
ISMM ’10. Vol. 45. 8. New York, New York, USA: ACM Press, 2010, p. 31. doi:
10.1145/1806651.1806657.

[96] PTAuth: Temporal Memory Safety via Robust Points-to Authentication | USENIX.
url: https://www.usenix.org/conference/usenixsecurity21/
presentation/mirzazade.

[97] Arm. Memory Tagging Extension, Armv8.5-A. Tech. rep., pp. 1–9.
[98] Lucas Davi et al. “MoCFI: A Framework to Mitigate Control-Flow Attacks on

Smartphones”. In: NDSS 2012 (19th Network and Distributed System Security
Symposium). Vol. 26. 2012, pp. 27–40.

[99] Fardin Abdi Taghi Abad et al. “On-chip control flow integrity check for real time
embedded systems”. In: 2013 IEEE 1st International Conference on
Cyber-Physical Systems, Networks, and Applications (CPSNA). IEEE, Aug. 2013,
pp. 26–31. doi: 10.1109/CPSNA.2013.6614242.

[100] Ben Niu and Gang Tan. “Modular control-flow integrity”. In: Proceedings of the
35th ACM SIGPLAN Conference on Programming Language Design and
Implementation. New York, NY, USA: ACM, June 2014, pp. 577–587. doi:
10.1145/2594291.2594295.

https://www.intel.com/content/www/us/en/support/articles/000059823/processors.html
https://www.intel.com/content/www/us/en/support/articles/000059823/processors.html
https://doi.org/10.1145/2508859.2516713
https://doi.org/10.1109/ISCA.2014.6853201
https://doi.org/10.14722/ndss.2015.23238
https://doi.org/10.1145/3064176.3064211
https://doi.org/10.1145/3243734
https://doi.org/10.1145/1806651.1806657
https://www.usenix.org/conference/usenixsecurity21/presentation/mirzazade
https://www.usenix.org/conference/usenixsecurity21/presentation/mirzazade
https://doi.org/10.1109/CPSNA.2013.6614242
https://doi.org/10.1145/2594291.2594295

References 175

[101] Mingwei Zhang and R. Sekar. “Control Flow for COTS binaries”. In: Proceedings
of the 31st Annual Computer Security Applications Conference on - ACSAC 2015.
New York, New York, USA: ACM Press, 2015, pp. 91–100. doi:
10.1145/2818000.2818016.

[102] Ali Jose Mashtizadeh et al. “CCFI: Cryptographically Enforced Control Flow
Integrity”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security - CCS ’15 (Aug. 2014), pp. 941–951. doi:
10.1145/2810103.2813676.

[103] Lucas Davi et al. “HAFIX: Hardware-Assisted Flow Integrity eXtension”. In:
Proceedings of the 52nd Annual Design Automation Conference. New York, NY,
USA: ACM, June 2015, pp. 1–6. doi: 10.1145/2744769.2744847.

[104] Nick Christoulakis et al. “HCFI: Hardware-enforced Control-Flow Integrity Nick”.
In: Proceedings of the Sixth ACM Conference on Data and Application Security
and Privacy. New York, NY, USA: ACM, Mar. 2016, pp. 38–49. doi:
10.1145/2857705.2857722.

[105] Mario Werner et al. “Sponge-Based Control-Flow Protection for IoT Devices”. In:
arXiv preprint arXiv:1802.06691. 2018. url:
http://arxiv.org/abs/1802.06691.

[106] Nathan Burow et al. “Control-Flow Integrity”. In: ACM Computing Surveys 50.1
(Jan. 2018), pp. 1–33. doi: 10.1145/3054924.

[107] Frances E. Allen. “Control Flow Analysis”. In: Proceedings of a symposium on
Compiler optimization. 1970, pp. 1–19. doi: 10.1145/800028.808479.

[108] Lucas Davi, Patrick Koeberl, and Ahmad-reza Sadeghi. “Hardware-assisted
fine-grained control-flow integrity: Towards efficient protection of embedded
systems against software exploitation”. In: 2014 51st ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, June 2014, pp. 1–6. doi:
10.1109/DAC.2014.6881460.

[109] Intel Corporation. Control-flow Enforcement Technology Preview. 2017. url:
http://intel.com/.%0Awww.intel.com/design/literature.htm..

[110] Martín Abadi et al. “Control-flow integrity principles, implementations, and
applications”. In: ACM Transactions on Information and System Security 13.1
(Oct. 2009), pp. 1–40. doi: 10.1145/1609956.1609960.

[111] Control Flow Guard | Microsoft Docs. url: https://docs.microsoft.com/en-
us/windows/desktop/secbp/control-flow-guard.

[112] Arm. “Providing protection for complex software”. In: (), pp. 1–25.
[113] Tao Zhang et al. “Anomalous path detection with hardware support”. In:

Proceedings of the 2005 international conference on Compilers, architectures and
synthesis for embedded systems - CASES ’05. New York, New York, USA: ACM
Press, 2005, p. 43. doi: 10.1145/1086297.1086305.

[114] Yubin Xia et al. “CFIMon: Detecting violation of control flow integrity using
performance counters”. In: IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 2012). IEEE, June 2012, pp. 1–12. doi:
10.1109/DSN.2012.6263958.

https://doi.org/10.1145/2818000.2818016
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1145/2857705.2857722
http://arxiv.org/abs/1802.06691
https://doi.org/10.1145/3054924
https://doi.org/10.1145/800028.808479
https://doi.org/10.1109/DAC.2014.6881460
http://intel.com/.%0Awww.intel.com/design/literature.htm.
https://doi.org/10.1145/1609956.1609960
https://docs.microsoft.com/en-us/windows/desktop/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/desktop/secbp/control-flow-guard
https://doi.org/10.1145/1086297.1086305
https://doi.org/10.1109/DSN.2012.6263958

176 References

[115] Kui Xu et al. “Probabilistic Program Modeling for High-Precision Anomaly
Classification”. In: 2015 IEEE 28th Computer Security Foundations Symposium.
IEEE, July 2015, pp. 497–511. doi: 10.1109/CSF.2015.37.

[116] Xiaokui Shu, Danfeng Yao, and Naren Ramakrishnan. “Unearthing Stealthy
Program Attacks Buried in Extremely Long Execution Paths”. In: Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications Security.
New York, NY, USA: ACM, Oct. 2015, pp. 401–413. doi:
10.1145/2810103.2813654.

[117] Ali Jose Mashtizadeh et al. “CCFI: Cryptographically Enforced Control Flow
Integrity”. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2015, pp. 941–951. doi:
10.1145/2810103.2813676.

[118] Hans Liljestrand et al. “PAC it Up: Towards pointer integrity using ARM pointer
authentication”. In: Proceedings of the 28th USENIX Security Symposium. 2019,
pp. 177–194.

[119] Jinfeng Li et al. “Zipper Stack: Shadow Stacks Without Shadow”. In: European
Symposium on Research in Computer Security. Guildford, UK: Springer, 2020,
pp. 338–358. doi: 10.1007/978-3-030-58951-6{_}17.

[120] Qualcomm Product Security. “Pointer Authentication on ARMv8.3: Design and
Analysis of the New Software Security Instructions”. In: (2017).

[121] Castro Miguel, Manuel Costa, and Tim Harris. “Securing Software by Enforcing
Data-flow Integrity”. In: Proceedings of the 7th symposium on Operating systems
design and implementation. USENIX Association, 2006, pp. 147–160.

[122] Thomas Nyman et al. “HardScope: Hardening Embedded Systems Against
Data-Oriented Attacks”. In: Proceedings of the 56th Annual Design Automation
Conference 2019. New York, NY, USA: ACM, June 2019, pp. 1–6. doi:
10.1145/3316781.3317836.

[123] G. Edward Suh et al. “Secure program execution via dynamic information flow
tracking”. In: ACM Sigplan Notices. Vol. 39. 11. 2004, pp. 85–96. doi:
10.1145/1037949.1024404.

[124] James Newsome and Dawn Song. “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity
Software”. In: NDSS 05 Networks and Distributed Systems Security (2005).

[125] Winnie Cheng et al. “TaintTrace: Efficient Flow Tracing with Dynamic Binary
Rewriting”. In: 11th IEEE Symposium on Computers and Communications
(ISCC’06). IEEE, 2006, pp. 749–754. doi: 10.1109/ISCC.2006.158.

[126] James Clause, Wanchun Li, and Alessandro Orso. “Dytan: A generic dynamic
taint analysis framework”. In: Proceedings of the 2007 international symposium on
Software testing and analysis - ISSTA ’07. New York, New York, USA: ACM
Press, 2007, p. 196. doi: 10.1145/1273463.1273490.

[127] Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. “Pixy: A Static
Analysis Tool for Detecting Web Application Vulnerabilities (Technical Report)”.
In: Secure Systems Lab, Vienna . . . (2006).

https://doi.org/10.1109/CSF.2015.37
https://doi.org/10.1145/2810103.2813654
https://doi.org/10.1145/2810103.2813676
https://doi.org/10.1007/978-3-030-58951-6{_}17
https://doi.org/10.1145/3316781.3317836
https://doi.org/10.1145/1037949.1024404
https://doi.org/10.1109/ISCC.2006.158
https://doi.org/10.1145/1273463.1273490

References 177

[128] Steven Arzt et al. “FlowDroid: Precise Context, Flow, Field, Object-sensitive and
Lifecycle-aware Taint Analysis for Android Apps”. In: Pldi (2014), pp. 1–10. doi:
10.1145/2594291.2594299.

[129] Marcelo Arroyo, Francisco Chiotta, and Francisco Bavera. “An user configurable
clang static analyzer taint checker”. In: 2016 35th International Conference of the
Chilean Computer Science Society (SCCC). IEEE, Oct. 2016, pp. 1–12. doi:
10.1109/SCCC.2016.7835996.

[130] Aravind Machiry et al. “DR. CHECKER: A Soundy Analysis for Linux Kernel
Drivers”. In: 26th USENIX Security Symposium. 2017, pp. 1007–1024.

[131] Lars Ole Andersen. “Program analysis and specialization for the C programming
language”. PhD thesis. Citeseer, 1994.

[132] Crispin Cowan et al. “PointGuard™: Protecting pointers from buffer overflow
vulnerabilities”. In: Proceedings of the 12th USENIX Security Symposium.
Washington, D.C.: USENIX Association, 2003, pp. 91–104.

[133] Sandeep Bhatkar and R. Sekar. “Data space randomization”. In: 5th International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment
(DIMVA). Paris, France: Springer, 2008, pp. 1–22.

[134] M.G. Matthew G. Schultz et al. “Data mining methods for detection of new
malicious executables”. In: (2001), pp. 38–49. doi:
10.1109/SECPRI.2001.924286.

[135] T. Abou-Assaleh et al. “N-gram-based detection of new malicious code”. In:
Proceedings of the 28th Annual International Computer Software and Applications
Conference, 2004. COMPSAC 2004. 2.1 (2004). doi:
10.1109/CMPSAC.2004.1342667.

[136] T. Abou-Assaleh et al. “Detection of new malicious code using n-grams
signatures”. In: Proceedings of Second Annual Conference on Privacy, Security
and Trust (2004), pp. 193–196. url: http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.70.6349%5C&rep=rep1%5C&type=pdf.

[137] J Zico Kolter and Marcus a Maloof. “Learning to Detect and Classify Malicious
Executables in the Wild”. In: Journal of Machine Learning Research 7 (2006),
pp. 2721–2744. doi: 10.1145/1014052.1014105.

[138] T. Li, C. Zhang, and M. Ogihara. “A comparative study of feature selection and
multiclass classification methods for tissue classification based on gene
expression”. In: Bioinformatics 20.15 (Oct. 2004), pp. 2429–2437. doi:
10.1093/bioinformatics/bth267.

[139] D. Krishna Sandeep Reddy and Arun K. Pujari. “N-gram analysis for computer
virus detection”. In: Journal in Computer Virology 2.3 (Nov. 2006), pp. 231–239.
doi: 10.1007/s11416-006-0027-8.

[140] D Krishna Sandeep Reddy, Subrat Kumar Dash, and Arun K Pujari. “New
malicious code detection using variable length n-grams”. In: Information Systems
Security. Springer, 2006, pp. 276–288.

https://doi.org/10.1145/2594291.2594299
https://doi.org/10.1109/SCCC.2016.7835996
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1109/CMPSAC.2004.1342667
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.6349%5C&rep=rep1%5C&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.70.6349%5C&rep=rep1%5C&type=pdf
https://doi.org/10.1145/1014052.1014105
https://doi.org/10.1093/bioinformatics/bth267
https://doi.org/10.1007/s11416-006-0027-8

178 References

[141] Igor Santos et al. “N-grams-based File Signatures for Malware Detection.” In:
Iceis (2) (2009), pp. 317–320. url:
https://hexena.googlecode.com/files/penya%5C_ICEIS09%5C_N-grams-
based%5C_File%5C_Signatures%5C_for%5C_Malware%5C_Detection.pdf.

[142] Zahra Salehi, Mahboobeh Ghiasi, and Ashkan Sami. “A miner for malware
detection based on API function calls and their arguments”. In: The 16th CSI
International Symposium on Artificial Intelligence and Signal Processing (AISP
2012). IEEE, May 2012, pp. 563–568. doi: 10.1109/AISP.2012.6313810.

[143] Dolly Uppal et al. “Malware detection and classification based on extraction of
API sequences”. In: 2014 International Conference on Advances in Computing,
Communications and Informatics (ICACCI). IEEE, Sept. 2014, pp. 2337–2342.
doi: 10.1109/ICACCI.2014.6968547.

[144] Vinod P. Nair et al. “MEDUSA: MEtamorphic malware Dynamic analysis using
signature from API”. In: Proceedings of the 3rd international conference on
Security of information and networks - SIN ’10. January. New York, New York,
USA: ACM Press, 2010, p. 263. doi: 10.1145/1854099.1854152.

[145] Radu S. Pirscoveanu et al. “Analysis of malware behavior: Type classification
using machine learning”. In: 2015 International Conference on Cyber Situational
Awareness, Data Analytics and Assessment (CyberSA). IEEE, June 2015, pp. 1–7.
doi: 10.1109/CyberSA.2015.7166128.

[146] Steven Strandlund Hansen et al. “An approach for detection and family
classification of malware based on behavioral analysis”. In: 2016 International
Conference on Computing, Networking and Communications (ICNC). IEEE, Feb.
2016, pp. 1–5. doi: 10.1109/ICCNC.2016.7440587.

[147] Cuckoo Sandbox: Automated Malware Analysis. url:
https://cuckoosandbox.org/.

[148] Ksenia Tsyganok et al. “Classification of polymorphic and metamorphic malware
samples based on their behavior”. In: Proceedings of the Fifth International
Conference on Security of Information and Networks - SIN ’12. New York, New
York, USA: ACM Press, 2012, pp. 111–116. doi: 10.1145/2388576.2388591.

[149] Davide Canali et al. “A quantitative study of accuracy in system call-based
malware detection”. In: Proceedings of the 2012 International Symposium on
Software Testing and Analysis - ISSTA 2012. New York, New York, USA: ACM
Press, 2012, p. 122. doi: 10.1145/2338965.2336768.

[150] Shaza Zeitouni et al. “ATRIUM: Runtime attestation resilient under memory
attacks”. In: 2017 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, Nov. 2017, pp. 384–391. doi:
10.1109/ICCAD.2017.8203803.

[151] Shuo Chen et al. “Non-control-data attacks are realistic threats”. In: USENIX
Security Symposium. Vol. 5. USENIX Association, 2005, p. 146.

[152] Christoph Spang et al. “DExIE - An IoT-Class Hardware Monitor for Real-Time
Fine-Grained Control-Flow Integrity”. In: Journal of Signal Processing Systems
94.7 (July 2022), pp. 739–752. doi: 10.1007/s11265-021-01732-5.

https://hexena.googlecode.com/files/penya%5C_ICEIS09%5C_N-grams-based%5C_File%5C_Signatures%5C_for%5C_Malware%5C_Detection.pdf
https://hexena.googlecode.com/files/penya%5C_ICEIS09%5C_N-grams-based%5C_File%5C_Signatures%5C_for%5C_Malware%5C_Detection.pdf
https://doi.org/10.1109/AISP.2012.6313810
https://doi.org/10.1109/ICACCI.2014.6968547
https://doi.org/10.1145/1854099.1854152
https://doi.org/10.1109/CyberSA.2015.7166128
https://doi.org/10.1109/ICCNC.2016.7440587
https://cuckoosandbox.org/
https://doi.org/10.1145/2388576.2388591
https://doi.org/10.1145/2338965.2336768
https://doi.org/10.1109/ICCAD.2017.8203803
https://doi.org/10.1007/s11265-021-01732-5

References 179

[153] Atmel. Customizable Microcontroller AT91CAP7S450A, AT91CAP7S250A. url:
https://pdf1.alldatasheet.com/datasheet-
pdf/view/255445/ATMEL/AT91CAP7S450A.html.

[154] Atmel. Customizable Microcontroller AT91CAP7E. url:
https://pdf1.alldatasheet.com/datasheet-
pdf/view/257048/ATMEL/AT91CAP7E.html.

[155] Atmel Announces CAP Customizable Microcontrollers | Berkeley Design
Technology, Inc. url: https://www.bdti.com/InsideDSP/2007/07/18/atmel-
announces-cap-customizable-microcontrollers.

[156] Richard W M Jones and Paul H J Kelly. “Backwards-Compatible Bounds
Checking for Arrays and Pointers in C Programs”. In: Aadebug (1997), pp. 13–26.
doi: 10.1.1.221.7393.

[157] Gary A. Kildall. “A unified approach to global program optimization”. In:
Proceedings of the 1st annual ACM SIGACT-SIGPLAN symposium on Principles
of programming languages - POPL ’73. New York, New York, USA: ACM Press,
Oct. 1973, pp. 194–206. doi: 10.1145/512927.512945.

[158] M.R. Guthaus et al. “MiBench: A free, commercially representative embedded
benchmark suite”. In: Proceedings of the Fourth Annual IEEE International
Workshop on Workload Characterization. WWC-4 (Cat. No.01EX538). IEEE,
2001, pp. 3–14. doi: 10.1109/WWC.2001.990739.

[159] Hong Hu et al. “Automatic Generation of Data-Oriented Exploits”. In: USENIX
Security Symposium. 2015, pp. 177–192. doi: 10.1109/SP.2014.25.

[160] Yaoqi Jia and Shuo Chen. “The “ Web / Local ” Boundary Is Fuzzy : A Security
Study of Chrome ’ s Process-based Sandboxing”. In: (2016), pp. 791–804.

[161] SSH CRC-32 Compensation Attack Detector Vulnerability. url:
http://www.securityfocus.com/bid/2347.

[162] Google Chrome CVE-2014-1705 Remote Code Execution Vulnerability. url:
https://www.securityfocus.com/bid/66239.

[163] Wu-Ftpd Remote Format String Stack Overwrite Vulnerability. url:
https://www.securityfocus.com/bid/1387.

[164] Todd Miller Sudo ’Sudo_Debug()’ Path Resolution Local Privilege Escalation
Vulnerability. url: https://www.securityfocus.com/bid/51719.

[165] Null HTTPd Remote Heap Overflow Vulnerability. url:
https://www.securityfocus.com/bid/5774.

[166] FreeBSD ’telnetd’ Daemon Remote Buffer Overflow Vulnerability. url:
https://www.securityfocus.com/bid/51182/info.

[167] ghttpd Daemon Buffer Overflow Vulnerability. url:
https://www.securityfocus.com/bid/2879.

[168] Crispan Cowan et al. “StackGuard : Automatic Adaptive Detection and
Prevention of Buffer-Overflow Attacks StackGuard : Automatic Adaptive
Detection and Prevention of”. In: USENIX Security Symposium. Vol. 98. USENIX
Association, 1998, pp. 63–78.

https://pdf1.alldatasheet.com/datasheet-pdf/view/255445/ATMEL/AT91CAP7S450A.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/255445/ATMEL/AT91CAP7S450A.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/257048/ATMEL/AT91CAP7E.html
https://pdf1.alldatasheet.com/datasheet-pdf/view/257048/ATMEL/AT91CAP7E.html
https://www.bdti.com/InsideDSP/2007/07/18/atmel-announces-cap-customizable-microcontrollers
https://www.bdti.com/InsideDSP/2007/07/18/atmel-announces-cap-customizable-microcontrollers
https://doi.org/10.1.1.221.7393
https://doi.org/10.1145/512927.512945
https://doi.org/10.1109/WWC.2001.990739
https://doi.org/10.1109/SP.2014.25
http://www.securityfocus.com/bid/2347
https://www.securityfocus.com/bid/66239
https://www.securityfocus.com/bid/1387
https://www.securityfocus.com/bid/51719
https://www.securityfocus.com/bid/5774
https://www.securityfocus.com/bid/51182/info
https://www.securityfocus.com/bid/2879

180 References

[169] Lucas Davi et al. “HAFIX: Hardware-Assisted Flow Integrity Extension”. In:
Proceedings of the 52nd Annual Design Automation Conference. New York, NY,
USA: ACM, June 2015, pp. 1–6. doi: 10.1145/2744769.2744847.

[170] Nathan Burow, Xinping Zhang, and Mathias Payer. “SoK: Shining light on
shadow stacks”. In: Proceedings - IEEE Symposium on Security and Privacy.
IEEE, 2019, pp. 985–999. doi: 10.1109/SP.2019.00076.

[171] Ben Hardekopf and Calvin Lin. “Flow-sensitive pointer analysis for millions of
lines of code”. In: International Symposium on Code Generation and Optimization
(CGO 2011). IEEE, Apr. 2011, pp. 289–298. doi: 10.1109/CGO.2011.5764696.

[172] Jakub Kuderski, Jorge A. Navas, and Arie Gurfinkel. “Unification-based Pointer
Analysis without Oversharing”. In: Proceedings of the 19th Conference on Formal
Methods in Computer-Aided Design, FMCAD 2019 (June 2019), pp. 37–45. url:
http://arxiv.org/abs/1906.01706.

[173] Jean-Philippe Aumasson and Daniel J. Bernstein. “SipHash: A Fast Short-Input
PRF”. In: 13th International Conference on Cryptology in India (INDOCRYPT
2012). Vol. 7668 LNCS. Kolkata, India: Springer Berlin Heidelberg, 2012,
pp. 489–508. doi: 10.1007/978-3-642-34931-7{_}28.

[174] David Floyer. Exiting x86: Why Apple and Microsoft are embracing the Arm-based
PC. 2020. url: https://siliconangle.com/2020/06/26/exiting-x86-apple-
microsoft-embracing-arm-based-pc/.

[175] Grigori Fursin. Collective Benchmark (cBench): collection of open-source
programs and multiple datasets from the community. url:
https://sourceforge.net/projects/cbenchmark/files/cBench/V1.1/.

[176] Guillaume Bonfante et al. “Control Flow Graphs as Malware Signatures”. In:
International workshop on the Theory of Computer Viruses. 2007.

[177] Philip O’Kane, Sakir Sezer, and Kieran McLaughlin. “Obfuscation: The Hidden
Malware”. In: IEEE Security & Privacy 9.5 (Sept. 2011), pp. 41–47. doi:
10.1109/MSP.2011.98.

[178] Mark Hall et al. “The WEKA data mining software”. In: ACM SIGKDD
Explorations Newsletter 11.1 (Nov. 2009), pp. 10–18. doi:
10.1145/1656274.1656278.

[179] 11 of the worst ransomware - we name the internet nastiest extortion malware |
Gallery | Computerworld UK. url: https://goo.gl/wNDoL4.

[180] VirusTotal - Free Online Virus, Malware and URL Scanner. url:
https://virustotal.com/.

[181] Mederic Hurier et al. “Euphony: Harmonious Unification of Cacophonous
Anti-Virus Vendor Labels for Android Malware”. In: 2017 IEEE/ACM 14th
International Conference on Mining Software Repositories (MSR). IEEE, May
2017, pp. 425–435. doi: 10.1109/MSR.2017.57.

[182] Marcos Sebestian et al. “AVclass: A Tool for Massive Malware Labeling”. In:
International Symposium on Research in Attacks, Intrusions and Defenses (2016),
pp. 230–253. doi: 10.1007/978-3-319-11379-1.

https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1109/SP.2019.00076
https://doi.org/10.1109/CGO.2011.5764696
http://arxiv.org/abs/1906.01706
https://doi.org/10.1007/978-3-642-34931-7{_}28
https://siliconangle.com/2020/06/26/exiting-x86-apple-microsoft-embracing-arm-based-pc/
https://siliconangle.com/2020/06/26/exiting-x86-apple-microsoft-embracing-arm-based-pc/
https://sourceforge.net/projects/cbenchmark/files/cBench/V1.1/
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1145/1656274.1656278
https://goo.gl/wNDoL4
https://virustotal.com/
https://doi.org/10.1109/MSR.2017.57
https://doi.org/10.1007/978-3-319-11379-1

References 181

[183] Sudhir Varma and Richard Simon. “Bias in error estimation when using
cross-validation for model selection”. In: BMC Bioinformatics 7.1 (Dec. 2006),
p. 91. doi: 10.1186/1471-2105-7-91.

[184] TrendLabs Security Intelligence BlogPOWELIKS: Malware Hides In Windows
Registry - TrendLabs Security Intelligence Blog. url:
http://blog.trendmicro.com/trendlabs-security-
intelligence/poweliks-malware-hides-in-windows-registry/.

[185] Hunting the Mutex - Palo Alto Networks Blog. url:
https://researchcenter.paloaltonetworks.com/2014/08/hunting-mutex/.

[186] Suleiman Y Yerima, Sakir Sezer, and Gavin McWilliams. “Analysis of Bayesian
classification-based approaches for Android malware detection”. In: IET
Information Security 8.1 (Jan. 2014), pp. 25–36. doi:
10.1049/iet-ifs.2013.0095.

[187] Asaf Shabtai, Yuval Fledel, and Yuval Elovici. “Automated static code analysis
for classifying android applications using machine learning”. In: Proceedings -
2010 International Conference on Computational Intelligence and Security, CIS
2010 (2010), pp. 329–333. doi: 10.1109/CIS.2010.77.

[188] Ashkan Sami et al. “Malware detection based on mining API calls”. In:
Proceedings of the 2010 ACM Symposium on Applied Computing - SAC ’10. New
York, New York, USA: ACM Press, 2010, p. 1020. doi:
10.1145/1774088.1774303.

[189] Munir Geden. “Ngram and Signature Based Malware Detection in Android
Platforms”. Master’s thesis. University College London, 2015. url:
https://www.researchgate.net/publication/334262800_Ngram_and_
Signature_Based_Malware_Detection_in_Android_Platform.

[190] Pengtao Zhang and Ying Tan. “Class-wise information gain”. In: 2013 IEEE
Third International Conference on Information Science and Technology (ICIST).
IEEE, Mar. 2013, pp. 972–978. doi: 10.1109/ICIST.2013.6747700.

[191] Nicholas D. Matsakis and Felix S. Klock. “The rust language”. In: ACM SIGAda
Ada Letters 34.3 (Nov. 2014), pp. 103–104. doi: 10.1145/2692956.2663188.

https://doi.org/10.1186/1471-2105-7-91
http://blog.trendmicro.com/trendlabs-security-intelligence/poweliks-malware-hides-in-windows-registry/
http://blog.trendmicro.com/trendlabs-security-intelligence/poweliks-malware-hides-in-windows-registry/
https://researchcenter.paloaltonetworks.com/2014/08/hunting-mutex/
https://doi.org/10.1049/iet-ifs.2013.0095
https://doi.org/10.1109/CIS.2010.77
https://doi.org/10.1145/1774088.1774303
https://www.researchgate.net/publication/334262800_Ngram_and_Signature_Based_Malware_Detection_in_Android_Platform
https://www.researchgate.net/publication/334262800_Ngram_and_Signature_Based_Malware_Detection_in_Android_Platform
https://doi.org/10.1109/ICIST.2013.6747700
https://doi.org/10.1145/2692956.2663188

182

Appendices

183

A
Appendix

A.1 Code Snippets of Real-world Vulnerabilities

185

186 A.1. Code Snippets of Real-world Vulnerabilities

void do_authentication(char ∗user, ...) {
int authenticated = 0; ...
while (!authenticated) {

/∗ Get a packet from the client∗/
type = packet_read();
switch (type) {

...
case SSH_CMSG_AUTH_PASSWORD:
if (auth_password(user, password))

authenticated=1;
case
...

}
if (authenticated) break;

}
/∗ Perform session preparation. ∗/
do_authenticated(pw);

}

(a) OpenSSH - CVE-2001-0144.

bool SecurityOrigin::canAccess
(const SecurityOrigin∗ other) const {

if (m_universalAccess)
return true;

if (this == other)
return true;

if (isUnique() || other−>isUnique())
return false;

}

(b) Chrome - CVE-2014-1705.

struct passwd { uid_t pw_uid; ... } ∗pw;
...
int uid = getuid();
pw−>pw_uid = uid;
... //format string error
void passive(void) { ...

seteuid(0); //set root uid
...
seteuid(pw−>pw_uid); //set normal uid
...

}

(c) wu-ftpd - CVE-2000-0573.

struct user_details { uid_t uid; ... } ud;
... //run with root uid
ud.uid = getuid(); //in get_user_info()
...
vfprintf(...); //in sudo_debug()
...
setuid(ud.uid); //in sudo_askpass()
...

(d) sudo - CVE-2012-0809

void start_login(char ∗host,..) {
addarg(&argv,loginprg);
addarg(&argv,"−h");
addarg(&argv,host);
addarg(&argv,"−p");
execv(loginprg,argv);

}

(e) Netkit Telnetd - CVE-2002-1496.

int serveconnection(int sockfd) {
char ∗ptr; // pointer to the URL.
// ESI is allocated // to this variable.
...
if (strstr(ptr,"/.."))

reject the request;
log(...);
if (strstr(ptr,"cgi−bin"))

Handle CGI request ...
}

(f) Ghttpd - CVE-2001-820

Figure A.1: Code snippets forming basis to real world data-oriented attack scenarios.

A. Appendix 187

A.2 Call Graphs of Bare-metal Examples

entry0 sym.notmain

r15

loc.GET32

loc.PUT32

sym.uart_lcr

sym.uart_recv

sym.hexstrings

sym.timer_init

sym.uart_init loc.dummy

sym.hexstring

loc.GETPC

loc.BRANCHTO

sym.uart_check

sym.timer_tick

sym.uart_flush

Figure A.2: Call graph of bootloader image.

188 A.2. Call Graphs of Bare-metal Examples

entry0 sym.notmain

sym.�ll_window
sym.ZMEMCPY

sym.adler32

sym.crc32

sym.ZMEMSET

sym.�ush_pending sym._tr_�ush_bits

sym.de�ate_slow sym._tr_�ush_block

r15

sym.de�ate_fast

sym.de�ate_stored

sym.build_tree sym.pqdownheap

sym.updatewindow

sym.uncompress

sym.in�ateInit

sym.in�ate

sym.in�ateEnd

sym.in�ateCopy

sym.de�ate

sym._tr_stored_block

sym._tr_align

sym.de�ateResetKeep sym._tr_init

sym.scan_tree

sym.send_tree

sym.compress_block

sym.in�ate_fast

sym.in�ate_table

sym.de�ateSetDictionary

sym.hexstrings sym.uart_putc

sym.bi_windup

sym.in�ateReset2

sym.de�ateInit sym.de�ateInit2

sym.de�ateEnd

sym.zcfree sym.free

sym.uart_init

loc.PUT32

loc.GET32

loc.dummy

sym.hexstring

sym.compress
sym.compress2

sym.in�ateSync sym.in�ateReset

sym.de�atePrime

sym.zcalloc sym.ZMALLOC sym.de�ateCopy

sym.de�ateParams

sym.in�ateSetDictionary

Figure A.3: Call graph of zlib library as the most complex bare-metal software examined.

A. Appendix 189

A.3 JSON Structures of Cuckoo Reports

2017-6-23 Awesome JSON

chrome-extension://iemadiahhbebdklepanmkjenfdebfpfe/index.html# 1/1

response 1

process_path

calls

calls[0]

calls[1]

calls[2]

calls[3]

calls[4]

track

pid

process_name

command_line

modules modules[0]

time

tid

first_seen

ppid

type

Tree Chart JSON Inputresponse ► behavior ► processes ► 1

Figure A.4: JSON structure of an example process log.

2017-6-23 Awesome JSON

chrome-extension://iemadiahhbebdklepanmkjenfdebfpfe/index.html# 1/1

response 3

category

status

stacktrace

api

return_value

arguments

process_identifier

region_size

protection

process_handle

allocation_type

base_address

time

tid

flags
protection

allocation_type

Tree Chart JSON Inputresponse ► behavior ► processes ► 1 ► calls ► 3

Figure A.5: JSON structure showing an example call trace.

190 A.3. JSON Structures of Cuckoo Reports

2017-6-23 Awesome JSON

chrome-extension://iemadiahhbebdklepanmkjenfdebfpfe/index.html# 1/1

response summary

dll_loaded dll_loaded[0]

file_opened file_opened[0]

regkey_opened
regkey_opened[0]

regkey_opened[1]

file_written file_written[0]

mutex mutex[0]

guid guid[0]

file_read file_read[0]

regkey_read
regkey_read[0]

regkey_read[1]

Tree Chart JSON Inputresponse ► behavior ► summary

Figure A.6: JSON structure containing the behavioural artefacts such as files accesses,
registry keys, DLLs loaded, mutexes.

Generated Cuckoo reports (1.4GB) of the collected samples can be found at:
https://goo.gl/e8jbXq.
Source code of the framework is also available at https://github.com/msgeden/
familyclassifier

https://goo.gl/e8jbXq
https://github.com/msgeden/familyclassifier
https://github.com/msgeden/familyclassifier

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	Identified Gaps
	Contributions
	Structure
	List of Publications

	Background
	Remote Attestation
	Protocol Phases
	Protocol Attacks

	Memory Attacks
	Code Attacks
	Control-Oriented Attacks
	Data-Oriented Attacks

	Register Allocations
	Allocation Level
	Allocation Techniques

	Related Work
	Attestation Survey
	Software-based Techniques
	Hardware-based Techniques
	Hybrid Solutions
	Runtime Attestation
	Interaction Pattern

	Runtime Integrity
	Memory Safety
	Control-Flow Protections
	Mitigation of Data-Oriented Attacks

	Malware Analysis
	Static Techniques
	Dynamic Techniques

	Design of a Hardware Module For Runtime Attestation
	Introduction
	Problem Setting
	System Model
	Adversary Model

	Design of Runtime Integrity Model (RIM)
	Static Model
	Dynamic Extensions

	Runtime Monitoring and Attack Detection
	Runtime Integrity Checks by the HSM
	Attacks Coverage

	Protocol Overview
	Security Analysis
	HSM Attacks
	Protocol Attacks
	A Concrete Example

	Performance
	Discussion
	Summary

	Identifying Critical Variables for Lightweight Runtime Protection
	Introduction
	Problem Setting
	Motivation
	System and Adversary Model

	Distinguishing Variables with Trusted Values
	Trust Sources and Propagation
	Static Trust Analysis

	Detection of Data-Oriented Attacks
	Value-Based Integrity Checks
	Scope

	Implementation
	A Concrete Example
	LLVM Passes

	Evaluation
	Performance
	Security Analysis

	Intel SGX Adaptation
	Program-agnostic Enclaves
	Switch Overheads

	Summary

	Leveraging CPU Registers for Protection of Runtime Data
	Introduction
	Problem Setting
	Motivation
	System and Adversary Model

	Design
	Security-Oriented Allocations
	Integrity of Saved Register Values
	Security Analysis

	Implementation on ARM64
	Evaluation
	Performance
	Security and Real-World Cases

	Discussion
	Chained vs Independent Frames
	Primitive Devices and Register Scarcity
	Future CPU Architectures
	Further Extensions

	Summary

	Using Runtime Features for Malware Identification
	Introduction
	Problem Definition
	Methodology
	Dataset Collection
	Runtime Data Generation
	Feature Selection
	Classifications

	Results and Discussion
	Call Traces
	Other Artefacts
	Optimal Settings and Comparison
	Limitations

	Summary

	Conclusion
	Summary of Contributions
	Concluding Remarks and Future Outlook

	References
	Appendix
	Code Snippets of Real-world Vulnerabilities
	Call Graphs of Bare-metal Examples
	JSON Structures of Cuckoo Reports

